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A New State-Space Representation for Coupled PDEs and Scalable
Lyapunov Stability Analysis in the SOS Framework

Matthew M. Peet

Abstract— We present a framework for stability analysis of
systems of coupled linear Partial-Differential Equations (PDEs).
The class of PDE systems considered in this paper includes
parabolic, elliptic and hyperbolic systems with Dirichelet, Neu-
man and mixed boundary conditions. The results in this paper
apply to systems with a single spatial variable and assume
existence and continuity of solutions except in such cases when
existence and continuity can be inferred from existence of a
Lyapunov function. Our approach is based on a new concept of
state for PDE systems which allows us to express the derivative
of the Lyapunov function as a Linear Operator Inequality
directly on L> and allows for any type of suitably well-posed
boundary conditions. This approach obviates the need for
integration by parts, spacing functions or similar mathematical
encumbrances. The resulting algorithms are implemented in
Matlab, tested on several motivating examples, and the codes
have been posted online. Numerical testing indicates the ap-
proach has little or no conservatism for a large class of systems
and can analyze systems of up to 20 coupled PDEs.

I. INTRODUCTION

Partial Differential Equations (PDEs) are used to model
systems where the state depends continuously on both time
and secondary independent variables. Common examples
of such secondary dependence include space, as in, e.g.
rigid bodies (Bernoulli-Euler beams) and fluid flow (Navier-
Stokes), or maturation, as in, e.g. cell populations and
predator-prey dynamics.

The most common method for stability analysis of PDEs
is to project the state onto a finite-dimensional vector space
using, e.g. [1], [2], [3] and to use the existing extensive
literature on control of ODEs to test stability and design con-
trollers for the resulting finite-dimensional system. However,
such discretization approaches are often prone to instability
and numerical ill-conditioning. Attempts to develop a rig-
orous state-space theory for PDEs without discretization in-
cludes the significant literature on Semigroup theory [4], [5],
[6]. Perhaps the most well-known method for stabilization
of PDEs without discretization is the backstepping approach
to controller synthesis [7] (See the 2-state example in [8]).
Unfortunately, however, backstepping cannot currently be
used for direct construction of Lyapunov functions for the
purpose of stability analysis. Additional work on the use of
computational methods and LMIs for computing Lyapunov
functions for PDEs can be found in the work of [9], [10],
[11]. Other examples of LMI methods for stability analysis
of PDEs include [12].
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Recently, Sum-of-Squares (SOS) optimization methods
have been applied to the problem of finding Lyapunov func-
tions which prove stability of vector-valued PDEs. Examples
of this work from our lab can be found in [13], [14], [15],
[16] and work from our colleagues can be found in [13],
[17], [18], [19]. While these previous works have proven
remarkably effective, they suffered from high computational
complexity and the lack of a unifying framework - defi-
ciencies which limit the practical impact and scalability of
these results. The goal of this paper is to provide such a
unifying framework and significantly reduce computational
complexity by re-evaluating the state-space framework on
which these earlier works were based.

Specifically, in this paper, we consider the problem of
stability analysis of multiple coupled linear PDEs in a single
spatial variable. We write these systems in the universal form

z(s,t) = Ao(s)x(s,t) + A1(s)us(s, t) + Az(s)xss(s,t)

where x is a vector-valued function z : [a,b] X RT — R"
and with boundary constraints of the form

Bla(a,t) z(bt) ws(a,t) ws(bt)]" =0

where B is of row rank 2n. These types of systems
arise when there are multiple interacting spatially-distributed
states and include wave equations, beam equations, et c.

The main technical result of this paper is to show that if
x satisfies the boundary conditions and is suitably differen-
tiable, then we have the following identities

b s

o(s) = [ Buls.maas(dn+ [ (s = miaaclndn
b s

z5(s) = / By(n)xss(n)dn + / Tgs(n)dn,

where the matrix-valued functions B, and By, are uniquely
determined by the matrix B and where x5 € Lo[a, b] need
not satisfy any constraints in order to define a solution. This
identity implies that for any X, the initial value problem
is well-defined - implying that this is a boundary-condition
independent representation of the state of the system.

We then use these identities to show that any Lyapunov
function of the form

V(z) = /abx(s)T <M(s)x(s)ds +b/: Ni(s,0)z(0)do
+/ N2(5,9)x(9)d0> ds

S
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may be equivalently represented as
Ri(s,0)xss(0)do

() = [ @ss(s
' / ( / Rg(S,@)%g(@)d@)ds

for some R;, Ry and furthermore, the derivative of this
functional, V, may likewise be represented in the same
form. We note that the structure of these quadratic Lyapunov
functions are implied by the closed-loop stability conditions
established via the backstepping transformation, as shown
n [14]. Furthermore, these results imply that the problem
of computing stability of linear PDEs is equivalent to the
problem of determining positivity of Lyapunov functions of
this form for arbitrary functions x5 € L.

In the remainder of this paper, we will establish the results
listed above, provide a computational framework for enforc-
ing positivity of Lyapunov functions of this form, and show
that the results are non-conservative and scalable through the
use of numerical examples. Note that the identities listed can
also be extended to third and fourth-order spatial derivatives,
if required.

II. NOTATION

In this paper, we define L} [X] to be space of R™-valued
Lesbegue integrable functions defined on X and equipped
with the standard inner product. We use W*?[X] to denote
the Sobolev subspace of L,[X] defined as {u € L,[X] :
Loue L, forall g < k}.

III. PRELIMINARIES

In this paper we consider stability of solutions x : [a, b] x
R* — R" of PDEs of the form

= Ao(s)x(s,t)+A1(s)xs(s,t)+Aa(s)zss(s,t) (1)

with boundary constraints of the form

z¢(s,t)

Ble(a,t)" ab,t)T z.(a,)T w(b,1)7]" =0. (2)

These boundary conditions can be used to represent
Dirichelet, Neumann, Robin, et c., with the only restriction
that the row rank of B need be 2n. In the semigroup
framework, this translates to x = Ax with generator

A= AO(S) + Aq (3)65 + AQ(S)&SS
and domain
Dy =

{xew?? . ’

B [x(a)" x(b)" xs(a)T x,(b)T]" =0}
IV. LYAPUNOV STABILITY

It seems that existence of a Lyapunov function does not
guarantee existence and continuity of solutions for PDEs
except in certain very limited special cases. Therefore, we
must assume these properties hold and we give mathematical
rigour to this assumption by assuming the existence of a
“Semi-continuous semigroup”, S(¢) : X — X with domain

D C X so that S(7)x(-,t) = x(-,t + 7) for any solution
to Eqns. (1) and (2). See [4]. The following is from [5].

Theorem 1: Suppose that A generates a strongly-
continuous semigroup on X with domain D4 and there
exists a, 8,7 > 0 and P : X — X such that ofx||x <
(x,Px) y < B||x||x and

(36, PAx)  + (A%, Px) x < —7[x]x

for all x € D 4. Then the system defined by Eqns (1) and (2)
is exponentially stable in ||-|| x.

In this paper, we show how these conditions may be enforced
when A and D _4 are as defined in Section III. In this case A
is a differential operator. We will show in Sections V and VI
that the stability conditions in Theorem 1 can be reformulated
with on D4 = L and in Sections VII and VIII we will show
that these conditions can be enforced using LMIs based on
an SOS-style approach.

