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ABSTRACT

The emergence of big data has created new challenges for re-
searchers transmitting big data sets across campus networks to
local (HPC) cloud resources, or over wide area networks to public
cloud services. Unlike conventional HPC systems where the net-
work is carefully architected (e.g., a high speed local interconnect,
or a wide area connection between Data Transfer Nodes), today’s
big data communication often occurs over shared network infras-
tructures with many external and uncontrolled factors influencing
performance.

This paper describes our efforts to understand and characterize
the performance of various big data transfer tools such as rclone,
cyberduck, and other provider-specific CLI tools when moving
data to/from public and private cloud resources. We analyze the
various parameter settings available on each of these tools and their
impact on performance. Our experimental results give insights into
the performance of cloud providers and transfer tools, and provide
guidance for parameter settings when using cloud transfer tools.
We also explore performance when coming from HPC DTN nodes
as well as researcher machines located deep in the campus network,
and show that emerging SDN approaches such as the VIP Lanes
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system can deliver excellent performance even from researchers’
machines.
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1 INTRODUCTION

In this new era of big data and cloud computing, the need to trans-
mit data quickly and simply has become an increasingly important
part of the workflow that researchers use. Big data has become
foundational to virtually all areas of research. Even research ar-
eas that have historically not required significant computation or
storage now find themselves dealing with massive data sets that
need to be processed, analyzed, and shared. As a result, moving
large data sets to/from the cloud has become both common-place
for researchers and a major bottleneck that limits their research
productivity.

Despite the increasing use of cloud and big data, researchers
often struggle to make effective use of the available data trans-
mission tools. This is due in large part to the complexity of data
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transmission. Achieving high speed data transmission depends on
a wide range of factors such as the application used to transmit the
data, the parameter settings of the application, the (cloud) provider
where the data needs to be moved to/from, and local network char-
acteristics, to name a few. Moreover, scientists are often unaware of
the fact that different providers may apply aggressive rate limiting
policies to prevent denial of service attacks and guarantee service
to their ever growing customer base. The combination of all these
factors easily becomes overwhelming and oftentimes results in the
researcher opting for built-in “safe and good enough” default param-
eters which are often far from optimal for big data transmissions.
For instance, rather than using a dedicated configurable command-
line tool for their upload transfer to a cloud storage, scientists may
be lured by the familiar easy-to-use web interfaces and decide to
share their research data sets in the same way they upload personal
files like pictures or documents through the web browser, ignoring
factors like parallel transfers, file size, MTUs, dedicated network
infrastructure, and types of hard-drives that could substantially
improve/degrade the transmission performance of their science
flows.

To alleviate this “gap”, providers have developed feature rich
REST APIs and Command Line Interface (CLI) tools that software
developers can leverage to develop provider-specific or provider-
agnostic client-side tools and plugins that can take advantage of the
capabilities of the machine where the application is running such
as number of cores, RAM, disk space, etc. Unfortunately, in most of
the cases these tools pass the responsibility to the researcher who
must figure out via a trial-and-error approach which parameters
work best for his/her workflow.

In this paper, we take a look at the performance of various
client-side tools designed for big data transfers. We consider (cloud)
provider-agnostic tools as well as provider-specific tools and an-
alyze both upload and download performance between the Uni-
versity of Kentucky (UK) Data Transfer Node (DTN) and various
(cloud) storage providers, namely, AWS, Microsoft Azure Blob Stor-
age, Dropbox, Google Drive, and UK’s Ceph object store. We also
explore the effects of various parameter settings on performance
when downloading and uploading from/to desktop machines lo-
cated deep inside our campus network using middlebox-free paths
set up using the VIP Lanes [7] system (a programmable SDN-enabled
network infrastructure that allows pre-authorized, very important
packets (flows) to bypass rate-limiting firewalls, network address
translators (NATs), and other types of middleboxes). Our evaluation
considers performance and usability criteria such as tool reliability,
the ways in which tool features affect throughput (e.g., parallelism
and chunked uploads), the way implementation details affect per-
formance (e.g., back-off mechanisms), or the way cloud providers’
policies affect performance (e.g., rate limits).

We present experimental results from our testing and evalua-
tion that give insights into, and guidance regarding, the selection
of tools and tool parameters that are best for transferring large
datasets to/from different cloud providers.

