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Abstract—1In this paper, we propose a new dual class of
stability condition for MIMO single-delay systems which is
based on the implicit existence of a Lyapunov-Krasovskii func-
tional but does not explicitly construct such a functional. This
new type of stability condition allows the controller synthesis
problem to be formulated as a convex optimization problem
with little or no conservatism using a variable transformation.
Furthermore, we show how to invert this variable transforma-
tion in order to obtain the stabilizing controller. The stability
and controller synthesis conditions are then enforced using
the SOS framework exploiting recent advances in this field.
Numerical testing verifies there is little to no conservatism
in either the “dual” stability test or the controller synthesis
condition.

I. INTRODUCTION

Systems with delay have been studied for some time [1],
[2], [3]- Recently, there have been many results on the use
of optimization and semidefinite programming for stability
of linear and nonlinear time-delay systems. Although the
computational question of stability of a linear state-delayed
system is believed to be NP-hard, several techniques have
been developed which use LMI methods [4] to construct
sequences of polynomial-time algorithms which provide
sufficient stability conditions and appear to converge to
necessity as the complexity of the algorithms increase. Ex-
amples of such sequential algorithms include the piecewise-
linear approach [2], the delay-partitioning approach [5], the
Wirtinger-based method [6] and the SOS approach [7]. In
addition, there are frequency-domain approaches such as [§],
[9]. These algorithms are sufficiently reliable so that for the
purposes of this paper, we consider the problem of stability
analysis of linear discrete-delay systems to be solved.

The purpose of this paper is to explore methods by which
the success in stability analysis of time-delay systems may
be used to attack what may be considered the relatively un-
derdeveloped field of robust and optimal controller synthesis.
Although there have been a number of results on controller
synthesis for time-delay systems [10], none of these results
has been able to resolve the fundamental bilinearity of the
synthesis problem. That is, controller synthesis requires us to
find both a Lyapunov operator P and a feedback operator /C.
Unfortunately, however, the bilinear, non-convex term PBX
appears in the synthesis conditions. Without convexity in the
decision variables, it is difficult to construct provably stabi-
lizing controllers without significant conservatism, much less
address the problems of robust and quadratic stabilization.
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Some papers use iterative methods to alternately optimize
the Lyapunov operator and controller as in [11] or [12] (via
a “tuning parameter”). However, this iterative approach is
not guaranteed to converge. Meanwhile, approaches based on
frequency-domain methods, discrete approximation, or Smith
predictors result in controllers which are not provably stable
or are sensitive to variations in system parameters or in delay.
Finally, we mention that delays often occur in both state and
input and to date most methods do not provide a unifying
formulation of the controller synthesis problem with both
state and input delay.

This paper covers several significant results in a relatively
short conference format. As a result, discussion is often com-
pressed and the proofs are shortened, omitted, or referenced
to prior work. Full proofs and discussion will be treated in an
expanded future journal format. There are six main results we
must cover. First, we give a general dual stability condition
for a broad class of infinite-dimensional systems. Roughly
speaking, this result says @ = Ax is stable if there exists
a P > 0 such that AP + PA* < 0 where if X is the set
of solutions, P(X) = X. We then apply this dual criterion
to single delay systems to get a dual version of Lyapunov-
Krasovskii theory. We then use LMIs to parameterize the set
of positive operators with polynomial multipliers and kernels
for which 7 > 0 and P(X) = X. We solve the resulting
LMIs numerically for several examples and demonstrate
that the results are not significantly conservative. We then
perform a variable substitution to get synthesis conditions of
the form AP + PA* + BZ + Z*B* < 0 where Z = CP.
We then parameterize Z using polynomial multipliers and
kernels and solve the LMI as a test for stabilizability. We
propose a method for inverting P and use this to find the
controller L = ZP~1. We then test the stabilizing controller
on a numerical example.

