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Abstract

We study gapless quantum spin chains with spin 1/2 and 1: the Fredkin and 
Motzkin models. Their entangled groundstates are known exactly but not their 
excitation spectra. We first express the groundstates in the continuum which 
allows for the calculation of spin and entanglement properties in a unified 
fashion. Doing so, we uncover an emergent conformal-type symmetry, thus 
consolidating the connection to a widely studied family of Lifshitz quantum 
critical points in 2d. We then obtain the low lying excited states via large-scale 
DMRG simulations and find that the dynamical exponent is z = 3.2 in both 
cases. Other excited states show a different z, indicating that these models 
have multiple dynamics. Moreover, we modify the spin-1/2 model by adding a 
ferromagnetic Heisenberg term, which changes the entire spectrum. We track 
the resulting non-trivial evolution of the dynamical exponents using DMRG. 
Finally, we exploit an exact map from the quantum Hamiltonian to the non-
equilibrium dynamics of a classical spin chain to shed light on the quantum 
dynamics.
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1. Introduction

Quantum critical systems display striking emergent phenomena such as universality in their 
static and dynamic properties [1]. Realistic models are however often very challenging to 
study due to the presence of strong interactions. This is why one-dimensional (1d) systems 
offer an ideal playground because they are often more tractable both numerically and ana-
lytically. For instance, many 1d quantum critical systems are described by conformal field 
theories (CFTs) at low energy. Such theories are highly constrained by symmetry alone [2, 3]. 
Even non-equilibrium dynamics following a quench can be studied in detail in 1d CFTs [4]. 
A property that is useful to asses gapless quantum systems, both in and out of equilibrium, 
has come to the fore in recent years: the structure of entanglement. For instance the bi-partite 
entanglement entropy (EE) quantifies the amount of quantum entanglement between two sub-
systems. For 1d CFTs, the von Neumann EE has the form SvN = c

3 log
LA
ε , where LA is the 

length of region A (an interval embedded in the real line), and c is the central charge of the 
CFT [5–7]. ε is a short-distance cutoff. In addition, a related but cutoff-independent quantity, 
the mutual information between two well-separated intervals has a power law dependence 
on the separation. The exponent depends on the scaling dimensions of local observables [8]. 
These results demonstrate that the groundstates of CFTs are highly entangled.

However, many gapless systems cannot be described by relativistic CFTs at low energy. 
An example that we shall investigate in this work is the S = 1 spin chain introduced by Bravyi 
et  al: it describes spin exchange with bilinear and biquadratic interactions [9]. It is called 
the Motzkin model because the groundstate is the equal weight superposition of so-called 
Motzkin paths (more on this below). Although the groundstate has a large EE, the dynamical 
exponent that describes the low energy gapless excitations obeys the bound z � 2 [9, 10], 
excluding the possibility that this model is described by a relativistic CFT. In addition, a recent 
large-scale DMRG study has shown that this model has different dynamical exponents for dif-
ferent excitations, thus exhibiting multiple dynamics at low energy [11].

A similar spin model with S = 1/2 was proposed in [12]. This model involves three-spin 
interaction and is related with Fredkin gates in the field of quantum computation, which 
explains why it is called the Fredkin model. Its groundstate EE also has logarithmic depend-
ence for an interval embedded in a long chain. In this paper, we perform large-scale DMRG 
calculations to determine the excited states and show that this model also has z > 1, meaning 
that it cannot be described by CFT, and that it displays multiple dynamics just as the Motzkin 
spin chain.

Another reason why these spin models are interesting is because their Hamiltonians can 
be written as a sum of local projectors. The groundstate is annihilated by all the projectors, 
and has an energy exactly equal to zero. As such, these spin chains share a similar structure to 
the quantum dimer model (QDM) defined in 2d, and have potential applications in quantum 
computation due to their ‘frustration-free’ nature. The QDM was introduced by Rokhsar and 
Kivelson to describe the low-lying singlet excitations in quantum antiferromagnets [13]. On 
the square lattice, the QDM model has a special parameter in its phase diagram, known as the 
Rokhsar–Kivelson (RK) point, where the critical groundstate is an equal weight superposition 
of all dimer configurations. This state admits an integer valued height representation defined 
mod 4 [14, 15], and in the continuum limit, the coarse-grained height field can be described 
by a free compact boson with a z = 2 dispersion, and therefore the quantum wavefunction 
is conformally invariant in 2D space [16]. The RK form of the QDM Hamiltonian ensures 
that one can map the quantum dynamics to a non-equilibrium classical system governed by 
a Markovian master equation. Under this mapping, the groundstate coincides with the clas-
sical equilibrium distribution and the low energy excited state corresponds to the classical 
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relaxation modes. Relying on this quantum-classical connection, Henley used classical Monte 
Carlo simulations to numerically study the dynamics in QDM and found that the dynamical 
exponent is z = 2 [17, 18]. This result suggests that the QDM at the RK point can be effec-
tively described by the z = 2 quantum Lifshitz model [3, 16].

It should be noted, however, that it is not true that all lattice models which can be expressed 
as a sum of local projection operator must necessarily have z = 2 dynamics. A case to the 
point is the 2d quantum eight vertex model of [16] which, as its classical analog, has two 
lines of fixed points where the 2D quantum system is critical. While along one of these criti-
cal lines, the six vertex line, the dynamics indeed has z = 2 dynamics, along the so-called 
Ashkin–Teller line using classical Monte Carlo simulations [19], found a continuously var-
ying dynamical critical exponent. Here we will find a similar behavior in the Fredkin and 
Motzkin chains.

Keeping this picture in mind, we will study the groundstates for both Fredkin and Motzkin 
spin models in the continuum limit and construct possible effective field theory for them. In 
both spin models, the groundstates are in Sz

tot = 0 sector and have height representations which 
can be considered as the uniform superposition of Motzkin and Dyck paths, respectively [9, 
12]. The paths are defined in the upper half-plane and can be understood as the trajectories 
for a classical discrete random walk. In the continuum limit, the groundstate can be described 
in terms of coarse-grained height field φ with the constraint φ � 0. The difference between 
Dyck and Motzkin paths lies in the diffusion constant of the random walk, carries over to the 
quantum wavefunction via a dimensionless parameter.

We further construct a z = 2 bosonic parent Hamiltonian for the continuum groundstate. 
However, in contrast to the 2d quantum Lifshitz model, the z = 2 bosonic field theory is not 
the effective theory for the Motzkin and Fredkin spin chains. Our careful numerical DMRG 
analysis of the dynamical exponent z in the Motzkin [11] and Fredkin models suggests that z 
lies close to 3 rather than 2: z = 3.2. This large dynamical exponent in both spin models might 
be partially caused by the conservation of Sz

tot. Similar behavior was found previously in the 
Kawasaki non-equilibrium dynamics for a classical Ising spin chain at low temperature, where 
the relaxation mode is governed by subdiffusive spin motion and has z � 3 [20–22].

We further study the lowest excited state for the Fredkin model in the Sz
tot = 0 sector and 

find a different dynamical exponent z0 = 2.76, indicating that this model has multiple dynam-
ics. This behavior is common for example in metallic quantum critical points in higher dimen-
sions, where various order parameter fluctuations can have different dispersions [1, 23–27].

Finally, we study the stability of the Fredkin chain with respect to a ferromagnetic 
Heisenberg interaction; the strength of the new interaction is proportional to the coupling 
(1 − α), which varies from 0 to 1. At α = 0, 1, this model corresponds to Heisenberg and 
Fredkin models, respectively. We numerically explore the groundstate and dynamical expo-
nents of our Fredkin–Heisenberg model. Away from the point α = 1, the analytical form of the 
groundstate is unknown. We use DMRG to study the groundstate and find that when α < 1, 
it is different from the Fredkin case at α = 1, suggesting that the Fredkin model is unstable 
in the presence of the Heisenberg. Away from α = 1, the dynamical exponent for the low-
est excitation drops to a value smaller than 3 and approaches 3 as we decrease α to zero. At 
α = 0, although the bulk is the ferromagnetic Heisenberg chain, the lowest excitation cannot 
be described by the z = 2 diffusion mode due to the boundary condition being used, which 
favors up (down) spin on the left (right) boundary. Further study for the gapless low energy 
excitations in other spin sector demonstrates that the dynamical exponents can also be differ-
ent in different spin sectors.

