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Abstract— In this paper, we consider the problem of dynamic
programming when supremum terms appear in the objective
function. Such terms can represent overhead costs associated
with the underlying state variables. Specifically, this form of op-
timization problem can be used to represent optimal scheduling
of batteries such as the Tesla Powerwall for electrical consumers
subject to demand charges - a charge based on the maximum
rate of electricity consumption. These demand charges reflect
the cost to the utility of building and maintaining generating
capacity. Unfortunately, we show that dynamic programming
problems with supremum terms do not satisfy the principle of
optimality. However, we also show that the supremum is a spe-
cial case of the class of forward separable objective functions.
To solve the dynamic programming problem, we propose a
general class of optimization problems with forward separable
objectives. We then show that for any problem in this class,
there exists an augmented-state dynamic programming problem
which satisfies the principle of optimality and the solutions to
which yield solutions to the original forward separable problem.
We further generalize this approach to stochastic dynamic
programming problems and apply the results to the problem of
optimal battery scheduling with demand charges using a data-
based stochastic model for electricity usage and solar generation
by the consumer.

I. INTRODUCTION

In 2012, 95,000 new distributed solar PhotoVoltaic (PV)
systems were installed nationally, a 36% increase from 2011
and yielding a total of approximately 300,000 installations
total [1]. Further, utility-scale PV generating capacity has
increased at an even faster rate, with 2012 installations
more than doubling that of 2011 [2]. Meanwhile, partially
due to the development of energy-efficient appliances and
new materials for insulation, US electricity demand has
plateaued [3]. As a consequence of these trends, utility
companies are faced with the problem that demand peaks
continue to grow. Specifically, as per the US EIA [4], the
ratio of peak demand to average demand has increased
dramatically over the last 20 years.

Fundamentally, the problem faced by utilities is that con-
sumers are typically charged based on total electricity con-
sumption, while utility costs are based both on consumption
and for building and maintaining the generating capacity
necessary to meet peak demand. Recently, several public
and private utilities have moved to address this imbalance
by charging residential consumers based on the maximum
rate ($ per kW) of consumption - a cost referred to as a
demand charge. Specifically, in Arizona, both major utilities
SRP and APS have mandatory demand charges for residential
consumers [5].

For consumers, load is relatively inflexible and hence the
most direct approach to minimizing the effect of demand
charges is the use of battery storage devices such as the
Tesla Powerwall [6], [7], [8]. These devices allow consumers
to shift electricity consumption away from periods of peak
demand, thereby minimizing the effect of demand charges. In
this paper, we specifically focus on battery storage coupled
with HVAC and solar generation. This is due to the fact that
load from HVAC and electricity from solar generation can
be forecast well apriori.

The use of battery storage has been well documented in the
literature [9] and in particular, there have been several results
on the optimal use of batteries for residential customers [10],
[11], [12], [13]. Within this literature, there are relatively
few results which include demand charges. Of those which
do treat demand charges, we mention [14] which proposes a
heuristic form of dynamic programming, and the recent work
in [15], wherein the optimization problem is broken down
into several agents, and a Lagrangian approach is used to pre-
form the optimization. Furthermore, in [16] a similar energy
storage problem is solved using optimized curtailment and
load shedding. An Lp approximation of the demand charge
was used in combination with multi-objective optimization
in [17] and, in addition, the optimal use of building mass for
energy storage was considered in [18], wherein a bisection on
the demand charges was used. However, we note that none
of these approaches resolve the fundamental mathematical
problem of dynamic programming with a non-separable cost
function and hence are either inaccurate, computationally
expensive, or are not guaranteed to converge. Finally, we
note that there has been no work to date on optimization
of demand charges coupled with stochastic models of solar
generation.

In this paper, we formulate the battery storage problem as
a dynamic program with an objective function consisting of
both integrated time-of-use charges and a supremum term
representing the demand charge. Furthermore, we model
solar generation as a Gauss-Markov process and minimize
the expected value of the objective. The fundamental math-
ematical challenge with dynamic programming problems of
this form is that, as shown in Section II, problems which
include supremum terms in the objective do not satisfy the
principle of optimality and thus recursive solution of the
Bellman equation does not yield an optimal policy.

Dynamic programming for problems which do not satisfy
the principle of optimality has received little attention and



there are few results in the literature in which this problem
has been addressed. The only generalized approach to the
problem seems to be that taken in [19] which considered
the use of multi-objective optimization in the case where
the objective function is “backward separable”. Although
the supremum term is not backward separable, an Lp ap-
proximation of the supremum is backward separable and this
approach was applied in [17] to the problem of battery stor-
age. Although not directly addressed in [19], our approach
is inspired by this result and is based on the observation that
while the supremum is not backward separable, it is “forward
separable”.