A. Notation
Notation includes the Hilbert spaces Lo of square inte-

grable functions and Wy := {x : x,4 € Lo} with domains
clear from context. C[X| denotes the continuous functions on
X. 8™ denotes the symmetric matrices of dimension n X n.
I, € S™ denotes the identity matrix.
II. LYAPUNOV KRASOVSKII FUNCTIONALS

In this paper, we consider stability and control of linear
discrete-delay systems of the form
z(t) = Aoz(t) + Ayz(t — 7) + Bu(t) for all t >0,
x(t) = o(t) for all t € [—7,0] @)

where A; € R"*", B € R"™™ and ¢ € C[-7,0]. We
associate with any solution z and any time ¢ > 0, the ‘state’



of System (1), z; € C[—7,0], where z;(s) = z(t+s). When
u = 0, systems of the form (1) have a unique solution for any
¢ € C[—,0] and global, local, asymptotic and exponential
stability are all equivalent.

Stability of Equations (1) may be certified through the
use of Lyapunov-Krasovskii functionals - an extension of
Lyapunov theory to systems with infinite-dimensional state-
space. In particular, it is known that stability of linear time-
delay systems is equivalent to the existence of a quadratic
Lyapunov-Krasovskii functional of the form

vior= [ [50] o [5)] o
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where the Lie (upper-Dini) derivative of the functional is
negative along any solution z of (1) and the unknown func-
tions M and N are continuous in their respective arguments.
One may also assume M = M7 and N(s,0) = N(0,s)7.

Primal Lyapunov-Krasovskii Form: For reference, the

primal stability condition is
vor= [ 0] Tt ] 9]
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The use of Lyapunov-Krasovskii functionals can be sim-
plified by considering stability in the semigroup framework
- a generalization of the concept of differential equations. A
‘strongly continuous semigroup’ is an operator, S(t) : Z —
Z, defined by the Hilbert space Z, which for any solution of
Eqn. (1), z, satisfies x44+s = S(s)x:. Note that for a given
Z, the semigroup may not exist even if the solution exists
for any initial conditions in Z. Associated with a semigroup
on Z is an operator A, called the ‘infinitesimal generator’
which satisfies d

—S(t)p = AS(t)¢

for any ¢ € X. The space X C Z is often referred to as
the domain of the generator A, and is the space on which
the generator is defined and need not be a closed subspace
of Z. In this paper we will refer to X as the ‘state-space’.

For System (1), following the approach in [13], we define
Z :={R"™ x Ly} and

A w o) {onl + Am(_ﬂ] |
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The state-space is X = {[z{ ] € LI : =z, €

W and 22(0) = 21} which is not closed in Z. Using
these definitions of A, Z and X, the “complete-quadratic”
Lyapunov functional (2) can be compactly represented as

(] ),

where we define the notation

prnfg] st ] of oo ]

That is, the Lyapunov functional is defined by a multiplier
and integral operator whose multiplier and kernel are un-
known. Likewise, the derivative of the functional can be
represented as

(2] B ) 22,

In fact, it is known [13] that a strongly continuous semigroup
defined by a linear operator & = Az on Hilbert space X is
exponentially stable if and only if there exists a positive self-
adjoint operator P such that

(Az, Pz) , + (x, PAz),
for all x € X and some € > 0.

ITI. A DUAL STABILITY CONDITION
In this section, we propose a general form of dual sta-

bility condition which relies on the implicit existence of a
Lyapunov-Krasovskii functional.

Theorem 1: Suppose that A generates a strongly contin-
uous semigroup on Lo with domain X. Further suppose
there exists a linear bounded coercive operator P with image
P(X) = X which is self-adjoint with respect to the Ly inner
product and

(APz,z) + (z, APz) <
for all x € X and some € > 0. Then the dynamical system
z(t) = Ax generates an exponentially stable semigroup.

Proof: Because P is coercive, self-adjoint and P(X) =
X, the inverse exists, is coercive, bounded, self-adjoint and
P~!': X — X. Define the Lyapunov function
V(y) = (y, P'y)
where y € X and with derivative
V(y) = (9, P y) +(y. P~ 'y)
= (Ay, P'y) + (P 'y, Ay).