The structure of the paper is as follows. We first review both Fredkin and Motzkin spin mod-
els in section 2. Then we discuss the ground in the continuum limit and compute various local 
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observables and entanglement properties in section 3. In section 4.1, we study the dynami-
cal exponent for the Fredkin model, as well as its change in the presence of the Heisenberg 
interaction. We summarize and conclude in section 5. In appendix A, we briefly explain some 
combinatorics used in Dyck and Motzkin path calculation. In appendix B, we gives the detail 
for DMRG calculation in Fredkin–Heisenberg model.

2. Fredkin and Motzkin spin chains

We introduce the Hamiltonians for the 2 quantum spin chains that are the focus of this paper. 
The first one is the Fredkin model [12] and has spin 1/2, while the second is the spin 1 Motzkin 
model [9]. We describe the exact groundstates of the 2 spin chains.

2.1. Fredkin

The spin S = 1/2 Fredkin model [12, 28] has the following Hamiltonian in the Sz basis

H = Hbulk + Hbdy =

N−2∑

j=1

Hj + Hbdy,

Hj = (1 + σz
j )(1 − �σj+1 · �σj+2) + (1 − �σj · �σj+1)(1 − σz

j+2)

Hbdy = | ↓〉1〈↓ |+ | ↑〉N〈↑ |

 

(1)

where �σ = (σx,σy,σz) is the vector of Pauli matrices. We work with chains with an even num-
ber of sites N. In the bulk Hamiltonian, Hj can be expressed in terms of projectors:

Hj = | ↑〉j〈↑ | ⊗ |S〉j+1,j+2〈S|+ |S〉j,j+1〈S| ⊗ | ↑〉j+2〈↑ | (2)

where |S〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) is the singlet built out of neighboring spins. We thus see that 

the bulk term Hbulk involves 3-spin interactions leading to two spin exchange processes: 
| ↑↑↓〉 ⇐⇒ | ↑↓↑〉 and | ↓↑↓〉 ⇐⇒ | ↑↓↓〉. These two moves are denoted as Fredkin gates in 
the field of quantum computation.

The Fredkin Hamiltonian is constructed in terms of projection operators which commute 
with the total Sz

tot =
∑

j Sz
j  operator. The model therefore has U(1) symmetry. The unique 

groundstate is known exactly and corresponds to an equal-weight superposition of states 
defined through Dyck paths [12, 28]. For example,

. 
(3)

A N-step Dyck path in the upper half-plane is naturally represented in terms of height vari-
ables φi defined through

φi+1 − φi = Sz
i+1 (4)

meaning that the spin is a discrete derivative of φ: Sz = Δφ. The height field is defined on 
the ‘dual’ lattice so that its index runs from 0 to N. In the height representation, since we 
have spin S = 1/2, the state | ↑〉 maps to the step (1, 1/2), , while | ↓〉 maps to the step 
(1,−1/2), . The Dyck path is a succession of such steps; it starts at (x, y) = (0, 0), ends at 
(x, y) = (N, 0), and obeys the constraint that the height field φi does not cross below the x-axis, 
i.e. φi � 0. Examples are shown in equation (3) and figure 1(a). As stated below, the ground-
state is an equal-weight superposition of all allowed Dyck paths and satisfies Hj|GS〉 = 0 and 
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Hbdy|GS〉 = 0. Such a groundstate is a generalization of the Rokhsar–Kivelson (RK) type 
wavefunction to one dimension. With some elementary combinatorics (appendix A), we can 
show that this groundstate has a large entanglement entropy for a bipartition into regions 
A = [1, NA] and B = [NA + 1, N]. In the limit N, NA → ∞, the result is [12]

SvN =
1
2
log

NA(N − NA)

N
+ O(1). (5)

When NA � N , the EE scales as 1
2 logNA, which takes a similar form as that for (1  +  1) 

dimensional CFTs with central charge c = 3 [7]. However, we will see that this model is not 
described by a CFT and is in fact less entangled. We mention in passing that the Fredkin model 
can be generalized to a half-integer spin model with S > 1, where the groundstate is equal 
weight superposition of colored Dyck path and has a square-root violation of the area law [12, 
28, 29]. This wavefunction can be further deformed into a weighted superposition of Dyck 
path with the groundstate properties and energy gap studied in [29–31].

2.2. Motzkin

Similarly, one can construct a spin S = 1 RK type model with similar properties to the Fredkin 
chain. This model was actually introduced prior to the Fredkin one in [9], and was further 
explored in [11, 32, 33]. The Hamiltonian is [9]

Figure 1. (a) A Dyck path and the corresponding spin configuration in the Fredkin 
model. The vertical spacing is 1/2. (b) A Motzkin path and the corresponding spin 
configuration in the Motzkin model. The vertical spacing is now 1, which corresponds 
to the spin.
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H =
L−1∑

j=1

Πj,j+1 + Hbdy (6)

where Πj,j+1 corresponds to nearest neighbor exchange processes and is defined in terms of 
projectors,

Πj,j+1 ≡ |D〉j,j+1〈D|+ |U〉j,j+1〈U|+ |V〉j,j+1〈V| (7)

with

|D〉 = 1√
2
(|0d〉 − |d0〉) , |U〉 = 1√

2
(|0u〉 − |u0〉) |V〉 = 1√

2
(|00〉 − |ud〉)

 (8)
|u〉 ≡ |+ 1〉, |d〉 ≡ | − 1〉 and |0〉 are eigenstates of Sz

j . The boundary term is the projector

Hbdy = |d〉1〈d|+ |u〉N〈u|. (9)

On the left boundary, it favors both |0〉 and |u〉 states, while on the right boundary, it favors 
|0〉 and |d〉 states. The bulk Hamiltonian is in fact of the anisotropic bilinear-biquadratic form:

Πj,j+1 = AabSa
j Sb

j+1 + BabcdSa
j Sb

j Sc
j+1Sd

j+1 (10)

where repeated spin indices are summed over. The coefficients A, B are given in [11]. The 
Motzkin Hamiltonian has a U(1) symmetry generated by Sz

tot [33]. Similarly to the Fredkin 
model, we can construct the groundstate of the Motzkin chain in the height representation 
with the identification Sz = Δφ. Since the Motzkin model has S = 1, φ can only jump by inte-
gers. The groundstate in the height representation (4) is a uniform superposition of all paths 
connecting (x, y) = (0, 0) and (x, y) = (N, 0) in the upper half-plane. These paths are formed 
by three types of moves: diagonal up (1, 1), , diagonal down (1,−1),  and flat (1, 0),  
which correspond to the three states |u〉, |d〉 and |0〉 in the Sz basis, respectively. Such a type of 
path is called a Motzkin path; one example is shown in figure 1(b). For example, when N = 3, 
the groundstate of equation (6) is

. (11)

The Motzkin path wavefunction also has large EE and the leading term in EE is the same 
as that for Fredkin model shown in equation (5). Similarly, there is also a higher integer spin 
model with S > 1 with the groundstate as the equal weight superposition of colored Motzkin 
path [32, 34].

In both Dyck path and Motzkin path wavefunctions, for each height configuration, we have 
the constraint Sz

tot = φN − φ0 = 0, which gives rise to the following groundstate expectation 
value [33]

〈S±
i 〉 = 0 (12)

where S±
i = Sx

i ± iSy
i . In contrast, S+

i S−
j  commutes with Sz

tot, and we find that the two-point 
correlation function 〈S+

i S−
j 〉 takes a finite value, as we discuss in the next section.

3. Continuum wavefunction and a parent Hamiltonian

Although the groundstate for the Fredkin and Motzkin lattice models are known exactly (as 
given above), it will prove convenient to write down the wavefunctions in the continuum. This 
will allow for a simple and physical derivation of many results, and will make manifest the 
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emergent symmetries of the models. In particular, we will see that spatial conformal invari-
ance emerges in the bulk of the chain.

3.1. Continuum version of the Motzkin and Fredkin groundstate

In the continuum limit, the groundstate for both Motzkin and Fredkin models can be written 
as [11]

Ψ0[φ] =
1√
Z

e−
κ
2

∫
dx(∂xφ)

2 ∏

x

θ(φ(x)) (13)

where the bosonic φ(x) field represents the coarse-grained height variable introduced above. 
In the lattice model, the height is set to zero at either end of the chain, hence we impose the 
following Dirichlet boundary condition on the quantum field

φ(0) = φ(L) = 0. (14)

The normalization factor Z takes the form of a (0  +  1)-dimensional partition function:

Z =

∫
φ(0)=φ(L)=0

Dφ(x) e−κ
∫ L

0 dx(∂xφ)
2 ∏

x

θ(φ(x)) (15)

where θ(z) is the Heaviside function that enforces φ to be non-negative to match the constraint 
of the lattice Dyck/Motzkin paths that appear in the groundstate (see figure 1).