To solve forward separable optimization problems, we
propose in this paper a rigorous approach to a class of gen-
eralized dynamic programming problems which are formally
defined in Section II. For this class of problems, we propose
a precise definition of the principle of optimality and show
that if this definition holds, then the Bellman equation can be
used to define an optimal policy. Next, we propose a class
of forward separable optimization problems and show that
dynamic programming with integral and supremum terms is
an element of this class. We then show that the principle
of optimality fails for certain problems in this class. In
Section III, we show that for any forward separable dynamic
programming problem, there exists a separable augmented-
state dynamic programming problem for which the principle
of optimality holds and from which solutions to the original
forward separable problem can be recovered. In Section IV,
we apply these methods to the battery scheduling problem
for a given load and solar generation schedule. In Section VI,
we show that the augmented dynamic programming problem
can also be used to solve stochastic dynamic programming
problems with forward separable objectives and apply this
approach to the battery scheduling problem using a Gauss-
Markov model of solar generation extracted from data pro-
vided by local utility SRP.

II. BACKGROUND: GENERALIZED DYNAMIC
PROGRAMMING

In this paper, we consider a generalized class of dynamic
programming problems. Specifically, we define a generalized
dynamic programming problem as an indexed sequence of
optimization problems G(t0,x0), defined by a an indexed se-
quence of objective functions Jt0,x0 : Rm×(T−t0)×Rn×(T−t0+1)

where we say that u∗ ∈Rm×(T−t0) and x∗ ∈Rn×(T−t0+1) solve
G(t0,x0) if

(u∗,x∗) = argmin
u,x

Jt0,x0(u,x) (1)

subject to: x(t +1) = f [x(t),u(t), t], given x(t0) = x0

x(t) ∈ X ⊂ Rn for t = t0 +1, ..,T
u(t) ∈U ⊂ Rm for t = t0, ..,T −1

Where f : Rn×Rm×N→ Rn, x(t) ∈ Rn and u(t) ∈ Rm for
all t. We denote J∗t0,x0

= Jt0,x0(u
∗,x∗).

Definition 1: We say the sequence of controls u =
(u(t0), ....,u(T −1)) ∈ Rm×(T−t0) is feasible if u(t) ∈
U for t = t0, ..,T − 1 and if x(t + 1) = f [x(t),u(t), t] and

x(t0) = x0, then x(t) ∈ X for all t. For a given x, we denote
by Γt,x, the set u ∈U such that f [x,u, t] ∈ X . In this paper
we only consider problems where Γt,x is nonempty for all x
and t.
Note that for this class of optimization problems,
feasibility is inherited. That is, if u = (u(t), ....,u(T −1))
and x = (x(t), · · · ,x(T )) are feasible for G(t,x(t))
and v = (v(s), ....,v(T −1)) and h = (h(s), · · · ,h(T ))
are feasible for G(s,x(s)) where s > t, then
w = (u(t), · · · ,u(s − 1),v(s), ....,v(T −1)) and
z = (x(t), · · · ,x(s − 1),h(s), · · · ,h(T )) are feasible for
G(t,x(t)).

In certain cases, indexed optimization problems of the
Form of G(t0,x0) can be solved using an optimal policy.

Definition 2: A policy is any map from the present state
and time to a feasible input (x, t) 7→ u(t) ∈ Γx,t , as u(t) =
π(x, t). We say that π∗ is an optimal policy for Problem (1)
if

u∗ = (π∗(x0, t0), ....,π∗(x(T −1),T −1))

where x(t +1)∗ = f [x(t)∗,π∗(x(t)∗, t), t] for all t.
The existence of an optimal policy states that knowledge

of the current state is sufficient to determine the current input.
Existence of such a policy vastly simplifies the optimization
problem. However, not every generalized dynamic program-
ming problem admits an optimal policy. The “Principle of
Optimality” defines one class of optimization problems for
which there exists an optimal policy.

Definition 3: We say an optimization problem, G(t0,x0),
of the Form (1) satisfies the principle of optimality if the
following holds. For any s and t with t0 ≤ t < s < T , if u∗ =
(u(t), ...,u(T − 1)) and x∗ = (x(t), ...,x(T )) solve G(t,x(t))
then v = (u(s), ...,u(T − 1)) and h = (x(s), ...,x(T )) solve
G(s,x(s)).

