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Abstract

In this paper, we present an immersed weak Galerkin method for solving second-order elliptic interface problems. The
proposed method does not require solution meshes to be aligned with the interface. Consequently, uniform Cartesian
meshes can be used for nontrivial interfacial geometry. We show the existence and uniqueness of the numerical
algorithm, and provide the error analysis in the energy norm. Numerical results are reported to demonstrate the
performance of the method.
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1. Introduction
We consider the following elliptic interface equation

-V-(BVu) = f, in Q" UQ, (1.1
u = g, on 0Q, (1.2)
where the domain Q ¢ R? is separated by an interface curve I into two subdomains Q* and Q. The diffusion

coefficient S(x) is discontinuous across the interface. Without loss of generality, we assume S(X) is a piecewise
constant function as follows

-, ifxe Q7
g =17 i
B, ifxe Q.

The exact solution u is required to satisfy the following homogeneous jump conditions

[elr
[BVu - n]lir

0, (1.3)
0, (1.4)

where n is the unit normal vector to the interface I'. From now on, we define

v (x), ifx e Q7,
vi(x), if x € QF,

and denote the jump [v]llr = v*|r — vIr.
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Interface problems arise in many applications in science and engineering. The elliptic problem (1.1) - (1.4)
represents a typical interface model problem since it captures many fundamental physical phenomena. To solve
interface problems, in general, there are two classes of numerical methods. The first class of methods use interface-
fitted meshes, i.e., the solution mesh is tailored to fit the interface. Methods of this type include classical finite element
methods (FEM) [6, 10], discontinuous Galerkin methods [3, 41], and the virtual element methods [4, 5]. The second
class of methods use unfitted meshes which are independent of the interface. Structured uniform meshes such as
Cartesian meshes are often utilized in these methods. The advantages of unfitted-mesh methods often emerge when
the interface is geometrically complicated for which a high-quality body-fitting mesh is difficult to generate; or the
dynamic simulation involves a moving interface, which requires repeated mesh generation. In the past decades, many
numerical methods based on unfitted meshes have been developed. For instance, the immersed interface methods
[23, 25], cut finite element methods [7, 15], multi-scale finite element methods [11, 21], extended finite element
methods [12, 36], to name only a few.

The immersed finite element method (IFEM) is a class of unfitted mesh methods for interface problems. The main
idea of IFEM is to locally adjust the approximation function instead of solution mesh to resolve the solution around
the interface. The IFEM was first developed for elliptic interface problems [2, 8, 24, 27, 28] and was recently applied
to other interface model problems such as elasticity system [34, 31], Stokes flow [1], parabolic moving interface
problems [18, 29], etc. Recently, this immersed idea has also been used in various numerical algorithms in addition to
classical conforming FEM, such as nonconforming IFEM [14, 22, 32], immersed Petrov-Galerkin methods [19, 20],
immersed discontinuous Galerkin methods [17, 33], and immersed finite volume methods [9, 16, 43].

The weak Galerkin (WG) methods are a new class of finite element discretizations for solving partial differential
equations (PDE) [37, 42]. In the framework of the WG method, classical differential operators are replaced by gen-
eralized differential operators as distributions. Unlike the classical FEM that impose continuity in the approximation
space, the WG methods enforce the continuity weakly in the formulation using generalized discrete weak derivatives
and parameter-free stabilizers. The WG methods are naturally extended from the standard FEM for functions with
discontinuities, and thus are more advantageous over FEM in several aspects [35, 39]. For instance, high-order WG
spaces are usually constructed more conveniently than conforming FEM spaces since there is no continuity require-
ment on the approximation spaces. Also, the relaxation of the continuity requirement enables easy implementation
of WG methods on polygonal meshes, and more flexibility for 4- and p- adaptation. Moreover, the weak Galerkin
methods is absolutely stable and there is no tuning parameter in the scheme, which is different from interior penalty
discontinuous Galerkin (IPDG) methods.

