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ABSTRACT

We consider a variant of the Multi-Agent Path-Finding problem
that seeks both task assignments and collision-free paths for a set
of agents navigating on a graph, while minimizing the sum of costs
of all agents. Our approach extends Conflict-Based Search (CBS),
a framework that has been previously used to find collision-free
paths for a given fixed task assignment. Qur approach is based on
two key ideas: (i) we operate on a search forest rather than a search
tree; and (ii) we create the forest on demand, avoiding a factorial
explosion of all possible task assignments. We show that our new
algorithm, CBS-TA, is complete and optimal. The CBS framework
allows us to extend our method to ECBS-TA, a bounded suboptimal
version. We provide extensive empirical results comparing CBS-TA
to task assignment followed by CBS, Conflict-Based Min-Cost-Flow
(CBM), and an integer linear program (ILP) solution, demonstrating
the advantages of our algorithm. Our results highlight a significant
advantage in jointly optimizing the task assignment and path plan-
ning for very dense cases compared to the traditional method of
solving those two problems independently. For large environments
with many robots we show that the traditional approach is reason-
able, but that we can achieve similar results with the same runtime
but stronger suboptimality guarantees.
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1 INTRODUCTION

In the Multi-Agent Path-Finding (MAPF) problem, a set of agents is
tasked to move from their start locations to specified goal locations
in a known environment without collisions. The MAPF problem
and its variants have many applications, including warehouse au-
tomation, improving traffic at intersections, and search and rescue;
see [25] for detailed references.

In this paper we are motivated by warehouse automation, where
robots might be used to deliver shelves to pack stations [22]. In
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Figure 1: Example where task assignment and path plan-
ning cannot be decoupled for the optimal solution. Start po-
sitions are circles and goals are squares. Left: Robot 2 must
move into the alley temporarily, resulting in a total cost of 8.
Right: Both robots can move along their direct path without
collision, resulting in a total cost of 6.

this domain, robots can initially choose which shelf to pick, but
then the shelf must be moved to a specified station. Thus, a robot’s
task is partially anonymous (any shelf can be picked) and partially
non-anonymous (the shelf needs to be delivered to a specified goal)
at the same time. The objective in this domain is to minimize the
idle time of human workers.

In this work, we extend Conflict-Based Search (CBS) [17] (and
some of its variants) to simultaneously assign tasks and find paths
for agents even for hybrid MAPF problem instances. Another hybrid
solver is the Conflict-Based Min-Cost-Flow (CBM) algorithm [12]
that minimizes the makespan (time until the last agent reaches its
goal), which does not map well to minimizing idle time, where the
sum of all costs is a better metric. We provide representative exper-
imental results that demonstrate that our method, called CBS-TA,
outperforms the naive (yet frequently used) approach of solving
task assignment and path planning independently in dense environ-
ments. Finally, the CBS framework allows us to extend our approach
to ECBS, a bounded suboptimal MAPF solver. We introduce our
bounded suboptimal algorithm, ECBS-TA, and compare its solution
quality and runtime to existing solutions.

2 RELATED WORK

MAFPF is a well-studied problem in AL Given an undirected graph
of the environment with uniform edge weights and start and goal
locations for the agents, we must construct a collision-free path for
each agent. Starting at their start location, agents must eventually
reach their goal location, and can, at each time step, either wait at
a vertex or traverse an edge.

There are two objective functions frequently used in the liter-
ature: (1) the sum of the path costs for all agents and (2) the time
elapsed until the last agent reaches its goal, i.e. the makespan. MAPF
has been shown to be NP-hard [14, 18]; however, in the special case
where the makespan is minimized and goals can freely be assigned



to the agents, it can be reduced to a maximum-flow problem and
solved in polynomial time [23].

Most work on MAPF targets the labeled case, where the goal
for each agent is preassigned. Labeled MAPF can be solved op-
timally using, amongst others, CBS [17], M* [19], combinatorial
auctions [2], or by applying an ILP-solver [25]. Bounded subopti-
mal solvers include ECBS [3] and M* variants [20]. A complete but
unbounded suboptimal solver is Push-and-Rotate [6]. Furthermore,
it is possible to use a polynomial post-processing step to execute
plans on real robots [9]. We base our extension on CBS, because the
framework is easily extendable and it has been shown that some
variants can find solutions for problem instances with hundreds of
agents within a few minutes [5].