The classical form of Dynamic programming algorithm,
as originally defined in [20], can be used to solve indexed
optimization problems of the Form (1). This algorithm has
the advantage of computational complexity which is linear
in T .

Dynamic Programming algorithms are most commonly
used to solve the special class of indexed optimization
problems P(t0,x0) of the form

min
u,x

Jt0,x0(u,x) =
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T )) (2)

subject to: x(t +1) = f [x(t),u(t), t], given x(t0) = x0

x(t) ∈ X for t = t0 +1, ..,T
u(t) ∈U for t = t0, ..,T −1

Note that JT,x = cT (x). We will refer to x(t0) ∈ Rn the
initial state, x(t) ∈ Rn the state at time t and u(t) ∈ Rm

the inputs at time t. Jt0,x0 is the objective function, ct :
Rn ×Rm → R for t = t0, ..,T − 1, cT Rn → R are given
functions and f : Rn×Rm×N→Rn is a given vector field.
The following lemma shows that this class of problems
satisfies the principle of optimality.



Lemma 1: Any Problem of Form P(t0,x0) in (2) satisfies
the principle of optimality.

Proof: Suppose u∗ = (u(t), ...,u(T − 1)) and x∗ =
(x(t), ...,x(T )) solve P(t,x(t)) in (2). Now we suppose by
contradiction that there exists some s > t such that v =
(u(s), ...,u(T − 1)) and h = (x(s), ...,x(T )) do not solve
P(s,x(s)). We will show that this implies that u∗ and
x∗ do not solve P(t,x) in (2), thus verifying the condi-
tions of the Principle of Optimality. If v and h do not
solve P(s,x(s)), then there exist feasible w, z such that
Js,x(s)(v,h)< Js,x(s)(w,z). i.e.

Js,x(s)(w,z)

=
T−1

∑
t=s

ct(z(t),w(t))+ cT (z(T ))

<
T−1

∑
t=s

ct(x(t),u(t))+ cT (x(T ))

= Js,x(s)(v,h)

Now consider the proposed feasible sequences û =
(u(t), ...,u(s− 1),w(s), ...,w(T − 1)) and x̂ = (x(t), ...,x(s−
1),z(s), ...,z(T −1)). It follows:

Jt,x(t)(û, x̂)

=
s−1

∑
k=t

ck(x(k),u(k))+
T−1

∑
k=s

ck(z(k),w(k))+ cT (z(T ))

<
s−1

∑
k=t

ck(x(k),u(k))+
T−1

∑
k=s

ck(x(k),u(k))+ cT (x(T ))

= Jt,x(t)(u∗,x∗)

which contradicts optimality of u∗,x∗. Therefore, this class
of problems satisfies the principle of optimality.

Proposition 1: Consider the class of optimization prob-
lems P(t0,x0) in (2). If we define F(x, t) = J∗t,x, then the
following hold for for all x ∈ X .

F(x, t) = inf
u∈Γt,x
{ct(x,u)+F( f (x,u, t), t +1)} (3)

∀t ∈ {t0, ..,T −1}
F(x,T ) = cT (x) ∀x ∈ X

Proof:
Clearly F(x,T ) = cT (x) for any x.

Now for any x ∈ X and t ∈ {t0, ..,T − 1}, suppose u∗ =
(u(t), ..,u(T − 1)) and x∗ = (x(t), ..,x(T )) solve P(t,x). By
the principle of optimality v = (u(t + 1), ..,u(T − 1)) and
h = (x(t +1), ..,x(T )) solve P(t +1,x(t +1)). Therefore

F(x(t +1), t +1) = J∗x(t+1),t+1 = Jx(t+1),t+1(v,h). (4)

We conclude that

F(x, t) = J∗x,t
= Jx,t(u∗,x∗)
= ct(x,u(t))+ Jx(t+1),t+1(v,h)
= ct(x,u(t))+F( f (x,u(t), t), t +1) using (4)
≥ inf

u∈Γt,x
{ct(x,u)+F( f (x,u, t), t +1)}

holds for all x and t.
Now we prove F(x, t)≤ infu∈Γt,x{ct(x,u)+F( f (x,u, t), t+

1)}. For any u ∈ Γx,t , let wu = {w(t + 1), · · · ,w(T −
1)} and hu = { f (x,u, t),z(t + 2), · · · ,z(T )} be feasible for
P( f (x,u, t), t+1). Then vu = {u,w(t+1), · · · ,w(T −1)} and
zu = {x, f (x,u, t),z(t + 2), · · · ,z(T )} are feasible for P(t,x).
Therefore,