Recently, the WG methods have been studied for elliptic interface problems [38, 40]. These WG methods are
require interface-fitted meshes. In this article, we will develop an immersed weak Galerkin (IWG) methods for ellip-
tic interface problems on unfitted meshes. The proposed IWG method combines the advantages from both immersed
finite element approximation and the weak Galerkin formulation. One apparent advantage of our IWG method over
standard WG method is that it can be applied on unfitted meshes such as Cartesian meshes for solving elliptic interface
problems. Comparing with the immersed IPDG methods [17, 33], the matrix assembling in the IWG method assem-
bles is more efficiently because all computation can be done locally within an element without exchange information
from neighboring elements.

The rest of the article is organized as follows. In Section 2, we recall the P; immersed finite element spaces that
will be used to construct the WG approximation spaces. In Section 3, we introduce the IWG algorithm and discuss the
well-posedness of the discretized problem. Section 4 is dedicated to the error analysis of the IWG algorithm. We will
show that the errors measured in energy norm obey the optimal rate of convergence with respect to the polynomial
degree of approximation space. In Section 5, we provide several numerical examples to demonstrate features of our
IWG method.

2. Immersed Finite Element Functions and Weak Galerkin Methods

In this section, we introduce notations to be used in this article. We will also review the basic ideas of weak
Galerkin methods and immersed finite element spaces. Throughout this paper, we adopt notations of standard Sobolev
spaces. For m > 1, and any subset G C Q that is cut through by the interface I, we define the following Hilbert spaces

H™(G) = {u € H(G) : ulgno: € H"(G N Q®), s =+ or =}
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Figure 1: Plots of interface I" and a Cartesian triangular mesh.

Figure 2: Plots of regular elements 7, ,f and interface elements ‘7‘,{

equipped the following norm and semi-norm:
el gy = lllmGrar + lullmcra->  |tlgnGy = lUlncrar + [Ulncno--

2.1. Immersed Finite Element Spaces

Let 7, be a shape-regular triangular mesh of the domain Q. For every element 7 € 77, we denote by Ay its
diameter. The mesh size of 77, is defined by & = maxres, hr. Since the mesh 77, is independent of the interface, we
often use Cartesian triangular mesh for simplicity, see Figure 1. The interface I' may intersect with some elements in
Tn, which are called interface elements. The rest of elements are called regular elements, see Figure 2. The collections
of interface elements and regular elements, are denoted by ‘7“,{ and 7 f, respectively. Denote by &, the set of all edges
in 77, and let 82 = &,\0Q be the set of all interior edges.

Without of generality, we assume that 7, satisfies the following hypotheses, when the mesh size / is small enough:

(H1). The interface I' cannot intersect the boundary of an element at more than two points unless a boundary edge of
the element is part of T.

(H2). If I intersects the boundary of an element at two points, these points must be on different edges of this element.

(H3). The interface I is a piecewise C 2_function, and the mesh 77, is formed such that the subset of I in every interface
element T € 7} is C2-continuous.

(H4). When the mesh size 4 is small enough, the number of interface elements is of order O(h™").

3



To be self-contained, we briefly recall the linear IFE space introduced in [26, 27]. Let T € 7“h’ be an interface
element. Denote the three vertices of T by A;, A,, and A3. The interface curve I cut the boundary of 7 at two points
D, E. The line segment DE divides the element T into two sub-elements 7~ and T*. See Figure 3 for a typical
interface triangle.

Az

P,

Ay
Ay

Figure 3: A typical triangular interface element.