In the Target Assignment and Path Finding (TAPF) problem
agents are split into groups and a set of goals is given to each
group [12]. The Conflict-Based Min-Cost-Flow (CBM) algorithm
can be used to find makespan-optimal solutions to TAPF instances.
Our work provides a bounded suboptimal solver (with respect to
sum of path cost) for this and other hybrid MAPF problem instances.

Distributed approaches based on auctions [11] or tokens [13] can
find solutions in the MAPF domain, but, unlike our work, cannot
compute solutions within a user-specified suboptimality bound.

Our approach is conceptually similar to a method which com-

bines task reassignment and path planning in the M* framework [21].

However, our method works with an arbitrary assignment matrix
not requiring that the number of tasks and robots is identical, and
shows better scalability to large teams in particular when using our
bounded suboptimal solver ECBS-TA.

3 PROBLEM DEFINITION

Consider an undirected graph G = (V,E), where v € V cor-
respond to locations and e € E are unit-weight edges connect-
ing two different vertices, indicating a direct passage between
those locations. There are N agents at different start locations
sl € V,i € {1,2,...,N}. The set of M potential goal locations is
{g",...,gM}. The binary N x M matrix A indicates whether an
agent can be assigned to a specified goal: the entry a;; is 1 if agent
i is allowed to reach goal ¢/ and 0 otherwise.

At each time step, an agent can either move to an adjacent vertex
(i.e., traverse an edge) or wait at its current vertex. We denote
the current vertex of agent i at time step ¢ as v!. A path p' =
,v;i] for agent i is feasible if and only if the following
conditions hold:

[v(l), vi, ...
(1) Agent i starts at its start vertex, i.e. vé = st
(2) Agent i ends at one of its potential goal vertices and remains
there, ie. vy, = ¢/ st ajj = 1!
(3) Every action is either moving along an edge or waiting at a

: i i i i i
vertex, ie. Yt € {0,...,T —1}.(vt,vt+1) eEorvt—le.

A collision between agents i and i’ can be either a vertex collision
v

. t+1

v;,; = v; ). A solution consists of feasible paths for all N agents

such that no collision occurs. A solution is optimal if the sum

of individual path costs (SIC) is minimized. The CBS framework

(ie 3t : v;' = ’Ug,) or an edge collision (i.e. It : U£ = vl ,and

UIf there is no assigned goal, we only require agent i to remain at some location
eventually.

requires that agents move in unit time steps. We want to optimize
the total time and therefore we minimize Zfi 1 TE.

This problem definition is identical to the traditional MAPF prob-
lem with the exception that we introduce the potential assignment
matrix A. In case of N = M and A being a permutation matrix (i.e.,
A contains exactly one 1 in each row and column, and all other ele-
ments are 0), our problem is identical to non-anonymous or labeled
MAPF. In case of N = M and A = 1, the problem is identical to the
anonymous or unlabeled MAPF case. Our formulation also allows
cases where there are more goals than agents, more agents than
goals, or not all agents can reach all goals.

4 CBS-TA

A typical approach for task assignment and path planning is to
separate them into two stages. However, both problems are tightly
coupled, and certain task assignments may result in fewer colli-
sions during path planning (see Figure 1 for an example). To find
an optimal solution, a naive approach would be to generate all
possible assignments and solve the path planning for each of those
assignments. However, there are (1]\\}) assignments for N robots and
M goals (assuming M > N), making this approach infeasible in
practice. Instead, we generate an additional assignment on demand
once we know that this assignment needs to be considered for the
optimal solution, similar to an approach discussed for M* [21].

4.1 Algorithm

We start by briefly describing Conflict-Based Search (CBS), which
we extend to incorporate task assignment. CBS is a two-level search.
The low-level constructs paths for each individual agent given
constraints provided by the high-level. The high-level finds conflicts
(in our case, collisions) and resolves them at their earliest start time.
Conflict resolution works by adding two successor nodes in the
high-level search tree and introducing an additional constraint for
each agent participating in the conflict at the lower level. CBS is
complete and optimal with respect to the sum of the cost of all
agents [17].

For CBS-TA we only need to change the high-level search; see
Algorithm 1. Lines that were changed compared to CBS (Algorithm
1 in [16]) are highlighted. In CBS-TA, each high-level node has
two additional fields: root describes if the current node is a root
node and assignment describes the current task assignment which
is used during the low-level search. CBS builds a search tree with
a single root node. In comparison, CBS-TA creates a search forest,
but expands new root nodes only on demand. CBS-TA starts with
a single root node which uses the best task assignment, while
ignoring possible conflicts between agents. Whenever a root node
is expanded during the search, we create another root node with
the next best assignment.