Equation (13) gives a unified picture for the groundstate of both the Fredkin and Motzkin 
models. The difference between the two lattice wavefunctions is encoded in the param-
eter κ, and can be understood in terms of a random walk problem. The Dyck and Motzkin 
paths describe a one dimensional random walk on the non-negative half-integers and inte-
gers, respectively, with the horizontal axis of the path as the ‘time’ direction, figure  1. 
The random walks are constrained to start and finish at the origin φ = 0, which is called 
a Brownian excursion. The wavefunction (13) is then probability of a given random path, 
and its specific form follows from the Legendre equation obeyed by φ(x) [11]. The diffusion 
constant of the random walk is 1/(4κ), and takes different values for the Dyck and Motzkin 
chains. For the Dyck type random walk (Fredkin model), the variance at a typical step is 
σ2 = ((1/2)2 + (−1/2)2)/2 = 1/4, while for the Motzkin type random walk, the variance 
at a typical step is σ2 = (12 + 02 + (−1)2)/3 = 2/3. Since the diffusion constant is given by 
1/(4κ) = σ2/2, we have κ = 2, 3/4 in the Fredkin and Motzkin groundstates, respectively.

We can now compute various groundstate properties in the continuum limit. Let us start 
with the expectation value of Sz. By virtue of equation (4), in the continuum limit we have

Sz(x) = ∂xφ. (16)

We thus have 〈Sz(x)〉 = ∂x〈φ(x)〉. The expectation value of the height field is easily computed 
by mapping the calculation to that of an elementary quantum mechanics problem [11], which 
offers yet a different perspective on the groundstate. We map the height variable to the position 
of the quantum particle, φ → X, and the position to imaginary time, x → τ . The expectation 
value then maps to Feynman path integral

〈Ψ0|φ(x)|Ψ0〉 →
∫

X(0)=X(L)=0 DX X(τ)e−S1[X]

∫
X(0)=X(L)=0 DX e−S1[X]

 (17)

with the constraint that the particle starts at the origin and ends there at time L. S1 is the 
Euclidean action of the particle:
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S1 =

∫ L

0
dτ

[
κ

(
dX
dτ

)2

+ V(X)

]

V(X < 0) = ∞, V = 0 otherwise

 (18)

where the potential V is simply a hard wall that prevents the particle from penetrating the 
region X < 0. We can thus rewrite (17) as

〈0, L|X̂(τ)|0, 0〉
〈0, L|0, 0〉 =

∫ ∞

0
dX

〈0, L|X, τ〉X〈X, τ |0, 0〉
〈0, L|0, 0〉 (19)

=

∫ ∞

0
dXf (X, τ)X (20)

where we have used the eigenstates |X, τ〉 of X̂(τ) in the Heisenberg representation. f is the 
probability distribution of finding the particle at position X at time τ, and is thus normalized ∫∞

0 dXf (X, τ) = 1. We have restricted the integrals to positive values of X due to the potential. 
After evaluating the propagator 〈Xf , τf |Xi, τi〉 [11], we find

f (φ, x) =
1

2
√
π

(
4κL

(L − x)x

)3/2

φ2 exp

[ −κLφ2

(L − x)x

]
 (21)

where we have reverted back to the field theory formulation in terms of φ, x. We thus get

〈φ(x)〉 =
∫ ∞

0
dφf (φ, x)φ = 2

√
x(L − x)
πκL

 (22)

〈Sz(x)〉 = 1√
πκL

L − 2x
√

x(L − x)
. (23)

As expected, we find that 〈φ〉 vanishes at the boundaries and takes its maximal value at the 
middle point, 

√
L/(πκ)  with the characteristic square root dependence of Brownian motion. 

The Sz expectation value equation (23) goes from positive at x < L/2 to negative at x > L/2, 
which is a consequence of the boundary conditions in the lattice models equations (1) and 
(9) that favor the up (down) spin on the left (right) boundary. The expectation value rapidly 
approaches zero deep in the bulk. Letting x = L

2 + a and considering the limit L � a, we find 
that 〈Sz〉 ∼ a/L3/2, as shown in table 1. This result matches the calculation of [12, 33] for the 
groundstate of the Motzkin model.

Using a similar method, we can calculate the joint probability distribution function for a 
path to have its height equal to φ1 at x1 and φ2 at x2 (figure 3(b)):

f2(φ1, x1;φ2, x2) =
1

2π

√
κ

x2 − x1

[
4κL

(L − x2)x1

]3/2

φ1φ2e−
κφ2

1
x1

− κφ2
2

(L−x2)

[
e−

κ(φ1−φ2)
2

(x2−x1) − e−
κ(φ1+φ2)

2

(x2−x1)

]
.

 (24)
Considering the limit deep inside the bulk with 0 < x2 − x1 � x1, L − x2, we find

f2 � 1
2π

√
κ

x2 − x1

[
4κL

(L − x2)x1

]3/2

φ1(φ1 + φB)e
−κφ2

1
x1

−κ(φ1+φB)2

L−x2 e−
κφ2

B
x2−x1

 (25)
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where φB = φ2 − φ1. It is easy to verify that equation  (25) is properly normalized: 
∫∞

0 dφ1
∫∞
−∞ dφBf2 = 1. We can now obtain the height and Sz auto-correlation functions in 

the groundstate:

〈φ(x1)φ(x2)〉 =
∫ ∞

0
dφ1

∫ ∞

−∞
dφB φ(x1)φ(x2) f2(φ1, x1;φ2, x2) =

3x1(L − x2)

2κL
+ · · ·

 (26)

〈Sz(x1)Sz(x2)〉 = 〈∂x1φ(x1)∂x2φ(x2)〉 = − 3
2κL

+ · · · (27)

where the dots denote subleading terms. pOnce κ is set to the correct value (see above), these 
results exactly match the calculation of [33] obtained using a different approach. We see that 
the Sz correlator vanishes in the thermodynamic limit L → ∞.

On the other hand, 〈S+
i S−

j 〉 takes a non-zero value, and turns out to be related to a non-
local string operator in the height representation. Let us consider this correlator in the lattice 
models. In the Fredkin spin chain, when S+

i S−
j  acts on a height configuration |h〉, we have 

(assuming i < j)

S+
i S−

j |h〉 =
{
|h′〉, if Sz

i |h〉 = − 1
2 |h〉 and Sz

j |h〉 = 1
2 |h〉

0, if Sz
i |h〉 = 1

2 |h〉 or Sz
j |h〉 = − 1

2 |h〉
 (28)

where h and h′ differ on the interval between i and j, as shown in figure  2. The action 
of S+

i S−
j  is thus to raise the height variable φ� by 1 for � belonging to the string 

i � � < j. The effect of the shift along this string only changes the spins at sites i and j. 
Now, since the groundstate is an equal weight superposition of all allowed height con-
figurations (Dyck paths), 〈S+

i S−
j 〉 is equivalent to P(Sz

i = −1/2, Sz
j = 1/2), namely the 

probability for the configuration with Sz
i = −1/2 and Sz

j = 1/2. Deep inside the bulk, 
we have seen above that the two spins at i and j are uncorrelated, which implies that 
P(Sz

i = −1/2, Sz
j = 1/2) = P(Sz

i = −1/2)P(Sz
j = 1/2) = 1/2 × 1/2 = 1/4.

Starting from 〈S+
i S−

j 〉 we can compute related correlation functions: deep in the bulk, we 
have

〈Sx
i Sx

j 〉 = 〈Sy
i Sy

j 〉 =
1
4
〈S+

i S−
j + S+

j S−
i 〉 = 1

8
 (29)

and 〈Sx
i Sy

j 〉 = 0. We can further generalize these results to the Motzkin model with S = 1. The 
ladder operator satisfies

Table 1. Summary of the groundstate properties of equation (13), and its connection 
with the Motzkin and Fredkin models. These apply in the limit where the length of the 
chain far exceeds all other scales. Also, x1 �= x2.

Groundstate Properties deep inside the bulk

〈Sz( L
2 + a)〉 −4

√
1
κπ

a
L3/2 → 0

〈Sz(x1)Sz(x2)〉 − 3
2κL → 0

〈S+
i S−

j 〉 Fredkin: 14, Motzkin: 89
Rényi EE for an interval Sn(B) = 1

2 log
LB
ε + O(1)

Mutual information for 2 intervals 0
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S+|d〉 =
√

2|0〉, S+|0〉 =
√

2|u〉, S+|u〉 = 0. (30)

Therefore we have 〈S+
i S−

j 〉 = √
2 × 2/3 ×√

2 × 2/3 = 8/9.