The linear IFE functions are constructed by incorporating the interface jump conditions. Specifically, three linear
IFE shape functions ¢;,7 = 1, 2, 3 associated with the vertices of A;,7 = 1,2, 3 are constructed in the form of

¢7(x,y) = a +bfx+cly, if (x,y) e T™,
$ilx.y) = ¢; (x,y) = a; +b;x+c;y, if(x,y)eT", 2D
satisfying the following conditions:
e nodal value condition
$i(A;) =6, 1,j=12,3. 22
e continuity of the function
[¢D)] =0, [#(E)]=0. (2.3)
e continuity of normal component of flux
0¢;
[[ﬂi’ﬂ =0. (2.4)
on DE

It has been shown in [26] that conditions specified in (2.2) - (2.4) can uniquely determine these shape functions in
(2.1). Then, on each interface element T € ‘7'/11 , we define the local IFE space

P(T) = span{$y, ¢2, ¢3}. (2.5)

2.2. Weak Functions

The weak Galerkin method takes finite element functions in the form of two components, one in the interior and
the other on the boundary. This means for a weak function v defined on an element 7',

Vo, in T,
v =
vy, ondT.

For simplicity, we shall write v as v = {vg, v} in short.



We consider the following weak Galerkin finite element space
Vi = {v = {vo, v} : volr € Pu(T), if T € T, volr € Py(T), if T € T} vle € Pole). e C Epf.

Here P, (T) is the standard linear polynomial space, and P, (T is the linear immersed finite element space on T defined
in (2.5). The Py(e) is the standard piecewise constant function on the edge e. Let V}? be the subspace of V}, consisting
of finite element functions with vanishing boundary value:

V) ={veV,:v,=0o0n0Q}
On each element T € 7, define the projection operator Qj by
Opu = {Qou, Qpu} € V.

Here, Q, is the Lagrange interpolation or the L? project from C(T) to P;(T) if T is a regular element, and Qy is the
Lagrange interpolation from C(T) to P\(T) if T is an interface element. Qj, is the L? projection from L2(e) to Py(e)
for every edge e.

The immersed weak Galerkin method for the problem (1.1)-(1.4) is to seek: u, = {uno, unp} € V), such that

Ay, v) = (f,vo), Vv e VO, (2.6)

where the bilinear form A(u, v) is defined as

Awv) =) (BVu0, o)z - (Qu(BVuo - m), vo — vidir

TeTh

—~(Qp(BVVo - M), g — up)ar + ph~' Qg — up, Qpvo — Vh>0r), 2.7
where p is a positive constant.
Remark 2.1. On every regular element T € ‘Tf and e C OT, we have Qp(BVdo-n) = BV -1 simply because Vg -n
is a constant .
3. Well-posedness of Numerical Algorithm

In this section, we present the existence and uniqueness of the proposed immersed weak Galerkin method. First,
we define the energy norm by

W= Y (1872wl + o~ 100 ~ vl ).

TeTRuT]
Lemma 3.1. The following inequality holds on every element T € T,

2 2 2
vo = villzr < AlIVvolly + 1Qpvo = vellgr, Vv € V. (3.1

Proof. We note that the inequality (3.1) is a standard estimate for 7' € ‘7',{3 On an interface element 7' € T}f , We note
that vy € H'(T). Therefore, applying the triangular inequality and trace inequality yields

2 2 2 2 2
[vo = vpllzr < Ivo — Opvollzr + 1Qsvo — vpllzr < AlIVVoll: + [1Qpvo — vall57-

Lemma 3.2. Forallv e V,, T € T}, and e C 0T, the following inequality holds,
QuVlle < IVlle Vv € V. (3.2)
5



Proof. By the definition of Q) and Cauchy-Schwartz inequality, we obtain

IOWVIE = (Qpv, Qpvye = (v, OpV)e < IVIINIQpVIle-

Theorem 3.1. The immersed weak Galerkin method (2.6) has a unique solution provided that p is big enough.

