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CrossMark
Abstract
We study gapless quantum spin chains with spin 1/2 and 1: the Fredkin and
Motzkin models. Their entangled groundstates are known exactly but not their
excitation spectra. We first express the groundstates in the continuum which
allows for the calculation of spin and entanglement properties in a unified
fashion. Doing so, we uncover an emergent conformal-type symmetry, thus
consolidating the connection to a widely studied family of Lifshitz quantum
critical points in 2d. We then obtain the low lying excited states via large-scale
DMRG simulations and find that the dynamical exponent is z = 3.2 in both
cases. Other excited states show a different z, indicating that these models
have multiple dynamics. Moreover, we modify the spin-1/2 model by adding a
ferromagnetic Heisenberg term, which changes the entire spectrum. We track
the resulting non-trivial evolution of the dynamical exponents using DMRG.
Finally, we exploit an exact map from the quantum Hamiltonian to the non-
equilibrium dynamics of a classical spin chain to shed light on the quantum
dynamics.
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1. Introduction

Quantum critical systems display striking emergent phenomena such as universality in their
static and dynamic properties [1]. Realistic models are however often very challenging to
study due to the presence of strong interactions. This is why one-dimensional (1d) systems
offer an ideal playground because they are often more tractable both numerically and ana-
lytically. For instance, many 1d quantum critical systems are described by conformal field
theories (CFTs) at low energy. Such theories are highly constrained by symmetry alone [2, 3].
Even non-equilibrium dynamics following a quench can be studied in detail in 1d CFTs [4].
A property that is useful to asses gapless quantum systems, both in and out of equilibrium,
has come to the fore in recent years: the structure of entanglement. For instance the bi-partite
entanglement entropy (EE) quantifies the amount of quantum entanglement between two sub-
systems. For 1d CFTs, the von Neumann EE has the form S,y = 5 log L—:, where L, is the
length of region A (an interval embedded in the real line), and c is the central charge of the
CFT [5-7]. € is a short-distance cutoff. In addition, a related but cutoff-independent quantity,
the mutual information between two well-separated intervals has a power law dependence
on the separation. The exponent depends on the scaling dimensions of local observables [8].
These results demonstrate that the groundstates of CFTs are highly entangled.

However, many gapless systems cannot be described by relativistic CFTs at low energy.
An example that we shall investigate in this work is the S = 1 spin chain introduced by Bravyi
et al: it describes spin exchange with bilinear and biquadratic interactions [9]. It is called
the Motzkin model because the groundstate is the equal weight superposition of so-called
Motzkin paths (more on this below). Although the groundstate has a large EE, the dynamical
exponent that describes the low energy gapless excitations obeys the bound z > 2 [9, 10],
excluding the possibility that this model is described by a relativistic CFT. In addition, a recent
large-scale DMRG study has shown that this model has different dynamical exponents for dif-
ferent excitations, thus exhibiting multiple dynamics at low energy [11].

A similar spin model with S = 1/2 was proposed in [12]. This model involves three-spin
interaction and is related with Fredkin gates in the field of quantum computation, which
explains why it is called the Fredkin model. Its groundstate EE also has logarithmic depend-
ence for an interval embedded in a long chain. In this paper, we perform large-scale DMRG
calculations to determine the excited states and show that this model also has z > 1, meaning
that it cannot be described by CFT, and that it displays multiple dynamics just as the Motzkin
spin chain.

Another reason why these spin models are interesting is because their Hamiltonians can
be written as a sum of local projectors. The groundstate is annihilated by all the projectors,
and has an energy exactly equal to zero. As such, these spin chains share a similar structure to
the quantum dimer model (QDM) defined in 2d, and have potential applications in quantum
computation due to their ‘frustration-free’ nature. The QDM was introduced by Rokhsar and
Kivelson to describe the low-lying singlet excitations in quantum antiferromagnets [13]. On
the square lattice, the QDM model has a special parameter in its phase diagram, known as the
Rokhsar—Kivelson (RK) point, where the critical groundstate is an equal weight superposition
of all dimer configurations. This state admits an integer valued height representation defined
mod 4 [14, 15], and in the continuum limit, the coarse-grained height field can be described
by a free compact boson with a z = 2 dispersion, and therefore the quantum wavefunction
is conformally invariant in 2D space [16]. The RK form of the QDM Hamiltonian ensures
that one can map the quantum dynamics to a non-equilibrium classical system governed by
a Markovian master equation. Under this mapping, the groundstate coincides with the clas-
sical equilibrium distribution and the low energy excited state corresponds to the classical
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relaxation modes. Relying on this quantum-classical connection, Henley used classical Monte
Carlo simulations to numerically study the dynamics in QDM and found that the dynamical
exponent is z = 2 [17, 18]. This result suggests that the QDM at the RK point can be effec-
tively described by the z = 2 quantum Lifshitz model [3, 16].

It should be noted, however, that it is not true that all lattice models which can be expressed
as a sum of local projection operator must necessarily have z = 2 dynamics. A case to the
point is the 2d quantum eight vertex model of [16] which, as its classical analog, has two
lines of fixed points where the 2D quantum system is critical. While along one of these criti-
cal lines, the six vertex line, the dynamics indeed has z = 2 dynamics, along the so-called
Ashkin—Teller line using classical Monte Carlo simulations [19], found a continuously var-
ying dynamical critical exponent. Here we will find a similar behavior in the Fredkin and
Motzkin chains.

Keeping this picture in mind, we will study the groundstates for both Fredkin and Motzkin
spin models in the continuum limit and construct possible effective field theory for them. In
both spin models, the groundstates are in Si,, = 0 sector and have height representations which
can be considered as the uniform superposition of Motzkin and Dyck paths, respectively [9,
12]. The paths are defined in the upper half-plane and can be understood as the trajectories
for a classical discrete random walk. In the continuum limit, the groundstate can be described
in terms of coarse-grained height field ¢ with the constraint ¢ > 0. The difference between
Dyck and Motzkin paths lies in the diffusion constant of the random walk, carries over to the
quantum wavefunction via a dimensionless parameter.

We further construct a z = 2 bosonic parent Hamiltonian for the continuum groundstate.
However, in contrast to the 2d quantum Lifshitz model, the z = 2 bosonic field theory is not
the effective theory for the Motzkin and Fredkin spin chains. Our careful numerical DMRG
analysis of the dynamical exponent z in the Motzkin [11] and Fredkin models suggests that z
lies close to 3 rather than 2: z = 3.2. This large dynamical exponent in both spin models might
be partially caused by the conservation of S,. Similar behavior was found previously in the
Kawasaki non-equilibrium dynamics for a classical Ising spin chain at low temperature, where
the relaxation mode is governed by subdiffusive spin motion and has z ~ 3 [20-22].

We further study the lowest excited state for the Fredkin model in the S, = 0 sector and
find a different dynamical exponent zp = 2.76, indicating that this model has multiple dynam-
ics. This behavior is common for example in metallic quantum critical points in higher dimen-
sions, where various order parameter fluctuations can have different dispersions [1, 23-27].

Finally, we study the stability of the Fredkin chain with respect to a ferromagnetic
Heisenberg interaction; the strength of the new interaction is proportional to the coupling
(I — ), which varies from 0 to 1. At a = 0, 1, this model corresponds to Heisenberg and
Fredkin models, respectively. We numerically explore the groundstate and dynamical expo-
nents of our Fredkin—Heisenberg model. Away from the point o = 1, the analytical form of the
groundstate is unknown. We use DMRG to study the groundstate and find that when o < 1,
it is different from the Fredkin case at o = 1, suggesting that the Fredkin model is unstable
in the presence of the Heisenberg. Away from « = 1, the dynamical exponent for the low-
est excitation drops to a value smaller than 3 and approaches 3 as we decrease « to zero. At
a = 0, although the bulk is the ferromagnetic Heisenberg chain, the lowest excitation cannot
be described by the z = 2 diffusion mode due to the boundary condition being used, which
favors up (down) spin on the left (right) boundary. Further study for the gapless low energy
excitations in other spin sector demonstrates that the dynamical exponents can also be differ-
ent in different spin sectors.