The Rclone Tool: rclone offers the best overall performance and
reliability when transferring data to/from any of the tested cloud
providers, in large part due to its use of parallel transfers and an ef-
fective back-off mechanism. However, achieving high performance
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with the rclone tool requires careful tuning of its many parameters.
Without careful tuning performance can quickly degrade.
Provider-specific CLI Tools: these tools focus on seamless and easy
access to all of the services offered by the provider, rather than
focusing on optimizing transfer speeds.
Fastest Providers: AWS and Google Drive performed at roughly
twice the speed of other cloud providers.
Private/Local Storage Providers: UK’s Ceph object store was faster
than public cloud providers, but only by (roughly) a factor of two
and could be slower depending on the tool and parameter settings
used.
Upload vs. Download: Most providers’ performance depended on
the direction of transfer. Download speeds were faster than upload
speeds for Dropbox and Google Drive. Somewhat surprisingly, up-
loads were noticeably faster than downloads for Azure. Upload and
download speeds were roughly equal in the case of AWS.
Parallel Connections: Our results show that the number of parallel
connections has a bigger impact on performance than chunk size.
Moreover, parallel connections are only effective if the machine
has as many cores as parallel connections, implying that tools with
support for parallel connections have far less of an advantage over
non-parallel tools when run on conventional desktop computers.
The paper is organized as follows. In Section 2 we introduce and
describe the set of tools we used to move data to storage systems.
Section 3 describes details of the experiments we ran to analyze
data transfers as well as behaviors we observed while moving data
to five storage systems. Section 4 explores the effects of various
parameters of transfer applications on performance. We discuss
related work on analysis of storage systems in Section 5, and lastly,
Section 6 concludes the paper.

2 BIG DATA TRANSFER TOOLS

As storage systems continue to evolve in terms of services provided,
architecture, design, and efficiency, more complex REST APIs are
being made available to tool developers. As a result, a variety of
data transfer tools that exploit these capabilities have emerged in
the last couple of years, each with its own set of features including
parallel transfers, chunked uploads, rate-limiting handlers, and
storage systems supported. In this paper, we analyzed 6 of existing
data transfer tools. A brief summary of each tool’s characteristics
is shown in Table 1.

Among the applications we evaluated we can roughly classify
them into two main groups, namely, provider-agnostic and provider-
specific data transfer tools. Provider-agnostic tools include rclone
and cyberduck and offer the ability to work with multiple cloud
providers through a single tool. These tools translate user requests
into the appropriate API calls for the provider’s storage system.
Provider-specific tools, on the other hand, only work with one
provider’s storage system. Most provider-specific tools (with the ex-
ception of gdrive-cli) are developed by the corresponding storage
provider. Rather than providing a generic one-size-fits-all applica-
tion interface, these tools are developed to maximize access to the
capabilities and features of one particular service provider.
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Table 1: Features of data transfer tools analyzed

Storage

Tool Siﬁ:z?t]: d GUI LaIr)l?uga.ge Tzz;ilfleeis %};l;grgsd
rclone Multiple (21) Y Go 1.6+ Y (param) Y (param)
cyberduck  Multiple (16) Y Java 1.8 Y (param) N
aws-cli S3 protocol N  Python 2.6+ Y (auto) Y (auto)
gdrive-cli Google Drive N Go 1.5+ N Y (param)
azure-cli Azure N  Python 2.7+ Y (param) Y (auto)
dbox-cli Dropbox N Go N Y (16 MB)

2.1 Rclone

Rclone [10] is a provider-agnostic tool used to copy files and di-
rectories to and from more than 20 different storage systems and
protocols. A GUI version was recently introduced. Rclone requires
Go 1.6+ and supports a wide range of operations such as copy,
move, delete, purge, list, duplicate removal, etc. Additionally, it has
specific parameters per storage system that may have an impact on
the throughput of data transfers. rclone allows multiple parallel
file transfers up to the number of cores in the machine where it is
running. However, by default, rclone sets this value to 4 parallel
file transfers which is optimal for workstations but inefficient for
high-end machines such as DTNs. For some cloud storage systems
like Google Drive or Dropbox, rclone lets the user specify a chunk
size value CHS which causes files larger than CHS to be divided into
multiple chunks, where each chunk is in turn loaded in memory to
increase upload speeds.