Proof. We show this well-posedness result by proving the continuity and coercivity of the bilinear form. For the
continuity, we have

Aw,v)

IA

IA

IN

Z ((,BVWO, Vvo)r = {Qp(BVwo - M), vo — vp)ar

TeTfuT)
—(Qp(BVVvo - 1), wo — We)ar + h™' p(Qpwo — W, Qpvo — Vb>(9T)

Z ((ﬁVWO, Vvo)r —{Qp(BVwq - m), Qpvo — Vi )ar

TeTRUT!
—(Qp(BYVvo - 1), Qpwo — Wrdar + h™ p{Qpwo — W, Qpvo — Vb>9T)

> (|w‘/2on||T|w‘/2vVo||T + (RlIB"2Vwo - nllz) 2 (BRIQpvo — vl
T

+(RIB"Vvo - mlZ ) 2R IQpwo — Wil + (' pllQpvo — vil2) A (h ™ pllQpwo — wbuéT)”Z)

> (|w1/2on||T|L3”2VvO||T + 1182 Vwollr (BH~11Qsvo = vilie)' 2

T
+1B8"2Vvollr (BRM1Qpwo — Wil + (K pllQpvo — vill5) 2 (h ™" pll Qpwo — wh||§T>”2)
Cliwll lIvil.

Then, we show the coercivity of the bilinear form. Note that

Awv) = (|L8”2Vvo||% = 2Qy(BYvo - ), vo = vi)ar +ph”|Qpvo — vb||§T). (3.3)
TeTh

We have for T € 7, U T/

2{0p(BVvo - M), Vo = Vi) a7 2{0p(BVvo - M), Opvo — Vi )or

1/2 _ 1/2
2(hIQB"> Vv - i3 ) " (Bh1Qsv0 = vll3y)
(B0 ml, ) (Bt Qw0 — vl

2€ 2

hIB'>Vvo - mll,

-1 2
= T 1O wlly

< (1/OlB"*Vvoll + €8~ 1Qpv0 — vill3;

IA

IA

Substituting the above inequality into (3.3), we obtain

A 2 Y (1 =1/l >0l + (p = eBman)i 170 — oIy

TeTh

Choosing € = 2 and p > 28n,x completes the proof of the coercivity. O
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4. Error Analysis

In this section, we derive the a priori error estimate for the IWG method (2.6) in the energy norm. First, we recall
some trace inequalities on regular elements and interface elements. Let T € ThR be a regular element and e be an edge
of T. The standard trace inequality holds for every function v € H'(T):

M2 < € (A7 VIR 7 + ArlIVVI 7). @.1)

IfT e ThI is an interface element, the following lemma provides the trace inequalities of IFE functions [30].

Lemma 4.1. There exists a constant C independent of the interface location such that for every linear IFE function
v € P\(T) the following inequalities hold:

A

10Vl < CHYTITV\BWlor, p = x.y (4.2)
1BV - nllo,. < CRYATIV2 BVl 4.3)
The next two lemmas provide the interpolation error estimates for linear IFE spaces [26, 30].

Lemma 4.2, Let T € ‘7',11 be an interface element. There exists a constant C, independent of interface location, such
that the interpolation Iyu in the IFE space P((T) has the following error bound:

llu = Luallo.r + hllu = Dll 7 < Rl gy, Ve € B(T). (4.4)

Lemma 4.3. For every u € H3(Q) satisfying the interface jump conditions, there exists a constant C independent of
the interface such that its interpolation Iu in the IFE space V), has the following bound:

1BV = Dol - mell; < C(R Ml ) + Pl ) (4.5)
where T is an interface element and e is one of its interface edge.

Next, we present some lemmas that will be used in our error analysis.

Lemma 4.4. There exists a constant C such that
IS (Quw, V)| < ChlwligooylVll, Yw € H*(Q), Vv eV, (4.6)

where S(Quw,v) = S h™'(QpQow — Qpw, Qpvo — Vi )or-

Proof. Using the Cauchy-Schwarz inequality, trace inequality, and the interpolation error bound (4.4), we have

IS(Qnw, V)| = Z Y 0p(Qow) — Quw, Qpvo — VpYar| = Z B~ Qow — w, Qpvo — Vedar
TeTRUT; TeT)t
2 2 2\ 1 2 \'?
< o X n2oow = wii + 19w - wii ) ( Y #10svo - il )
TeT TeT
< Chlwlligglivil.
O
Lemma 4.5. There exists a constant C such that
D 1Qou — ullyy < CH Nl g, - @.7)