3.1.1. Entanglement. We now explain the entanglement results listed in table 1. Starting from 
f2 defined in equation (25), we can calculate the reduced density for an interval B, [x1, x2], that 
lies deep in the bulk (figure 3(b)).

ρ(ϕB) =

√
ε

2

√
4κ

π(x2 − x1)
exp

(
− κεϕ2

B

x2 − x1

)
|ϕB〉〈ϕB| (31)

where

ϕB =
φB

ε1/2 =
φ2 − φ1

ε1/2 (32)

is the dimensionless height difference between the endpoints of B that also appeared in f2, 
equation (25). ρ(ϕB) takes the form of a Gaussian distribution. The resulting Rényi EE is

Sn(B) =
1
2
log

(
LB

ε

)
+ log(

√
π/κ)− 1

2(1 − n)
log n (33)

where LB = x2 − x1. The leading term has a logarithmic dependence on the subsystem length, 
which is the same as equation (5) for when the subsystem is the interval [0, LA]. This logarith-
mic dependence on the length of the subsystem is also similar to that for (1 + 1)d CFTs [7]. 
However, the prefactor does not depend on the Rényi index, in contrast to what happens for 
CFTs. Interestingly, the same logarithm in the EE was found in the XXZ spin chain, by taking 
a specific limit approaching the isotropic ferromagnetic interaction [35, 36]. Moreover, equa-
tion (33) is consistent with the EE result on an open cylinder for the (2  +  1)D version of the 
wavefunction (13) but with the φ � 0 constraint removed. There, in the thin torus limit the 
same leading logarithm was obtained [37].

Finally, we compute the mutual information between two disjoint intervals B and D deep 
inside the bulk, as shown in figure 3(c). The constraint φ > 0 can again be removed because 

Figure 2. Under the action of the operator S+
i S−

j , a height configuration (left) for a 
Dyck path with Sz

i = −1/2 and Sz
j = 1/2 becomes the configuration (right) with 

Sz
i = 1/2 and Sz

j = −1/2. In other words, the height field φ� is shifted upwards by 
2S = 1 along the string i � � < j.
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the probability that φ approaches zero is vanishingly small deep in the bulk. In this case, the 
joint distribution function for a path to have its height equal to φi at xi, where i runs from 1 to 
4, is

f4 =
κ2

π2

√
L

LALBLCLDLE
exp

(
−κφ2

1

LA
− κ(φ2 − φ1)

2

LB
− κ(φ3 − φ2)

2

LC
− κ(φ4 − φ3)

2

LD
− κφ2

4

LE

)

 (34)

where L# denotes the length of interval #. The reduced density matrix for the region B ∪ D 
only depends on φB ≡ φ2 − φ1 and φD ≡ φ4 − φ3 and can be obtained by integrating over φ1 
and φ2 in f4,

ρB∪D =
κε

π

√
L

(L − LB − LD)LBLD
e−

κLD(L−LD)εϕ2
B+κLB(L−LB)εϕ2

D+2κLBLDεϕBϕD
LBLD(L−LB−LD) |ϕB,ϕD〉〈ϕB,ϕD|

 (35)
where ϕB = φB/

√
ε and ϕD = φD/

√
ε . The Rényi entropy for B ∪ D is

Sn(B ∪ D) =
1
2
log

(
LBLD

ε2

)
+

1
2
log

L − LB − LD

L
+ log(π/κ)− 1

(1 − n)
log n.

 (36)
Similarly, we can also calculate EE for each interval and we have

Sn(B/D) =
1
2
log(π/κ) +

1
2
log

LB/D

ε
+

1
2
log

L − LB/D

L
− 1

2(1 − n)
log n.

 (37)
The mutual information between B and D is

Figure 3. (a) One configuration with φ at position x. (b) One configuration with φ1 and 
φ2 at position x1 and x2. (c) One configuration with φi at position xi with 1 � i � 4.
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In(B, D) = Sn(B) + Sn(D)− Sn(B ∪ D) =
1
2
log

(L − LB)(L − LD)

(L − LB − LD)L
 (38)

In(B, D) is independent of Rényi index and in the limit LB, LD � L, In(B, D) tends to zero. 
This result demonstrates that this wavefunction is less entangled than generic 1 + 1d CFTs, 
for which the mutual information scales as 1/rΔ, where r is the distance between two intervals 
and Δ is a function of the Rényi index and the scaling dimension of primary operators [38].

The Fredkin wavefunction, just as the Motzkin one [11], provides an interesting example 
for which the EE is large but the mutual information is zero. The EE is a non-local quantity 
that detects entanglement between a subsystem and its complement, while the mutual infor-
mation I(A, B) = S(A) + S(B)− S(A ∪ B), measures the correlations between the two inter-
vals. The wavefunction equation (13) can be mapped to a constrained random walk problem. 
However, deep inside the bulk both the boundary conditions and φ � 0 are not important and 
the random walk process can be described by the usual Brownian motion. The probability 
for the Brownian walker to move a distance δφ in ‘time’ δx is independent of the history. 
Therefore there is no correlation between two disjoint intervals and I(A, B) = 0. The mutual 
information also gives an upper bound for two-point correlation function of local observables 
[39]. This is consistent with the result 〈Sz(x1)Sz(x2)〉 = O(L−1) → 0 for x1 �= x2.

3.1.2. Emergent conformal symmetry. The analysis above has shown that deep inside the 
bulk, we can safely remove the φ � 0 constraint and the wavefunction becomes,

|Ψ0〉 = 1√
Z

∫
Dφ(x) e−

κ
2

∫
dx(∂xφ)

2 |φ(x)〉 (39)

where Z is the normalization factor:

Z =

∫
Dφ(x) e−κ

∫
dx(∂xφ)

2
. (40)

Starting with the original wavefunction equation (13), we can expand the height field about its 
expectation value deep in the bulk, φ = 〈φ〉+ δφ, with 〈φ〉 ∼ √

L as given in equation (22). 
In the limit L → ∞ for x near the middle, the fluctuations δφ thus become unconstrained and 
we recover equation (39), which is free of the non-negativity constraint. Moreover, changing 
variables x → x − L/2, we can effectively work on the infinite line to simplify the symme-
try analysis. The wavefunction (39) then enjoys an emergent (1 + 0)-dimensional conformal 
symmetry in the sense of conformal quantum mechanics [40, 41]. We indeed recognize equa-
tion (40) as the partition function of a free quantum mechanical particle. It is straightforward 
to verify that the wavefunction is invariant under SL(2,R) Möbius transformations:

x′ =
αx + β

γx + δ
 (41)

φ′(x′) =
φ(x)
γx + δ

 (42)

with the unit determinant condition: αδ − βγ = 1. We emphasize that we are working deep in 
the bulk so that we can neglect total derivatives in the integrals. In the presence of boundaries, 
the above transformations are no longer symmetries because even the translational symme-
try is broken. The SL(2,R) symmetry group has 3 real parameters: it describes translations, 
dilations, and less obviously, special conformal transformations. The latter corresponds to 
α = δ = 1 and β = 0. The wavefunction can thus be viewed as a lower dimensional version 
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of the wavefunctions of conformal quantum critical points introduced in (2  +  1)d, which have 
groundstates invariant under the infinite group of two-dimensional conformal transformations 
[3, 16]. As we shall see in the next section, equation (39) is the groundstate of the 1  +  1D ver-
sion of the quantum Lifshitz model, but with a non-compact height field.

3.2. Continuum parent Hamiltonian

We construct a Hamiltonian in the continuum limit which has the same groundstate as the 
Fredkin and Motzkin spin chains (naturally, also in the continuum limit). We consider the fol-
lowing quantum field theory (QFT) for the height field φ,

Z =

∫
φ(0,t)=φ(L,t)=0

Dφ(x, t) eiS[φ]
∏
x,t

θ(φ(x, t))

S =
1
2

∫
dtdx

(− (∂tφ)
2 + κ2(∂2

xφ)
2).