2.2 Cyberduck

Cyberduck [8] is another provider-agnostic tool. It is written in
Java 1.8, and, until recently, was the only tool that provided both a
browser-like GUI and a CLI version of their software. The set of op-
erations supported is smaller than rclone’s, but includes the basic
ones for data transfers (e.g. upload, download, list, delete). Similar
to rclone, cyberduck lets the user specify the number of paral-
lel connections to use for transfers although in our experiments
cyberduck only established a maximum of 10. Unlike rclone, it
does not offer the possibility to split files into custom-sized chunks
and buffer them in memory for performance improvement.

2.3 Gdrive-cli

To the best of our knowledge, Google has not released a CLI ap-
plication to interact with Google Drive. Instead, initiatives from
individuals have resulted in community driven projects trying to
address the need for a provider-specific CLI for Google Drive. One
of the more well-known community CLI-based tools for Google
Drive is called gdrive-cli [13]. Even though the gdrive-cli tool
is no longer maintained, the tool was one of the first ones to inter-
act with Google Drive and provides compiled binaries for multiple
platforms. Unlike the tools described so far, gdrive-cli does not
support parallel transfers.

2.4 AWS-cli

AWS-cli [2] is a simple (yet powerful) python tool developed by
Amazon to manage all 100+ services offered by AWS (e.g., EC2, S3,
Lambda, Glacier, etc). This CLI tool has a compact set of commands
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resembling UNIX syntax to manipulate the local file system with
remote AWS buckets (where the data is pushed to). Even though the
user cannot specify the number of parallel connections and chunk
size, aws-cli supports multipart uploads per file, and, according
to our observations, it generates up to 10 parallel connections. This
CLI can be used with any storage system that supports the S3
protocol such as Ceph or DigitalOcean Spaces.

2.5 Azure-cli

Azure-cli [9] is a tool written in Python by Microsoft to manage
all services provided by Azure, including its blob storage. As with
all the previous tools, it supports basic operations on files and
directories. Unlike aws-cli and gdrive-cli, it does allow the user
to specify the maximum number of parallel transfers that may be
created for each transfer.

2.6 DBX-cli

Written in Go, dbx-cli [6] has been the official command line tool
for Dropbox users and team admins since 2016. It supports basic
operations on individual files (not directories) via Dropbox’s “Files”
API. The tool is still in the early stage of development compared
to other provider-specific applications, and currently cannot be
adjusted via parameters.

3 EVALUATING TOOLS AND PROVIDERS

To understand the performance characteristics of the previously de-
scribed tools, we performed various tests, transferring data between
UK’s Data Transfer Node (DTN) (that is directly connected the In-
ternet 2 backbone at 40 Gbps) and five different storage providers;
namely, Dropbox, AWS, Google Drive, Microsoft Azure Blob Stor-
age, and UK’s Ceph object store.

The following describes the experimental results we obtained
by running tests from the UK DTN node to various cloud providers
using one of the previously described tools.

3.1 Experiment Setup

The dataset we used consisted of 20 files with random contents
(generated with the Linux tool dd and /dev/urandom random gen-
erator), each file being 200 MB in size, for a total of 4 GB of data.
Each batch of uploads and downloads was performed 10 times, one
after another. We computed the perceived throughput by dividing
the dataset size over the number of seconds reported by the UNIX
time command once the transfer was completed. Lastly, if the tool
supported it, we set the chunk size for uploads to 16 MB, and the
number of parallel connections to 20 (1 per file) in hopes of optimiz-
ing performance (see Section 4 for evaluation of other parameter
settings).