TeTh



Proof. Applying the trace inequality and the interpolation error bound (4.4), we have
1Qou — ullsr < € (h"21Qot — uly.r + K™ 1ot — ullor) < CHPllullecry.
Squaring both sides and summing over all elements lead to the estimate (4.7). O

Lemma 4.6. Let u;, = {ug,up} and u be the solutions to problem (2.6) and (1.1)-(1.2), respectively. Let Qnu =
{Qou, Qpu} be the projection of u to the finite element space Vy,. Then, for every function v € V,?, one has the following
error equation

A(Qnt — up, v) = Ly (v) + S(Qpu, v), (4.8)

where

L) = Y (= Qo Bv0 -1 = Qu(BVvo - Whar + (BVu - = OBV Qo - m), vy = vdar ) 49)

TeT)

Proof. For any v = (v, vp) € V}?, we multiply (1.1) by vy to obtain

(fivo) = Z(—V - BVu,vo)r = Z (— BVu - n,vo)er + (BVu, VVO)T)

Tel, 7T,

= (= BVue mvdr + Vv mhar — @,V BV
TeTy,

= Z ( = {BVu - n,vp)ar + (u, SVvo - M)y — (Qou, V 'ﬁVVO)T)
TeTy

= Z ( = {BVu - n,vo)or + (u, SVvo - m)agr — (Qou, BVvo - Mar + (VQOM,,BVVO)T)
TeTy

= Z ((ﬁVQou, Vvo)r = {Qou, Vvo - MYar + (ut, BVvo - Moy — (BVu - m, vy — vb)bT)-
TeTy,

The last equation is because v, is a constant on every edge, and the flux SVu - n is continuous. Then by the definition
of the bilinear form (2.7), we have

A(Qnu,v) = (f,vo) + Z ((M = Qout, Qp(BVvg - m) — BVvg - Moy + (BVu - n — Qp(BVQou - m), vo — vp)ar

TeT)

+ph™(QyQou — Qput, Qpvo — vbm). (4.10)

Subtracting (2.6) from the above equation, it is obtained that

AQut =) = 3 (= Qott, Q4(BVvy - 1) — BVvo - mhar + (BVu 1 = O(BY Qo - ), vo = vp)ar
TeT
+ph™'(Qy Qott — Qpt, Qv — Vb>9T)
= L,)+S(Qnu,v),
which completes the proof. O

Lemma 4.7. The linear form L,(v) in (4.9) has the following error estimate
L,(v) < Chllullgs vl 4.11)

where the constant C is independent of the interface location.
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Proof. In (4.9), we denote L,(v) = I + I1. By Cauchy-Schwartz inequality, (3.2), and (4.7), we obtain

1

Z(M = Qou, Op(BVvg - ) — BVvg - Mg
T

< Y WIQLEVvo - lar + BBV vo - mllar) (™2l Qou — ullar)
T
< Chllullgzy ), 1B Vvollr
T
< Chllullgeovil

Next, by the trace inequality

11 = Z@VM -n = Op(BVQou - m), vo — vp)ar
T

> (BVu - n = Q,(BYQou - M), vo — Qyvodar + (BVu - 1 — Qy(BY Qo+ M), Qo = Vidar
T

> (BVu-m = 0BV - ), vo = Qpvo)ar + (BVu 1~ BV Qou - 1, QpVo — VYo
T

< > ("P1BVu - n = Qy(BVu - Wllar) (B lIvo = Qpvollar)
T
+(h8Vu - m = BV Qou - nllar)(h™1Qpvo = villar)
1/2
< Chllullgey Y IVvollr +| D7 (Bl g, + W) + D Pl | IV
T TeTh’ Te?‘,f
<

Allul 2 g VI

In the last step, we use the hypotheses (H4) that the number of interface elements is of order O(h~!). Combining the
error bounds for / and /1, we obtain (4.11). O

Now we are ready to prove our main result.

