


to the agents, it can be reduced to a maximum-flow problem and

solved in polynomial time [23].

Most work on MAPF targets the labeled case, where the goal

for each agent is preassigned. Labeled MAPF can be solved op-

timally using, amongst others, CBS [17], M* [19], combinatorial

auctions [2], or by applying an ILP-solver [25]. Bounded subopti-

mal solvers include ECBS [3] and M* variants [20]. A complete but

unbounded suboptimal solver is Push-and-Rotate [6]. Furthermore,

it is possible to use a polynomial post-processing step to execute

plans on real robots [9]. We base our extension on CBS, because the

framework is easily extendable and it has been shown that some

variants can find solutions for problem instances with hundreds of

agents within a few minutes [5].

In the Target Assignment and Path Finding (TAPF) problem

agents are split into groups and a set of goals is given to each

group [12]. The Conflict-Based Min-Cost-Flow (CBM) algorithm

can be used to find makespan-optimal solutions to TAPF instances.

Our work provides a bounded suboptimal solver (with respect to

sum of path cost) for this and other hybrid MAPF problem instances.

Distributed approaches based on auctions [11] or tokens [13] can

find solutions in the MAPF domain, but, unlike our work, cannot

compute solutions within a user-specified suboptimality bound.

Our approach is conceptually similar to a method which com-

bines task reassignment and path planning in theM* framework [21].

However, our method works with an arbitrary assignment matrix

not requiring that the number of tasks and robots is identical, and

shows better scalability to large teams in particular when using our

bounded suboptimal solver ECBS-TA.

3 PROBLEM DEFINITION
Consider an undirected graph G = (V ,E), where v ∈ V cor-

respond to locations and e ∈ E are unit-weight edges connect-

ing two different vertices, indicating a direct passage between

those locations. There are N agents at different start locations

si ∈ V , i ∈ {1, 2, . . . ,N }. The set of M potential goal locations is

{д1, . . . ,дM }. The binary N × M matrix A indicates whether an

agent can be assigned to a specified goal: the entry ai j is 1 if agent

i is allowed to reach goal дj and 0 otherwise.

At each time step, an agent can either move to an adjacent vertex

(i.e., traverse an edge) or wait at its current vertex. We denote

the current vertex of agent i at time step t as vit . A path pi =

[vi
0
,vi

1
, . . . ,viT i ] for agent i is feasible if and only if the following

conditions hold:

(1) Agent i starts at its start vertex, i.e. vi
0
= si .

(2) Agent i ends at one of its potential goal vertices and remains

there, i.e. viT i = д
j
s.t. ai j = 1.

1

(3) Every action is either moving along an edge or waiting at a

vertex, i.e. ∀t ∈ {0, . . . ,T i − 1}: (vit ,v
i
t+1) ∈ E or vit = v

i
t+1.

A collision between agents i and i ′ can be either a vertex collision

(i.e. ∃t : vit = vi
′

t ) or an edge collision (i.e. ∃t : vit = vi
′

t+1 and

vit+1 = vi
′

t ). A solution consists of feasible paths for all N agents

such that no collision occurs. A solution is optimal if the sum

of individual path costs (SIC) is minimized. The CBS framework

1
If there is no assigned goal, we only require agent i to remain at some location

eventually.

requires that agents move in unit time steps. We want to optimize

the total time and therefore we minimize

∑N
i=1T

i
.

This problem definition is identical to the traditional MAPF prob-

lem with the exception that we introduce the potential assignment

matrix A. In case of N = M and A being a permutation matrix (i.e.,

A contains exactly one 1 in each row and column, and all other ele-

ments are 0), our problem is identical to non-anonymous or labeled

MAPF. In case of N = M and A = 1, the problem is identical to the

anonymous or unlabeled MAPF case. Our formulation also allows

cases where there are more goals than agents, more agents than

goals, or not all agents can reach all goals.

4 CBS-TA
A typical approach for task assignment and path planning is to

separate them into two stages. However, both problems are tightly

coupled, and certain task assignments may result in fewer colli-

sions during path planning (see Figure 1 for an example). To find

an optimal solution, a naive approach would be to generate all

possible assignments and solve the path planning for each of those

assignments. However, there are

(M
N

)
assignments for N robots and

M goals (assuming M ≥ N ), making this approach infeasible in

practice. Instead, we generate an additional assignment on demand

once we know that this assignment needs to be considered for the

optimal solution, similar to an approach discussed for M* [21].

4.1 Algorithm
We start by briefly describing Conflict-Based Search (CBS), which

we extend to incorporate task assignment. CBS is a two-level search.

The low-level constructs paths for each individual agent given

constraints provided by the high-level. The high-level finds conflicts

(in our case, collisions) and resolves them at their earliest start time.

Conflict resolution works by adding two successor nodes in the

high-level search tree and introducing an additional constraint for

each agent participating in the conflict at the lower level. CBS is

complete and optimal with respect to the sum of the cost of all

agents [17].

For CBS-TA we only need to change the high-level search; see

Algorithm 1. Lines that were changed compared to CBS (Algorithm

1 in [16]) are highlighted. In CBS-TA, each high-level node has

two additional fields: root describes if the current node is a root
node and assiдnment describes the current task assignment which

is used during the low-level search. CBS builds a search tree with

a single root node. In comparison, CBS-TA creates a search forest,

but expands new root nodes only on demand. CBS-TA starts with

a single root node which uses the best task assignment, while

ignoring possible conflicts between agents. Whenever a root node

is expanded during the search, we create another root node with

the next best assignment.