3.2 Results

In the following we evaluate the reliability of the various tools (i.e.,
did they work?), the performance improvements made possible by
parallel data transfers, the upload and download speeds of the tools,
and the benefits of using provider-specific tools. Our findings and
recommendations are presented below based on the information
presented in Figure 1.
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Tool Reliability: Because many of these tools are relatively
new and are evolving rapidly they tend to be rather fragile. Con-
sequently, one cannot assume they will actually work reliably in
all situations. For our tests, we say a tool “worked” if it success-
fully transferred the data — even if the transfer rate was very slow,
or the tool (internally) retried the transfer multiple times. We de-
fine reliability as the ratio of the number of successful transfers
to the number of attempted transfers. Two of the tools had very
poor reliability. Specifically, cyberduck had several incomplete (i.e.,
failed) upload transfers to Dropbox and Google Drive (8 out of 10
transfers failed), and gdrive-cli failed once per direction. In most
cases, the failures appear to have been caused by an inability to
effectively react to the provider’s rate limiting policies. cyberduck
never succeeded in transferring data to/from Azure because it was
not able to authenticate and initiate the transfer. All other possible
combinations of tools and storage systems worked without prob-
lems (i.e., had 100% reliability). Part of their success is due to the
fact that they effectively implemented back-off mechanisms to deal
with the provider’s rate limiting policies. For instance, using the
-vv option in rclone to print debug messages, one can see that
rclone implements an exponential back-off approach that works
well and results in complete transfers albeit at the expense of some
extra delay. The rclone back-off mechanism increases the wait
times for a new retransmission every time a particular file or chunk
is rejected by the storage system. Other back-off mechanisms, such
as the one used in cyberduck are far less effective. For example,
the cyberduck back-off implementation is based on simple retries;
the user passes a “number of retries” parameter that cyberduck is
intended to honor whenever a file is rejected. However, from our
observations the maximum number of retries was much lower than
values passed in which explains why cyberduck transfers were
incomplete in multiple cases.

Parallel Transfers: Parallel transfers, as one might expect, can
improve performance significantly. However, our experimental re-
sults show that the effectiveness of parallel transfers is directly
linked to the number of cores on the client machine (see Section 4).
This helped our UK DTN node achieve some of the best perfor-
mance numbers. With 32 cores and a dataset that consists of only
20 files, it was able to easily handle the 20 parallel transfers needed
to maximize throughput. Of all the tested tools, dbx-cli was the
only one that used a single connection to upload or download all
the files. In the upload case, since our files were larger than 16 MB,
dbx-cli divided each file into 16 MB chunks, and pushed each of
them one after another. As a result, it became notoriously slower
when compared to other tools that supported parallel transfers. In
fact, as shown in Figure 1a, the average upload rate for dbx-cli
never exceeded 50 Mbps with a very small standard deviation. This
is exceptionally low throughput considering that the DTN node
(with 40 Gbps interfaces) was the source of the file transfer. Never-
theless, even with parallel transfers, cyberduck and rclone were
not able to achieve fast transfers to Dropbox— when compared to
other providers — and could never take advantage of the high-end
hardware of the DTN.

Provider-specific Tools vs. Provider-agnostic Tools: Even
though one might think that provider-specific tools are optimized
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for their associated cloud provider — e.g., aws-cli would outper-
form all other tools for transfers with AWS- we found this is not
the case. Provider-specific tools are just a convenient interface for
management of all the services supported from a particular cloud
provider (e.g., virtual machine reservation, billing, account manage-
ment, etc). They tend not to be optimized for file transfers. In fact,
for all provider-specific tools, the set of data transfer commands
supported makes it easy to invoke operations at the provider, as
compared to other tools like rclone. However, rclone outperforms
all cli tools for both uploads and downloads (see Figure 2), making
it the best and most reliable tool, albeit, slightly harder to use.
Upload vs. Download: Providers’ performance often depends
on the direction of transfer. Roughly speaking, download speeds
were faster than upload speeds for Dropbox and Google Drive,
uploads were noticeably faster than downloads for Azure, and
upload and download speeds were roughly equal in the case of

AWS. The following takes a closer look at the upload/download

performance:

Dropbox: We observed (Figure 1a) that downloads were signif-
icantly faster than uploads (mean download 7-8x faster using
cyberduck, 9x in rclone, and 5x in dbx-cli). The poor perfor-
mance when uploading from the DTN (below 500 Mbps in 95%
of the cases) is caused by the fact that Dropbox does not allow
upload of multiple chunks simultaneously. Additionally, even
when chunks reach the provider’s end-point, Dropbox may re-
ject the file transfer due to multiple files competing for a lock
in order to be verified. From our experiments, we noticed that
Dropbox forces retransmissions whenever the tool uses parallel
transfers (i.e., when using cyberduck and rclone). However, if
no retransmission occurs, one can obtain the best performance
which in our case was 668.643 Mbps (outlier dot in rclone) - still
the lowest upload throughput across all storage systems.