Theorem 4.1. Let Q,u and uy, be solutions to (4.9) and (2.6), respectively. Then the following error estimate holds
NQnu — upll < Chllull g3 ) 4.12)
where the constant is independent of the interface location.

Proof. Taking v = Quu — uy, in error equation (4.8), and then from the above estimates, (4.6), and combining with the
coercivity of A(-, -), we have

lQuu —upll* < A(Quut — wp, Quu — up)
= L(Qntt —up) + S(Qnut, Qpu — uy)
< Chllullgs ol Qntt — unll + Chllull g2 | Qe — uil
< Chllull syl Qnut — upll.

O

Remark 4.1. In the error estimates (4.11) and (4.12), we need to assume that the regularity of the solution is piece-
wise H3, which is usually higher than the usual piecewise H* assumption for numerical methods based on linear
polynomials. However, this is only necessary for theoretical error analysis. In computation, piecewise H* assumption
is sufficient to gain optimal convergence rate.



N DOF lleollz=  Order | |lepllz=  Order | Jlegll;z  Order | |eglg Order

16 2.34E+3 | 1.74E-2 1.13E-2 2.99E-3 1.04E-1

32 9.28E+3 | 521E-3 174 | 6.57E-2 0.78 | 7.81E-4 193 | 4.89E-2 1.08

64 3.70E+4 | 1.54E-3 1.75 | 4.06E-3 0.69 | 1.99E-4 197 | 244E-2 1.00
128 1.48E+5 | 4.34E-5 1.83 1.90E-3 1.09 | 5.11E-5 1.96 1.25E-2 097
256 | 5.90E+5 | 1.13E4 1.94 | 990E-4 094 1.28E-5 2.00 | 6.28E-3 0.99
512 | 2.26E+6 | 3.16E-5 1.84 | 5.05E-3 0.97 3.22E-6 1.99 | 3.15E-3 1.00
1024 | 9.44E+6 | 7.89E-6 2.00 | 2.63E-4 094 | 8.09E-7 1.99 1.57E-3 1.01

Table 1: Errors of Immersed WG methods Circle Interface for 8~ = 1, 8% = 1000

5. Numerical Examples

In this section, we report some numerical examples to validate our theoretical results. Furthermore, we will report
the convergence test of the numerical solution in other norms. We write the exact solution in u = (ug, up), and write
the IWG solution in uy, = (uop, upn). For simplicity, we also define the errors

€0 = Up — Upp, €p = Up — Upp-

We will test the L, L2, and semi-H' norms of ey, and L® norm of e, in the following examples.

leoll = (e - uon%)m, ol = (- Ve uo>||%)'/2, (5.1)

TeT, TeT)
lleollz~ = max [luo(x) — uon(Xll, llepllLs = max [lup(x) — upn(x)l, (5.2)
XeN, XeEM,

where N, and M, denote the set of nodes of the mesh, and the set of midpoints of all edges of the mesh, respectively.
We note that the semi-H' norm of ey is equivalent to the energy norm that we considered in the analysis. Thus, one
can expect the errors measured by them give the same convergence rates. In all the numerical experiments, we take

P = 10Bmax-

5.1. Example 1

We first consider a bench mark example for the elliptic interface problem which has been tested in many articles
[30,33]. Let Q = (-1, 1)x (-1, 1), which is divided into two subdomains Q~ and Q* by a circular interface I centered
at origin with radius ro = 71/5 such that Q™ = {(x,y) : x> + y* < rj} and Q* = {(x,y) : x> + y* > r}}. Functions f and
g are computed such that the analytical solution is described as follows:

'B]__ra, ()C, y) €Q” 53
u(x,y) = Lra_,_(L _ L)ra (x,y) € QF, (5.3)