The structure of the paper is as follows. We first review both Fredkin and Motzkin spin mod-
els in section 2. Then we discuss the ground in the continuum limit and compute various local
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observables and entanglement properties in section 3. In section 4.1, we study the dynami-
cal exponent for the Fredkin model, as well as its change in the presence of the Heisenberg
interaction. We summarize and conclude in section 5. In appendix A, we briefly explain some
combinatorics used in Dyck and Motzkin path calculation. In appendix B, we gives the detail
for DMRG calculation in Fredkin—Heisenberg model.

2. Fredkin and Motzkin spin chains

We introduce the Hamiltonians for the 2 quantum spin chains that are the focus of this paper.
The first one is the Fredkin model [12] and has spin 1/2, while the second is the spin 1 Motzkin
model [9]. We describe the exact groundstates of the 2 spin chains.

2.1. Fredkin
The spin S = 1/2 Fredkin model [12, 28] has the following Hamiltonian in the S¢ basis

N-2
H = Hyu + Hyay = ZH]' + Hbay,

=1
Hy = (14 0§)(1 = Gy Gpa) + (1= - G)(1 — )

Hyay = [ {4 [+ Dv (T | M

where & = (0%, 0¥, %) is the vector of Pauli matrices. We work with chains with an even num-
ber of sites N. In the bulk Hamiltonian, H; can be expressed in terms of projectors:

Hy = | 1)1 | @ |8)j1j42(S] + IS)jj1(S| @ | 1)j32(T | )

where |S) = %(\ 1) — | }1)) is the singlet built out of neighboring spins. We thus see that
the bulk term Hypyy involves 3-spin interactions leading to two spin exchange processes:
| M) <= | t1I1) and | I1)) <= | TJJ). These two moves are denoted as Fredkin gates in
the field of quantum computation.

The Fredkin Hamiltonian is constructed in terms of projection operators which commute
with the total 7, = ZJ. S; operator. The model therefore has U(1) symmetry. The unique
groundstate is known exactly and corresponds to an equal-weight superposition of states
defined through Dyck paths [12, 28]. For example,

N=2: [W)=|t)=|")
N=4: [To)= (T +11D) = 5 () +1AN)- 3)

A N-step Dyck path in the upper half-plane is naturally represented in terms of height vari-
ables ¢; defined through

Giv1 — i = S5y “)

meaning that the spin is a discrete derivative of ¢: S% = A¢. The height field is defined on
the ‘dual’ lattice so that its index runs from O to N. In the height representation, since we
have spin S = 1/2, the state | 1) maps to the step (1,1/2), 17), while | J) maps to the step
(1,—1/2), I\). The Dyck path is a succession of such steps; it starts at (x,y) = (0,0), ends at
(x,y) = (N, 0), and obeys the constraint that the height field ¢; does not cross below the x-axis,
i.e. ¢; = 0. Examples are shown in equation (3) and figure 1(a). As stated below, the ground-
state is an equal-weight superposition of all allowed Dyck paths and satisfies H;|GS) = 0 and
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(a)
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Figure 1. (a) A Dyck path and the corresponding spin configuration in the Fredkin
model. The vertical spacing is 1/2. (b) A Motzkin path and the corresponding spin
configuration in the Motzkin model. The vertical spacing is now 1, which corresponds
to the spin.

Hyay|GS) = 0. Such a groundstate is a generalization of the Rokhsar—Kivelson (RK) type
wavefunction to one dimension. With some elementary combinatorics (appendix A), we can
show that this groundstate has a large entanglement entropy for a bipartition into regions
A = [1,Ns] and B = [N4 + 1, N]. In the limit N, Ny — oo, the result is [12]

1 Ni(N — Ny)

SVN - 2 log N

When Ny < N, the EE scales as %logNA, which takes a similar form as that for (1 + 1)
dimensional CFTs with central charge ¢ = 3 [7]. However, we will see that this model is not
described by a CFT and is in fact less entangled. We mention in passing that the Fredkin model
can be generalized to a half-integer spin model with S > 1, where the groundstate is equal
weight superposition of colored Dyck path and has a square-root violation of the area law [12,
28, 29]. This wavefunction can be further deformed into a weighted superposition of Dyck
path with the groundstate properties and energy gap studied in [29-31].

+o(1). )

2.2. Motzkin

Similarly, one can construct a spin § = 1 RK type model with similar properties to the Fredkin
chain. This model was actually introduced prior to the Fredkin one in [9], and was further
explored in [11, 32, 33]. The Hamiltonian is [9]
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L—1

H= ZHJ'JH + Hypgy (6)
=1

where II; ;| corresponds to nearest neighbor exchange processes and is defined in terms of
projectors,

Wijt1 = [D)jj+1(D| + |U)jj+1(U| + [V)j1 (V| (7)
with
D) = = (0d) — 1d0)) . |U) = —= (10u) — [u0)) V) = —= (00) — |ud))
= — — s = — u) — |u = — — U
V2 V2 V2 )
|u) = | +1),|d) = | — 1) and |0) are eigenstates of S;. The boundary term is the projector
Hyay = |d)1(d| + [u)nul. ©)

On the left boundary, it favors both |0) and |u) states, while on the right boundary, it favors
|0) and |d) states. The bulk Hamiltonian is in fact of the anisotropic bilinear-biquadratic form:

i1 = AapSEStey + BapeaSeStSe, 1S4, (10)

where repeated spin indices are summed over. The coefficients A, B are given in [11]. The
Motzkin Hamiltonian has a U(1) symmetry generated by S7, [33]. Similarly to the Fredkin
model, we can construct the groundstate of the Motzkin chain in the height representation
with the identification §* = A¢. Since the Motzkin model has S = 1, ¢ can only jump by inte-
gers. The groundstate in the height representation (4) is a uniform superposition of all paths
connecting (x,y) = (0,0) and (x,y) = (N, 0) in the upper half-plane. These paths are formed
by three types of moves: diagonal up (1, 1),|), diagonal down (1, —1),|\) and flat (1,0),|-)
which correspond to the three states |u), |d) and |0) in the S° basis, respectively. Such a type of
path is called a Motzkin path; one example is shown in figure 1(b). For example, when N = 3,
the groundstate of equation (6) is

Ms) = Zz(l———) + =N+ I/N2) + [77N)). (1)

The Motzkin path wavefunction also has large EE and the leading term in EE is the same
as that for Fredkin model shown in equation (5). Similarly, there is also a higher integer spin
model with § > 1 with the groundstate as the equal weight superposition of colored Motzkin
path [32, 34].

In both Dyck path and Motzkin path wavefunctions, for each height configuration, we have
the constraint S, = ¢y — @9 = 0, which gives rise to the following groundstate expectation
value [33]

(57)=0 (12)

where Sl.i = 7 +iS). In contrast, SI.JFS; commutes with S{, and we find that the two-point
correlation function (Ser; ) takes a finite value, as we discuss in the next section.

3. Continuum wavefunction and a parent Hamiltonian

Although the groundstate for the Fredkin and Motzkin lattice models are known exactly (as
given above), it will prove convenient to write down the wavefunctions in the continuum. This
will allow for a simple and physical derivation of many results, and will make manifest the
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emergent symmetries of the models. In particular, we will see that spatial conformal invari-
ance emerges in the bulk of the chain.