Now define z = P~ y € X. Then y = Px and

< —ellz]

—e ()

( ) <Ayv > <P y’Ay>
= (APz,z) + (x, APx)
< —e(z,z)=—e(y,P'P'y) < —a(y,y)

where the last inequality holds for some o > 0 by bound-
edness of P. Negativity of the derivative of the Lyapunov
function implies exponential stability in the square norm of
the state by, e.g. [13] or by the invariance principle. [ |



IV. OPERATORS WITH P = P* AND P(X) = X
In order to satisfy the dual stability condition, we must

restrict ourselves to a class of operators which are self-adjoint
with respect to the given inner-product and which preserve
the structure of the state-space (map X to X). Note that the
constraint P(X) = X may add conservatism since X is not a
closed subspace of Z. However, X is compactly embedded
in Z and it may be possible to use a density argument to
show this constraint is not conservative.

First recall that the state-space is X := {[z] x2T]T €
L3 x9 € Wy and 22(0) = x1} . To preserve this
structure, we consider operators of the form

Poe) = | 1) ®

0))z1 + [°_R(0,s)as(s)ds
s)+ [°_ R(s,0)z2(0)do,

T(R(0,0) + S(
TR(s,0)x2(0) + 7S(s)x2

where R and S are continuous. It is easy to show that P is
a bounded linear operator and P : X — X. Furthermore, P
is self-adjoint, as indicated in the following lemma.

Lemma 2: Suppose that R(s,0) = R(0,s)” and S(s) €
S™. Then the operator P, as defined in Equation (3), is self-

adjoint with respect to the Ly inner product.

Proof: The operator P : X — X is self-adjoint with
respect to the inner product (-, ), if (y, Px); = (Py,z),
for any z,y € X. By exploiting ‘the structure of P and X2
we have the following.

wopa,= [ {yibf'

7(R(0,0) + S(0))z1 + [°_ R(0,0)z2(0)dd n
7R(s,0)z2(0) + 78(s)z2(s) + [°_ R(s,0)x2(0)d0
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o [ 2(R(0,0) + SO))y1 + [°. RO,0)ya(0)d0 |
TR(5,0)y2(0) + 7S(s)y2(s) + [°_ R(s,0)y2(0)do
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V. DUAL STABILITY CONDITIONS: SINGLE DELAY H
In this section, we apply the structured operator in Sec-
tion IV to the dual stability condition in Thm. 1 to establish
conditions for stability in the single-delay case. Note that we
do not yet discuss how to enforce these conditions.
Theorem 3: Suppose there exist e > 0 and functions
S e Wy " -, O] and R € W'™""[[—7,0] x [—7,0]] where
R(s, 6) R(0,5)T and S(s) € S™ such that (x, Px)pzn >

e ||lz||* for all z € X where P is defined as in Eqn. (3) and
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Do [7] 4 7 vistatsyas
B] +75(5)(s) +7fOTG(s7 0)¢(60)do
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for all [27 ng}T € X and where

P lJ-
¢ TV (s)T

e o Ch Cis(s)
. |Cn1 11 12 _ |C13(s
DO = |: C’il“z 022:| 9 V(S) - |: 0 :| )
Ciy = TA()(R(O, 0) + S(O)) + TAlR(—T, O) +
012 = TAls(—T), 022 = —S(—T),
Ci3(s) := AgR(0,8) + Ay R(—T,5) + 9sR(s,0)T,
d d
G(s,0) := d—R(s 0) + d@R(S 0).
Then the system defined by Eqn. (1) is exponentially stable.
Proof: Define the operators A and P as above. By
Lemma 2, P is self-adjoint and P : X — X. This, combined
with P coercive can be used to show P(X) = X. Then by
Theorem 1 the system is exponentially stable if
x
e, =l

e ] (Bl B =

¢
for all € X. We begin by constructing APz.

2n
L2

1

2n
L2

where

0
y1 = 7 Ao(R(0,0) + S(0))z +/ AoR(0, 5)¢(s)ds

LRT@ da)

a(s) = T R(5,0)6(0) + 78()6(s) + 7S(5)(5)

0 d
+/4 ER(3,9)¢(9)d9.

Thus <Lﬂ AP [ZD = 2Ty, + /_OT o(s) y2(s)ds.