F(x, t) = J∗t,x ≤ Jt,x(vu,hu)

= ct(x,u)+ J f (x,u,t),t+1(wu,zu)

≤ ct(x,u)+F( f (x,u, t), t +1)
≤ inf

u
{ct(x,u)+F( f (x,u, t), t +1)}

Note: Equation (3) is often referred to as Bellman’s Equation
and a function F which satisfies Bellman’s equation is often
referred to as a “cost to go” function. Prop. 1 shows that
problems of the Form P(t0,x0) admit a solution to Bellman’s
Equation which in turn indexes the optimal objective to the
Problem. Furthermore, for problems P(t0,x0), the solution to
Bellman’s equation can be obtained recursively backwards
in time using a minimization on u. When x and u are
discrete, the RHS of Eqn. 3 takes a number of finite values
and minimization over these values is trivial. When the
variables are continuous, finding a functional form for the
minimization step is more challenging. In either case, a
solution to Bellman’s equation provides a state-feedback law
or optimal policy as follows.

Corollary 1: Consider P(t0,x0) in (2). Suppose F(x, t)
satisfies Equation (3) for P(t0,x0), Then

π
∗(x, t) = arg inf

u∈Γt,x
{ct(x(t),u)+F( f (x(t),u, t), t +1)}.

is an optimal policy.
Dynamic Programming with Supremum Terms In this
paper we consider the special class of indexed optimization
problem, S(t0,x0). In contrast to problems of the form
P(t0,x0) in (1), class S(t0,x0) has supremum (or maximum)
terms in the objective. Specifically, these problems have the
following form.

min
u,x

Jt0,x0(u,x) :=
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T ))+ sup
t0≤k≤T

dt(x(k))

(5)
subject to: x(t +1) = f [x(t),u(t), t]
x(0) = x0 given
x(t) ∈ X for t = t0, ..,T
u(t) ∈U for t = t0, ..,T −1

Lemma 2: The class of optimization problems in (5) does
not satisfy the principle of optimality.

Proof: We give a counterexample. For h > 0, we
consider the following problem S(0,0):

min
u∈R3,x∈R4

2

∑
t=0

ct(u(t))+ sup
0≤k≤3

x(k)

subject to: x(t +1) = x(t)+u(t), x(0) = 0
0≤ xt ≤ h,

u(t) ∈ {−h,0,h}



TABLE I
THIS TABLE SHOWS THE CORRESPONDING COST OF EACH FEASIBLE

POLICY USED IN THE COUNTER EXAMPLE IN LEMMA 1

feasible u objective value feasible u objective value
(0,0,0) 0 (h,0,−h) h/2
(0,0,h) h/2 (h,0,0) 0
(0,h,0) 2h (h,−h,0) -h
(0,h,−h) (5/2)h (h,−h,h) -(3/2)h

Where here we define c0(u(0)) = −u(0), c1(u(1)) = u(1),
c2(u(2)) =−u(2)/2.
Since u ∈ {−h,0,h}3, there are 27 input sequences, only 8
of which are feasible. In Table I, we calculate the objective
value of each feasible input sequence and deduce the optimal
input is u = (h,−h,h). Now suppose we follow this input
sequence until t = 2 yielding x(2) = 0. Now we examine the
problem S(2,x(2)).

min
u∈Rx∈x

c2(u(2))+ sup
2≤k≤3

x(k)

subject to: x(t +1) = x(t)+u(t), x(2) = 0
0≤ x(t)≤ h,

u(t) ∈ {−h,0,h}

For this sub-problem, there are two feasible inputs: u(3) ∈
{−h,0}. Of these, the latter is optimal (objective value h/2
vs 0). Thus we see that although u = {h,−h,h} and x =
{0,h,0,h} solve S(0,0), v = {h} and h = {0,h} do not solve
S(2,0).

III. SOLUTION METHODOLOGY: AUGMENTED DYNAMIC
PROGRAMMING

In this section we will define what a forward separable
objective function is and later show that the supremum
is an example of such a function. We will show that for
dynamic programming problems with a forward separable
objective function, augmenting the state variables allows us
to use standard dynamic programming techniques to solve
the problem.