By design, CBS-TA requires an efficient way of computing the
next-best assignment. It is possible to enumerate the K best solu-
tions in various domains, including task assignment [7]. We base our
method on existing algorithms [4, 15] but compute new solutions
on demand, rather than a set of K solutions. Our notation is closely
based on [4]. We compute a lower bound of the cost for agent i to
reach goal ¢/ (if a;; = 1) by computing the shortest path, ignoring all
other agents. A helper function assignment (C) computes an optimal



Algorithm 1: high-level of CBS-TA

Algorithm 2: firstAssignment

Input: Graph, start and goal locations, assignment matrix
Result: optimal path for each agent
R.constraints « 0

[

L]

R.assignment « firstAssignment()

3 Rroot « True

4 R.solution « find individual paths using low-level()
R.cost « SIC(R.solution)

6 insert R to OPEN

while OPEN not empty do

8 | P « best node from OPEN // lowest solution cost
9 | Validate the paths in P until a conflict occurs.

10 | if P has no conflict then

11 Lrel‘urn P.solution // P is goal

w

-

12 | if Proot is True then

13 R « new node

14 R.constraints < 0

15 R.assignment « nextAssignment()

16 R.root « True

17 R.solution « find individual paths using low-level()
18 R.cost « SIC(R.solution)

19 | insert R to OPEN

20 | Conflict « (aj, a;j, v, t) first conflict in P
21 | for agent aj in Conflict do

22 Q « new node

23 Q.constraints « P.constraints + (a;, s, t)

24 Q.assignment « P.assignment

25 Q.root « False

26 Q.solution « P.solution

27 Update Q.solution by invoking low-level(a;)
28 Q.cost « SIC(Q.solution)

29 Insert Q to OPEN

assignment for a given cost matrix C; this can be achieved, for exam-
ple, by the Hungarian method [10] or flow-based approaches [1]. We
introduce a new function constrainedAssignment(I, O, C), where
I is the set of assignments that must be part of the solution, O is
the set of assignments that cannot be part of the solution, and C
is the cost matrix. This function can be implemented as follows.
First, we compute another cost matrix C” such that C’ is identical
to C, except that we change the cost to 0 for each entry in I and
to infinity for each entry in O. Second, we execute any optimal
assignment algorithm (e.g., the Hungarian Method) using C’. The
pseudo code of our next-best assignment functions are shown in
Algorithms 2 and 3.

The central idea of the algorithm is to partition the solution space
such that we forbid some assignments and forcefully include others.
It has been shown that such a partitioning covers the complete
solution space [15]. If the Hungarian Method is used and N = M,
the complexity for finding the next solution is O(N*4).

Input: cost matrix C
Result: best assignment, initial ASG_OPEN
1 R « new node
2 RO« 0
3 RI«—0
4 R.solution = constrainedAssignment(R.I,R.0,C)
5 Insert R to ASG_OPEN
¢ return R.solution

Algorithm 3: nextAssignment
Input: cost matrix C, ASG_OPEN
Result: next best assignment, updated ASG_OPEN
1 P « best node from ASG_OPEN // lowest solution cost
2 if P does not exist then
3 Lreturn No next assignment

4 fori— 1toN do

5 | if i not part of P.I then

6 Q « new node

7 Q.0 = P.O U {P.solution][i]}

] Q.I = P.IU {P.solution[j] : j < i}

9 Q.solution = constrainedAssignment(Q.1,Q.0,C)
10 if Q.solution not empty then

1 LInsert Q to ASG_OPEN

-

2 return solution of best node from ASG_OPEN

4.2 Properties of CBS-TA

In the following we show that CBS-TA, like CBS, is complete and
optimal with respect to sum-of-cost.

THEOREM 4.1. CBS-TA is complete.

PrOOF. It has been shown that CBS will return an optimal so-
lution if one exists [17]. CBS-TA performs a CBS search on each
root node. Whenever a root node is expanded the next best possible
assignment is computed, until all possible assignments have been
enumerated. Thus, the search is exhaustive in both task assignment

and path planning. m}

THEOREM 4.2. CBS-TA computes a solution that minimizes the
sum of individual costs of all agents if one exists.