 

(43)

The partition function Z  should not be confused with the normalization of the groundstate 
equation (15). θ(z) is the Heaviside function that enforces the field φ to be non-negative, to 
match the constraint of the lattice Dyck and Motzkin paths (see figure 1). The action (43) 
describes a non-compact boson with the constraint that φ is non-negative. This can be inter-
preted in terms of an orbifold. Indeed, starting from the non-compact boson with target space 
R , we mod out by the discrete φ-parity symmetry of the unconstrained theory, φ → −φ, 
which forms a Z2 group. This results in φ taking values in the orbifold R/Z2 = [0,∞), i.e. the 
semi-infinite real line4. Alternatively, we can view the field φ as taking values in R , but with a 
potential term V(φ) = ∞ for φ < 0, and V = 0 for φ � 0 (see equation (18)).

Without the φ � 0 constraint, the above QFT is the 1  +  1D version of the quantum Lifshitz 
model [16], albeit with a non-compact height field. We shall adapt the methods previously 
used to study that theory in order to determine the low lying excitations. We can write the 
Hamiltonian corresponding to equation (43) as

H =

∫
dx

(
1
2
Π2 +

κ2

2
(∂2

xφ)
2 + V(φ)

)
 (44)

with the canonical equal-time commutation relation,

[φ(x),Π(x′)] = iδ(x − x′). (45)

Such a Hamiltonian with general potential V(φ) was considered in [42], where the relation 
between the (d + 1)-dimensional quantum theory and its Euclidean d-dimensional ‘seed’ was 
called stochastic quantization. This nomenclature shall become clearer below when we dis-
cuss the mapping to non-equilibrium dynamics of the classical spin chain.

It shall be useful to adopt the Schrödinger functional formalism, where Π = −i δ
δφ . The 

Schrödinger equation for the eigenstates of H then reads:∫
dx

(
−1

2

(
δ

δφ

)2

+
κ2

2
(∂2

xφ)
2 + V(φ)

)
Ψ[φ] = EΨ[φ]. (46)

We then introduce the annihilation and creation operators Q, Q† [3, 16]:

4 The point φ = 0 is special because it is invariant under the φ → −φ transformation, and leads to R/Z2 being an 
orbifold not a manifold. To get the latter, one would need to remove φ = 0.
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Q(x) =
1√
2

(
iΠ− κ∂2

xφ
)
=

1√
2

(
δ

δφ
− κ∂2

xφ

)
 (47)

Q†(x) =
1√
2

(−iΠ− κ∂2
xφ

)
=

1√
2

(
− δ

δφ
− κ∂2

xφ

)
. (48)

Then we can express the Hamiltonian as

H =

∫
dx

(
1
2
{Q†(x), Q(x)}+ V(φ)

)
− Evac =

∫
dx
(

Q†(x)Q(x) + V(φ)
)

 (49)
where we have subtracted the infinite groundstate energy, Evac = − ∫

dx∂2
x δ(x − y)|y→x > 0 

and the Hamiltonian is normal-ordered. The potential simply enforces φ � 0. The ground-
state has zero energy E0 = 0 and is annihilated by all the Q(x) operators: QΨ0[φ] = 0. The 

corresponding linear functional differential equation, ( δ
δφ − κ∂2

xφ)Ψ0[φ] = 0, has the unique 
solution equation (13). To obtain this result we have used δΨ0

δφ = (κ∂2
xφ)Ψ0. In calculating 

this functional derivative, we have assumed that φ > 0 for all x, i.e. we have ‘regularized’ 
the singular point φ = 0 of the orbifold by setting the smallest value of φ(x) to be 0+. This in 
particular ensures that the functional derivative of the Heaviside function θ(φ) vanishes.

To get the excited states of equation (44), we can act with the creation operator Q† on the 
groundstate

Ψk[φ] =

∫
dx eikxQ†(x)Ψ0[φ] (50)

HΨk[φ] = κk2 Ψk[φ] (51)

where we have omitted a normalization constant. To obtain the energy eigenvalue, κk2, we 
have used:

[Q(x), Q†(y)] = −κ ∂2
x δ(x − y). (52)

We thus see that the spectrum is gapless, with the low lying excitations having a κk2 disper-
sion, which implies that z = 2. This is also manifest from the action (43).

Going back to the lattice, previous exact diagonalization [9] and DMRG [12] results sug-
gest that z > 2 for both the Fredkin and Motzkin models. In section 4.1, we conclusively 
show that the dynamics are indeed subdiffusive. Therefore, equation (43) is not the correct 
effective field theory for the quantum spin models under consideration. It thus provides an 
example where a given state is the groundstate of Hamiltonians with qualitatively distinct 
excitation spectra. Moreover, it would be interesting to construct the correct effective theory 
for the Fredkin and Motzkin models to reflect the subdiffusive dynamics. We leave this task 
for future study.

3.2.1. Liouville quantum mechanics. As we discussed in section 3, the 1d wavefunction in 
equation (13) gives a path integral representation for a quantum mechanical particle restricted 
to move on the positive axis. We can soften the hard wall constraint, and consider the follow-
ing wavefunction,

Ψ[φ] =
1√
Z
exp

(
−1

2

∫
dx

[
κ

(
dφ
dx

)2

+ μe−λφ

])
 (53)
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with the parameters μ,λ > 0. As λ → ∞, we recover the φ � 0 constraint and when λ → 0, 
the constraint disappears and the wavefunction reduces to the groundstate of the ordinary z = 2 
(non-compact) boson.

Equation (53) describes the action for a particle moving in an exponential potential which is 
called Liouville quantum mechanics [43]. This originates from the zero mode part of Liouville 
field theory in (1 + 1)D and has been extensively studied in the context of string theory [44]. 
More recently, Liouville field theory has been used to study Anderson localization in 2d; it 
gives the effective theory for the critical wavefunction after disorder averaging [45]. For the 
state in equation (53), the correlators can be evaluated as the quantum expectation values for 
Liouville quantum mechanics in imaginary time [46, 47].

Starting from this wavefunction, we can define an annihilation operator Q,

Q =
1√
2

(
δ

δφ
− κ∂2

xφ− μλ

2
e−λφ

)
. (54)

It satisfies Q|Ψ〉 = 0. The (1 + 1)d RK Hamiltonian takes the form 
∫

dxQ†Q with Ψ[φ] as 
the zero energy groundstate. It would be interesting to find a lattice spin model which can 
be described by this field theory. Also, since there is an emergent conformal symmetry deep 
inside the bulk in both limits λ = 0,∞, it would be interesting to investigate what happens at 
intermediate couplings.

4. DMRG analysis

In this section, we describe our large-scale DMRG calculations performed using the ITensor 
library for both the Fredkin and Motzkin models. We begin with the groundstate properties, 
and then move on to the excited states.

We first compute various correlation functions for the groundstate and compare them with 
the analytical results shown in table 1. Figure 4(a) shows 〈Sz

j 〉 for both Motzkin and Fredkin 
models, which is close to zero in the bulk and takes nonzero values near the boundaries. In the 
vicinity of the middle point, 〈Sz

j 〉 deviates from zero linearly as a function of j − N/2. This is 
consistent with the analytical calculation in the continuum shown in table 1. 〈Sz

j 〉 approaches 
zero in the thermodynamic limit L → ∞ for j in the bulk, as shown in equation (23). In fig-
ure 4(b), we show 〈Sz

N/2−mSz
N/2+m+1〉 for both Motzkin and Fredkin models. When m is small, 

the correlator scales as 1/L, which agrees with the analytical result deep inside the bulk. When 
m → N/2, it becomes negative due to the boundary terms that favor anti-alignment between 
the left and right boundaries.

We also compute 〈S+
N/2−mS−

N/2+m+1〉, which is shown in figure 5. In comparison with the 
Sz auto-correlation function, we see that 〈S+S−〉 is much bigger when the separation is small 
compared to the size. At small m, we find good agreement with the field theory predictions: 

3/4 (Fredkin), 8/9 ≈ 0.89 (Motzkin). We notice that 〈S+
N/2−mS−

N/2+m+1〉 is not a constant but 
deviates from 1/4 linearly as a function of m, i.e. 〈S+

N/2−mS−
N/2+m+1〉 = 1/4 − λm, which is 

a consequence of finite size. A similar situation happens for 〈Sz(L/2 + a)〉 ∼ a, as shown in 
figure 4(a). We see that λ is a function of N that approaches zero as N increases.