Definition 4 ([21]): The function J(u,x) is said to be for-
ward separable if there exists functions φ0(x,u), φT (x,φT−1),
and φi(x,u,φi−1) for i = 1, · · ·T −1 such that

J(u,x) = φT (x(T ),φT−1[x(T −1),u(T −1),φT−2{...., (6)
φ2{x(2),u(2),φ1{x(1),u(1),φ0{x(0),u(0)}}}, ....,}])

where φt : Rn×Rp×Rq→ Rq, for t = 1, ...,T −1 and φT :
Rn×Rq→ R, φ0 : Rn×Rp→ Rq .

Clearly, any objective function of the form

J(u,x) =
T−1

∑
t=t0

ct(u(t),x(t))+ cT (x(T ))

is forward separable using φ0(x,u) = c0(x,u), φT (x,φT−1 =
cT (x)+φT−1 and

φi(x,u,φi−1) = ci(x,u)+φi−1 for i = 1, · · · ,T −1

In addition, it can be shown that the sum of any number
of forward separable functions is forward separable. For
example, let J1(u,x) and J2(u,x) be forward separable with
associated φi = gi and φi = hi, respectively. Then J1 + J2 is
forward separable with

φi(x,u,φi−1) =

[
φ 1

i (x,u,φi−1)
φ 2

i (x,u,φi−1)

]
=

[
gi(x,u,φ 1

i−1)
hi(x,u,φ 2

i−1)

]
(7)

and

φT (x,u,φT−1) = gT (x,u,φ 1
T−1)+hT (x,u,φ 2

T−1).

Clearly,

φ0(x,u) =
[

φ 1
0 (x,u)

φ 2
0 (x,u)

]
=

[
g0(x,u)
h0(x,u)

]
.

We now show that the supremum (maximum) function is
forward separable.

Lemma 3:

J(u,x) = max{ sup
0≤k≤T−1

{ck(u(k),x(k))},cT (x(T ))}

is a forward separable objective function.

Proof:

J(u,x) = max{ sup
0≤k≤T−1

{ck(u(k),x(k))},cT (x(T ))}

= max{cT (x(T )),max{cT−1(u(T −1),x(T −1)), · · ·
max{..,max{c1(u(1),x(1)),max{c0(u(0),x(0))}}, ..}}

so that

φi(x,u,φi−1) = max(ci(x,u),φi−1), φ0(x,u) = c0(x,u),

φT (x,φT−1) = max(cT (x),φT−1)

A. Forward Separable Dynamic Programming

We may now define the class of indexed forward separable
problems H(t0,x0) so that H is of class G, but not of class
P and has the form:

min
u,x

Jt0,x0(u,x)

subject to: x(t +1) = f [x(t),u(t), t] (8)
x(0) = x0

x(t) ∈ X ⊂ Rn for t = 1, ..,T
u(t) ∈U ⊂ Rp for t = 0, ..,T −1

where Jt0,x0 is forward separable with associated φi. For
every instance of a forward separable dynamic programming
problem H(t0,x0), we may associate a new optimization
problem A(t0,x0), which is equivalent to H(t0,x0) in a certain
sense and which satisfies the principle of optimality. A(t0,x0)
is defined as follows.



min
u

Lt0,x0(u,x) = z2(T +1)

subject to:
[

z1(t +1)
z2(t +1)

]
=

[
f (z1(t),u(t))

φt(z1(t),u(t),z2(t))

]
1 < t < T (9)[

z1(1)
z2(1)

]
=

[
f (z1(0),u(0))

φ0(z1(0),u(0))

]
,

[
z1(T +1)
z2(T +1)

]
=

[
z1(T )

φT (z1(T ),z2(T ))

]
[

z1(0)
z2(0)

]
=

[
x0
0

]
z1(t) ∈ X for t = 1, ..,T
u(t) ∈U for t = 1, ..,T

Where the solution to H(t0,x0) can be recovered as
x(t) = z1(t).

Lemma 4: Suppose Jt0,x0(u,x) is forward separable with
associated φi. Then J∗t0,x0

= L∗t0,x0
. Furthermore, suppose u and

x solve H(t0,x0) and w and z solve A(t0,x0). Then u = w
and x(t) = z1(t) for all t.

Proof: Suppose w and z solve A(t0,x0). First we show
that w and z1 are feasible for H(t0,x0). Clearly w(t) ∈ U
for all t and if we let u = w then x(0) = x0 and x(t +
1) = f [x(t),u(t), t] for all t. Since likewise z1(0) = x0 and
z1(t+1) = f [z1(t),u(t), t], we have x(t) = z1(t) ∈ X for all t.
Hence u and x = z1 are feasible for H(t0,x0). Likewise, if u
and x solve H(t0,x0), then if we let w= u and z1 = x and de-
fine z2(t +1) = φt(z1(t),u(t),z2(t)), z2(1) = φ0(z1(0),u(0)),
z2(0) = 0, then w and z are feasible. Furthermore, in both
cases, if we examine the objective value

J(u,x) = φT (z1(T ),φT−1[z1(T −1),w(T −1),φT−2{....,
φ2{z1(2),w(2),φ1{z1(1),w(1),φ0{z1(0),w(0)}}}, ....,}]).