V. FUNDAMENTAL IDENTITIES

In this section, we show that if
B [x(a)T ()T z4(a)T xs(b)T]T =0
where B is of row rank 2n, then the following identities hold

S

b
BAamxﬁmwn+/ks—nn%WMn

a
S

b
zs(s) = | Bu(n)zss(n)dn + / Tss(n)dn,

a

where B, and B are uniquely determined by the matrix B.
First, we establish the auxiliary identities:
Lemma 2: Suppose that x is twice continuously differen-
tiable. Then

2u(s) = wa(a) + [ aunl)dn

w(s) = x(a) +xs(a)(s —a) + [ (s —n)ass(n)dn

Proof: The first identity is the fundamental theorem of
calculus. The second identity is a repeated application of the

fundamental theorem of calculus, combined with a change
of variables. That is,

w@=mw+/3umm

= 2(a) + /ax ds+//:vss ¢)d¢dn

Examining the 3rd term, where I(s)

/: /anxss(c)dCdn—/ab/abf(s—U)I(U—C)ISS(C)dCdn
- /ab (/abl(s —n)I(n— <)dn> Zs5(¢)dC
_/abf(s_g) (/:dn> xss(C)dC—[(s—C)xss(C)dC

which is the desired result |

is the indicator function,



As an obvious corollary, we have

b
£4(b) = z4(a) + / Tes(n)d
¢ b
£(b) = 2(a) + za(a)(b — a) + / (b— n)ea(n)dn

a

The implication is that any boundary value can be ex-
pressed using two other boundary identities. We can now
generalize this to the main result.

Theorem 3: Suppose x € W32[a, b] and

where B has row rank 2n, then
b s
o(s) = [ Bulsn)auclmidn + [ (s = waaan)dn
b s
z5(s) = / By(n)zss(n)dn + / Ts5(n)dn,

where

By (s,n) = Ba(s)(b—n) + Bs(s),
By(n) = Bs(b—n) + By

[Bi(s) Bs(s)]=[I (s—a)l]Bs
0 0 I 0
_ I 0 I (b—a)l
Bs=By'B |, o, B:=B|, ( I“)
0 I 0 I

Proof: Using Lemma 2, we can express all boundary
terms using z(a), zs(a), and z4s(s).

z(a) [T 0 , 0
z() | _ |1 (b—a) [ZE(@)}L Jo (b= m)zss(n)dn
zs(a) 0 1 zs(a) 0
x4(b) 0 I f;’ s (n)dn
Hence
z(a) ] 1 0
z®) | LI (b—=a)]| |z(a)
B xzs(a)| B 0 1 L:S(a)]
z4(b) | 0 1
B>
0
+ B I:f:(b - 772)%5 (n)dn
f; Tss(n)dn
0 0 fb
_p, @) L0y o (b =m)ass(mdn| _
- Lcs(a)} i 8 ? [ 2 g5 (n)dn ] =0

Since B has 2n row rank, Bs is invertible and hence we
have

0 0
2(@)] i [T O] 26— n)zss(n)dn
[xs(a)]_ By'B 8 ? [ [P s (n)dn ]
N————

Now, using Lemma 2,
z(s) = z(a) + zs(a)(s —a) + /S(S —n)xss(n)dn
= (s—a) {x(a))}

SO+ [ = matan
—[I (s—a)] Bs [{ . ")x“(”)d"] +[ (s = npeea(apin
Bals) Bas)] - et

b
~ [ B -zt S
+B5(s)/ :css(n)dn+/ (s = m)zss(n)dn

b s
- / (Ba(s)(b—n) + Bs(s)) was (n)dn + / (s — m)as(m)dn
- / Bo(s ) (ndn+ [ (s — n)zas (m)d.

Likewise, we have
5a(s) = @) + [ et
=[0 1] [;S((aa))} +/: ss(n)dn

_ S = mass(mdn| - [*
B %L{LB}/ [ awmdn | |, s
Bg By

b s
- / (Bo(b— 1) + Br) aas(n)dy + / s (1)

b S
= [ B+ [ san
||

VI. REFORMULATION OF THE LYAPUNOV FUNCTION
If we denote the class of operators Pyar, vy o) ¢ L — Ly
by

(Prar.vy oy x) (5)
s b
= M(s)x(s)ds+/N1(3,9)x(9)d9+/N2(3,9)x(9)d9,

then we may compactly represent our Lyapunov candidate
form as

Vi(x) = <X’ P{M,N1,N2}X>L2

The derivative of the Lyapunov candidate may then be
likewise compactly represented (w/ slight abuse of notation)



as

1.
§V(X) = (X, P{M A, Ny Ao, N2 Ao} X)

+ <X7 P{MA17N1A1,N2A1}XS> + <X’ P{MA2;N1A27N2A2}XSS>

The challenge, then, is to show that each of these terms may,
in turn, be represented in the form

(X, P{O,Rl,R2}XSS>L2

through repeated use of the identities

b s
2(s) = / Ba(s,7) s () + / (5 — n)as (m)d

b
By(n)evas () + / 2os(n)dn.

a

For convenience, we leave off the A; terms and address
each inner product separately. Let use also define the follow-
ing functions which are common to all three results.

b
Yi(s,n) = Ba(n, s)TM(n)+/ B.(6,s)" N1(0,1)do

n
+/ Bs(0,5)" Na(6,7)d6

¢ b
—&—/a Nl(QG)dG—&-/C N2(¢,0)do

¢
Y3(Com) = M(Q)Ba(Co) + / N1(¢, 8)Ba (8, m)d8

b
+/ N2(C79)Ba(9777)d9
¢

Note that these functions are defined in terms of M, N1, and
Ny and hence will vary if these terms are defined differently
for Lemmas 4, 5, and 6.
Lemma 4: Suppose x satisfies the conditions of Thm. 3.
Then
<X7 P{M,Nl,Ng}xss> = <xs.97 P{O,Rl,R2}Xss>
where

b
By (5.6) = / (n— $)N1(1,0)dn
b
Es(5,0) = (0 — 5)M(0) + /9 (n— 5)N: (1, )dn

0
+ [ = s)Nalo )

E3(S, 6‘) = Yl (S, 6‘)

Proof: The proofs of these Lemmas cannot be included
in conference format due to length constraints. Therefore, for
the proof of these lemmas, we refer to an Arxiv Appendix,

available online at [20] |
Notation: For convenience, we say
(R1,R2) = L1(M, N1, N3)

if Ry, Ro, M, Ny, and N, satisfy the conditions of Lemma 4.

Lemma 5: Suppose x satisfies the conditions of Thm. 3.
Then

<X7 P{M,N17N2}Xs> = <xs.97 P{O,Ql,QQ}xss>

where
Ql(s,ﬁ) = Fl(s,G) —|— Fg(S,@)
QQ(S,H) = FQ(S,G) —|— Fg(S,@)
b
/ n—s)Fu(0,n) + F5(s,m)) dn
b
:/ n—s)Fu(0,n) + F5(s,n)) dn
Gb
=/ Ba(C,$)TYa(O) Byl d<+/ Yi(s, Q)
b
" / (C — $)Ya(Q)d¢ By ()
Fy(0,m) / Ni(n,¢)d
Fs(s,m) = (C — 5)Na2(¢, m)dC.
Notation: For convenience, we say
(Q1,Q2) = L2(M, Ny, Na)

if Q1, Q2, M, N1, and N satisfy the conditions of Lemma 5.
Lemma 6: Suppose x satisfies the conditions of Thm. 3.
Then
(%, Pt ny NayX) = (Ko, Pio1y 15} Xss )
where

n—8)Ga(0,n) + G5(s,0,1)) dn

n—s)G4(0,m) + Gs5(s,0,1)) dn

b
Ba(n,s)"Y3(n,0)dn

\ﬁ\

b

b
+ [ (n—0)Yi(s n)dn+/( — 8)Y3(n,0)dn

cﬁ

Ga(0.m) = (n— O)M(n) + /;(C—G)Nl(mC)dC

n
Notation: For convenience, we say
(T1,Ts) = L3(M, N1, N2)

if Ty, Th, M, N;, and N3 satisfy the conditions of Lemma 6.