Examining these terms separately and using x = ¢(0), we
have

raly = 7227 Ao(R(0,0) + S(0))z

+7 /O " AoR(0,5)¢(s)ds + ta" AiTR(—7,0)¢(0)

A (TR(—ﬂ 0)6(0) + 75(—

0
+ 72$TA15(—T)(]5(—T) + 7'/; asTAlR(—T7 0)p(0)do
:/0 (:ETTAO(R(O, 0) + S(0))x + 72" Ao R(0, s)¢(s)) ds
+ [ (LETTAlR(—T, 0)x—|—:cTTA18(—T)¢(—T))ds

- /,OT 72" AL (=, 5)¢(s)ds = [ OT [x;;)] ' .

TA0(R(0,0) + S(0)) + T AL R(—7,0) +7
‘rs( )TAT 0
TR(0,5)"AL + ZR(—7,5)TAT 0




Examining the second term, we get

[T d(s) y2(s)ds = [T o(s)Tr (83R(570)¢(o) + S‘(s)¢(s)) ds
+[OT¢(8)TTS(3) (s)ds +/i/i¢(s)Ti
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Combining both terms, and using symmetry of the inner
product, we get

<H Apu>+<,4p[;],[;]>:
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Therefore, we conclude that Thm. 1 is satisfied and hence
System (1) is exponentially stable. [ ]
Dual Lyapunov-Krasovskii Form: To summarize the re-

sults of Theorem 3 in a more traditional Lyapunov-
Krasovskii format, the system is stable if there exists a

2n
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/0 V(O)]T [ (R(f_’ Ro>s+0 )S( ))

[ : #(s)T R(s,0)¢(0)d0ds

2

such that V(¢) ‘ {QS;O)] and
Vb(¢)
o | ¢(0) "Ten+ch 7C13(s) ¢(0)
= / o(—T) ct Cao On o(—71)| ds
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Note that unlike the standard Lyapunov-Krasovskii func-
tions, the derivative of the dual functional has tri-diagonal
structure.

VI. LMI CONDITIONS FOR POSITIVITY OF MULTIPLIER
AND INTEGRAL OPERATORS

In this Section, we define LMI-based conditions for posi-
tivity of operators of the form

(Pum,nz) (8) := M(s)z(s) + )

where * € L3[-7,0] and M and N are continuous.
Note that we initially consider positivity of the operator on
LY [—7k, 0] and not the subspace R™ x L% [—7x,0].

To enforce positivity we use the result in [14] which is
based on the observation that a positive operator will always
have a square root.

Theorem 4: For any functions Y; : [—7,0] — R™*" and
Y : [=7,0] x [—T, 0] — R™2*" square integrable on [—T, 0]
with g(s) > 0 for s € [—7, 0], suppose that

' N(s,0)x(0)do.

-7

M(s) = g(5)Y1(s)" QuiYi(s)
N(s,0) = g(s)Y1(s)Q12Y2(s,0) + g(6)Y2(0,5)" Q1,Y1(6)
0
[ el s) QuaYa(e,) do
where (;; € R™*™i and
_ Qll QlQ
©= {QE Q22] =

Then for Py n as defined in Equation (4), (x, Py, N ) Ly >
0 for all x € Ly[—7,0].
The proof of Theorem 4 can be found in [14].

Thm. 4 gives a linear parametrization of a cone of positive
operators using positive semidefinite matrices. For this paper,
we choose Y1(s) := Z4(s)®1I,, and Ya(s,0) := Zy(s,0)1,
where Z; is the vector of monomials of degree d or less.
For the interval s € [—7,0], we can choose g1(s) = 1 or
g2 = —s(s + 7). Inclusion of g # 1 is a variation of the
classical Positivstellensatz approach to local positivity, as
can be found in, e.g. [15], [16], [17]. To improve accuracy,
we typically use a combination of both although we may
set D12, 21,22 = 0 for the latter to reduce the number
of variables. To simplify notation, throughout the paper, we
will use the notation {M,N} € =4, to denote the LMI
constraints on the coefficients of the polynomials M, N
implied by the conditions of Thm. 4 using a combination
of g(s) =1 and g = —s(s+ 7) as

. and {Mas, N2} satisfy Thm. 4 with g1 = 1 and
: g2 = —s(s + 7), respectively

M=M1+Ms, N=N1+ N2, where {Ml,Nl}}
and Y1 = Zqg ®@In, Y2 = Zq @ In.