However, we now observe

z2(T +1) = φT (z1(T ),z2(T ))

z2(T ) = φT−1(z1(T −1),u(T −1),z2(−1))
...
z2(2) = φ1(z1(1),u(1),z2(1))
z2(1) = φ0(z1(0),u(0)).

Hence we have

L(w,z) = z1(T +1)
= φT (z1(T ),u(T ),φT−1(z1(T −1),u(T −1),φT−2(· · · ,

φ1(z1(1),u(1),z2(1),φ0(z1(0),u(0))) · · ·)))
= J(u,x).

Hence if w and z solve A(t0,x0) with objective L∗t0,x0
=

z2(T +1), then w and z1 solve H(t0,x0) with objective value
J∗t0,x0

= L∗t0,x0
= z2(T +1).

Proposition 2: The augmented optimization problem
A(t0,x0) in (9) satisfies the Principle of Optimality and the
Bellman equation (3).

Proof: A(t0,x0) is a special case of P(t0,x0) where
ci = 0 for i 6= T .

To understand the augmented approach intuitively, we
note that dynamic programming breaks a multi-period
planning problem into simpler optimization problems at
each stage. However, for non-separable problems, to make
the correct decision at each stage we need historical data.
In this context, the extra augmented state contains that part
of the history necessary to make the correct decision at the
present time.

Corollary 2: S(t0,x0) is a special case of H(t0,x0).

Proof: Consider the objective function from Problem
S(t0,x0) as

Jt0,x0(u,x) =
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T ))+ sup
t0≤k≤T

dt(x(k)).

Now this is the sum of two forward separable functions.
As per the previous discussion (7), then, we define

gi(x,u,φ 1
i−1) = ci(x,u)+φ

1
i−1 for i = 1, · · · ,T −1

g0(x,u) = c0(x,u), gT (x,φ 1
T−1) = cT (x)+φ

1
T−1

and

hi(x,u,φ 2
i−1) = max(di(x,u),φ 2

i−1), h0(x,u) = d0(x,u),

hT (x,φ 2
T−1) = max(dT (x),φ 2

T−1)

Then

φi(x,u,φi−1) =

[
φ 1

i (x,u,φi−1)
φ 2

i (x,u,φi−1)

]
=

[
gi(x,u,φ 1

i−1)
hi(x,u,φ 2

i−1)

]
φT (x,u,φT−1) = gT (x,u,φ 1

T−1)+hT (x,u,φ 2
T−1),

and

φ0(x,u) =
[

φ 1
0 (x,u)

φ 2
0 (x,u)

]
=

[
g0(x,u)
h0(x,u)

]
establish forward separability of Jt0,x0 as per (6).
The φi specified in the proof of this Corollary define an
instance of problem H(t0,x0), which was shown to be
equivalent to a class of optimization problems A(t0,x0) by
Lemma 4. Since problems of class A(t0,x0) satisfy the
principle of optimality, they can be solved using dynamic
programming and their solution yields a solution to the
original Problem S(t0,x0). In the following section, we will
apply this technique to optimal battery scheduling in the
presence of demand charges.

IV. APPLICATION TO THE ENERGY STORAGE PROBLEM

In this section, we apply the augmented dynamic program-
ming methodology to optimal scheduling of batteries in the
presence of demand charges. We first propose a simple model
for the dynamics of the battery storage. We then formulate
the objective function using electricity pricing plans which
include demand charges. We see that the system described
becomes an optimization problem of the form H(0,e0) (8).



A. Battery Dynamics

We will model the energy stored in the battery by the
difference equation:

e(k+1) = α(e(k)+ηu(k)∆t) (10)

Where e(k) denotes the energy stored in the battery at time
step k, α is the bleed rate of the battery, η is the efficiency
of the battery, u(k) denotes the charging/discharging (+/−)
at time step k and ∆t is the amount of time passed between
each time step. Moreover we denote the maximum charge
and discharge rate by ū and u respectively. Thus we have
the constraint that u(k) ∈ [u, ū] := U for all k. Similarly we
also add the constraint e(k) ∈ [e, ē] := X for all k where e
and ē are the capacity constraints of the battery (typically
e = 0).