4.1. Dynamical exponents of the Fredkin model

For the Fredkin model, the groundstate is unique and has Sz
tot = 0. We find that the low-

est excited state has Sz
tot = ±1, being doubly degenerate. This is confirmed both by exact 
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diagonalization on small systems N � 10, and large-scale DMRG with N up to 200. The 
energy gap scales as 1/Nz for sufficiently large N, where z is the dynamical exponent of the 
quantum system. Since z is large, we need to use large bond dimensions and enough sweeps 
in the DMRG computation to ensure convergence of the energy. We compute the gap ΔE for 
various system sizes, and fit the data to 1/Nz, as shown in figure B1(b). We find z = 3.23, 
which is larger than z = 2.9 obtained previously via DRMG in [12]. Our result is consis-
tent with the analytical bound obtained by Movassagh: 2 � z < 13/2 [10]. In addition, we 
have found a singly-degenerate excitation with Sz

tot = 0; its gap to the groundstate scales as 
ΔE0 ∼ 1/Nz0, with a different dynamical exponent z0 = 2.76, which is closer to the exponent 

Figure 4. (a) 〈Sz
j 〉 in both the Motzkin and Fredkin models obtained using DMRG (solid 

lines). The dashed lines are the analytical field theory results. (b) 〈Sz
N/2−mSz

N/2+m+1〉 
in both Motzkin and Fredkin models obtained using DMRG. The dashed lines are the 
analytical field theory results deep in the bulk, which approach zero as L → ∞.

Figure 5. (a) The two-point correlation function 〈S+
N/2−mS−

N/2+m+1〉 in the Motzkin 
model for various system sizes. 〈S+

N/2−mS−
N/2+m+1〉 ∼ 8/9 − λm, where λ decreases as 

N increases. (b) The two-point correlation function 〈S+
N/2−mS−

N/2+m+1〉 in the Fredkin 
model for various system sizes. 〈S+

N/2−mS−
N/2+m+1〉 ∼ 1/4 − λm, where λ decreases as 

N increases.
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of [12], suggesting that these authors worked in the Sz = 0 symmetry sector, which does not 
contain the lowest excitations. These different dynamical exponents z and z0 for excitations 
in different sectors show that the model hosts multiple dynamics. These results are in close 
correspondence with our findings for the Motzkin model [11], where we have found z = 3.16 
and z0 = 2.71, which are close to the Fredkin exponents. Our results for both models dem-
onstrate that the z = 2 boson theory presented above in equation (43) cannot be the effective 
field theory for the Fredkin and Motzkin Hamiltonians. It does describe their groundstates 
correctly, but not the excitations.

We further analyze study the role of finite size effects on z in appendix B by calculat-
ing z((N1 + N2)/2) from 2 consecutive values of N. This method was used in our previous 
paper for the Motzkin model [11]. For sufficiently large systems, we find that the variation 
of z(N) with N is small and roughly scales as 1/N . We use a 1/N  extrapolation to estimate 
z(N → ∞) and we find z(∞) = 3.17, in good agreement with the value given above. We also 
find z0(∞) = 2.69.

4.1.1. Mapping to non-equilibrium dynamics. We here point out a connection between the 
quantum dynamics of the chain and the non-equilibrium relaxation of the classical spin chain 
[11]. This provides hints regarding the large value of z. For a RK-type Hamiltonian like the 
Fredkin or Motzkin model, the quantum dynamics can be exactly mapped to the non-equi-
librium dynamics of the corresponding classical spin chain. The temporal evolution of the 
classical system is governed by a Markovian master equation for the probabilities PC(t) of the 
classical spin configurations C [48]

dPC(t)
dt

=
∑

C′
WC,C′PC′(t). (55)

The rate matrix W is related to the quantum Hamiltonian as follows:

WC,C′ = −〈C|H|C′〉, C �= C′ (56)

where C = {Sz
i} denotes a spin configuration in the Sz-basis. The diagonal elements of W 

are defined in order to satisfy detailed balance, WC,C = −∑
C′,C′ �=C WC′,C. Under this map-

ping, the excited states of H map to the classical relaxational modes of the rate matrix W. For 
example in the classical 1d Ising spin chain, endowed with Glauber dynamics, the relaxation 
can be described by the random walk of a single spin or a domain wall and leads to dynamical 
exponent z = 2 [21]. However, in our case we have a conserved U(1) symmetry generated by 
Sz

tot, which maps to Kawasaki-type dynamics in the classical spin chain. The constraint caused 
by the conservation law can effectively slow down the motion of the spins, and lead to subdif-
fusive dynamics z > 2. In the Fredkin model, the corresponding classical dynamics are deter-
mined by these two kinds of moves: ↑↑↓⇐⇒↑↓↑ and ↓↑↓⇐⇒↑↓↓. A pair of adjacent opposite 
spins can be flipped if the third one is pointing in some special direction. This constraint slows 
down the motion of domains leading to a larger z. A similar observation was made for the 
Motzkin model [11]. It would be interesting to make this argument more precise in the future.

4.2. Crossover from Fredkin to Heisenberg

We perturb the Fredkin model with a pure Heisenberg ferromagnetic interaction in order to 
assess its stability, which leads to the Fredkin–Heisenberg model:

Hbulk = αHF + 2(1 − α)HH (57)
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where HF is the bulk Hamiltonian for Fredkin model equation (1), and HH = −∑
i �σi · �σi+1. 

We use the same boundary terms as before, which favors | ↑〉 on the left boundary and | ↓〉 on 
the right boundary. When α = 1, we recover the Fredkin model equation (1), while for α = 0, 
the Hamiltonian reduces to the isotropic ferromagnetic Heisenberg interaction. Therefore, by 
varying the coefficient α we can study the crossover from the Fredkin to the Heisenberg 
model. Away from α = 1, the Hamiltonian cannot be simply expressed in terms of projectors 
(except if α = 0), and thus the analytical form of the groundstate is currently unknown. We 
will use DMRG to compute various properties for the groundstate, and then study the low 
lying excited states.

For the Hamiltonian defined in equation (57), at α = 0, if there is no extra boundary term, 
we can easily write down one groundstate: |Ψ0〉 = | ↑↑ . . . ↑〉, which is a product state. Since 
the α = 0 model is isotropic, there are also degenerate ferromagnetic states in other directions. 
The low energy excited state can then be described by spin wave excitations with a dynamical 
exponent z = 2. However, once we turn on the boundary term, the situation becomes more 
complicated. The boundary term favors | ↑〉 on the left boundary and | ↓〉 on the right boundary. 
Instead of the groundstate being a naive product state with a sharp domain wall in it, we find 
that 〈Sz

j 〉 changes continuously from +1/2 to −1/2 in order to lower the total energy, as shown 
in figure 6(a). The whole system forms a smooth domain wall which is a singlet, Sz

tot = 0. As 
shown in figure 6(b), this state has a large EE, which increases as we increase the subsystem 
size NA (until NA = N/2), and exceeds the area law (i.e. a constant in 1d) obeyed by gapped 
systems. This contributes to making the DMRG calculations time-consuming.

We further study the groundstate at finite α. In figure 6, we show the EE and 〈Sz
j 〉 for the 

groundstate of the Fredkin–Heisenberg model at various α with N = 200. We notice that as 
we increase α from 0 to 0.7, both the EE (figure 6(b)) and 〈Sz

j 〉 (figure 6(a)) barely change, 
suggesting that the groundstate is very close to the α = 0 one. These quantities show clearer 
deviations when α approaches 0.9. At α = 0.99 and for N = 200, the EE and 〈Sz

j 〉 differ 
from the small α and α = 1 cases. We examine the finite size effects in 〈Sz

j 〉 at α = 0.99, the 
result is shown in the inset of figure 6(a). As we increase N, 〈Sz

j 〉 approaches the α = 0 result. 
Therefore we expect that in the thermodynamic limit, the groundstate at α = 0.99 is quite dif-
ferent from that at α = 1, suggesting that the Heisenberg interaction is a relevant perturbation 
to the Fredkin model.

We now investigate the energy gap for Fredkin–Heisenberg model. We notice that as 
long as 0 � α � 1, the groundstate is always in Sz

tot = 0 sector with the first excited state in 
Sz

tot = ±1 sector. Furthermore, the model remains gapless with the energy gap ΔE1 scales as 
1/Nz. As shown in figure 7(a), for N = 160, ΔE1 is decreasing as we increase α from zero. 
We observe an abrupt change around α = 1, at which point ΔE1(α = 1) jumps to a larger 
value. In contrast, we do not observe the same abrupt change in the energy gap ΔE0 between 
the lowest excitation in the Sz

tot = 0 sector and the groundstate. ΔE0 decreases continuously 
as we increase α from zero.