By design, CBS-TA requires an efficient way of computing the

next-best assignment. It is possible to enumerate the K best solu-

tions in various domains, including task assignment [7].We base our

method on existing algorithms [4, 15] but compute new solutions

on demand, rather than a set of K solutions. Our notation is closely

based on [4]. We compute a lower bound of the cost for agent i to
reach goalдj (ifai j = 1) by computing the shortest path, ignoring all

other agents. A helper functionassiдnment (C ) computes an optimal









ECBS ECBS-TA (CBS-TA style) ECBS-TA (MinRoot)

Grid Size w Agents Success Cost Runtime Success Cost Runtime Success Cost Runtime

8 × 8

1.0

5 1.00 18.7 0.00 1.00 18.2 0.00 1.00 18.2 0.00
9 0.96 24.3 0.01 1.00 22.2 0.01 1.00 22.2 0.01
19 0.56 34.3 1.30 0.98 27.2 0.31 0.98 27.2 0.32

1.1

5 1.00 18.7 0.00 1.00 18.3 0.00 1.00 18.4 0.00
9 0.97 24.5 0.17 1.00 22.7 0.00 1.00 22.9 0.01

19 0.56 34.6 0.93 0.99 28.9 0.10 0.99 29.3 0.11

1.3

5 1.00 18.8 0.00 1.00 18.7 0.00 1.00 18.9 0.00
9 1.00 25.6 0.01 1.00 24.5 0.00 1.00 25.4 0.01

19 0.68 37.9 1.16 1.00 32.8 0.05 0.89 34.5 0.44

32 × 32

1.00

40 0.92 248 0.5 0.57 244 4.3 0.58 244 4.2

70 0.32 283 1.4 0.01 271 3.0 0.01 271 2.8

100 0.01 - - 0.00 - - 0.00 - -

1.05

40 0.95 264 0.4 0.99 262 0.5 0.95 263 0.7

70 0.45 352 1.7 0.52 350 5.5 0.40 351 1.6
100 0.04 359 2.5 0.03 359 16.8 0.04 359 1.6

1.10

40 0.99 268 0.2 1.00 267 0.3 0.99 269 0.1
70 0.84 371 0.6 0.82 369 2.6 0.80 371 0.5
100 0.33 417 2.6 0.27 417 15.3 0.29 418 2.3

Table 1: Benchmark results comparing task assignment followed by ECBS with ECBS-TA for different suboptimality bounds
w . Each data point averages 100 randomly generated 4-connected grids with random start and goal locations.

time to 30 s and mark a trial as a failure if no solution was found

within the time limit. We vary the number of agents and report the

success rate, average cost, and average runtime over 100 randomly

created examples per number of agents. For CBS-TA, we use the

shortest distance as heuristic in the low-level search.

6.1.1 TA+CBS versus CBS-TA. We compare CBS-TA to task as-

signment followed by CBS (TA+CBS). To ensure fair runtime com-

parison, we implement TA+CBS by executing the same CBS-TA

implementation with an artificial limit of a single root-node expan-

sion. Our results (see Figure 3) show that the success rate of CBS-TA

is higher compared to TA+CBS. For examples that were successful

with both algorithms, we compute the average cost and average

runtime. CBS-TA achieves a lower average cost in a shorter average

time compared to TA+CBS. We analyze the relative frequency of

this effect by looking at individual histograms of the cost savings

(that is cost(TA+CBS) - cost(CBS-TA)) and runtime savings, compar-

ing only examples that were successful with both algorithms. With

only 5 agents, over 80% of the test cases show no cost difference

and the runtime is identical in nearly all cases. With 19 agents,

however, the cost improvement peaks at an improvement of 7 (over

20% of the examples), while the runtime is identical in over 75% of

the cases. This shows, that CBS-TA is in particular beneficial for

dense cases, where the task assignment and path planning are more

tightly coupled. Additionally, CBS-TA does not seem to require

additional runtime, even for sparser examples.

6.1.2 CBS-TA versus ILP. Integer Linear Program (ILP) formu-

lations have been used for the non-anonymous MAPF problem

minimizing different objectives including makespan and sum-of-

cost [25]. The idea behind such formulations is to construct a time-

expanded flow graph and formulate a multi-commodity flow prob-

lem. We implement an ILP based on this idea assuming M = N

and a fully anonymous assignment. This is challenging for CBS-TA

(because N ! possible assignments have to be considered), but easier

for the ILP formulation because it can be framed as a single com-

modity flow. Such instances can be solved in polynomial time when

optimizing for makespan [14]. In order to be able to minimize for

the sum-of-cost instead, we use the following steps. First, we gen-

erate the time-expanded flow graph and formulate an ILP, similar

to [25], but using a single commodity for all agents, rather than one

commodity per agent. Second, we add one additional auxiliary inte-

ger variable for each goal capturing the time until an agent reaches

and stays at that goal. Third, we set our optimization objective to

minimize the sum of all such auxiliary variables [14].

We use Gurobi 7.5 as ILP solver [8]. In order to solve an instance,

we need an upper bound of the makespan of the optimal solution.

We find an upper bound dynamically, by doubling the makespan on

each attempt. Only if the cost between two successive attempts did

not change do we report a solution. This avoids solutions where

the makespan but not sum-of-cost is minimal.

The ILP solver computes results with the same minimum cost in

all solved cases, as expected. However, the runtime is significantly

higher compared to CBS-TA. For example, the average runtime for

10 agents is 21 s. This also affects the success rate (see Figure 3),

which is significantly lower compared to CBS-TA for larger numbers

of agents.

6.2 ECBS-TA
We use benchmarks to compare the two ECBS-TA variants to opti-

mal task assignment followed by ECBS using different environment

sizes and suboptimality bounds. Note that even though we use the

same suboptimality bound for ECBS-TA and ECBS, they have dif-

ferent semantics. In the ECBS-case we guarantee that the returned

result is within a factor ofw given that the task assignment is fixed.
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