Note that the operators obtained here are not necessarily
symmetric. However, we may construct an equivalent sym-
metric representation as P + P* using

= P10,Q1(5,0),Q2(5,0)}-

in the symmetric representation, Qi(s,) =

P0,Q2(6,5)7,Q1 (6,5)7}
That is,
Q2 (07 S)T‘



VII. POSITIVITY OF OPERATORS

Now that we have shown how to represent our Lyapunov
stability conditions as positivity of operators of the form
Pio,Ny,N}» Wwe must show how to use LMIs to enforce pos-
itivity of these operators when IN; and Ny are polynomials.

This is a slight generalization of the result in [21].
Theorem 7: For any square-integrable functions Z(s) and
Z(s,0), if g(s) > 0 for all s € [a,b] and

M(s) = g(s)Z(s)" Pr1Z(s)
Ni(s,0) = g(s)Z(s)" PraZ(s,0) + g(0)Z(0, s)" P31 Z(6)

6 s
+/Og(u)Z(u, $) T Ps3Z(v,0)dv +/6g(u)Z(u, )T P32 Z(v,0)dv

L
+/ 9W)Z(v,s)" P Z(v,0)dv

Na(s,0) = g(s)Z(s)" PusZ(s,0) + g(0)Z(0, s)" Po1 Z(6)

s 6
—&—/Og(IJ)Z(ms)TngZ(V7 6?)d1/—&—/Sg(y)Z(ms)TPng(l/7 0)dv

L
+ /(9 gW)Z(v, s)TngZ(Z/, 0)dv,

where
Py P Pi3
P= Py Py P3| >0,
P31 P32 Ps3

then (x, P{M7N17N2}X>L2 > 0 for all x € La[a, b].
Proof: Define the operator

\/ (8)Z(s)x(s)
fo V9(8)Z(s,0)x(0)d
f Va(s)Z( s,@)x(é‘
Then
(%, Plarv,, o) %) = (2%, PEx) = (P 2x, PE2x) > 0
|
For convenience, we define the cone of such operators as
& :={(M, Ny, N2) : M, N1 and N, satisfy
the conditions of Thm. 7.} 3)

where the dimension of the matrices M, N; and N> should
be clear from context.
VIII. SOS CONDITIONS FOR STABILITY

The stability conditions can now be written concisely
using the definitions of ®, £, Lo, and L3 as follows.
Theorem 8: Suppose there exist € > 0,

(M — eI, N1, N,) € &

and

(0, —Hi(s,0) — Ho(0,8)", —Ha(s,0) — H1(0,5)") € @
where

(Hv,Hz) = L1(Vi, Wi1, Wia)

+ Lo(Va, War, Waa) + L3(V3, Wai, W)

Vi(s) = M(s)Ao(s) + €I, Wi1(s,0) = Ni(s,0)Ap(0),
Wia(s,0) = Na(s, 0)A(6)
Va(s) = M(s)A1(s), Wai(s,0) = Ni(s,0)A1(0),
Waa(s,0) = Na(s,0)A1(0))
Va(s) = M(s)Aa(s), Ws1(s,0) = N1(s,0)A2(0),
Wiz (s,0) = Na(s,0)A2(0))

Then any solution of Eqns. (1) and (2) is exponentially stable.
Proof: Let

V(%) = (%, Par, Ny, Ny %) > €lx]|7,

Then

V(X> + 26||X||%2 =2 <X7 P{V1>W117W12}X>
+2 <X, P{Vz-,W21,W22}xS> +2 <X, P{V31W31=W32}XSS>
= 2 (Xas, P{o, i1, Hy}Xss) <0

Therefore, we have exponential stability from Thm. 1. &

IX. NUMERICAL IMPLEMENTATION AND ANALYSIS

In this section, we examine the accuracy and compu-
tational complexity of the proposed stability algorithm by
applying the results to several well-studied problems. The
algorithms are implemented using a Matlab toolbox which
is an adaptation of SOSTOOLS [22] and which can be found
online at http://control.asu.edu. In all cases, the
conditions of Theorems 8 and 7 are applied by choosing Z
to be a vector of monomial bases of degree d and less and
either g(s) =1 or g(s) = (s —a)(b—s).

Example 1: We begin with several variations of the diffusion
equation. The first is adapted from [18].

x(t,s) = Ax(t, 8) + xss(t, 8)
where z(0) = z(1) = 0 and which is known to be stable if
and only if A < 72 = 9.8696. For d = 1, the algorithm is
able to prove stability for A = 9.8696 with a computation
time of .54s.
Example 2: The second example from [19] is the same, but
changes the boundary conditions to z(0) = 0 and x5(1) =0
and is unstable for A > 2.467. For d = 1, the algorithm
is able to prove stability for A = 2.467 with identical
computation time.
Example 3: The third example from [14] is not homoge-
neous

@(t,s) =(—.5s> + 1.35% — 1.5s + .7+ \)x(t, s)
+ (352 — 28)x,5(t, 8) + (5% — 5% + 2) 244 (t, 5)

where 2(0) = 0 and z5(1) = 0 and was estimated numeri-
cally to be unstable for A > 4.65. For d = 1, the algorithm is
able to prove stability for A = 4.65 with similar computation
time.

Example 4: In this example from [18], we have

1

i) =[5 1] atees) + R 0)



with 2(0) = 0 and z,(1) = 0. In this case, using d = 1, we
can prove stability for R = 2.93 (improvement over R =
2.45 in [18]) with a computation time of 1.21s.
Example 5: In this example from [19], we have

0 0 O
i(t,s)=1s 0 0faz(ts)+ R ‘o(ts)
s2 =53 0

with 2(0) = 0 and z4(1) = 0. In this case, using d = 1, we
prove stability for R = 21 (and greater) with a computation
time of 4.06s.

Example 6: Next, we consider a damped wave equation
X = Tgs — kay with 2(0) = z(1) =0

i(t,s) = [8 _1]{} 2(t,s) + [(1) 8] oot 5)

This is shown to be stable for £ = .1 with a computation
time of 1.54s.

Example 7: Finally, we explore computational complexity
using a simple n-dimensional diffusion equation

x(t,s) = z(t,s) + xss(t, 3)
where z(t,s) € R™. We then evaluate the computation time
for different size problems, from n = 1 to n = 20.

n | 1] 5 |10 20
CPU sec | .54 | 37.4 | 745 | 31620

X. CONCLUSION

In this paper, we have shown that stability of a large
class of PDE systems can be represented compactly in LMI
form using a variation of Sum-of-Squares optimization. To
achieve this result, we proposed that the state of a PDE of the
form of Equation (1) is actually xss and that all Lyapunov
stability conditions may be represented on this state. A
SOS-style algorithm to test these Lyapunov conditions is
proposed and numerical examples indicate no conservatism
in the stability conditions to at least 5 significant figures
even for low polynomial degree. It is clear that these results
can also be directly extended to: PDEs with uncertainty;
H -gain analysis of PDEs; H.-optimal observer synthesis
for PDEs; H.-optimal control of PDEs. Nonlinear Stability
analysis can likewise be considered. In addition, the identities
proposed in Section V by be extended to multiple spatial
dimensions. Some unanswered questions include how to
repose several common stability problems in the proposed
generalized framework. For example, the wave equation with
ut(L) = —u, (L) in its native form is not suitably well-posed
as the B matrix does not have row rank 2n.
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Appendix: Proofs from ‘“A New State-Space Representation for
Coupled PDEs and Scalable Lyapunov Stability Analysis in the
SOS Framework”

Matthew M. Peet, Member, IEEE,

Abstract

Proofs of the Lemmas in “A New State-Space Representation for Coupled PDEs and Scalable Lyapunov Stability
Analysis in the SOS Framework™. These proofs are not compressed in order to allow for easier review and verification.
The proofs are relatively straightforward and almost all manipulation in all proofs is based on three basic ways to

use indicator functions to change the order of integration.