3.1. Continuum version of the Motzkin and Fredkin groundstate

In the continuum limit, the groundstate for both Motzkin and Fredkin models can be written
as [11]

1 . 2
Wolg] = —ze H/ O [T o(0(x)) 13
7z 1 (13)
where the bosonic ¢(x) field represents the coarse-grained height variable introduced above.
In the lattice model, the height is set to zero at either end of the chain, hence we impose the
following Dirichlet boundary condition on the quantum field

$(0) = ¢(L) = 0. (14)
The normalization factor Z takes the form of a (0 + 1)-dimensional partition function:
L 2
z- | Do(x) e I @07 T] (o)) s
$(0)=¢(L)=0 1:[ (1>

where 6(z) is the Heaviside function that enforces ¢ to be non-negative to match the constraint
of the lattice Dyck/Motzkin paths that appear in the groundstate (see figure 1).

Equation (13) gives a unified picture for the groundstate of both the Fredkin and Motzkin
models. The difference between the two lattice wavefunctions is encoded in the param-
eter x, and can be understood in terms of a random walk problem. The Dyck and Motzkin
paths describe a one dimensional random walk on the non-negative half-integers and inte-
gers, respectively, with the horizontal axis of the path as the ‘time’ direction, figure 1.
The random walks are constrained to start and finish at the origin ¢ = 0, which is called
a Brownian excursion. The wavefunction (13) is then probability of a given random path,
and its specific form follows from the Legendre equation obeyed by ¢(x) [11]. The diffusion
constant of the random walk is 1/(4x), and takes different values for the Dyck and Motzkin
chains. For the Dyck type random walk (Fredkin model), the variance at a typical step is
o2 = ((1/2)* + (—=1/2)%)/2 = 1/4, while for the Motzkin type random walk, the variance
at a typical step is 0% = (12 + 02 + (—1)?)/3 = 2/3. Since the diffusion constant is given by
1/(4k) = 0% /2, we have r = 2,3 /4 in the Fredkin and Motzkin groundstates, respectively.

We can now compute various groundstate properties in the continuum limit. Let us start
with the expectation value of S°. By virtue of equation (4), in the continuum limit we have

S (x) = 0y (16)

We thus have (S°(x)) = 0,(¢(x)). The expectation value of the height field is easily computed
by mapping the calculation to that of an elementary quantum mechanics problem [11], which
offers yet a different perspective on the groundstate. We map the height variable to the position
of the quantum particle, ¢ — X, and the position to imaginary time, x — 7. The expectation
value then maps to Feynman path integral

o DX X(7)e 51Xl
DX e—S11X]

fx(o):x(L):

(Wolop(x)[Wo) — 17)

fx(o):x(L):o

with the constraint that the particle starts at the origin and ends there at time L. S is the
Euclidean action of the particle:
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1= [[ar s (35) + ven

V(X < 0) = 00, V = 0 otherwise

18)

where the potential V is simply a hard wall that prevents the particle from penetrating the
region X < 0. We can thus rewrite (17) as

(0,L1%(7)[0,0) |o 0) (0, L|X, 7)X(X, 70, 0)
T 0.00.0) / X0, 00.0) (1%
- / AXF(X, )X (20)
0

where we have used the eigenstates |X, 7) of X(7) in the Heisenberg representation. f is the
probability distribution of finding the particle at position X at time 7, and is thus normalized
fooo dXf(X,7) = 1. We have restricted the integrals to positive values of X due to the potential.
After evaluating the propagator (X, 7¢|X;, 7;) [11], we find

1 4wl N\ —KL¢?

- (e R [ ey
where we have reverted back to the field theory formulation in terms of ¢, x. We thus get

[ee) L o

) = [ aoftome = 2y 1Y )
0 kL

1 L—2x

§° = ——

As expected, we find that (¢) vanishes at the boundaries and takes its maximal value at the
middle point, \/L/(mk) with the characteristic square root dependence of Brownian motion.
The S¢ expectation value equation (23) goes from positive at x < L/2 to negative at x > L/2,
which is a consequence of the boundary conditions in the lattice models equations (1) and
(9) that favor the up (down) spin on the left (right) boundary. The expectation value rapidly
approaches zero deep in the bulk. Letting x = % + a and considering the limit L > a, we find
that ($%) ~ a/L*?, as shown in table 1. This result matches the calculation of [12, 33] for the
groundstate of the Motzkin model.

Using a similar method, we can calculate the joint probability distribution function for a
path to have its height equal to ¢, at x; and ¢, at x; (figure 3(b)):

3/2 wé?  wel k(b1 —2)2 w(61+)°
L1, x1502,%0) = 21 “ {%} ¢1¢2e’%*<f—é> e e
m X2 — X1 — X2 )X
(24)
Considering the limit deep inside the bulk with 0 < x, — x; < x1, L — x, we find
3/2 2 2 2
1 K 4kL _r9] _ m(e1+ep)’ KR
~ + X1 L= e nu-x
f2 pr | {(L—xz)xl] ¢1(d1 + dp)e
(25)
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Table 1. Summary of the groundstate properties of equation (13), and its connection
with the Motzkin and Fredkin models. These apply in the limit where the length of the
chain far exceeds all other scales. Also, x; # x,.

Groundstate Properties deep inside the bulk
z( L

(5(3 +a) 4y /e 50

(8°(1)8°(x2)) ~2z 0

(S87) Fredkin: §, Motzkin: §

Rényi EE for an interval S,(B) = % log %B +0(1)

Mutual information for 2 intervals

where ¢p = ¢ — ¢ It is easy to verify that equation (25) is properly normalized:
fooo doy ffooo d¢pf, = 1. We can now obtain the height and S* auto-correlation functions in
the groundstate:

@)ote)) = [ don [~ domota)otm plor i = 2T
(26)
(5°()S(12)) = {00 001) b)) = 57+ @)

where the dots denote subleading terms. pOnce & is set to the correct value (see above), these
results exactly match the calculation of [33] obtained using a different approach. We see that
the S° correlator vanishes in the thermodynamic limit L — oo.

On the other hand, <Si+Sj*> takes a non-zero value, and turns out to be related to a non-
local string operator in the height representation. Let us consider this correlator in the lattice
models. In the Fredkin spin chain, when SI.JFS; acts on a height configuration |), we have
(assuming i < j)

I}, if S3|h) = —3|h) and S5|h) = }|h)

SEST|h) =
Sy {0, if 2 |h) = L[y or SE[h) = —L]h) (28)

where h and A’ differ on the interval between i and j, as shown in figure 2. The action
of Sj'Sj_ is thus to raise the height variable ¢, by 1 for ¢ belonging to the string
i < ¢ < j. The effect of the shift along this string only changes the spins at sites i and j.
Now, since the groundstate is an equal weight superposition of all allowed height con-
figurations (Dyck paths), <Si+Sj’) is equivalent to P(S; = —1/2,5; =1/2), namely the
probability for the configuration with S = —1/2 and Sj = 1/2. Deep inside the bulk,
we have seen above that the two spins at i and j are uncorrelated, which implies that
P(Si=—1/2,5=1/2) =P(S; = —1/2)P(S; =1/2) = 1/2 x 1/2 = 1/4.

Starting from <S,+S]’ ) we can compute related correlation functions: deep in the bulk, we
have

oy 1 _ _ 1
(SiSj) = (5i8)) = (887 +§7S7) =3 (29)

and <Sj‘S;’) = (. We can further generalize these results to the Motzkin model with § = 1. The
ladder operator satisfies
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Figure 2. Under the action of the operator S,-+Sj_, a height configuration (left) for a
Dyck path with Sj = —1/2 and §; =1 /2 becomes the configuration (right) with
S; =1/2 and S; = —1/2. In other words, the height field ¢, is shifted upwards by

28 = 1 along the string i < ¢ <.

STld) =20), $T|0) = V2[u), ST|u)=0. (30)
Therefore we have (S}S;) = V2 x 2/3 x V2 x2/3 =8/9.
3.1.1. Entanglement. 'We now explain the entanglement results listed in table 1. Starting from

/> defined in equation (25), we can calculate the reduced density for an interval B, [xi, x,], that
lies deep in the bulk (figure 3(b)).