ProoF. If the assignment is fixed, the cost of each root node
in the high-level search is a lower bound on the real cost (proof:
Lemma 1, [17]). CBS-TA expands assignments in increasing cost
order, therefore all expanded high-level nodes are a lower bound
on the optimal cost. During each high-level search node expansion,
the minimum cost either stays the same or increases because of
the best-first expansion order in the high-level search. A different
assignment can only be part of the optimal solution if its lower cost
bound is identical or smaller than the current minimum cost in the
high-level search. However, in this case this assignment was already
added as new root node, because a previous root node (as a lower
bound for its fixed assignment) must have been expanded. m}
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Figure 2: Example execution of CBS-TA. The environment (a) can be represented as graph (b) with some vertices being start
and/or goal vertices. During the search, ASG_OPEN and OPEN are incrementally updated. The former can be visualized as a
tree (c), while the latter forms a forest (d). See section 4.3 for additional details.

4.3 Example

The algorithm proceeds as follows. Consider an environment with
N = 2 agents and M = 3 goals, see Figure 2a. The problem can be
formulated on a graph (see Figure 2b), with an assignment matrix

c d e
A:1011.
2 \1 0 1

Based on G and A, we can compute the cost matrix C by considering
the shortest path for each agent to the respective goal (ignoring all
other agents):

c d e

C:10034.
2 \1 oo 3

We labeled the different steps in their respective orders in Figures 2c
and 2d. Using the cost matrix C, the first assignment commits agent
1 to goal d and agent 2 to goal ¢ ([1 + d, 2 — c]) with cost 4. This
creates an entry in the Assignment Open List (ASG_OPEN) (step 1)
and a node in OPEN (step 2).

The path validation finds a conflict between the two agents
at time step 2 (line 9). When expanding a root node, we must
also compute the next best assignment and add a new root node
(lines 12 — 19). For the next best assignment, we compute two
possible successors in the assignment tree: the first one disallows
the assignments O = {1 +— d} while the second one disallows
O = {2 + c} and enforces I = {1 + d} (lines 4 — 11 in Algorithm 3;
step 3). In general, there might be up to N successors. The function
nextAssignment returns the lowest cost option ([1 + e,2 - ¢]).
We compute the shortest path for each agent individually based on
this assignment and add it to the OPEN list (step 4).

We now try to resolve the first conflict (1, 2, ¢, 2), by adding ad-
ditional nodes to the OPEN list (lines 21 — 29). Namely, we consider
the case where agent 1 is constrained to not be at node ¢ at time
step 2 and the case where agent 2 cannot be at node c at time step
2 (step 5).

In the next iteration we pick the second root node from the
OPEN list (step 6).2 We need to compute the next best assignment
([1 ~ d,2 + e])and add an additional root node because the node
being expanded is a root node (steps 7 and 8). The currently selected
node from OPEN has a conflict (node c at time step 2) and we need
to attempt to resolve it by adding two additional child nodes (step
9). Finally, we select the third root node from OPEN and return its
solution because it is conflict free (step 10).

5 EXTENSIONS

We now show how CBS-TA can be extended to solve problem
instances within a suboptimality bound and how it can be applied
to additional interesting MAPF variants.

5.1 ECBS-TA

Enhanced CBS (ECBS) is a bounded suboptimal solver for MAPF [3].
ECBS uses focal search in both low- and high-level search algo-
rithms. In focal search, a FOCAL list is maintained alongside the
OPEN list. The FOCAL list contains a subset of the entries in the
OPEN list, such that the cost of the entries in FOCAL are within a
constant factor w of the best cost in OPEN. The low-level search of
ECBS is changed in the following way compared to CBS: First, focal
search (rather than A®) is used with a second inadmissible heuristic
that estimates the number of conflicts. This is used to minimize
the number of expected conflicts. Second, the lowest f-value of the
low-level OPEN list is returned, in addition to the solution path. On
the high-level, a lower bound LB(n) is computed for each node n as
the sum of the minimum f-values (from the low-level search). The
high-level FOCAL list then only contains entries of the high-level
OPEN list whose cost is less than or equal to wmin LB(n). As in
the lower-level search, an inadmissible heuristic that counts the
number of expected conflicts is used for expansion. Keeping track
of the lower bound through both search levels allows ECBS to use
a single suboptimality factor w.

2 We assume the FIFO principle as tie breaker in the OPEN list. An implementation
could pick any of the nodes with cost 5.
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Figure 3: Benchmark results comparing CBS-TA with task assignment followed by CBS (TA+CBS) and ILP. Top: Each data
point summarizes 100 randomly generated 8 x 8 4-connected grids with random start and goal locations. CBS-TA has a higher
success rate, while achieving a lower average cost and runtime compared to TA+CBS. Bottom: Histograms comparing cost and
runtime savings (i.e., TA+CBS minus CBS-TA) for 5, 9, and 19 agents. For few agents, there is frequently no cost or runtime
difference between TA+CBS and CBS-TA, but a few outliers result in better average performance for CBS-TA. For many agents,

CBS-TA computes better results in most cases, with large runtime benefits in a few cases.