I. PROOF OF LEMMA 4

First, we restate the Lemma where we define

b n
Yi(s,n) = Ba(n, S)TM(n)+/ Ba(ﬁ,s)TNl(O,n)dH—i—/ Ba(0,5)T Ny(0,n)d6
¢ b
Ya(0) = M)+ [ (G 0)an + /< N2 (¢, 6)d8

¢ b
Y3(Cn) = M(C)BalC.m) + / N1(C. 0)Ba (8, 7)d6 + /< N2 (C. 8)Ba (8, m)db.

Lemma 1: Suppose x satisfies the conditions of Thm. 3. Then
<X7 P{M,Nl,Ng}Xss> = <X557P{0,R1,R2}Xss>
where

Rl(S, 9) = E1 (S, 9) + Eg(S, 9),

Ry(s,0) = Es(s,0) + E5(s,0)

b
Ex(s,6) = / (n— $)N1(n, 6)d

b 0
Bas.0) = (0= )M(0) + [ (1= N, 00dn+ [ (1= 5)Na(r, 00

Eg(S, 9) = Y1 (5,9)

M. Peet is with the School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85298 USA. e-mail:
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Proof:

First, we decompose Pyyr,n,, N,} 88

s b
(Poarvenay) (5) = M(s)p(s) + / N (s, 0)6(6)d6 + / Na(s, 0)6(6)do,
b b

= M(s)y(s) + / I(s —0)N1(s,0)p(0)do + / I(6 — s)Na(s,0)¢(0)de,

a a

= (P1y)(s) + (P2p)(s) + (Psy)(s),

Similarly, we decompose x as

b s b
2(s) = / Ba(s,7) s () + / (5 — n)zas()d = / (Ba(s.m) + I(s — n)(s — 1)) Zaa(n)dn

= x1(s) + 22(s)

where z; is determined by the boundary conditions (BCs) and x is independent of the BCs. As a result, we will

have 6 terms to examine.
(x, Px) = (w1, Prx) + (x1, P2x) + (21, P3x)
+ (w2, Prx) + (22, P2) + (22, P31)

We start with the non-BC term (za, P1&ss), (X2, P3ss), and (xo, P3Zs).

boorb
(x9,Prz) = / / (5 — 0)I(s — 0)25s(0)T M(5)xss(s)dOds
B / b / b(e = $)1(0 = 5)x55(5)" M (0)s5(0)dds

b b
:/ / T4s(8)T (0 — s)M(0)254(0)dbds
= <x557PO,O,(O—S)M(O):ESS>L2 = <$ss,7’o,0,T12(s,9)iEss>L2

where

le(s, 6‘) = (9 — S)M(@)
Next, we have

b b
(€2, Pax) :/ x(s)T/ I(s — 0)N1(s,0)x45(0)dbds

b b b T
:/ / (/ (5‘")I<s—n>xss<n>dn> I(s = 0)N1 (s, 0)55 (0)dOds

b b b
— [ [ )™ [ (5= s = 1G5 = 0)Na(5,6)) s ()t

March 28, 2018 DRAFT



Since

I(s = )I(s — 6) = 1(8 — n)L(s — 0) + L(n — 0) (s — )
/a / / s = m)I(s = )I(s — 6N, (5, 6)) dsa.s (6)dndd
/ / (60— m)aes(n / (s = mI(s — )Ny (5. 6)) dsa.. (6)dndo
T / / 1= 0)e(n)” [ (5 M) (s — )N (s, 0)) dps ()il
-/ b / 10— ()" / " (5 m)N (5,0)) s (6)ndt
+ b / = 0" / (5 m)N1 (5, 0)) s (6)ndd
/ / $)rss(s)” /:«n—s)Nlm,o))dnzss(o)dnde
; / / s =) | " (0~ $)N:(0,6)) diy (6)dit

= <$ssa PO,T217T22ISS>

where

b
Tor(s,0) = / (= $)N1(n, 0)) dn

b
Tha(s,0) = /9 (= $)N1(n, 0)) dn

The third term is slightly simpler:

(z2,P3x) = / / — 5)Na(s,0)zss(0)d0ds
/ / Lael / s = n)I(s = )I(6 — 5)N3(s, 0)) dses(6)dndd
= / / 16 = )zes ()T / (5 — 1) Na(s, 0)) dsss (8)dndd

/tz/a 5)Tss(s / ((n = s)N2(n, 0)) dnzss (0)dsdo

= <'r557 PO,O,T32:CSS>

where

0
Tya(s,0) = / (= $)Na(n, 0)) dn

Combining these terms, we have

<.’II2, P$> = <xssu ,PO,E1,E2‘TSS>
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b
By (5.6) = Ton (5.0) = / (n— )N (1.0)dn

EQ(S, 9) = Tlg(s, 9) + TQQ(S, 9) + T32(S, 9)

b 0
= <(9 —s)M(0) + /0 (n — s)N1(n, 0)dn + / (n — s)Na(n, 9)dn>

where we used
le(S, 9) = (9 — S)M(@)
b
Toa(s,0) = [ ((r=5)Na(n.0)) d
Sb
Tya(s,0) = / (7 — )Ny (. 6)) dn

0
Tya(s.0) = / (7 — 5)Na(n, 6)) dn

Now we examine the 3 boundary-determined terms:
<I1, P$> = <x1,73117> + <$1,P2I> + <1171,733I>

Starting with (21, P1x)

b
(22, Prr) = / 2(5)T M (545 (5)ds

:/b </bBa(sm)xss(n)>T M ()45 (s)dnds
/ / Tas (1 (s,m)" M (8)x5s(s)dnds

/a /a Tas(5)" Ba(n, 5)" M (n)ass (n)dipds

= <ISS’ P07Q17Q1xSS>L2

where

Q1(s,m) = Ba(n,s)" M(n)
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Next (z1, Pax):

b b
(x1,Pox) = / z1(s)” / I(s — 0)Ny(s,0)zss(0)dOds

/ / </ (5,m)Tss( )dn>TI(s — O)Ny (s, 0),5(0)d0ds

/ / Tss (7 T/ab (I(s — 0)Ba(s,m)" Ni(s,0)) dszss(6)dndo

[ e ([

0

b b b
:/ / Tss(s T ( B,(0 N1 0,n) 9) xss(n)dsdn
a Ja n

= <I557 PO-,Q2-,Q2‘TSS>L2

b
B.(s,n) TN1 (s,0) ds) Xss(0)dndo

b
Qz(s,n)z/ B,(0,5)TN.(0,7)do

Finally
(x1,P3z) = /bxl(s)T /bI(H — 8)Na(s, 0)xs(0)d0ds
/ / Tgs(n ( / (s;m)T1(0 — s)Na(s,0)) ds) x55(0)dnd
/a /a Tys(s ( / (0, 5)T Na(0,m)) d9> T4s(n)dsdn
= (%55 P0,@3,Qs Lss)
where