Once we know the size dependence of the energy gap, we can extract the dynamical expo-
nent z by fitting to 1/Nz. We present the result for z as a function of α in figure 7(b) with 
the details for the DMRG calculations explained in appendix B. For the lowest excitation, if 
α � 0.8, the dynamical exponent is z � 3, with small finite size corrections. This is the same 
as that for the Kawasaki (i.e. spin conserving) dynamics of the 1d Ising chain at low temper-
atures compared with the exchanging coupling [20, 21]. The conservation law and the bound-
ary effect slow down the dynamics and are responsible for the large z here. As α approaches 
1, we observe a dip in z, which eventually climbs back to its α = 1 value, z = 3.23. In order 
to assess the validity of this non-monotonic behavior in the thermodynamic limit, we have 
analyzed finite-size dynamical exponent z(N) (introduced above). The analysis, presented in 
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figure B2 of appendix B, suggests that non-negligible finite-size corrections exist at α = 0.9 
and α = 0.95, with z(∞) being is closer to 3 than in figure 7 (but still smaller than 3). The 
variation of z as a function of a parameter in the system was also observed in the generalized 
Motzkin model [11], and the classical (Kawasaki) non-equilibrium dynamics of an Ising spin 
chain, where z was found to change from 2 to 3.2 [22].

Figure 6. (a) 〈Sz
j 〉 versus site number j for various α in the groundstate of the Fredkin–

Heisenberg model obtained using DMRG. In the inset, we compare 〈Sz
j 〉 for various 

system size at α = 0.99. (b) SvN(A) for various α in the Fredkin–Heisenberg model, 
where subsystem A corresponds to the first NA sites of the chain. The dotted line is the 
analytical result which matches the numerical result for α = 1.

Figure 7. (a) Energy gap versus α in the Fredkin–Heisenberg model obtained using 
DMRG with fixed N = 160; the scale is log-linear. The blue squares are the energy gap 
ΔE1 between the true lowest excitation in Sz

tot = 1 sector and the groundstate. The pink 
circles give the energy gap ΔE0 between the lowest excitation in the Sz

tot = 0 sector and 
the groundstate. (b) Dynamical exponent versus α in the Fredkin–Heisenberg model. 
The blue squares give z for the lowest energy excitation, which has Sz

tot = 1. The pink 
circles give z0 for the lowest excitation in the Sz

tot = 0 sector.
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We also explore the dynamical exponent z0 for the first excited state in the Sz
tot = 0 sector, 

and find that z0 is much smaller than z (pink circles in figure 7(b)). When α � 0.7, z0 � 2, 
which is indicative of diffusive dynamics in that sector. When α ≈ 0.9, z0 dips to a value less 
than 2. Similar to z, we observe a discontinuity for z0 around α = 1.

4.2.1. Comparison with conformal-wavefunction quantum critical points in 2  +  1D. We com-
pare our results for the dynamics with what was found for the 2d lattice models studied in [19]. 
In particular, they considered the so-called quantum eight-vertex and six-vertex models. Both 
models have a parameter that can be varied such that the groundstate remains conformally 
invariant but with equal time two-point functions that change continuously. For the quantum 
eight-vertex model without U(1) symmetry, the quantum dynamics maps to a classical non-
equilibrium universality class in model A, according to the classification by Hohenberg and 
Halperin [49]. As the the parameter is varied, the dynamical exponent changes non-mono-
tonically and obeys z > 2. On the other hand, the quantum six-vertex Hamiltonian has U(1) 
symmetry, and thus maps to the model B universality class. This Hamiltonian can be described 
by the quantum Lifshitz model and always has z = 2. This is different from our 1d spin chain 
where the conservation law slows down the dynamics and leads to z > 2.

4.2.2. Role of boundary terms. The boundary term is important in the Fredkin–Heisenberg 
model as it can change both the groundstate and dynamical exponent z. This is because there 
are a large number of low-lying states with similar energies and the boundary condition will 
project out some of these states. To study such effects, we introduce 2 tuning parameters, β 
and γ, in the boundary term:

Hbdy =
β

2
(1 − σz

1) +
γ

2
(1 + σz

N). (58)

Similar boundary terms have been studied for the Fredkin model in [28], with an emphasis 
on groundstate properties. When β = γ = 1 we recover the conditions used in the rest of 
the present work; in that case the groundstate is highly entangled. In contrast, if we choose 
β = −γ = 1, for 0 � α � 1, the groundstate has all the spins pointing up which is a trivial 
product state. The lowest excited state is the spin wave excitation with one spin pointing 
down. In the language of non-equilibrium classical dynamics, such a down spin will move 
diffusively on the lattice in the background of up spins, which leads to a dynamical exponent 
z = 2. Actually, the explicit values of β and γ are not very important, as long as they are finite. 
We summarize the effects of the boundary terms in table 2.

5. Conclusion and outlook

We have studied two quantum spin chains, the so-called Fredkin (S = 1/2) and Motzkin 
(S = 1) models, using a variety of methods: exact relations, field theory, and DMRG. We 
have found that the entangled groundstate of both Hamiltonians takes the same form in the 

Table 2. The property of Hamiltonian in equation  (57) with various boundary 
conditions. The last column refers to the convergence speed of the DMRG algorithm.

Groundstate 〈Sz
j 〉 in the bulk z DMRG

α = 1, β = γ > 0 Dyck path, Sz
tot = 0 0 3.23 Slow

0 � α < 1, β = γ > 0 Highly entangled state, 
Sz

tot = 0
〈Sz

j 〉 ∈ (− 1
2 , 1

2 )
z > 2 Slow

0 � α � 1, β = −γ > 0 Product state, Sz
tot = N/2 1

2
2 Fast

X Chen et alJ. Phys. A: Math. Theor.  ( ) 464002



21

continuum, with a dimensionless parameter κ that depends on the spin. The wavefunction is 
expressed in terms of a continuum height field φ that acts like a ‘gauge field’ for the spin: 
Sz(x) = ∂xφ. The resulting wavefunction can be viewed as the path integral representation 
of a quantum particle restricted to move on the positive half line, φ � 0. Relying on this 
feature, we computed various properties for the groundstate and compared them with the lat-
tice results for the Fredkin and Motzkin models. We showed that the groundstate has a large 
entanglement entropy but with zero mutual information between two disjoint intervals deep 
inside the system, suggesting that it is less entangled than typical (1 + 1)D CFTs. The mutual 
information result is consistent with two-point correlation function of the local operator Sz, 
〈Sz(x1)Sz(x2)〉 = 0. On the other hand, 〈S+

i S−
j 〉 in both spin models saturates to a finite con-

stant deep inside the bulk; this is consistent because S+
i S−

j  corresponds to a non-local string 
operator in the height representation.

Based on these results, we found that deep inside the bulk the groundstate wavefunction 
enjoys an emergent (1 + 0) dimensional conformal-type symmetry, in the sense of conformal 
quantum mechanics. The Fredkin and Motzkin models can thus be considered as the lower 
dimensional analogues of conformal quantum critical points, whose wavefunctions have a two 
dimensional spatial conformal symmetry [3, 16, 19].

The approach discussed in this paper connects 1d RK states with a simple quantum mechan-
ics problem. It can thus be used to construct other highly entangled RK states by introducing 
a potential term for the quantum mechanical particle, such as the exponential potential of 
Liouville quantum mechanics. It would be of interest to study these states and find lattice 
models that realize them.

A key motivation of this paper was to investigate the dynamical exponent for the Fredkin 
model. Following our previous DMRG results for the Motzkin model [11], we performed 
large-scale DMRG for the Fredkin Hamiltonian. We found that the dynamical exponent for 
the lowest excitation with Sz

tot = ±1 has z = 3.23. We mapped the quantum dynamics to the 
classical non-equilibrium relaxation of the corresponding classical spin chain. This gives a 
heuristic explanation of the large dynamical exponent in terms of the subdiffusive relaxa-
tion in the classical system. Moreover, we found the higher energy Sz

tot = 0 excitation has a 
dynamical exponent z0 = 2.76, an indication of multiple dynamics in the Fredkin model, just 
as what we previously found for the Motzkin model [11]. In fact, both the z and z0 dynamical 
exponents are very close to those found in the Motzkin model. It is tantalizing to speculate 
that both models can be described by the same effective field theory. We leave this interesting 
question for future work.