A. A Class of Spacing Functions

Thm. 4 enforces positivity over Ly. However, we only
need positivity on the subspaces R™ x L and R” x R™ x L.
To this end, we introduce a set of free-variables we call
spacing functions which can be added to the multipliers and
kernels without changing the integral and which act as a
projection onto the lower-dimensional subspace.



Theorem 5: Suppose that F' and H are defined as

0 0
K(s)+ [ [ 2l guq

0
) _f Lis(w, s)dw
F(S) _ T T T

0
J L1 (s,w)dw 0

o ==[fa8 4]

for some square-integrable functions K and L;; where
K(S) € Rmxm, Lll(s, 6‘) € R™*™ and ng(S, 9) € R™mxn
such that f_OT K(s)ds = 0. If
0
Tz(s):=F(s)z(s) + H(s,0)z(0)do

-7

then for any z € R™ x L%,

<Z,TZ>L;n+n =0.
Proof: The proof is straightforward. [ |
For simplicity, we use {F,H} € O,,, to denote the
conditions of Thm. 5 which is a set of linear equality
constraints on the coefficients of the polynomials which
define F' and H.

Om.n = {{F,H} : F, H satisfy the conditions of Thm. 5.}

VII. DUAL STABILITY USING SOS/LMIS

We now state an LMI representation of the dual stability
condition for a single delay system.

Theorem 6: Suppose there exist d € N, constant € > 0,
functions S € W3'*"[—7,0], R € W3 [[-7,0] x [—7,0]],
{Fl,Hl} € Gn,ns and {FQ,HQ} S ®2n,n where R(S,@) =
R(0,s)T and S(s) € S™ such that

{M,N}€E42, and {-D,—FE}€E;3,

where

. D TV (s)
D(s) = |:TV(2)T 75(s) + eln] +Fy(s),

[+ + e, Cro _ |Ci3(s)
DO = |: C]g 022 ) V(S) - 0 )

1
Cll = TAO(R(O, 0) + S(O)) + TAlR(—T, O) + 55(0),
012 = TAls(—T), 022 = —S(—T),
013(8) = AQR(O, S) + AlR(—T, S) + asR(S, O)T,

L 02n OQn,n
E(s,0) := |:0n,2n G(s,@)] + Hs(s,0)

d d
G(s,0) := ER(S,@) + @R(s,ﬁ).
Then the system defined by Eqn (1) is exponentially stable.
Proof: The proof follows immediately from Thms. 4
and 5 applied to Thm. 3 [ |

VIII. NUMERICAL TESTING OF DUAL STABILITY
In this section, we apply the dual stability condition to

two numerical examples in order to verify that the proposed
dual stability conditions are not significantly conservative. In
each case, we list the maximum provable stable value as a
function of degree d. The computation time is listed in CPU
seconds on an Intel i7-5960X 3.0GHz processor. This time
corresponds to the interior-point (IPM) iteration in SeDuMi
and does not account for preprocessing, postprocessing, or
for the time spent on polynomial manipulations formulating
the SDP using SOSTOOLS. Such polynomial manipulations
can significantly exceed SDP computation time.

a) Example A: First, we consider a scalar example
which is known to be stable for 7 < %

(t) = —x(t — 1)

d 1 2 3 4 analytic
Tmax 1.408 | 1.5707 | 1.5707 | 1.5707 | 1.5707
CPU sec | .18 21 25 A7

b) Example B: Next, we consider a well-studied 2-
state, single delay system.

:'c(t)_{_OQ 11] x(t)—l—{(l) 8} x(t — 7)

d 1 2 3 4 limit
Tmax 1.6581 | 1.716 | 1.7178 | 1.7178 | 1.7178
Tmin .10019 | .10018 | .10017 | .10017 | .10017

CPU sec 25 344 .678 1.725

To illustrate computational scaling, tests were performed on
10-state and 20-state single delay systems using polynomial
degree 2. Computation times were 22s and 951s, respectively.

IX. FULL-STATE FEEDBACK
Given a dual stability condition, it is easy to construct a

synthesis condition for full-state feedback.