Qus.n) = [ " (Ba(6, )7 No(6.m)) db

Combining these terms, we have

<x17 PI> = <ISS, P07E37E3ISS>

Eg(S,o) = Ql(S,G) + QQ(S 9) + QS(S 9)
= Ba(n,s)" M(n) / B,(6,5)T Ny (8, 77)d9+/17 B, (0, 5)T Na(6,1)d6

a

= Yl (S, 6‘)
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where we used
Q1(s,m) = Ba(n, s)" M(n)

b
QQ(S,T]):/ Ba(0,5)" N1(0,n)db

Qalom) = [ " (Ba(0, 5" No(0,m)) db

Combining the BC and non-BC terms yields the expression in the Lemma statement.
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II. PROOF OF LEMMA 5

Lemma 2: Suppose x satisfies the conditions of Thm. 3. Then
(%, Pyt Ny Ny Xs) = (Koo, PL0,01 Qo) Xss)
where

Q1(s,0) = Fi(s,0) + Fs(s,0)
QQ(S,H) = FQ(S,G) —|— Fg(S,@)

b
n—s)Fy(0,m) + F5(s,m)) dn

b

b

/9 n—s8)Fy(0,n) + Fs(s,n)) dn
b
/ Ba(C, )" Ya(Q) By (n)d¢ + / Yi(s, €)dC
, n
+ / (€ — $)Ya(Q)d¢By(n)

Fy(0,n) / Ni(n,{)d

Fy(s,7) = / (C = 8)Na(C, m)dC.

S

Proof: The proof is similar to the proof of Lemma 4, but with more terms. As before, we decompose Py s, N, N.}

as

b b

(Poat vy ) () = M(s)pls) + / I(s — 6)Ny (s, 6)6(0)d6 + / 1(6 — 5)Na(s, 6)(0)db,

a a

= (P1y)(s) + (Parp)(s) + (P31p)(s),

In this case, however, we have 2 decompositions:

S

b b
Ba(s,1)ss (n)dn + / (5 — )as ()i = / (Ba(s,m) + I(s — m)(s — ) 2as(m)dn

a

= z1(s) + 72(s)

b s b
£a(s) = / By () s () + / Fas ()i = / (By(n) + I(s — ) 2as (m)dly

=23 + 24(5)

where 1 and x3 are determined by the boundary conditions (BCs) and x2 and x4 is independent of the BCs. This

means we are going to have 12 terms to manage.

(, Pras) = (x1, Pras) + (x2, Pixs) + (x1, Piaa) + (x2, Pi2s)
+ <w1,P2$3> + <:C2,'P2$C3> + <$1,P2$4> + <$2,P2$4>

+ (w1, Paxs) + (w2, Paxs) + (w1, Psxs) + (w2, P3rs)
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As before, we start with the non-BC term (22, P124), (22, P324), and (22, P3x4).

b b T b
(2, 1) = / ( / (S—n)I(S—n)xss(n)dn> ( / M(s)l(s—@‘)xss(c)dc) s

b b b
- / / Las ()" ( / (S—n)I(S—n)I(S—C)M(S)dS> ras (C)dCdr

b b b
_ / / Zas(m)TI(C — 1) ( / (S—n)M(S)dS> 2es(O)dCdn
a a C

+Ai[}wmfﬂn—o([ﬁs—mM@max”@Mwn
::Lalzﬁwﬁﬂe_ﬁ<A%n—@kﬂmmow”wmws
« b / o515~ 0) < / - S)M(n)dn> £or(6)d6ds

= <$587 P07T11,T12$SS>L2

where

b
Tii(s,0) = / (n— s)M(n)dn

b
Tia(s,0) = /9 (n— 5)M(n)dn

Next, we have

b b
<$2,7’2§4>=/ :C(S)T/ I(s — 0)Ny(s,0)zs(0)dbds

-[[ ( [ 6-mits - n)wss(n)dn> e omiten ( [ 10~ <>xss<<>d<> dbds
[ [ ( [ [ @ =mmits.oms - wits -0y - ) d%) e e
-/ b / )10 ) ( / b JRCERD deds> 2 Q)G
v/ b / )71 /< b /< S((s—n)M(s,o))deds) 20 (Q)dndC

«—m(
= /ab /ab z45(5)T1(s — 0) (/Sb /9’7 (g — S)Nl(n,C))dg‘dn> T55(0)dsdf

+ /ab /ab 25 (5)TI(0 — 5) (/Gb /Gn (7 - S)Nl(n,g))dgdn> s (0)dsdO

- <I557 PO.,Tzl,ngxss>L2

where

b rn
Ty = / /9 (1 — )N (1, C)dCdy
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b rn
Ty = /9 /9 (n— )N (1, C)dCdn

I(s=mI(s=0)I(0—=C) = I(s—n)I(s=)I(s=O)(0—C)+I(s—n)I((—s)I(s=0)(0—C) = I(s=()I(s—0)I(6—C)

This holds since if ¢ > 7,

That is

0, otherwise.

{1, ifs>60>¢ and s > (
I(s—60)I(0—() =

Finally, we have

(x2,P384) = / / — 8)Na(s,0)x5(0)d0ds

/ / (/ ~ s >d”>Tf<9—8>Nz<&9> ( / bI(ﬁ—c):css(c)dc) dods
:/a / Tas()" ( / / ((s—n)%(sﬁ)l(s—n)f(o—sﬂ(a—o)deds) 24s(Q)dnd(
[ [0 ( [ [ et ) o
[ [ et /:/: (s — m)Na(s,0)) dsde)xss i
:/ab/ab‘””( I(s =9 /b/< 1= 5)Na(n,0)) dndC):ﬂss \dsdd
e[ ([ .00 anic) i

= <‘TSS7 PO,Tgl ,T32x88>L2

where

b rC
Tyu(s,0) = / / (n— ) Na(n, C)dndc

b rC
Tyals,0) = /9 / (n— ) Na(n, €)dndc

Combining these terms, we have

<$2, PI4> = <I557 PO,Fl,F2Iss>
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10

Fl(s,G) = Tll(S 9) +T21(S 9) —I—Tgl(S 9)

/ dn+// —sN1n<d<dn+// 0 — $)Na(11, C)dnd(
=/: ((n—s)( /NlnCdC> /S<<—s>N2<< n)dc)

b
— / ((n — s)F1(0,m) + F5(s,m)) dn

FQ(S,@) T11(s, 6‘) + T (s, 6‘) + T31(s 6‘)

/ dn+// —lencdgdn+// 1 — 8)Na(n, C)dnd(
—/: ((n—s>( /Nﬂ?CdC) /S(<—5>N2(< n)dc)

b
— /0 ((n — s)F1(0,n) + F5(s,m)) dn

where we used
b
Tua(s,0) = [ (1= 5)Mn)dn

b
Tya(s,0) = / (n— s)M(n)dn

Tﬂ_/ / n — s)N1(n,¢)d¢dn
Ty, = /0 /0 (1 — 5) N1 (s, C)dCn

b rC
Tyu(s,0) = / / (n— $)Na(1, Q) dndc

b rC
Tya(s,0) = /9 [ = 9Na(0.ndc

We now deal with the remaining 9 BC-determined terms. We start with the 3 terms in

<:Z?, P15175> = <I1, P11173> + <$1,P2£E3> + <1171, P3x3>
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First, we have

b
(@1 Prae) = [ () M(s)as (s

—/b (/bB (5, () ) (/ M(s s—oxss(c)dc) ds
/ / ( / sn>Tf<s—<>M<s>ds> ees (C)dCn
/ / ( / o) M (s >ds> 72 (Q)dCdly