AWS: Our experiments show that throughput relation between
downloads and uploads varies depending on the tool used ( Fig-
ure 1b). When using aws-cli, downloads were always 1.5 times
faster than uploads, measuring above the 2 Gbps and 1 Gbps
marks, respectively; secondly, cyberduck showed a vast differ-
ence, being 1 order of magnitude faster when downloading. How-
ever, cyberduck was the tool that provided the worst perfor-
mance in both types of transfers. Lastly, rclone was the only
tool that reported better mean throughput for uploads than down-
loads. Nevertheless, both directions were close to the 4 Gbps mark
with a relatively small difference (~0.3 Gbps) between their mean
throughput. For this storage system, rclone significantly out-
performed cyberduck and aws-cli and should be the tool of
choice when moving data — the higher number of parallel trans-
fers (20) significantly impacted the final throughput compared
to the maximum of 10 parallel transfers used by the other tools.

Google Drive: AsseeninFigure 1c, only rclone reported through-
put faster for downloads than uploads. Notably, download speeds
using rclone (~4 Gbps) were more than 20 times faster than
gdrive-cli and cyberduck (both reporting mean speeds around
177 Mbps). The latter is surprising given that cyberduck allows
up to 10 parallel transfers whereas gdrive-cli does not. In terms
of uploads, gdrive-cli experienced equal throughput as down-
loads, whereas cyberduck was around 8 times faster than its
mean download performance.
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Figure 1: Throughput measurements (in Mbps) to five different storage systems

Azure: Figure 1d shows that uploads perform better than down-
loads for both rclone and azure-cli. Downloads were particu-
larly slow using azure-cli with speeds sitting below 750 Mbps
and a low standard deviation of 38.75 Mbps. The situation im-
proved when we ran the experiments using rclone, almost dou-
bling azure-cli’s performance with mean speeds around 1.5
Gbps. On the other hand, for uploads, azure-cli reported better
mean speeds above 1 Gbps, although it was again outperformed
by rclone, whose upload throughput ranged between ~1.3 Gbps
in the worst case and ~2.2 Gbps in the best case.

UK’s Ceph object store: Our local object store got the best per-
formance when using rclone for pushing and pulling data with
a mean throughput of ~6.8 Gbps and ~8.0 Gbps, respectively

(see Figure 1e). It is important to note that in one of the exper-
iments, rclone had to retransmit part of the data set causing
the performance to significantly drop to ~2.7 Gbps. Still, rclone
provided yet again the best throughput in both types of trans-
fer when compared to aws-cli and cyberduck, which reported
transfer rates between 1.3 Gbps and 2.4 Gbps. As in other cloud
storage systems, the parallel transfer mechanism of rclone pro-
vided a significant boost to the final throughput when moving
datasets and we conclude it is the tool that should be used when
interacting with local Ceph storage systems.

Service Providers. Unsurprisingly, the best throughput was ob-

tained when transferring data to/from UK’s Ceph object store. As
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Figure 2: Mean throughput heatmaps for data transfer tools to different storage systems

mentioned earlier, rclone’s parallel transfer mechanism allowed
us to reach speeds approaching 9.0 Gbps, the best performance
we record across all five storage systems(see Figure 1f). With re-
spect to public cloud solutions, our results indicate that transfers
originated from our DTN to AWS and Google Drive are generally
faster than Dropbox and Azure using rclone. Therefore, we will
analyze them pair-wise. In Google Drive and AWS, our observa-
tions indicated that the upload and download standard deviation
for the former (845.20 Mbps and 938.93 Mbps, respectively) was
significantly bigger than for the latter (323.19 Mbps and 336.32
Mbps, respectively). Consequently, we expect higher variations in
throughput when using Google Drive and a more stable final speed
when transferring to/from AWS. When comparing Dropbox and
Azure storage systems, we noticed that Dropbox was outperformed
by Azure for uploads. For downloads, however, cyberduck with
Dropbox achieved roughly the same speed as rclone with Azure
while rclone with Dropbox obtained the best performance across
this pair of storage systems.

4 EVALUATING END SYSTEM LOCATION

In this section, we explore performance as it relates to the location
of the researcher’s machine in the campus network and the tool
parameters used in the transfer. In the previous section we focused
on transfers from the HPC Data Transfer Node (DTN) at the edge of
the campus network. In this section, we explore performance of two
types of end system nodes where researchers “live and work”: (file)
server nodes that have substantial computing power, and desktop
nodes that are more resource constrained. In both cases, we assume
that the nodes are located deep inside the campus network. One
major problem of transferring data from these machines to the cloud
is that the path to the cloud has to go through various middleboxes
on campus that provide necessary security functions (say via deep
packet inspection), and at the same time, pose a serious bottleneck
to cloud data transfers. To address this problem, the University
of Kentucky VIP Lanes system [7] takes advantage of the SDN
switches/routers in the campus network to set up middlebox-free
paths directly to the campus edge router for pre-authorized and

trusted users. Our evaluations use these SDN-paths to provide high-
speed bottleneck-free connections to cloud storages from machines
located deep inside the campus network.