Corollary 7: Suppose that A generates a strongly contin-
uous semigroup on Ly with domain X and B : U — X.
Further suppose there exists a bounded coercive operator
P : X — X which is self-adjoint with respect to the Lo
inner product and an operator Z : X — U such that

(AP + BZ)z,x) + (xz,(AP + BZ)z) < — (z,x)

for all z € X. Let K = ZP~!. Then the dynamical
system #(t) = (A4 BK)xz generates an exponentially
stable semigroup.

Proof: The proof follows immediately from Theorem 1
with Z = K P. [ |

X. EXISTENCE OF A STABILIZING CONTROLLER

For time-delay systems, there are several different formu-
lations of the controller synthesis problem. Some of these
are not full-state feedback. For example, if we seek a K
such that u(t) = Kx(t) is stabilizing, this is, in fact, output
feedback, as it only uses part of the state x;. Others, such
as input delay are full-state feedback with a delay in the
input operator B. In this paper, however, we will consider
the simplest form of state-feedback where

z(t) = Aox(t) + Arz(t — 7) + Bou(t).

and we seek a map u(t) = Kx; where K : X — R™. In



this case, B : R™ — X has the simple form

o = 1.

In the following theorem, we suppose that variable operator
Z : X — R™ has the form
0

(Zz)(s) = Zow1 + Z172(—T) +/ Zs(8)x2(s)ds.

Theorem 8: Suppose there exist d € N, constant € > 0,
matrices Zg € R™*", Z; € R™*™ and polynomials Zs €
Wyt -r,0], S € W3 [-71,0], R € W3 [[-T,0] x
[-7,0]), {F1,H1} € ©Onn, and {F3, Ha} € ©Ogy,, where
R(s,0) = R(6,5)T and S(s) € S™ such that

{M,N}€Z42, and {-D—-L,—E}€Z43, (5
where M, N, D, E are as defined in Thm. 6 and

L11 + L?l *T *T

L(s) := L, 0 #7
L13(S)T 0 0
Ly = BoZy, L1z =DBoZi, Li3(s)=7BoZ2(s). (6)

Then the delayed System (1) is full-state feedback stabiliz-
able. Furthermore, let
0

(P 'a)(s) = Yo(s)z1 + Yi(s)aa(s) + [ Ya(s,0)z(0)dd

—T
be the inverse of

0
(Prx)(s)=TR(s,0)x2(0) + S(s)x=2(s) —i—/R(s, 0)xo(6)do
( Which can be found via Thm. 9). Then a stabilizing
controller is

0

u(t) = Koz(t) + Kiz(t —7) + Ky (s)z(t + s)ds

—T
where

0
Ko = ZOYO(O)—I—ZlYO(—T)—i-/iZg(s)Yo(s)ds + ZoY1(0)

K1 = Zlifl(—T)
KQ(S) = ZOS/Q(O, S) + Zlyvg(—T, S) + ZQ(S)Yl (S)

0
+/ Z5(0)Y5(0, s)db.
Note on Inverse: THeTproof is stated using the decomposi-

. [ (Pix)(0) . .
tion of (Pz)(x) = [(Plx)(s) where P is as defined in the
theorem. This is because we have an analytic expression for
the inverse of P; (in Thm. 9). Recently, new expressions have
been proposed for the inverse of P in [18], and the reader
may want to consider use of these expressionsl. Of course,
in this case, we still have (P~ 'x)(z) = [(Pllw)(O)]’ and
(P )(s)

one may therefore use the expression for P~ to extract the
expression for P, !

Proof: Define the operators A, P, B and Z as above.
By Condition 5 and by Thms. 4 and 5, and since M, N are as

defined in Thm. 6 for the given e, the operator P is coercive.
This implies that by Cor. 7 for the input u(t) = ZP~‘xy,
the closed system is exponentially stable if

(APz,z) + (x, APx) + (BZx,z) + (x, BZzx) < — (x,x) .