- / / ras(s)” < / Ba@,s)TM(c)dc) o ()dds

= <x557 P0>Q11>Q11w85>[,2

b
Qui(s,m) = / Ba(C, )T M(C)d¢
n

b b
(1, Paza) = / x1(s )T/ I(s = 0)N1(s,0)z4(0)d0ds

/ / < / (5 )es 1 )dn)Tﬂs—e)Nl(s,e) < /abfw—cms(c)dc) abds
_ / / Tas( ( / / (s.m) " Ni(s,0)I (s — 0)I(0 — ) deds> 245 (Q)ddC
-/ b [t ()" ( / / (5,17 Ny (5, 6) )dsd9> T (¢l
_/ab/abxss (/ / (0,57 N (6. ¢ d9d<> Zan ) dsd

= <xssa P0>Q217Q21x55>[,2

where

b b
Qo (s,m) = / /< Ba(6, )" N1 (6, C)d6d(
n

March 28, 2018
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b b
(x1,P3xyq) = / xl(s)T/ I(0 — s)Na(s,0)x4(0)dOds

-[f ( [ Bats.nprt >dn>TI(9—s)N2(s,0> ( / bI(@—oxss(c)dc) s
_ / / e ( / / (5,m)" Na(s,0)1(60 — $)1(6 — C)) d9ds> 2os(C)dndC
-/ b / () < / / (5,17 Na(s,0) )dsd9> 22s(Q)dndC
= [ [t ( / A Ba<97s>TN2<e,<>d9d<> as ()

= <x8577)07Q31,Q31xSS>L2
where
b ¢
Qu(sn) = [ [ Ba(6.5) Na(6. v
n a
summing these terms, we have

<x7 PO)QCI ;ch x>L2

Qc1(s,m) =Q11(5,m) + Q21(s,m) + Q31(s,m)

=

¢
b
Yi(s

S —

b ¢
<Ba Y+ [ Ba.(6,5) "Ny (6,¢)dd + / Ba(H,S)TNQ(H,C)cw) d¢

12

(x1, Pras) + (z1, Paxs) + (z1, P3xs)

Next,

b
(xl,P1x3>:/ x1(s)T M(s)x3(s)ds

b b T b

- / ( / Ba<s,n>xss<n>dn> ( / M(s)Bb@xss(c)dc) ds
b b b

_ / / Zas(n)T ( / Ba<s,n>TM<s>ds> By(C)wss (C)dCdn
b b b

- / / Zao(s)T ( / Ba<<,s>TM<<>d<> By(n)sa (1)dnds

= <xssa P0>Q127Q12ISS>L2

b
Quals, ) = / Ba(C. $)" M(C)dCBy(n)
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b b
(x1, Poxs) = /xl(s)T/ I(s — O)Ny(s,0)x3(0)d0ds

-[[ < [ Bats.nprat )dn)THs—e)Nl(s,o) < / bBb<<>xss(<)d<> dods
= / / 2ealt ( / / 7N (5, 0)1 (s — 0)B,(¢) d%) s (C)dndC
[ [ ([ [ snTleeBb@)deds) e
-/ b / s ( / / )T NG 6By >d6d<) as () dsd

<‘TSS Po ,Q22, Q22w88>

Q22(5,7) / / B, (¢, 8) T N1(¢, 0) By (17)dod¢

b b
<561,733!E3>=/ :E1(S)T/ I(0 — s)Na(s,0)x3(0)d0ds

-/ b / b ( / b Ba(sm)wss(n)dn> L6 9Nt ) ( / b Bb<<>xss<<>d<> dods
- /ab /ab Zss(n) </ / (s,m)" Na(s,0)I(0 — s)By(C)) d9d8> ss(¢)dnd(
- / b / vl ( / / (5,1)7 Na(5,0) Bo(©) dods> s (C)

- / b / (s ( / / 5 N (¢, 0) By 1 )d9d<> s (1) dsdl

= <ISS Po ,Q32, Q%2x55>

Q32(s,7m) / / $)T No(C, ) By(1)dOdc

summing these terms, we have

<$55 ) 7)07Q02>Qc2x55>[,2

Qe2(s,m) =Q12(8,m) + Q22(s, 1) + Q32(s,7)

_/bBa ( /N1<9d9+/1v2<9d9>3b( )d¢

_/bBa )Y (C) By (n)de

13
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Finally, we have

(w2, Prz3) + (x2, Paxs) + (w2, P3xs)

b
(xg,P1x3>=/ wo(s)T M (s)xsds

-/ ( [ =it - ety )dn>T ( A M(s)Bb@)xss(c)dc) ds
/ / 2l ( / - )I(s—n)M(s)ds) By(Q)aer (C)dCd
/ / resl < / - >M(s)ds> By(Q)es (C)dCel

= [ [ et ( / <<—s>M(<>d<> Bo(n)a.a (n)dnds

= <xssa P0>Q137Q13x55>[,2

b
Qus(s,) = / (¢ — $)M(Q)dCBy(n)de

b b
(x9, Poxs) = /xQ( )T/ I(s — O)Ny(s,0)x3(0)d0ds

/ / (/ s >dn>Tf<S—9>N1<sﬁ> ( / bBb<<>xss(<)d<> dbds
_ / / Zos(n)T ( / / ((S—U)Nl(s,t?)[(s—n)I(s—Q)Bb(C))d9d5> ol inde
-/ b / )" < / b [ =i 0)5(0) deds> e (O)dndc
= [ [ra (// C— )N (G, 0)Baly >>d9d<> er(C)dsd

= <‘TSS7 P0>Q237Q23w88>[/2

b rC
Qs(s,17) = / / (€ — $)N1(C.0) By (n)dbdc
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b b
(2, Pyzs) = / 25(s)" / 100 — 5)No (s, 0)3(0)d0ds

ab b ba T b
- / / < / (S—n)I(S—n)xss(W)dn> 1(0 — 5)Na(s,0) < / Bb(C)xss(g)d<> dfds

b b b b
[ [t ( I/ <<s—n>N2<s,9>I<s—n)l(o—swb(o)deds) Tas(C)ddC

-/ b / )" ( / b / (5 = N5, 0)Bil) deds> s (C)dndC

= /ab /ab @ss(s)" (/b /Cb (€= S)Nz(Cﬁ)Bb(n))dMC) 55 (C)dsdn

= <‘TSS7 P0>Q337Q33w85>[/2

boopb
Quten = [ [ (€= malc. 0B manic
summing these terms, we have

<x7 PO)QCS chS x> Lo

Qc3(s,m) =Q13(s,m) + Q23(s,n) + Qs3(s,n)
b ¢ b
- / (€ —s) <M<<> 4 / N1(C.0)d8 + / N2<<,9>d9> By(n)dc
s a ¢

b
_ / (¢ — 5)Ya()d¢ By (1)

Combining all boundary terms, we have

(x1, Pras) + (x2, Pias) + (x1, P1a4)
+ (21, Poxs) + (v2, Poxs) + (x1, Paws)
+ (w1, P3x3) + (w2, P3x3) + (x1, P3x4)
= (Tss, Po,Fs, F3Tss) 1,

where

F3(Sa 77) - QCl(Sa 77) + QCQ(S’ 77) + QC3(S7 77)

b b b
_ / Ba(C, 8)TYa(O) By (n)dC + / Yi (s, O)dC + / (¢ — $)Ya(Q)d¢By(n)
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where we used

b
Sei(s,m) = [ Yi(s,Q)d¢

b

nb
Sou(s,m) = / Ba(C, 5)TYa(C) By(n)d¢
/ (¢ — $)Ya()d¢By(n)