/e 4k ke
p(ep) = 2\ 7o =) exp <_x2 - o) (s (€29}
where
o — 32)

@3—617— /2

is the dimensionless height difference between the endpoints of B that also appeared in f5,
equation (25). p(p) takes the form of a Gaussian distribution. The resulting Rényi EE is

1 L 1

5.(B) = 5 log (f) +log(v/7/kK) — i =n)
where Lg = x, — x;. The leading term has a logarithmic dependence on the subsystem length,
which is the same as equation (5) for when the subsystem is the interval [0, L4 ]. This logarith-
mic dependence on the length of the subsystem is also similar to that for (1 + 1)d CFTs [7].
However, the prefactor does not depend on the Rényi index, in contrast to what happens for
CFTs. Interestingly, the same logarithm in the EE was found in the XXZ spin chain, by taking
a specific limit approaching the isotropic ferromagnetic interaction [35, 36]. Moreover, equa-
tion (33) is consistent with the EE result on an open cylinder for the (2 + 1)D version of the
wavefunction (13) but with the ¢ > 0 constraint removed. There, in the thin torus limit the
same leading logarithm was obtained [37].

Finally, we compute the mutual information between two disjoint intervals B and D deep
inside the bulk, as shown in figure 3(c). The constraint ¢ > 0 can again be removed because

logn (33)
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(a) (b) 6 o,

B

\
\ |
\
I I
\
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Lo \
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0 X, X, X, X, L

Figure 3. (a) One configuration with ¢ at position x. (b) One configuration with ¢; and
¢» at position x; and x,. (c) One configuration with ¢; at position x; with 1 < i < 4.

the probability that ¢ approaches zero is vanishingly small deep in the bulk. In this case, the
joint distribution function for a path to have its height equal to ¢; at x;, where i runs from 1 to
4,1s

K2 L ( k@7 K(gr — 1) k(g3 — ) k(s — $3)° Kqﬁ)
fi= 50— exp [ oL — - - — T
i LALBLcLDLE LA LB Lc LD LE (34)

where Ly denotes the length of interval #. The reduced density matrix for the region BU D
only depends on ¢p = ¢ — ¢ and ¢p = ¢4 — ¢3 and can be obtained by integrating over ¢,
and ¢, in f,

Ke L B kLp(L—Lp)epg+rlp(L—Lp)eph+2rlpglpeopep | >< ‘
pPBUD = — e LpLp(L—Lg—Lp) ©B, YD){¥B> PD
(L— L — Lp)LsLp

™
(35)

where op = ¢p/+/€ and ¢p = ¢p/+/€. The Rényi entropy for BU D is

1 LgLp 1 L—Lg—Lp 1
S,(BUD) = Elog < 2 ) + Elogf +log(n/k) — a=n log n.
(36)
Similarly, we can also calculate EE for each interval and we have
1 1. Lgp 1, L—Lgp 1
S,(B/D) = =1 -1 =1 — log n.
(B/D) = 5 log(r/r) + 5 log =2 + S log = "2 — 5 logn
(37

The mutual information between B and D is
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1l (L—Lg)(L— Lp)
2% (L Ly~ Lp)L

I,(B, D) is independent of Rényi index and in the limit Lg, Lp < L, I,(B, D) tends to zero.
This result demonstrates that this wavefunction is less entangled than generic 1 + 1d CFTs,
for which the mutual information scales as 1 /r®, where ris the distance between two intervals
and A is a function of the Rényi index and the scaling dimension of primary operators [38].

The Fredkin wavefunction, just as the Motzkin one [11], provides an interesting example
for which the EE is large but the mutual information is zero. The EE is a non-local quantity
that detects entanglement between a subsystem and its complement, while the mutual infor-
mation I(A, B) = S(A) + S(B) — S(A U B), measures the correlations between the two inter-
vals. The wavefunction equation (13) can be mapped to a constrained random walk problem.
However, deep inside the bulk both the boundary conditions and ¢ > 0 are not important and
the random walk process can be described by the usual Brownian motion. The probability
for the Brownian walker to move a distance d¢ in ‘time’ dx is independent of the history.
Therefore there is no correlation between two disjoint intervals and 7(A, B) = 0. The mutual
information also gives an upper bound for two-point correlation function of local observables
[39]. This is consistent with the result (S?(x;)S%(x2)) = O(L™") — 0 for x| # xa.

1,(B.D) = S,(B) + S,(D) — S,(BUD) = (38)

3.1.2. Emergent conformal symmetry. The analysis above has shown that deep inside the
bulk, we can safely remove the ¢ > 0 constraint and the wavefunction becomes,

To) = % / De(x) e~ 5 4@ |5(x)) (39)

where Z is the normalization factor:
Z= / D(x) e/ 4x(0:6)° (40)

Starting with the original wavefunction equation (13), we can expand the height field about its
expectation value deep in the bulk, ¢ = (¢) + d¢, with (¢) ~ v/L as given in equation (22).
In the limit L — oo for x near the middle, the fluctuations d¢ thus become unconstrained and
we recover equation (39), which is free of the non-negativity constraint. Moreover, changing
variables x — x — L/2, we can effectively work on the infinite line to simplify the symme-
try analysis. The wavefunction (39) then enjoys an emergent (1 + 0)-dimensional conformal
symmetry in the sense of conformal quantum mechanics [40, 41]. We indeed recognize equa-
tion (40) as the partition function of a free quantum mechanical particle. It is straightforward
to verify that the wavefunction is invariant under SL(2, R) Mdbius transformations:

/ +
(-
o) = 2 “2)

with the unit determinant condition: ad — 8y = 1. We emphasize that we are working deep in
the bulk so that we can neglect total derivatives in the integrals. In the presence of boundaries,
the above transformations are no longer symmetries because even the translational symme-
try is broken. The SL(2, R) symmetry group has 3 real parameters: it describes translations,
dilations, and less obviously, special conformal transformations. The latter corresponds to
a =6 = land § = 0. The wavefunction can thus be viewed as a lower dimensional version

12
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of the wavefunctions of conformal quantum critical points introduced in (2 + 1)d, which have
groundstates invariant under the infinite group of two-dimensional conformal transformations
[3, 16]. As we shall see in the next section, equation (39) is the groundstate of the 1 + 1D ver-
sion of the quantum Lifshitz model, but with a non-compact height field.

3.2. Continuum parent Hamiltonian

We construct a Hamiltonian in the continuum limit which has the same groundstate as the
Fredkin and Motzkin spin chains (naturally, also in the continuum limit). We consider the fol-
lowing quantum field theory (QFT) for the height field ¢,

Z= Do(x. 1) S T 0(6(x. 1))
$(0.0)=(L1)=0 i

1
S=3 /dtdx (— (09)° +K*(979)%). “3)

The partition function Z should not be confused with the normalization of the groundstate
equation (15). 0(z) is the Heaviside function that enforces the field ¢ to be non-negative, to
match the constraint of the lattice Dyck and Motzkin paths (see figure 1). The action (43)
describes a non-compact boson with the constraint that ¢ is non-negative. This can be inter-
preted in terms of an orbifold. Indeed, starting from the non-compact boson with target space
R, we mod out by the discrete ¢-parity symmetry of the unconstrained theory, ¢ — —¢,
which forms a Z, group. This results in ¢ taking values in the orbifold R/Z, = [0, 00), i.e. the
semi-infinite real line*. Alternatively, we can view the field ¢ as taking values in R, but with a
potential term V() = oo for ¢ < 0, and V = 0 for ¢ > 0 (see equation (18)).