From the previous section, we saw that rclone outperforms all
other cloud transfer applications. Consequently we have recom-
mended rclone to researchers on campus as the tool of choice.
Among cloud storage providers, Google Drive has become very
popular among researchers both because of its good performance
and cost (free unlimited storage). Consequently, our analysis will
focus on using rclone to transfer data from campus file servers and
desktops to Google Drive. By pairing rclone with an SDN-enabled
VIP Lanes campus network and tuning the rclone parameters
(e.g. number of parallel transfers, chunk size), we have been able
to obtain significantly better throughput from end system nodes,
sometimes comparable to the performance from the DTN, even
from dedicated server nodes and desktop nodes deep in the campus
network.

4.1 Experiment Setup

For this set of experiments we added two more source nodes shown
in Figure 3 as Aztec Desktop and Flint Server. The characteristics of
the nodes are as follows:

e Flint Server: A server machine with a high-speed path (and
fewer hops) to the Internet. It has a powerful processor (an
Intel(R) Xeon(R) CPU E5-2650L v3) with 48 cores running at
1.80GHz, 180 GB of RAM, and a 10 Gbps network interface with
jumbo frames (i.e. MTU 9000) enabled.

o Aztec Desktop: A desktop workstation in our laboratory run-
ning Ubuntu 16.04. This node has an Intel(R) Core(TM) i5-4570S
processor with 4 cores running at 2.90GHz, 8 GB of RAM, a 1
Gbps network interface with jumbo frames enabled.

Instead of using one data set with a fixed number of files as we
did in the previous section, we created datasets of different file
sizes and different number of files. Specifically, we generated three
datasets, each consisting of one single file varying in size: 1GB,
10GB, and 100GB. We then divided each of these files into 10 and 50
equally-sized files using the split command line utility to obtain
six additional datasets, for a total of nine data sets.
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Figure 3: Location of source nodes in campus network

We uploaded each of the data sets from all three locations (i.e.

Aztec Desktop, Flint Server, and DTN) to Google Drive 4 times

and downloaded from Google Drive to these locations also 4 times.

We recorded the throughput once the transmission finished. For
every push and pull operation, we changed the numbers of parallel
connections (4, 8, 16 or 32) and chunk size parameters (4 MB, 8
MB, 16 MB and 32MB). Due to the 750GB upload limit per account
imposed by Google Drive, we limited the tests for the 100 GB data
sets to only 16 and 32 transfers.

4.2 Results

Viplanes Boost: By enabling high-speed paths for big data science
flows, servers can, at least in some cases, achieve speeds close to
their maximum capacity and often similar to speeds obtained on the
high-end DTN node which are sufficient to move big data to a cloud
storage system very quickly. For instance, as shown in Table 2, some
of our measurements recorded speeds greater than 700 Mbps from
the Aztec Desktop machine, which is approaching the theoretical
maximum of 1 Gbps, and is about 5-7x faster than going through the
normal campus network (~100-150 Mbps), and orders of magnitude
faster than the speeds recorded by others [14] (~600 KB/s in the
best case) when moving data to other cloud storage systems from a
campus machine.

Table 2: Upload and download speeds by location (Mbps)

Location-Dir Mean Std Dev Maximum
Aztec Desktop-up 395 159 734
DTN-up 854 903 5664

Flint Server-up 437 381 2164
Aztec Desktop-down 385 176 768
DTN-down 1839 1226 5204
Flint Server-down 1420 799 3986

Chunk Size: When uploading large files, it is often useful to
chunk the file into multiple smaller pieces as retransmissions incur
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less overhead. Instead of retransmitting the whole file, only a small
piece is retransmitted. rclone allows the user to specify the size
of each generated chunk to be loaded in memory by the thread
in charge of transmitting the file. Figure 4 shows six summary
statistics (min, first quartile, median, mean, third quartile, and max)
for throughput (in Mbps) for 4 different chunk sizes for the DTN,
Flint Server, and Aztec Desktop. Based on the figure, we can observe
that the mean values increase with chunk size. Increasing the chunk
size, however, had less impact on throughput than increasing the
number of parallel transfers. For instance, for the DTN, when the
the chunk size changes from 4, to 8, to 16 and then to 32 MB,
the mean throughput changes from 556, to 727, to 1046 and then
to 1062 Mbps, respectively, whereas when the number of parallel
transfers changes from 4, to 8, to 16 and then to 32, the mean
throughput changes from 425, to 651, to 1077, and then to 1187
Mbps, respectively.