B B B)O

where r = y/x2 + y? and @ = 5. We use the uniform Cartesian triangular meshes which is obtained by first partitioning
the domain into N X N congruent rectangles and then connecting the top-left and bottom-right diagonal in every
rectangle. We only report numerical performance for large coefficient contrasts (87,8%) = (1,1000) and (87,8%) =
(1000, 1). We also have tested some small coefficient jumps, and the numerical results are similar, hence we omit
them in the paper. The numerical errors and convergence rates for these two cases are reported in Table 1 and Table 2,
respectively. The numerical solutions on the 128 x 128 mesh are plotted in Figure 4. From these tables, we can observe
clearly that the error ey in semi-H' norm converges optimally which confirms our theoretical analysis. Moreover, e,
in L? and L™ norms also converge in second-order, which is considered as optimal. The boundary error e;, in L* norm
seems to converge in first order, which is anticipated as we use the piecewise constant approximation for u,.
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IWG Solution: #Cell = 32768, DOF = 147712 IWG Solution: #Cell = 32768, DOF = 147712

Figure 4: Immersed Weak Galerkin solutions for Example 1 with (3~,8") = (1, 1000), and (3~,8%) = (1000, 1)

N DOF lleollz=  Order | [lepllz»  Order | |legll;z  Order | leglzz  Order

16 2.34E+3 | 1.81E-1 2.24E-2 3.13E-2 1.15E-0

32 9.28E+3 | 4.83E-2 191 8.81E-3 1.35 | 7.89E-3 1.99 | 5.76E-1 1.00

64 3.70E+4 | 1.25E-3 195 | 4.62E-3 0.93 1.98E-3 2.00 | 2.88E-1 1.00
128 1.48E+5 | 3.17E-3 1.98 | 2.03E-3 1.19 | 494E4 2.00 1.44E-1 1.00
256 | 5.90E+5 | 8.01E-4 1.99 1.02E-3  0.99 1.23E-4 2.00 | 7.20E-2 1.00
512 | 2.26E+6 | 2.01E-4 199 | 5.13E-4 1.00 | 3.09E-5 2.00 | 3.60E-2 1.00
1024 | 9.44E+6 | 5.04E-5 200 | 2.65E-4 096 | 7.73E-6 2.00 | 1.80E-2 1.00

Table 2: Errors of Immersed WG methods Circle Interface for 8~ = 1000, g* = 1

5.2. Example 2

In this example, we test our numerical algorithm for a more complicated interface curve. We let Q = (-1,1) X
(=1, 1), and the interface is determined by the following level-set function:

I(x,y) = (#* + y?)*(1 + 0.4 sin(6 arctan (i))) -0.3. (5.4)

The subdomains are defined as Q* = {(x,y) : T(x,y) > 0}, and Q™ = {(x,y) : I'(x,y) < 0}. The exact solution is chosen
as:

1
—TI(x,y), (x,y) € Q™
u= :31 (5.5)
El"(x,y), (x,y) € Q"
We test the high coefficient jump cases (87, 8%) = (1, 1000) and (8-, 8*) = (1000, 1), and the error tables are reported
in Table 3, and Table 4, respectively. The numerical solutions on the 128 X 128 mesh are plotted in Figure 5. From
these data, we can observe again that the error in H'- and L>-norms converge in first and second order, respectively.
And the infinity norm for uy and u;, are close to second order and first order.
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IWG Solution: #Cell = 32768, DOF = 147712 IWG Solution: #Cell = 32768, DOF = 147712

Figure 5: Immersed Weak Galerkin solutions for Example 2 with (37, 5%) = (1, 1000), and (37, 8%) = (1000, 1)

N DOF lleollz=  Order | |lepllz=  Order | lleoll;z  Order | legly: Order

16 2.34E+3 | 5.00E-2 1.79E-2 8.46E-3 2.89E-1

32 9.28E+3 | 1.53E-2 1.71 1.58E-2 0.18 | 2.30E-3 1.88 1.51E-1 094
64 3.70E+4 | 4.36E-3 1.81 7.68E-3 1.04 | 5.87E-4 1.97 | 7.51E-2 1.01
128 1.48E+5 | 1.38E-3 1.66 | 463E-3 0.73 1.60E-4 1.88 | 3.68E-2 1.03
256 | 5.90E+5 | 4.36E-4 1.66 | 243E-3 093 | 4.07E-5 1.97 1.86E-2  0.99
512 | 2.26E+6 | 1.36E-4  1.68 1.18E-3  1.04 1.03E-5 1.99 | 9.21E-3 1.01
1024 | 944E+6 | 3.98E-5 1.77 | 6.00E-4 098 | 2.60E-6 1.98 | 4.58E-3 1.01