Without the ¢ > 0 constraint, the above QFT is the 1 4 1D version of the quantum Lifshitz
model [16], albeit with a non-compact height field. We shall adapt the methods previously
used to study that theory in order to determine the low lying excitations. We can write the
Hamiltonian corresponding to equation (43) as

1 2
H= /dx (inz + %(&%d))z + v(¢)> (44)
with the canonical equal-time commutation relation,

[6(x), TI(x)] = i6(x — x'). (45)

Such a Hamiltonian with general potential V(¢) was considered in [42], where the relation
between the (d + 1)-dimensional quantum theory and its Euclidean d-dimensional ‘seed’ was
called stochastic quantization. This nomenclature shall become clearer below when we dis-
cuss the mapping to non-equilibrium dynamics of the classical spin chain.

It shall be useful to adopt the Schrodinger functional formalism, where II = —i%. The
Schrodinger equation for the eigenstates of H then reads:

2 1{2
/ dx (; (%) + 5 (%) + V<<z>)) U] = EV[9]. (46)

We then introduce the annihilation and creation operators Q, QT [3, 16]:

4The point ¢ = 0 is special because it is invariant under the ¢ — —¢ transformation, and leads to R/Z, being an
orbifold not a manifold. To get the latter, one would need to remove ¢ = 0.
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—Li — kO? — KkO?
Q(x)—ﬁ(ﬂ 2:0) = f(¢ 6¢) (47)

0f(x) = (—ill — kO ¢) = (_7 — na§¢>> ) (48)

1
V2

Then we can express the Hamiltonian as

= [[ar( (0.0} + V() - s = [ ax(0' 000 + Vie)
' 49)
where we have subtracted the infinite groundstate energy, Ey,e = — [ dxd?5(x — Y)|y—x >0
and the Hamiltonian is normal-ordered. The potential simply enforces ¢ > 0. The ground-

state has zero energy Ey = 0 and is annihilated by all the Q(x) operators: Q¥,[¢] = 0. The
corresponding linear functional differential equation, ( 35— KO?¢)Wo[p] = 0, has the unique
solution equation (13). To obtain this result we have used 5% = (k0?¢) Uy. In calculating

this functional derivative, we have assumed that ¢ > 0 for all x, i.e. we have ‘regularized’
the singular point ¢ = 0 of the orbifold by setting the smallest value of ¢(x) to be 0T. This in
particular ensures that the functional derivative of the Heaviside function 6(¢) vanishes.

To get the excited states of equation (44), we can act with the creation operator QT on the
groundstate

[¢] = / dxe™ Q' (x)Wo[¢] (50)

HU[¢] = rk* Ui [g] Gh

where we have omitted a normalization constant. To obtain the energy eigenvalue, k%, we
have used:

[0(x), 0 (y)] = K 036 (x — ). (52)

We thus see that the spectrum is gapless, with the low lying excitations having a xk* disper-
sion, which implies that z = 2. This is also manifest from the action (43).

Going back to the lattice, previous exact diagonalization [9] and DMRG [12] results sug-
gest that z > 2 for both the Fredkin and Motzkin models. In section 4.1, we conclusively
show that the dynamics are indeed subdiffusive. Therefore, equation (43) is not the correct
effective field theory for the quantum spin models under consideration. It thus provides an
example where a given state is the groundstate of Hamiltonians with qualitatively distinct
excitation spectra. Moreover, it would be interesting to construct the correct effective theory
for the Fredkin and Motzkin models to reflect the subdiffusive dynamics. We leave this task
for future study.

3.2.1. Liouville quantum mechanics. As we discussed in section 3, the 1d wavefunction in
equation (13) gives a path integral representation for a quantum mechanical particle restricted
to move on the positive axis. We can soften the hard wall constraint, and consider the follow-
ing wavefunction,

T[] = %exp <—; /dx [n (i‘f)z +ue—M>D (53)
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with the parameters p, A > 0. As A — oo, we recover the ¢ > 0 constraint and when A — 0,
the constraint disappears and the wavefunction reduces to the groundstate of the ordinary z = 2
(non-compact) boson.

Equation (53) describes the action for a particle moving in an exponential potential which is
called Liouville quantum mechanics [43]. This originates from the zero mode part of Liouville
field theory in (1 + 1)D and has been extensively studied in the context of string theory [44].
More recently, Liouville field theory has been used to study Anderson localization in 2d; it
gives the effective theory for the critical wavefunction after disorder averaging [45]. For the
state in equation (53), the correlators can be evaluated as the quantum expectation values for
Liouville quantum mechanics in imaginary time [46, 47].

Starting from this wavefunction, we can define an annihilation operator Q,

_ 1 g 2 PA o
Q_\/§<5¢ KOL P e ) (54)
It satisfies Q|¥) = 0. The (1 4+ 1)d RK Hamiltonian takes the form [ dxQQ with U[¢] as
the zero energy groundstate. It would be interesting to find a lattice spin model which can
be described by this field theory. Also, since there is an emergent conformal symmetry deep
inside the bulk in both limits A = 0, oo, it would be interesting to investigate what happens at
intermediate couplings.

4. DMRG analysis

In this section, we describe our large-scale DMRG calculations performed using the ITensor
library for both the Fredkin and Motzkin models. We begin with the groundstate properties,
and then move on to the excited states.

We first compute various correlation functions for the groundstate and compare them with
the analytical results shown in table 1. Figure 4(a) shows (Sj) for both Motzkin and Fredkin
models, which is close to zero in the bulk and takes nonzero values near the boundaries. In the
vicinity of the middle point, (S}) deviates from zero linearly as a function of j — N /2. This is
consistent with the analytical calculation in the continuum shown in table 1. (S;) approaches
zero in the thermodynamic limit L — oo for j in the bulk, as shown in equation (23). In fig-
ure 4(b), we show (S5, /27mS§V J2im +1> for both Motzkin and Fredkin models. When m is small,
the correlator scales as 1 /L, which agrees with the analytical result deep inside the bulk. When
m — N/2, it becomes negative due to the boundary terms that favor anti-alignment between

the left and right boundaries.

We also compute (S;,r /27mS; J2tmt \)» which is shown in figure 5. In comparison with the
S$7 auto-correlation function, we see that (STS™) is much bigger when the separation is small
compared to the size. At small m, we find good agreement with the field theory predictions:
3/4 (Fredkin), 8/9 =~ 0.89 (Motzkin). We notice that <S; /zfmS; 2t +]> is not a constant but
deviates from 1/4 linearly as a function of m, i.e. <S;/27m A7/2+1n+1> = 1/4 — Am, which is
a consequence of finite size. A similar situation happens for (S°(L/2 + a)) ~ a, as shown in
figure 4(a). We see that \ is a function of N that approaches zero as N increases.

4.1. Dynamical exponents of the Fredkin model

For the Fredkin model, the groundstate is unique and has S, = 0. We find that the low-
est excited state has S, = +1, being doubly degenerate. This is confirmed both by exact
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lines). The dashed lines are the analytical field theory results. (b) (S;V /27",Sj1, Jotmt 1)
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Figure 5. (a) The two-point correlation function <SJr Sy

N/2—m N/2+m+1> in the Motzkin
model for various system sizes. <S;/2—mS1;/2+m+1> ~ 8/9 — \m, where ) decreases as

N increases. (b) The two-point correlation function (S]\*[' J2—mSN j24m 1) in the Fredkin
model for various system sizes. (Sy J2—mSN 2t ) ~ 1/4 — Xm, where X decreases as

N increases.

diagonalization on small systems N < 10, and large-scale DMRG with N up to 200. The
energy gap scales as 1/N* for sufficiently large N, where z is the dynamical exponent of the
quantum system. Since z is large, we need to use large bond dimensions and enough sweeps
in the DMRG computation to ensure convergence of the energy. We compute the gap AE for
various system sizes, and fit the data to 1/N%, as shown in figure B1(b). We find z = 3.23,
which is larger than z = 2.9 obtained previously via DRMG in [12]. Our result is consis-
tent with the analytical bound obtained by Movassagh: 2 < z < 13/2 [10]. In addition, we
have found a singly-degenerate excitation with Si, = 0; its gap to the groundstate scales as
AEy ~ 1/N*, with a different dynamical exponent zop = 2.76, which is closer to the exponent
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of [12], suggesting that these authors worked in the §° = 0 symmetry sector, which does not
contain the lowest excitations. These different dynamical exponents z and z, for excitations
in different sectors show that the model hosts multiple dynamics. These results are in close
correspondence with our findings for the Motzkin model [11], where we have found z = 3.16
and zo = 2.71, which are close to the Fredkin exponents. Our results for both models dem-
onstrate that the z = 2 boson theory presented above in equation (43) cannot be the effective
field theory for the Fredkin and Motzkin Hamiltonians. It does describe their groundstates
correctly, but not the excitations.