The APz terms have already been detailed in the proof of

Thm. 3. We now expand the remaining (x, BZx) terms:
BZx — |:B()ZO{E1 + BOZ1$2(_T2)+ fET BoZs(s)za(s)ds

This yields
(x, BZx)
0
:/(I{B()Z()Il + I{Bozlxz(—T)—F TI{BOZQ(S)IQ(S)) ds

-7

T
«T

0| mm Ly +" T
= / x(—7) %L2Tl 0 7| |z(—7)| ds.
-7 | z(s) L3 0 0 z(s)

Combining (APz,z) and (x, BZz), by Condition 5, by
application of Thms. 4 and 5 and by Thm. 3, we have
stability of the closed-loop system. We now construct K
directly as

e [0 o]
0

= Zoy1 + Z1y2(—7) —I—/ Z5(8)y2(s)ds

-7

= Zy (YO(O)xl +Y1(0)zy + /O

-7

Y»(0, s)xg(s)ds>

0
+ 7 (YO(—T)xl +Yi(—7)za(—7)+ _Yg(—T, s):vg(s)ds>

0

0
+[ Zg(s)Yo(s)xlds—i—/ Z5(5)Y1(8)xa(s)ds

OT 0 -
+/7-/4- (Z2(s)Ya(s,0)) x2(0) ds df

0
= (ZO%(O)+Z1Y0(_T) +/ ZQ(S)YQ(S)CZS-FZ()Yl (0)) T

-7

+ Z1Y1 (—T):EQ(—T)

0
+ / (ZOYQ(O, $)+ Z1Ya(—7,8) + Z2(s)Y1(s)

4 / zzwmw,s)de)wz(s)ds

XI. INVERTING THE POSITIVE OPERATOR

In order to construct the controller defined in Thm. 8, one
must obtain the inverse of the operator
0
(Prx)(s) =7R(s,0)x2(0) + 75(s)x2(s) —l—/R(s, 0)x2(6)do

-7

: _ |(Pim2)(0)] 5 _ [(P1y2)(0)
Since (Px)(s) = |:(P1I2)(S) , (P ty)(s) = (P~1y2)(s)
and hence invertibility of P 1s equivalent to invertibility of



P; and since P is invertible, P; is likewise. Moreover, it is
substantially simpler to invert P; since this inversion is on the
space Wa[—7,0] and not the mixed state-space. Moreover,
in [19], we gave an analytic formulation of the inverse of
operators of the form
0
M (s)za(s) + N(s,0)x2(0)do

-7
when M and N satisfy certain stronger positivity conditions.
For the weaker conditions defined by Thm. 4, the inverse was
constructed in, e.g. [20] using a power series expansion. We
quote the result in [19].

Theorem 9: Consider the linear operator P defined by

+/IN(S,9)I(9)d9

where M (s) > 0 for all s € I and N has a representation

Px(s) =

N(s,0) = Z(s)TRZ(0). Define the linear operator P by
Pu(s) = s) + / N(s,0)z(0)do
Where !
N(s,0) = M(s) "' Z(s)"QZ(0)M(6) "
Q=-R(S'+R)'s!
5)1Z(s)ds.
5= [ 26)M)7 257

Then PPz = PPz = x for any integrable function x.

In this paper, we expand this inversion formula to cover
a broader class of operator which includes the term
TR(s,0)x2(0) and show that this inverse has the required
form. Specifically, we have the following.

Theorem 10: Define L = Ly + Lo, where

(La2)(s) = K (5)(0)
(Law)(s) := M(s)x(s) + /IN(S,e)x(e) d6
Suppose that Lo is invertible with

(L5'2)(5) = Qs)a(s) + [ Rls.0)a(6) s

1
and that p(J) < 1, where

J = Q(0)K(0) +/IR(O,5)K(s)ds.
Then
(L1 + La)™'a)(s) =
Yo(s)a(0) + Yi(s

/Ygsﬁ

Q) Yi(s) =
H(s)(I+J)"'R(0,0)

where
Yo(s) =
Ya(s,0) =

—H(s)(I+J)~
R(s,0) —
H(s) = Q(s)K(s) + / R(s,0)K(6)db.