503(87 77) =

Combining all terms, we have

<‘T7 ,Plxs> = <$SS7 PO,F1,F2x58>L2 + <xssu P07F37F3x85>L2

where
b
Fy(s.0) = / (7 — $)Fa(8,m) + Fi(s,m) di

b
Fy(s.0) = / (7 — $)Fa(8,m) + Fi(s,m) di

and

b b b
Fy(s,) = / Ba(C, 5)TYa(O) By (n)dC + / Yi (s, ()dC + / (¢ — $)Ya(Q)d¢By(n)
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III. PROOF OF LEMMA 6

Lemma 3: Suppose x satisfies the conditions of Thm. 3. Then

(%, Pty NayX) = (X, P71, 15) Xss )

where
T (s,0) = G1(s,0) + Gs(s,0)
TQ(S, 9) = GQ(S, 9) + Gg(S, 9)
b
Ga(5:0) = [ (0= 3)Ga(0.0) + Gs(s.0.0)
b
Ga(s,0) = / ((n — $)G(8.m) + Cs(s,60.m)) dn
b
Gi(s.0) = / Ba(n, 5)"Ya(n, 0)dn
b b
n /9 (n— 0)Y:(s,m)dy + / (n— )Ya(n, 0)dy
Galt.0) = (1= 0)M(n) + | (¢ = )N, O)de
Gals.0.0) = [ (€= 9)n = ONa(C. )i
Proof:

First, we decompose Pyyr,n,,n,} S

b b

(Poat vy ) () = M(s)p(s) + / I(s — 6)Ny (s, 0)6(0)d6 + / 1(6 — 5)Na(s, 6)(0)db,

a a

= (P1)(s) + (P2p)(s) + (Pse)(s),

As before, we decompose x as
b s b
o(s) = [ Buls.maastidn+ [ (s = mialndn = [ (Bals.m)+ s = n)ls = n) zea(a)i

= z1(s) + 32(s)

As a result, we will have the following 12 terms to examine.
(x, Py = (x1, Prx1) + (x2, Prx1) + (x1, P1x2) + (z2, P1x2)
+ <:C1,'P2$C3> + <w2,P2$1> + <.’L‘1,'P2$C2> + <:C2,'P2.”L'2>

+ (1, Psxs) + (x2, Psz1) + (x1, Psxa) + (x2, Psxa)

March 28, 2018
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We start with the non-BC terms (xo, P1x2), (x2, Paxa), and (xa, P3a).

en i) = [ ( [ =mits = ety dn>T< /abM<s><s—<>I<s—<>xss<<>d<> ds
/ / ( / ><s—<>f<s—n>f<s—<>M<s>ds> 7o (QdCy
- [ [ e ( / b(s—n)(s—C)M(S)ds> as Q)G
[ [ eun-o (/(
//xss _s(/j< oo )

) Zss(€)dCdn

b
Tia(s,0) = /9 (n— 5)(n — O)M(n)dn

For the (xq, Poxsy) term,

(2, Paxa) / / s — 0)N1(s,0)x(0)dbds

/ / (/ e >d’7>T I(s = 0)N1(s,0) ( / 0- Q16— <>:vss<<>d<> dods
- / / Zas )" ( / / <<s—n)(e—<>N1<s,9>1<s—n)f(s—oﬂw—o)dods) es (C)ndC
- / b / a1~ Q) ( [ [ =mo-om.o deds> res ()¢

< / s =m0 ONi(s,6)) deds>:css C)dndc
://W ( 0= 8)(C— 0N (7, €) dcdn> rau(0)dsdf
w [ [t - ﬁ(// 1= (¢~ 6N (1,) dcdn>xss Jindo

<xss PO T21 T22x85>L

where

b
Ty = / /9 (n— 8)(C — O)N1(n, ¢)dCdn
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b
Ty — /0 /9 (n— 8)(C — O)N1(n, ¢)dCdn

(22, P3x2) / / — 8$)Na(s,0)xs(0)dbds

-[[ ( [ = mits = ety >dn>TI<9 — $)Na(s.0) ( [6-ore- oxss(odc) s
://x (// (s = 0)(8 — Q) Na(s, 0)(s — m)I(6 — 5)I(0 — <>>deds>xss<c>dndc
= [ e ( [ [ =no-amio dsde> )i

//x 10— n(/{b/: 5 —1)(6 — O)Na(s,0) dscw)xss Jdnd(
:/G/axss( <b C (n— 5)(C — 0)Na(n, C)) dndC

+/ab/abx”( 6=s) </:/< 1= 8)(¢ = O)Na(n, ) dnd<>xss )dsde)

= <xSS7 PO,T;;1,T32'ISS>L2

Zss(0)dsdd

where

b rC
T(s.0) = [ [ (1= 5)(C — 0)Naln. and

b rC
Tyas,0) = /9 =916 = 0)Nan. yand

Combining these terms, we have

<$2, P§2> - <x55, PO,G1,G2x55>
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where

Gy (S, 9) = Tll(S, 9) + Tgl(s, 9) + T31(S, 9)

20

b b bopC
- / (n— )(n — O)M(n)ds + / /9 (n— )(C — O)N1(n, ()¢ + / / (n— 5)(C — 0)Na(n, €)dndc

-/ b (-9 (=00 + [ =0mi60.0¢) + [ (¢ = )0 - ONatcnrac)

0
b
- / ((n —8)G4(0,n) + Gs5(s,0,n)) dn

Ga(s,0) = Tia(s,0) + Taa(s,0) + Tza(s, 0)

b b b ¢
- /9 (n— )(n — O)M(n)d + /9 /9 (n— )(C — O)N (n, C)dCdy + /9 / (n— 5)(C — 0)Na(n, €)dndc

-/ b (-9 (=00 + [ "= 0mi60.0¢) + [ (¢ = )0 - ONatcnric)

b
- /6 ((n —8)G4(0,n) + Gs5(s,0,n)) dn

where we used

b

Tua(s.0) = [ (0= 5)(n— 0)Mn)dn
Sb

Tya(s,0) = / (n— $)(n — 0)M(n)ds
b rn

Ty (s,0) = / /9 (n— $)(C — )N (1, Q)
b rn

Tyals,0) = / / (n— )(C — O)Ny (s, ()dCdn
b rC

Ty (s,0) = / / (n— $)(C — 6)Na (1, C)dndc

b rC
Tyals,0) = /9 / (n— $)(C — 6)Na(1, C)dndc

For the remaining BC terms, as before, we expand them separately
Next, we have

(x1, Prz1) + (x1, Paz1) + (@1, P3x1)
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b
(a:l,Plxl}:/ x1(s)T M(s)x1(s)ds

b b T b
:/a (/ Ba(S,n)xss(n)dn> M(s) </ By (s, C)wss(C)cK)
-/ b / ) ( / " Bl ) M($) Bals. <>ds> 2ua (C)dC
_ / ' / ra(s)” ( / b Ba(c,sFM(c)Ba(c,n)dc) s ()dids

- <xssa P0,511,511x55>L2

b
Sur(s,m) = / Ba(C, )" M(C)Bal(C, m)dC

b b
(21, Paz1) = / x1(s )T/ I(s = 0)N1(s,0)z1(0)dbds

/ / ( / (s )2e( >dn>TI<s—e>N1<s,e> ( /abBaw,g)xss(c)dc) dods
[ [ ([ [ it - 00.0) ) anrin
_ /ab /bx ( / [ B nits.08,6.0) d%) 22
[ [t (/ [ (Baicommicon.o >)d9d<>xss(n>dsdn