B. The objective function

Let us denote q(k) to be the power supplied by the grid
at time step k.

q(k) = qa(k)−qs(k)+u(k) (11)

where qa(k) is the power consumed by HVAC/appliances
at time step k and qs(k) is the power supplied by solar
photovoltaics at time step k. For now, it is assumed that
both are known apriori.

To define the cost of electricity we divide the day
t ∈ [0,T ] into on-peak and off-peak periods. We define
an off peak period starting from 12am till ton and toff
till 12am. We define an on-peak period between ton
till toff. The Time-of-Use (TOU, $ per kWh) electricity
cost during on-peak and off-peak is denoted by pon and
poff respectively. We further simplify this as pk = pon if
k ∈ Ton and pk = po f f if k ∈ To f f where Ton and To f f
are the on-peak and off-peak hours, respectively. These
TOU charges define the first part of the objective function as:

JE(u,e) = poff

ton−1

∑
k=0

q(k)∆t + pon

toff−1

∑
k=ton

q(k)∆t + poff

T

∑
k=toff

q(k)∆t

= ∑
k∈[0,T ]

pk(qa(k)−qs(k)+u(k))∆t

= ∑
k∈[0,T ]

pk(qa(k)−qs(k))∆t + ∑
k∈[0,T ]

pku(k)∆t

Where the daily terminal timestep is T = 24/∆t. Clearly,
only the second term in this objective function is significant
for the purposes of optimization.

We also include a demand charge, which is a cost
proportional to the maximum rate of power taken from the
grid during on-peak times. This cost is determined by pd
which is the price in $ per kW. Thus it follows the demand
charge will be:

TABLE II
LIST OF CONSTANT VALUES (PRICES CORRESPOND TO SALT RIVER

PROJECT E21 PRICE PLAN)

Constant Value Constant Value
α 0.999791667 (W/h) toff 41
η 0.92 (%) pon 0.0633×10−3 ($/KWh)
ū 4000 (Wh) poff 0.0423×10−3 ($/KWh)
u -4000 (Wh) pd 3.364 ($/KWh)
ē 8000 (Wh) ∆t 0.5 (h)
ton 27

JD(u,e) = pd sup
k∈{ton,....,toff−1}

q(k)

pd sup
k∈{ton,....,toff−1}

{qa(k)−qs(k)+u(k)}

C. 24 hr Optimal Residential Battery Storage Problem

We may now define the problem of optimal battery
scheduling in the presence of demand and Time-of-Use
charges, denoted D(0,e0).

min
u,e
{JE(u,e)+ JD(u,e)} subject to

e(k+1) = α(e(k)+ηu(k)∆t) for k = 0, ...,T
e(k) ∈ X for k = 0, ...,T
u(k) ∈U for k = 0, ...,T
e0 = e0

Where recall U := [u, ū] and X := [e, ē].
Proposition 3: Problem D(0,e0) is a special case of

S(t0,x0)

Proof: Let ci = pi(qa(i)−qs(i)+u(i))∆t

di =

{
pd(qa(k)−qs(k)+uk) k ∈ Ton

0 otherwise.

We conclude that our algorithmic approach to forward sepa-
rable dynamic programming can be applied to this problem
as per Corollary 2. That is, it can be represented as an
augmented dynamic programming problem of Form A(t0,x0).

V. NUMERICAL IMPLEMENTATION

To illustrate our approach to generalized dynamic pro-
gramming, we use solar and usage data obtained by local
utility Salt River Project in Tempe, AZ. We also use pricing
data from SRP and battery data obtained for the Tesla
Powerwall. As is standard practice, for implementation, we
used a discrete input and state space. The results of the
simulation are shown in Fig. V. These results show a slight
improvement in accuracy over results obtained based on the
approach to a similar problem in [18] (approximately $0.98
savings).



Fig. 1. The trajectory the algorithm produces for randomly generated
stochastic solar data. The supremun of the power is 1.66(kw) and the cost
is $64.9889.

Fig. 2. The trajectory the algorithm produces for deterministic solar data.
The supremun of the power is 0.7033(kw) and the cost is $46.389.

VI. USING A STOCHASTIC MODEL

To show that this approach can also be extended to
stochastic dynamic programming and to evaluate the effect
of stochastic uncertainty on battery scheduling, we identified
a Gauss-Markov model of solar generation based on SRP
data. We then used a trivial extension of problem A(t0,s0)
to problems with stochastic disturbances.