We further analyze study the role of finite size effects on z in appendix B by calculat-
ing z((Ny + N;)/2) from 2 consecutive values of N. This method was used in our previous
paper for the Motzkin model [11]. For sufficiently large systems, we find that the variation
of z(N) with N is small and roughly scales as 1/N. We use a 1 /N extrapolation to estimate
Z(N — o00) and we find z(oco) = 3.17, in good agreement with the value given above. We also
find zo(o0) = 2.69.

4.1.1. Mapping to non-equilibrium dynamics. We here point out a connection between the
quantum dynamics of the chain and the non-equilibrium relaxation of the classical spin chain
[11]. This provides hints regarding the large value of z. For a RK-type Hamiltonian like the
Fredkin or Motzkin model, the quantum dynamics can be exactly mapped to the non-equi-
librium dynamics of the corresponding classical spin chain. The temporal evolution of the
classical system is governed by a Markovian master equation for the probabilities Pc(t) of the
classical spin configurations C [48]

dpP,
=S Weepe) (59)
C/

The rate matrix W is related to the quantum Hamiltonian as follows:
Wee = —(CIH|C'), C#C (56)

where C = {S7} denotes a spin configuration in the $°-basis. The diagonal elements of W
are defined in order to satisfy detailed balance, W¢c = — ZC’,C’;AC Wer c. Under this map-
ping, the excited states of H map to the classical relaxational modes of the rate matrix W. For
example in the classical 1d Ising spin chain, endowed with Glauber dynamics, the relaxation
can be described by the random walk of a single spin or a domain wall and leads to dynamical
exponent z = 2 [21]. However, in our case we have a conserved U(1) symmetry generated by
Stor» Which maps to Kawasaki-type dynamics in the classical spin chain. The constraint caused
by the conservation law can effectively slow down the motion of the spins, and lead to subdif-
fusive dynamics z > 2. In the Fredkin model, the corresponding classical dynamics are deter-
mined by these two kinds of moves: 11/<=1/1 and |1/ <=1l]. A pair of adjacent opposite
spins can be flipped if the third one is pointing in some special direction. This constraint slows
down the motion of domains leading to a larger z. A similar observation was made for the
Motzkin model [11]. It would be interesting to make this argument more precise in the future.

4.2. Crossover from Fredkin to Heisenberg

We perturb the Fredkin model with a pure Heisenberg ferromagnetic interaction in order to
assess its stability, which leads to the Fredkin—Heisenberg model:

Hyux = oHp +2(1 — o)Hy (57)

17



J. Phys. A: Math. Theor. 50 (2017) 464002 X Chen et al

where Hp is the bulk Hamiltonian for Fredkin model equation (1), and Hy = — >, & - Git1.
We use the same boundary terms as before, which favors | 1) on the left boundary and | |) on
the right boundary. When o = 1, we recover the Fredkin model equation (1), while for a = 0,
the Hamiltonian reduces to the isotropic ferromagnetic Heisenberg interaction. Therefore, by
varying the coefficient v we can study the crossover from the Fredkin to the Heisenberg
model. Away from o = 1, the Hamiltonian cannot be simply expressed in terms of projectors
(except if a = 0), and thus the analytical form of the groundstate is currently unknown. We
will use DMRG to compute various properties for the groundstate, and then study the low
lying excited states.

For the Hamiltonian defined in equation (57), at o = 0, if there is no extra boundary term,
we can easily write down one groundstate: |¥o) = | 11 ... 1), which is a product state. Since
the & = 0 model is isotropic, there are also degenerate ferromagnetic states in other directions.
The low energy excited state can then be described by spin wave excitations with a dynamical
exponent z = 2. However, once we turn on the boundary term, the situation becomes more
complicated. The boundary term favors| 1) on the left boundary and | |) on the right boundary.
Instead of the groundstate being a naive product state with a sharp domain wall in it, we find
that (S7) changes continuously from +1/2 to —1/2 in order to lower the total energy, as shown
in figure 6(a). The whole system forms a smooth domain wall which is a singlet, S, = 0. As
shown in figure 6(b), this state has a large EE, which increases as we increase the subsystem
size Ny (until Ny = N/2), and exceeds the area law (i.e. a constant in 1d) obeyed by gapped
systems. This contributes to making the DMRG calculations time-consuming.

We further study the groundstate at finite a. In figure 6, we show the EE and <sz> for the
groundstate of the Fredkin—Heisenberg model at various a with N = 200. We notice that as
we increase a from 0 to 0.7, both the EE (figure 6(b)) and (Sj) (figure 6(a)) barely change,
suggesting that the groundstate is very close to the « = 0 one. These quantities show clearer
deviations when a approaches 0.9. At a = 0.99 and for N =200, the EE and (S}) differ
from the small o and o = 1 cases. We examine the finite size effects in <S/> at a = 0.99, the
result is shown in the inset of figure 6(a). As we increase N, (S?) approaches the o = 0 result.
Therefore we expect that in the thermodynamic limit, the groundstate at a = 0.99 is quite dif-
ferent from that at o = 1, suggesting that the Heisenberg interaction is a relevant perturbation
to the Fredkin model.

We now investigate the energy gap for Fredkin—Heisenberg model. We notice that as
long as 0 < a < 1, the groundstate is always in S, = 0 sector with the first excited state in
St. = £1 sector. Furthermore, the model remains gapless with the energy gap AE; scales as
1/N*. As shown in figure 7(a), for N = 160, AE) is decreasing as we increase « from zero.
We observe an abrupt change around o = 1, at which point AE;(« = 1) jumps to a larger
value. In contrast, we do not observe the same abrupt change in the energy gap AEj between
the lowest excitation in the Si = 0 sector and the groundstate. AE, decreases continuously
as we increase « from zero.

Once we know the size dependence of the energy gap, we can extract the dynamical expo-
nent z by fitting to 1/N*. We present the result for z as a function of « in figure 7(b) with
the details for the DMRG calculations explained in appendix B. For the lowest excitation, if
a < 0.8, the dynamical exponent is z ~ 3, with small finite size corrections. This is the same
as that for the Kawasaki (i.e. spin conserving) dynamics of the 1d Ising chain at low temper-
atures compared with the exchanging coupling [20, 21]. The conservation law and the bound-
ary effect slow down the dynamics and are responsible for the large z here. As o approaches
1, we observe a dip in z, which eventually climbs back to its o = 1 value, z = 3.23. In order
to assess the validity of this non-monotonic behavior in the thermodynamic limit, we have
analyzed finite-size dynamical exponent z(N) (introduced above). The analysis, presented in
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Figure 7. (a) Energy gap versus « in the Fredkin—Heisenberg model obtained using
DMRG with fixed N = 160; the scale is log-linear. The blue squares are the energy gap
AEF) between the true lowest excitation in S;,, = 1 sector and the groundstate. The pink
circles give the energy gap AE, between the lowest excitation in the S, = 0 sector and
the groundstate. (b) Dynamical exponent versus « in the Fredkin—Heisenberg model.
The blue squares give z for the lowest energy excitation, which has Sf; = 1. The pink
circles give zo for the lowest excitation in the S5, = 0 sector.

figure B2 of appendix B, suggests that non-negligible finite-size corrections exist at « = 0.9
and o = 0.95, with z(co) being is closer to 3 than in figure 7 (but still smaller than 3). The
variation of z as a function of a parameter in the system was also observed in the generalized
Motzkin model [11], and the classical (Kawasaki) non-equilibrium dynamics of an Ising spin
chain, where z was found to change from 2 to 3.2 [22].
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Table 2. The property of Hamiltonian in equation (57) with various boundary
conditions. The last column refers to the convergence speed of the DMRG algorithm.