Finally, we explored the crossover from the Fredkin model to the ferromagnetic Heisenberg 
model as a function of a tuning parameter α in the Hamiltonian. Under the fixed boundary 
condition which favors up (down) spin on the left (right) end, we found using DMRG that the 
bulk Heisenberg interaction is a relevant perturbation and can drastically change the entire 
spectrum. Further study of the excited states indicates that the model remains gapless as we 
vary α, and again shows multiple dynamics in different spin sectors. It would be interesting to 
have a better understanding for these phenomena in terms of a low energy theory.

We close by noting that finding a continuously varying dynamic critical exponent z is by 
itself puzzling. In equilibrium classical systems, and in quantum theories with relativistic 
dynamics, continuously varying exponents occur when the system has an exactly marginal 
operator [50], which on itself is a highly uncommon situation. Classical critical dynamics 
with non-trivial values of the dynamical exponent at the non-trivial fixed points of the classi-
cal equilibrium systems are also quite common [49]. On the other hand, except for the mod-
els studied here (and in [11, 19, 22]), there are very few other known cases of theories with 
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varying values of z. It would be interesting to understand the mechanism(s) for continuously 
varying dynamic critical exponents.
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Appendix A. Some combinatorics

A.1. Dyck paths

A Dyck path is a path which starts at (x, y) = (0, 0) and ends at (x, y) = (N, 0), and consists 
of two types of moves: diagonal up (1, 1) and diagonal down (1,−1). The Dyck path needs to 
satisfy y � 0 and when N is an even number, the number of allowed Dyck paths is given by 
the Catalan number

DN,0,0 =
1

N
2 + 1

(
N
N
2

)
. (A.1)

One simple example of Dyck path is shown in figure A1 (a).
If we consider a more general case and let the walker start at (x, y) = (0, m1) and end at 

(x, y) = (N, m2) with m1 � 0 and m2 � 0. The number of the Dyck path above the upper half-
plane is

DN,m1,m2 =

(
N

N+|m2−m1|
2

)
−

(
N

N+(m2+m1)
2 + 1

)
. (A.2)

When m1 = 0 and m2 = m, the above expression can be simplified to

DN,0,m =
m + 1
N + 1

(
N + 1

N−m
2

)
. (A.3)

In the limit N → ∞, we have(
N

N+m
2

)
≈ 2N√

πN/2
e−

m2
2N (A.4)

where we assume m � N and we also use Stirling’s approximation

n! ≈
√

2πn
(n

e

)n
. (A.5)

At x = NA between 0 and N, the probability of a Dyck path with height y = m is given by

P(NA, m) =
DNA,0,mDN−NA,m,0∑
m DNA,0,mDN−NA,m,0

=

√
2
π

(
N

NA(N − NA)

)3/2

m2e−
N

NA(N−NA)
m2
2 .

 (A.6)
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A.2. Motzkin paths

For a Motzkin path, the walker still starts at (x, y) = (0, 0) and ends at (x, y) = (N, 0) with the 
path always satisfying y � 0. Apart from the diagonal up (1, 1) and diagonal down (1,−1) 
in the Dyck path, horizontal (1, 0) move is also allowed. The total number of Motzkin path is 
called Motzkin number and is equal to

MN,0,0 =
L∑

k=0

(
N
k

)
DN−k,0,0 (A.7)

where the binomial coefficient in front of Catalan number DN−k,0,0  is the number of allowed 
horizontal steps. Two simple examples of Motzkin path are shown in figures A1(a) and (b).

We can also consider a more general case with the walker starts at (x, y) = (0, m1) and ends 
at (x, y) = (N, m2). The number of allowed Motzkin paths is

MN,m1,m2 =

N−|m2−m1|∑
k=0

(
N
k

)
DN−k,m1,m2 . (A.8)

When m1 = 0, m2 = m, the above expression can be simplified to

MN,0,m =
m + 1
N + 1

∑
i�0

(
N + 1

N − 2i − m, i, i + m + 1

)
 (A.9)

where 2i = N − k − |m2 − m1| and 
(

N
x, y, z

)
≡ N!

x!y!z! is the trinomial coefficient which takes 

the maximum value at x = y = z = N/3 [33]. In the limit N → ∞, we expand the trinomial 
coefficient around this saddle point solution by using Stirling’s approximation,

Figure A1. (a) is an example for Dyck path, both (a) and (b) belong to Motzkin path. 
(a) and (c) represent all the unrestricted paths in spin 1/2 system, all the plots are the 
allowed paths in spin 1 system.
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(
N

N+a
3 , N+b

3 , N+c
3

)
≈ 3N+ 3

2

2πN
e−

3
2N (a2+b2+c2) (A.10)

with a + b + c = 0. For the trinomial coefficient in equation (A.9), notice that we can define 
N − 2i − m = N

3 + a, i = N
3 + b and i + m = N

3 + c, therefore the sum in this expression can 
be replaced by the integration around this saddle point i = N/3 and we have

MN,0,m ≈ 3N+1/2m
2
√
πN2 e−

3m2
4N . (A.11)

At x = NA between 0 and N, the probability of a Motzkin path with height y = m is given 
by

P(NA, m) =
MNA,0,mMN−NA,m,0∑
m MNA,0,mMN−NA,m,0

=

√
2
π

(
3N

2NA(N − NA)

)3/2

m2e−
N

NA(N−NA)
3m2

4 .

 

(A.12)

Appendix B. DMRG calculations

We have numerically calculated the energy gap between the groundstate and the lowest energy 
excited states ΔE by using both exact diagonalization (ED) and density matrix renormaliza-
tion group (DMRG). We use ED for small systems N � 10 as a benchmark, and we perform 
large-scale DMRG calculations using the open-source C++ library ITensor. For the Motzkin 
model, and its generalization, the DMRG results have been presented in [11].

For the Motzkin and Fredkin models, ΔE scales as 1/Nz for sufficiently large N. Since the 
dynamical exponent z is large and close to 3, it makes the DMRG more difficult, especially 
if high precision is required. As a first step, we compare the groundstate energy and the von 
Neumann EE obtained via DMRG with the analytical results and find that they agree pre-
cisely. Then, in order to determine the lowest excited state, which we find has Sz

tot = ±1, a 
large number of sweeps are used to ensure that the energy is properly converged. The energy 
deviation between the last two successive sweeps is around 10−12.

We calculate the energy for the lowest excited state in Sz
tot = 1 sector. We show the energy 

gap ΔE between the groundstate and the lowest excited state in figure B1 as a function of 
system size. We fit ΔE ∝ 1/Nz using the data points in the range 120 � N � 200 in order 
to minimize finite-size effects that appear at smaller N. Moreover, we calculate the lowest 
excited state with Sz

tot = 0 and show the dynamical exponent z0 in table  B1. We consider 
smaller system sizes 100 � N � 160 because the calculation of the excited state in the same 
spin sector as the groundstate is time-consuming.

For the Fredkin–Heisenberg model with α < 1, we do not know the analytical expression 
for the groundstate. To compute the energy gap, we need to calculate the energies of both the 
groundstate and excited state numerically. We then use the same method as above to extract 
both z and z0. The fit for ΔE ∝ 1/Nz is shown in figure B1 and the detail of the range for N is 
listed in table B1.

In figure B2, we show an alternate method to estimate z in the thermodynamic limit. For 2 
consecutive values of N, N1 < N2, we evaluate the finite size exponent at the midpoint:

z
(

N1 + N2

2

)
= − ln(ΔE2/ΔE1)

ln(N2/N1)
 (B.1)

where ΔEi is the gap for system size Ni. The dependence of z(N) on N is shown in figure B2 
for different values of the coupling c. We notice that the variation of z(N) with N is small when 
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α � 0.7, indicating that finite size effects are small in this regime. As we increase α, finite 
size effects for z(N) become larger and we notice that z(N) roughly scales as 1/N . In order to 
get an estimate for z in the thermodynamics limit, we use a 1/N  fit to extract z(N → ∞). We 
compare the corresponding results with z obtained from the fits described above in table B1. It 
is important to emphasize that the 1/N  extrapolation for z(N) may not be accurate at c > 0.7, 
and is only a crude estimate for the true z. For instance, the slope could change at larger N, or 
the data could deviate from 1/N  scaling.

Figure B2. Finite-size dynamical exponent z(N) versus chain length N for various α in 
the Fredkin–Heisenberg model.

Figure B1. (a) Log–log plot of the energy gap ΔE versus system size for 0 � α � 0.8. 
The lines are fits to ΔE ∝ N−z , with the range of N given in the caption of table B1. (b) 
Log–log plot of the energy gap ΔE versus system size for 0.9 � α � 1. The lines are 
fits to ΔE ∝ N−z , with the range of N given in the caption of table B1.
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