- <xss 7:)0 Sgl SQIISS>

Sor(s,17) = / / 5)TN(C, 8) Ba (0, m)dbdC

b b
(x1, P3z1) = / z1(s )T/ I(0 — s)Na(s,0)x1(0)dOds

-/ ( [ Buts.apra >dn>TI<e—s>N2<s,e> ( /abBaw,oxss(odc) dbds
_ / / Tas(n ( / / (5.1)7 Na(5,0)1(8 — 5)Ba(6,0)) deds> Zas (C)dd(
-/ b [ ot " s )T ( / / 7 Na(5,6)Ba(6, ) d%) 21 (dndc
- /ab /bx ( / / 97 No(C.0)Ba(6.1)) d9d<> 2. (n)dsdl

- <xssv PO,Sgl,Sgl ISS>L2
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21

DRAFT



San(s,1) = / / )T Na(C, 6) Ba (6, 7)d0dC

summing these BC terms, we have

<$ssa PO,SC1,501 $SS>L2

Se1(s,m) = S11(s,m) + S21(s,n) + S31(s,7m)

b ¢ b
- / Ba(C.s)" <M<<>Ba<<,n>+ / N1(C.0)Ba (0, m)d0 + /C N2<<,9>Ba<e,n>d9> dc

b
_ / Ba(C, ) Ya(¢,m)dC

22

Next, we have

(x1, Praa) + (x1, Paza) + (z1, P3z2)

b
<x1,731172> :/ :Z?l(S)TM(S)xz(S)dS

b b T b
-/ ( | Bsnaaty )dn> ( / M(s)(s—ous—oxss(odc) ds

/ / Zas( ( / (5, )7 (s <>I(s—<>M(s>ds> Tos ()dCdn
/ / Zas( ( / (5, )7 (s <>M(s>ds> Tos (Q)dCan
- / / Ts (57 ( / Ba@,s)T(c—n)M(c)dc) Tos (n)dds

= <:ESS7 PO,5127S12$55>L2

b
S1a(s.1) = / Ba(¢,8)T(C — )M(Q)dC
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b b
(x1, Poxy) = /xl(s)T/ I(s — O)Ny(s,0)z2(0)d0ds

-[f ( [ Bats.nprat )dn>TI<s—9>N1<s,9> ( / b(@—cﬂw—oxss(c)dc) dbds
- / / Taalt ( / / (0~ QN (5, )1 (5~ 6)1(6  ©)) d@ds) 2au ()dndC
[ [ e ( / [ a0 - 0mits.0) dscw) 2an (C)ibmdC
-/ b [l ()" ( / / T(C - mNi(6,C)) d9d4> s (n) s

= <$SS7 P0,5227S22$SS>L2

b b
522(87 77) = / ‘/C Ba(97 S)T(C - 77)N1 (67 C)d@dC

b b
(x1, Pyx2) =/ :E1(S)T/ I1(0 — s)Na(s,0)x(0)dOds

-/ b / b ( / B, n)wss(n)dn> 16— 9Mal) ( / - 010 - <>x55<<>d<> dods
_ / ' / ()T < / / T(0 = ) Na(s, 0)1(0 — $)I(6 — O)) deds> 245 ()
_ / ' / () ( / / (6 ()Ny(s.6)) dsd9> s (C)dnd(
-/ b [ et o (s)T ( / / T(C— n)Na(0,0)) dedc) e ()dsdn

- <I557 PO,532,532ISS>L2

b rC
Ssa(s,1) = / / Ba(8, 5)(C — n)Na(6, C)dbdC

summing these terms, we have

<x7 POyS2CyS2Cx>L2

SQC(S, ?7) 512(5 77) + SQQ(S ?7) + 832(5 77)

b b ¢
:/ (/) ( +/ Ba(6,5)" N1(6,¢) d9+/ Ba(e,s)TNQ(e,g)cw) d¢
n ¢ a

b
- / (€ — mYi(s, Q)dc

23
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(w2, Prz1) + (X2, Pox1) + (@2, P3x1)

b
(w2, Pr21) :/ zo(s)" M (s)x1(s)ds

=/b</b<s—n)1< s (1 ) (/M sl >d<>ds
/ / realt ( / (s - )I(s—n)M(s)Ba@,c)czs) 2. (C)dCaly
/ / zealt ( / - )M(s)&(s,ods) £.(Q)dCdy

= [ [t < / (<—s>M<<>Ba<<,n>d<> oo (n)inds

- <I557 P0,513,513ISS>L2

b
Sia(s.m) = / (¢ = $)M(C)Ba(C, n)dC

b b
(x9,Paxy) = / zo(s)” / I(s — 0)Ny(s,0)x1(0)dbds

/ / (/ Al >d77>Tf (5 = O)Ni(5,0) ( / b Baw,c)xss(c)dc) dfds
:/a / Zarl)” (/ / <<s—n>Nl(s,9>I(s—n)l(s—mBa(e,c))dods) Ts (Q)dndC
-/ b / )" < / b [ = mits.0)8,06.0) deds> 22 (Q)ndC
:/ab/ab%s (/ / (€= 5)N1(C, 0)Ba(0, >>d9d<> Zes(n)dsdn

= <xSS7 P0,5237S23x88>L2

b rC
523(37 77) = / / (C - S)Nl (C? 9>Ba(07 n)dedC
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b b
(z2, P31) :/ xz(S)T/ 1(0 — s)Na(s, 0)x1(0)d0ds

ab . ba ., b
— / / < / (s—n)I(s—n)xss(n)dn> I(0 — s)Na(s,0) < / Ba(o,g)xss(Od<> d0ds

b b b b
— [ [ awt ( [/ ((S—n)Nz(Sﬁ)I(S—n)I(@—S)Ba(9,<))d9d5> Tas(C)ddC

_ / ' / )T ( / b / " (s = m) V(5. 0)Ba(6,0) deds> Zas (C)dd(

= /ab /ab Tss(s)" (/b /Cb (S S)Nz(Cﬁ)Ba(@,n))d@dC) ss(1)dsdn

= <xSS7 P0,5337S33$SS>L2

Ssa(s,) = / /< (€ — $)Na(C, 6)Ba(8, n)dbdC

summing these terms, we have

<x7 PO>SCS>SCS‘T>L2

Ses(s,m) = S13(s,n) + Sa3(s,m) + S33(s,7)

b ¢ b
- / €~ s) <M<<>Ba<<,n)+ / N1(C.0)Ba(6.7)d6 + /< N2<<,9>Ba<9,n>d0> dc

b
- / (¢ — 8)Ya(C,m)dC

Combining all boundary terms, we have

(x1, Pra1) + (x2, Pia1) + (x1, Pia2)

+ (21, Poxs) + (x2, Pow1) + (1, Paxa)
+ (w1, P3x3) + (w2, P3x1) + (x1, P3x2)
= (@ss, P0,G3,G3Tss) 1,

where

b b b
Gs(5.0) = Ser(5,6) + Sua(s,0) + Sea(5.0) = / Ba(n, )" Ya(n, 6)dy + /6 (n— 0)Yi (s, n)dn + / (n— )Y3(n, 0)dn
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where we used

b
Ser(s.1m) = / Ba(C,)TY3(C,m)dC
ab
Saels,) = / (€ — m)Yi(s, Q)¢
b
Sualsim) = / (€ = $)Ys(C,m)de

Concluding, we have

(x, Px) = (x1, Pr1) + (z2, Prz1) + (x1, Prze) + (x2, P122)
+ (1, Paxz) + (x2, Pax1) + (21, Pax2) + (22, Pax2)
+ <$1,7)3$C3> + <x2,’P3:101) + <.’L‘1,'P3$C2> + <$2,'P3.”L'2>

= <ZC555 PO,Gl,ngss>L2 + <$557 PO,G3,G35555>L2
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