Groundstate (S7)in the bulk 2 DMRG
a=1, B=v>0 Dyck path, S, = 0 0 3.23 Slow
0<a<l, B=v>0 H7igh1y entangled state, <sz) c (_%, %) z>2 Slow

Stor =0
0<a<l1l, B=-y>0 Productstate, Si;; =N/2 1 2 Fast

2

We also explore the dynamical exponent z for the first excited state in the S5, = 0 sector,
and find that zo is much smaller than z (pink circles in figure 7(b)). When a < 0.7, z9 =~ 2,
which is indicative of diffusive dynamics in that sector. When « ~ 0.9, z dips to a value less
than 2. Similar to z, we observe a discontinuity for zo around o = 1.

4.2.1. Comparison with conformal-wavefunction quantum critical points in 2 + 1D. We com-
pare our results for the dynamics with what was found for the 2d lattice models studied in [19].
In particular, they considered the so-called quantum eight-vertex and six-vertex models. Both
models have a parameter that can be varied such that the groundstate remains conformally
invariant but with equal time two-point functions that change continuously. For the quantum
eight-vertex model without U(1) symmetry, the quantum dynamics maps to a classical non-
equilibrium universality class in model A, according to the classification by Hohenberg and
Halperin [49]. As the the parameter is varied, the dynamical exponent changes non-mono-
tonically and obeys z > 2. On the other hand, the quantum six-vertex Hamiltonian has U(1)
symmetry, and thus maps to the model B universality class. This Hamiltonian can be described
by the quantum Lifshitz model and always has z = 2. This is different from our 1d spin chain
where the conservation law slows down the dynamics and leads to z > 2.

4.2.2. Role of boundary terms. The boundary term is important in the Fredkin—Heisenberg
model as it can change both the groundstate and dynamical exponent z. This is because there
are a large number of low-lying states with similar energies and the boundary condition will
project out some of these states. To study such effects, we introduce 2 tuning parameters,
and +, in the boundary term:

Hoay = 5 (1= o)+ 101+ 7). (58)
Similar boundary terms have been studied for the Fredkin model in [28], with an emphasis
on groundstate properties. When 8 = v = | we recover the conditions used in the rest of
the present work; in that case the groundstate is highly entangled. In contrast, if we choose
B =—v =1, for 0 < a < 1, the groundstate has all the spins pointing up which is a trivial
product state. The lowest excited state is the spin wave excitation with one spin pointing
down. In the language of non-equilibrium classical dynamics, such a down spin will move
diffusively on the lattice in the background of up spins, which leads to a dynamical exponent
z = 2. Actually, the explicit values of  and  are not very important, as long as they are finite.
We summarize the effects of the boundary terms in table 2.

5. Conclusion and outlook

We have studied two quantum spin chains, the so-called Fredkin (S = 1/2) and Motzkin

(S = 1) models, using a variety of methods: exact relations, field theory, and DMRG. We

have found that the entangled groundstate of both Hamiltonians takes the same form in the
20
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continuum, with a dimensionless parameter x that depends on the spin. The wavefunction is
expressed in terms of a continuum height field ¢ that acts like a ‘gauge field’ for the spin:
S%(x) = Oy¢. The resulting wavefunction can be viewed as the path integral representation
of a quantum particle restricted to move on the positive half line, ¢ > 0. Relying on this
feature, we computed various properties for the groundstate and compared them with the lat-
tice results for the Fredkin and Motzkin models. We showed that the groundstate has a large
entanglement entropy but with zero mutual information between two disjoint intervals deep
inside the system, suggesting that it is less entangled than typical (1 4 1)D CFTs. The mutual
information result is consistent with two-point correlation function of the local operator S%,
(S%(x1)S%(x2)) = 0. On the other hand, (Si*S]f) in both spin models saturates to a finite con-
stant deep inside the bulk; this is consistent because S;"S ' corresponds to a non-local string
operator in the height representation.

Based on these results, we found that deep inside the bulk the groundstate wavefunction
enjoys an emergent (1 + 0) dimensional conformal-type symmetry, in the sense of conformal
quantum mechanics. The Fredkin and Motzkin models can thus be considered as the lower
dimensional analogues of conformal quantum critical points, whose wavefunctions have a two
dimensional spatial conformal symmetry [3, 16, 19].

The approach discussed in this paper connects 1d RK states with a simple quantum mechan-
ics problem. It can thus be used to construct other highly entangled RK states by introducing
a potential term for the quantum mechanical particle, such as the exponential potential of
Liouville quantum mechanics. It would be of interest to study these states and find lattice
models that realize them.

A key motivation of this paper was to investigate the dynamical exponent for the Fredkin
model. Following our previous DMRG results for the Motzkin model [11], we performed
large-scale DMRG for the Fredkin Hamiltonian. We found that the dynamical exponent for
the lowest excitation with S5, = £1 has z = 3.23. We mapped the quantum dynamics to the
classical non-equilibrium relaxation of the corresponding classical spin chain. This gives a
heuristic explanation of the large dynamical exponent in terms of the subdiffusive relaxa-
tion in the classical system. Moreover, we found the higher energy S;,, = O excitation has a
dynamical exponent zp = 2.76, an indication of multiple dynamics in the Fredkin model, just
as what we previously found for the Motzkin model [11]. In fact, both the z and zo dynamical
exponents are very close to those found in the Motzkin model. It is tantalizing to speculate
that both models can be described by the same effective field theory. We leave this interesting
question for future work.

Finally, we explored the crossover from the Fredkin model to the ferromagnetic Heisenberg
model as a function of a tuning parameter « in the Hamiltonian. Under the fixed boundary
condition which favors up (down) spin on the left (right) end, we found using DMRG that the
bulk Heisenberg interaction is a relevant perturbation and can drastically change the entire
spectrum. Further study of the excited states indicates that the model remains gapless as we
vary «, and again shows multiple dynamics in different spin sectors. It would be interesting to
have a better understanding for these phenomena in terms of a low energy theory.