Table 3: Errors of Immersed WG methods Petal Interface for 8~ = 1, 8% = 1000

5.3. Example 3

In this example, we consider the case when the interface has a sharp corner. This example has been used in [22].
Let Q = (—1,1) x (-1, 1), and the interface is defined by the level-set function:

I'(x,y) = —=y* + ((x — 1) tan(6))*x. (5.6)

The subdomains are defined as Q* = {(x,y) : I'(x,y) > 0}, and Q~ = {(x,y) : I'(x, y) < 0}. The exact solution is chosen
as:

1
_,F(x,Y), (-x7y) eqQ,
u=1% (5.7)
EF(x,y), (x.y) € Q"
The right hand function f is chosen accordingly to fit the exact solution « in (5.7). We note that on the point (1,0),
the interface curve has a sharp corner. We slightly adjust our uniform mesh such that an odd number of partition in
each direction. By doing this, the singular point will be located in one of the mesh point. The performance of our
proposed numerical scheme is reported in Table 5 and Table 6. Similar conclusions as previous ones can be made for
such convergence tests. Furthermore, the numerical solutions are plotted in Figure 6 for varying values in 3.
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N DOF lleollz=  Order | |lepllz=  Order | Jlegll;z  Order | |eglg Order

16 2.34E+3 | 1.40E-1 3.85E-2 3.01E-2 9.50E-1

32 | 928E+3 | 3.81E-2 1.88 | 1.68E-2 1.20 | 7.86E-3 193 | 4.84E-1 0.97
64 | 3.70E+4 | 9.86E-3 195 | 8.03E-3 1.06 | 2.02E-3 196 | 243E-1 0.99
128 | 1.48E+5 | 2.51E-3 198 | 4.64E-3 0.79 | 5.06E-4 199 | 1.21E-2 1.00
256 | 5.90E+5 | 741E4 176 | 243E-3 093 | 1.26E4 2.01 | 6.07E-2 1.00
512 | 2.26E+6 | 1.58E-4 223 | 1.19E-3 1.03 | 3.15E-5 2.00 | 3.03E-2 1.00
1024 | 9.44E+6 | 397E-5 2.00 | 6.01E4 098 | 7.87E-6 2.00 | 1.52E-2 1.00

Table 4: Errors of Immersed WG methods Petal Interface for 8~ = 1, 7 = 1000

N DOF lleollz=  Order | |lepllz=  Order | Jleoll;z  Order | |egly: Order

17 2.64E+3 | 6.55E-2 1.72E-2 1.65E-2 4.88E-1

33 9.87E+3 | 1.77E-2 1.89 | 747E-3 120 | 441E-3 190 | 2.52E-1 0.95

65 3.82E+4 | 4.60E-3 194 | 5.15E-3 054 | 1.11E-3 198 | 1.28E-1 0.98
129 | 1.50E+5 | 1.17E-3 197 | 2.44E-3 1.08 | 2.75E-4 202 | 645E-2 0.99
257 | 5.95E+5 | 296E4 199 | 1.27E-3 095 | 6.88E-5 2.00 | 3.24E-3  0.99
513 | 2.37E+6 | 744E-5 199 | 6.96E-4 0.86 | 1.71E-5 2.00 | 1.62E-3  1.00
1025 | 946E+6 | 1.87E-5 2.00 | 3.56E-4 097 | 428E-6 2.00 | 8.11E-3 1.00

Table 5: Errors of Immersed WG methods Singular Interface for 8~ = 1, 8+ = 1000
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