A. Solar Generation Model

Our approach to modeling the dynamics of load following
for a given subset of data is to model solar irradiance directly
as a primary variable along with other possible correlated
variables such as temperature or 2-hr Deltas in pressure.
Specifically, we take time-series data of these quantities,
denoted W(t) and normalize this data as

wi(t) =
Wi(t)−µi(t)

σi(t)

Where µi(t) is the average historic and clear-sky mean of the
variable Wi at time step t and σi(t) is the standard deviation
of variable Wi at time step t.
The generating process is then given by:

w(t) = Aw(t−1)+Bε(t−1) for t = 1, ..,T

where w(t) ∈ R3,w(0) = 0

ε(t)∼ N(0,Σ) , Σi, j = δi, j :=

{
1 i = j
0 i 6= j

Where the matrices A and B are chosen to preserve the lag
0 and lag 1 cross-correlations seen in the collected data.
Specifically, we can compute these matrices as ([22])

A = M1M−1
0 BBT = M0−M1M−1

0 MT
1

Where Mi is the i-lag cross correlation matrix. So (Mi)m,n =
ρi(m,n) where ρi(m,n) is the cross-correlation coefficient
between variables m and n with variable n lagged by i time
steps. Then, adding back in the mean and deviation, we
obtain the power supplied by solar at time step k as

qs(k) = w1(k)σ1(k)+µ1(k)
B. Augmented Stochastic Dynamic Programming

We now define a class of Stochastic Dynamic Program-
ming problems, T (t0,x0) of the form

min
u,x

Jt0,x0(u,x) = E

(
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T ))

)
(12)

subject to: x(t +1) = f [x(t),u(t), t;v(t)], given x(t0) = x0

x(t) ∈ X for t = t0 +1, ..,T
u(t) ∈U for t = t0, ..,T −1
v(t)∼ N(0,Σ), Σi, j = δi, j (13)

As shown in [20], A stochastic version of the Bellmand
Equation can be used to solve Stochastic Dynamic Program-
ming problems of the Form T (t0,x0). Specifically, suppose
that F satisfies F(x,T ) = cT (x) and

F(x, t) = inf
u
{ct(x,u) (14)

+Ev[F( f [x,u, t;v], t +1) | x,u ]}.

Then for problem T (t0,x0), F(x, t) = J∗t,x and π∗(x) =
infu{ct(x,u) + Ev[F( f [x,u, t;v], t + 1)]} defines an optimal
policy.
Stochastic Battery Scheduling We now modify Problem
D(0,e0) to give a stochastic version of the battery scheduling
problem

min
u,e

E({JE(u,e)+ JD(u,e)}) subject to

e(k+1) = α(e(k)+ηu(k)∆t) for k = 0, ...,T
w(k+1) = Aw(k)+Bε(k) for k = 0, ...,T
e(k) ∈ X for k = 0, ...,T
u(k) ∈U for k = 0, ...,T
e0 = e0, ε(k)∼ N(0,Σ)

To solve the stochastic version of D(0,e0), we augment to
obtain a stochastic version of Problem A(t0,x0), which is a
special case of T (t0,x0), which then admits a solution using
the stochastic version of Bellman’s equation.

C. Implementation of the Stochastic Algorithm
The primary challenge with implementation is computing

the expectation in Bellman’s equation (14). Specifically, if φ

is the pdf of v(t), we must compute

Ev[F( f [x,u, t;v], t +1) | x,u ]}=
∫

F( f (x,u, t;v), t +1)φ(v)dv



To numerically integrate this function, we discretize u,
x and v so that the integral becomes a sum where φ(vi)
is a weighted sample from the normal distribution. The
results of this algorithm are illustrate in Figure V using the
parameter values from Table II. The solar data generated
from this run were then used as input to the deterministic
algorithm in order to compare performance. As expected, the
deterministic case performs better than the stochastic case.

VII. CONCLUSION

In this paper we have proposed a generalized formulation
of the dynamic programming problem and shown that if
the objective function is forward separable, these problems
may be solved using an equivalent augmented dynamic
programming approach. Furthermore, we have shown that
the problem of optimal scheduling of battery storage in the
presence of combined demand and time-of-use charges is a
special case of this class of forward separable dynamic pro-
gramming problems. We have further extended these results
to stochastic dynamic programming with a forward separable
objective. The proposed algorithms were demonstrated on a
battery scheduling problem using first a deterministic and
then Gauss-Markov model for solar generation and load.
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