We close by noting that finding a continuously varying dynamic critical exponent z is by
itself puzzling. In equilibrium classical systems, and in quantum theories with relativistic
dynamics, continuously varying exponents occur when the system has an exactly marginal
operator [50], which on itself is a highly uncommon situation. Classical critical dynamics
with non-trivial values of the dynamical exponent at the non-trivial fixed points of the classi-
cal equilibrium systems are also quite common [49]. On the other hand, except for the mod-
els studied here (and in [11, 19, 22]), there are very few other known cases of theories with
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varying values of z. It would be interesting to understand the mechanism(s) for continuously
varying dynamic critical exponents.
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Appendix A. Some combinatorics

A.1. Dyck paths

A Dyck path is a path which starts at (x,y) = (0,0) and ends at (x,y) = (N,0), and consists
of two types of moves: diagonal up (1, 1) and diagonal down (1, —1). The Dyck path needs to
satisfy y > 0 and when N is an even number, the number of allowed Dyck paths is given by
the Catalan number

1 N
DN’O’OZm N |- (A.1)

2

2

One simple example of Dyck path is shown in figure A1 (a).
If we consider a more general case and let the walker start at (x,y) = (0,m;) and end at
(x,y) = (N,my) withm; > 0 and my > 0. The number of the Dyck path above the upper half-

plane is
N N
Dy mymy = N+\m227m1| - N+(m22+m1) +1)° (A2)
When m; = 0 and m, = m, the above expression can be simplified to
D _m+1 (N+1
NOm = N N%m . (A.3)
In the limit N — oo, we have
( N ) 2V e
~ e N
wg) ™ e A

where we assume m << N and we also use Stirling’s approximation
n n
nl ~ V2 (7) . (A.5)
e

At x = N4 between 0 and N, the probability of a Dyck path with height y = m is given by

3/2 2
P(NA,m) _ DNA,O,mDNfNA,m,O _ \/z (L) mZC—WT.
Zm DNA,O,mDN—le,m,O ™ NA (N — NA)
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(a) (b)

(© (d)

Figure A1. (a) is an example for Dyck path, both (a) and (b) belong to Motzkin path.
(a) and (c) represent all the unrestricted paths in spin 1/2 system, all the plots are the
allowed paths in spin 1 system.

A.2. Motzkin paths

For a Motzkin path, the walker still starts at (x,y) = (0,0) and ends at (x,y) = (N, 0) with the
path always satisfying y > 0. Apart from the diagonal up (1, 1) and diagonal down (1, —1)
in the Dyck path, horizontal (1,0) move is also allowed. The total number of Motzkin path is
called Motzkin number and is equal to

LN
Myopo = Z ( k) Dy 100 (A7)

k=0
where the binomial coefficient in front of Catalan number Dy_ 0 is the number of allowed
horizontal steps. Two simple examples of Motzkin path are shown in figures A1(a) and (b).
We can also consider a more general case with the walker starts at (x,y) = (0, m;) and ends
at (x,y) = (N, my). The number of allowed Motzkin paths is

N—|my—my | N

Mymm, = Y ( k) Dyt ms- (A.8)
k=0

When m; = 0, m, = m, the above expression can be simplified to

m+1 N+1
M, m = 37 7 | 1
NO. N+1;(N—2!—m,t,l+m+1) o

where 2i = N — k — |mp — my| and ( N ) = )% is the trinomial coefficient which takes
X, ¥, Z e

the maximum value at x = y = z = N/3 [33]. In the limit N — oo, we expand the trinomial
coefficient around this saddle point solution by using Stirling’s approximation,
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3
N 3N+ 3. 0,,0, 2
~ — 5= (a“+b"+c
(N+a Nib Nie | R oo W ) (A.10)
303 003

27N

with a + b + ¢ = 0. For the trinomial coefficient in equation (A.9), notice that we can define
N—-2i—m= % +a,i= % +bandi+m= % + ¢, therefore the sum in this expression can
be replaced by the integration around this saddle point i = N/3 and we have

3N +1/ 2m _
- AN
2/aN? ¢

At x = N4 between 0 and N, the probability of a Motzkin path with height y = m is given
by

3/2
My, 0.mMn—N, .m0 \/?< 3N ) Y N
P(Njy,m) = A AT = e mle Malv-Ny 4 A12

(W, m) > o M, 0.mMN N, m0 T \ 2Na(N — Ny) (A.12)

Myom = (A.11)

Appendix B. DMRG calculations

We have numerically calculated the energy gap between the groundstate and the lowest energy
excited states AE by using both exact diagonalization (ED) and density matrix renormaliza-
tion group (DMRG). We use ED for small systems N < 10 as a benchmark, and we perform
large-scale DMRG calculations using the open-source C++ library ITensor. For the Motzkin
model, and its generalization, the DMRG results have been presented in [11].

For the Motzkin and Fredkin models, AE scales as 1/N? for sufficiently large N. Since the
dynamical exponent z is large and close to 3, it makes the DMRG more difficult, especially
if high precision is required. As a first step, we compare the groundstate energy and the von
Neumann EE obtained via DMRG with the analytical results and find that they agree pre-
cisely. Then, in order to determine the lowest excited state, which we find has S, = +1, a
large number of sweeps are used to ensure that the energy is properly converged. The energy
deviation between the last two successive sweeps is around 1072,

We calculate the energy for the lowest excited state in S, = 1 sector. We show the energy
gap AE between the groundstate and the lowest excited state in figure B1 as a function of
system size. We fit AE o 1/N? using the data points in the range 120 < N < 200 in order
to minimize finite-size effects that appear at smaller N. Moreover, we calculate the lowest
excited state with Si; = 0 and show the dynamical exponent zj in table B1. We consider
smaller system sizes 100 < N < 160 because the calculation of the excited state in the same
spin sector as the groundstate is time-consuming.

For the Fredkin—Heisenberg model with o < 1, we do not know the analytical expression
for the groundstate. To compute the energy gap, we need to calculate the energies of both the
groundstate and excited state numerically. We then use the same method as above to extract
both z and zo. The fit for AE o< 1/N? is shown in figure B1 and the detail of the range for N is
listed in table B1.

In figure B2, we show an alternate method to estimate z in the thermodynamic limit. For 2
consecutive values of N, N; < N,, we evaluate the finite size exponent at the midpoint:

. (M) _ In(AE/AE))

2 In(N2/Ny) ®B-D

where AE; is the gap for system size N;. The dependence of z(N)on N is shown in figure B2
for different values of the coupling c. We notice that the variation of z(N) with N is small when
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%10

200 220 240 N 260 280 300 120 140 160 N 180 200 220

Figure B1. (a) Log-log plot of the energy gap AE versus system size for 0 < o < 0.8.
The lines are fits to AE oc N™%, with the range of N given in the caption of table B1. (b)
Log-log plot of the energy gap AE versus system size for 0.9 < a < 1. The lines are
fits to AE oc N—%, with the range of N given in the caption of table B1.

3 T T T T

I/N

0 0.005 0.01
2'2 1 1
0 0.002 0.004

N 0.006 0.008 0.01

Figure B2. Finite-size dynamical exponent z(N) versus chain length N for various « in
the Fredkin—Heisenberg model.

a < 0.7, indicating that finite size effects are small in this regime. As we increase «, finite
size effects for z(N) become larger and we notice that z(N) roughly scales as 1/N . In order to
get an estimate for z in the thermodynamics limit, we use a 1 /N fit to extract z(N — 0o). We
compare the corresponding results with z obtained from the fits described above in table B1. It
is important to emphasize that the 1/N extrapolation for z(N) may not be accurate at ¢ > 0.7,
and is only a crude estimate for the true z. For instance, the slope could change at larger N, or
the data could deviate from 1 /N scaling.
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Table B1. The dynamical exponents of the Fredkin—Heisenberg spin chain as a function
of o, bothinthe S5, = 1and S5, = Osectors. The lowest energy excited state has S5, = 1.
For z, when 0 < a < 0.5, the range of N is 200-300, when o = 0.7, 0.8, the range of N
is 200-280, when o = 0.9, the range of N is 160-240, when o = 0.95, the range of N is
140-220, when « = 1, the range of N is 120-200. For zp, when 0 < « < 0.9, the range
of N is 140-200, when o = 1, the range of N is 100~160. We have not computed z(c0)
for a = 0.9 since zo(N) does not scale linearly with 1/N.

a z 7(00) 20 20(00)
0 2.95 3.00 1.96 2.00
0.1 2.95 3.00 1.96 2.00
0.3 2.95 3.00 1.96 2.00
0.5 2.94 3.00 1.95 2.00
0.7 2.92 3.00 1.93 1.99
0.8 2.89 2.99

0.9 2.74 2.98 1.82

0.95 2.50 2.74

1 3.23 3.19 2.76 2.69
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