I
Proof: The proof is a straightforward application of the
power series expansion of (L; + L)~}

Q(s)

(Ly + Lo)~ L21Z (=LiL7Y)'= lZ( Ly'Ly) | Lyt
=0
= L7 - L7, [Z(—L21L1)i Ly!
=0

which converges if p(L;'L1) < 1. However, we have that

0
(L5 La0)(s) = Q) (Laz)(s) + [ Rls0)(Lua)(6) do

0
R(s,0)K

=Q(s)K(s)z(0) + / (0)x(0) db

0 —T
= <Q(S)K(S) +/7 R(s,0)K(6) d9> z(0).
Repeating the operator yields
(L3 'Li(Ly ' Lax))(s)

0
— (Q(S)K(s) + [ R(s,0)K(0) d0> (Ly*Lyz)(0).

-7

However,

(L3 Ly)(0) = (Q(O)K(O) n
= Jz(0).

0

R(0,0)K (0) d6‘) 2(0)

—T

Therefore,
(L3 ' Li(Ly Lix))(s)
0
= (Q(s)K(s) +/7 R(s,0)K(6) d&) Jz(0).
By induction, we conclude
(L3 'Li(Ly ' Lh)*x)(s)

— (Q(S)K(s) +/IR(5,9)K(9) d&) JF2(0).

Including the summation, we get

Ly'Ly i(—L;Ll)i}x
=0
= S S S N — k X
— (@) + [ R0 () ) [Q J>] 0)
— H(s)(I + J>*1x<o>,
where H(s) = )+ ;R 0) df. Therefore,

simple substitutlon and algebralc manlpulatlon yields
(L1 + L) 'z) (s) = + /IR(S,G)x(G) deo
—H(s)(I+J)™* [Q(O)x(()) + /IR(O,G):E(G) d@}
= —H(s)(I +J)~'Q(0)x(0) + Q(s)x(s)

+ / (R(s,0) — H(s)(I +J)"'R(0,0)) 2(0) df
I

~ Yo(s)2(0) + Yi(s /YQse
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Fig. 1.
delay 7 = 5s.

A Matlab DDE23 simulation of System (7) with Controller (8) and

XII. NUMERICAL RESULTS

¢) Synthesis Condition: After a non-exhaustive search,
we have yet to find a result which cannot be replicated
using the method described here. However, this comparison
1s somewhat unfair, as most “state-feedback” results in the
literature typically only use z(¢) or (¢t — 7) and hence are
working with more limited information. Often such results
are appropriately justified by a presumed lack of knowledge
of the delay. However, in such a case, the approach is not
truly state feedback and should rather be considered output
feedback, a topic we leave for future work. To illustrate our
approach, we consider the commonly referenced dynamical
system

() = [8 (1’] x(t)—i—[_o2 ‘_15] x(t—T)—i-[ﬂ u(t). (7)

This system was stabilized using non-convex itera-
tive/“tuning parameter” methods in e.g. [11] and [12] for
7 < 1 (using only z(t)). We applied the methods of this
paper for 7 = 5 using simple degree 2 polynomials and
obtained the following exponentially stabilizing controller.

T T
~3601 —.00891
u(t) = {_944] x(t) + { 879 ] z(t—1) (8)
_+L/{)[52.14—6.983—+.OO83952——.071053

T
H7+Lm&<MW§—Dw%ﬁ ot + s)ds

-5
These results were obtained using a combination of Mat-
lab, MuPad and SOSTOOLS to perform the optimization
and controller reconstruction. The polynomial inversion was
performed in MuPad and approximated using polynomial
functions to simplify presentation. Simulations for fixed ini-
tial conditions were performed and can be seen in Figure 1.

XIII. CONCLUSION

In conclusion, we have proposed a new form of dual-
ity which allows us to convexify the controller synthesis
problem for infinite-dimensional systems. This dual principle

requires a Lyapunov operator which is positive, invertible,
self-adjoint and preserves the structure of the state-space. We
have used Sum-of-Squares to parameterize a class of such
operators. We applied these results to generate full-state feed-
back controllers for single-delay systems. Numerical tests
indicate the algorithm compares favorably with results in the
literature, although this comparison is somewhat specious as
we were unable to find any literature which uses true full-
state feedback for control. The contribution of the present
paper is not in the accuracy of the results, however. Rather
the contribution is in the convexification of the synthesis
problem which opens the door for dynamic output-feedback
H . synthesis for infinite-dimensional systems.
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