Location
4096 | W aztec
o din

o flint
2048
1024
512 X
256 I I

Chunk Size

Throughput (Mbps)

Figure 4: Upload speed by chunk size (log scale)

Parallel Connections and Number of Cores: As we pointed
out in Section 3, tools that were able to create multiple parallel
connections yielded better performance in all storage systems. The
connections parameter is particularly important if one wants to
take advantage of the core count found in high-end machines (e.g.,
the DTN). As seen in Figure 5, using a lower number of threads than
the number of cores produces slower speeds for the capabilities of
the source node. The influence of this parameter is more noticeable
at the DTN and Flint Server for both uploads and downloads. For
instance, the maximum throughput from the Flint Server while
pushing data to Google Drive measured 617 Mbps, 1013 Mbps,
1608 Mbps, and 2164 Mbps when increasing the number of parallel
transfers from 4 to 8 to 16 to 32 respectively. A similar behavior can
be seen while analyzing the DTN as both nodes have >= 32 cores.

5 RELATED WORK

Analyzing the network performance of cloud storage systems has
become more relevant in recent years given that many companies
and research institutions are outsourcing their storage needs and
trying to understand which provider would offer the best quality
of service for their business/research operations.

Persico et al. [12] describes performance obtained while down-
loading files from AWS S3, considering factors like customer lo-
cation, cloud datacenter region, type of storage within AWS and
file sizes. Shen et al. [14] evaluated the REST API features of four
storage systems (Baidu, Kingsoft, BOX and Dropbox). The authors
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Figure 5: Throughput by number of connections (log scale)

did not explore however, the impact of factors like chunking and
parallel connections on the final throughput.

Researchers at Politecnico di Torino also present a set of bench-
marks for different cloud storage systems [4, 5]. They focused on
characteristics associated with the synchronization of local and
remote files/folders (e.g., how often storage systems check for a
change in local file/directory that needs to be reflected in the re-
mote side, bundling and encryption techniques) using native (GUI)
clients running on Windows.

None of these studies explored performance from HPC DTN
systems or high end researcher nodes located inside the campus
network with the need to transfer large research data sets. Instead,
they focused on personal workloads. Moreover, they did not utilize
high-performance campus network channels and thus experience
network bottlenecks that are now possible to avoid with SDN net-
works. Our work shows that with SDN enabled systems like VIP
Lanes, even end systems located deep in the campus network can
achieve cloud transfer rates approaching the maximum possible
and similar to HPC DTN nodes.

Researchers at the University of Utah analyzed the number of
connections and chunk size for rclone uploads to Google Drive
in [11]. Our findings aligned with theirs, but go beyond to show the
performance to other cloud providers, as well as exploring the per-
formance of other transfer tools, and an expanded parameter space.
Finally, various papers [1, 3] have described the performance of
Globus’ file transfer mechanism, which supports premium storage
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connectors to certain cloud provides for a fee. While the perfor-
mance numbers are quite impressive, it is primarily designed for
DTN-to-DTN transfers, requires connecting to globus, has limited
support for cloud providers, and is cost prohibitive for some insti-
tutions.

6 CONCLUSION

We have witnessed that more and more cloud storage systems have
become available and correspondingly, more transfer tools can be
used to upload data to and download data from the cloud. It be-
comes a challenging problem to select which cloud storage system
and which tool to use. In this paper, we performed a comprehensive
study of performance of several cloud storage systems and data
transfer tools. Our study focused on performance of transferring
big data set and used the DTN nodes as the source node to pre-
vent the influence of middleboxes on campus networks. We also
explored the parameter spaces when using rclone for data transfer
between Google Drive and desktops located deep inside campus
network. This work gives insights into and provides guidance about
choosing an appropriate application and setting best parameters
when transferring large datasets from/to the clouds.
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