In order to jointly optimize for task assignment and path plan-
ning in the ECBS framework, we can use the same idea as for
CBS-TA and generate a search forest with the root nodes referring
to different assignments. However, the suboptimality bound w cre-
ates slack in the search, allowing us to be more flexible on when to
generate additional root nodes. We consider three variants:

MaxRoot Add as many root nodes as possibly useful for the
given w. In particular, we keep track of the highest cost of
the already expanded root nodes. If that cost is smaller than
wmin LB(n), we add all additional root nodes whose cost is
no larger than wmin LB(n).

CBS-TA-style Following the same logic as CBS-TA, we add
one additional root node each time a root node is expanded.

MinRoot Add as few root nodes as possible, without violating
the suboptimality guarantee. In particular, we initially set
r = wmin LB(n). We only add an additional root node if the
lowest-cost entry in the high-level OPEN list has a cost larger
than r. In this case, we compute an additional assignment
and update r.

The first variant (MaxRoot) can potentially compute low-cost so-
lutions, even if high suboptimality bounds are used. However, the
approach is impractical for large M and N, because there are too
many potential assignments. Therefore this method is not imple-
mented. We empirically evaluate CBS-TA-style and MinRoot on
various instances, as described in Section 6.2.

5.2 Suboptimal TAPF

Our MAPF formulation permits agents to have a set of possible goals.
One example of such a problem is the TAPF problem, in which each

agent is part of a group and a set of goals is assigned to each group.
TAPF can be solved optimally with respect to the makespan using
the Conflict-Based Min-Cost-Flow (CBM) algorithm [12], which
uses a two-level search like CBS. Compared to CBS, CBM uses
a maximum flow algorithm per group to find paths on the low-
level rather than using A* per agent. We can model TAPF problem
instances by setting N = M and matrix A according to the group
assignment. CBS-TA can compute optimal solutions with respect
to the sum of costs, which can be more relevant in some scenarios
(e.g. minimizing the total energy usage of the team). It has been
shown that makespan and sum of cost cannot be simultaneously
optimized [24]. Therefore, we need to consider our optimization
objective directly. ECBS-TA can be used to find bounded suboptimal
solutions to such problem instances. We present empirical results
comparing CBM and ECBS-TA in Section 6.3.

6 EXPERIMENTS

We implement CBS-TA and ECBS-TA in C++ using the boost library
for fast heap data structures. We use a minimum-cost maximum-
flow formulation that is part of the boost graph library to solve
unconstrained assignment problems efficiently. All experiments
were executed on a laptop (i7-4600U 2.1 GHz and 12 GB RAM).

6.1 CBS-TA

We use a set benchmark instances to compare CBS-TA to other
existing methods. We randomly generated 8 X 8 4-connected grids
with 20% obstacles and with random start and goal locations, such
that it is guaranteed that there is at least one assignment where all
agents can reach their respective goals. We limit the computation



ECBS ECBS-TA (CBS-TA style) ECBS-TA (MinRoot)
Grid Size w Agents || Success [ Cost [ Runtime || Success [ Cost [ Runtime || Success [ Cost [ Runtime
5 1.00 18.7 0.00 1.00 18.2 0.00 1.00 18.2 0.00
1.0 9 0.96 24.3 0.01 1.00 22.2 0.01 1.00 22.2 0.01
19 0.56 34.3 1.30 0.98 27.2 0.31 0.98 27.2 0.32
5 1.00 18.7 0.00 1.00 18.3 0.00 1.00 18.4 0.00
8% 8 1.1 9 0.97 24.5 0.17 1.00 22.7 0.00 1.00 22.9 0.01
19 0.56 34.6 0.93 0.99 28.9 0.10 0.99 29.3 0.11
5 1.00 18.8 0.00 1.00 18.7 0.00 1.00 18.9 0.00
1.3 9 1.00 25.6 0.01 1.00 24.5 0.00 1.00 254 0.01
19 0.68 37.9 1.16 1.00 32.8 0.05 0.89 34.5 0.44
40 0.92 248 0.5 0.57 244 43 0.58 244 4.2
1.00 70 0.32 283 14 0.01 271 3.0 0.01 271 2.8
100 0.01 - - 0.00 - - 0.00 - -
40 0.95 264 04 0.99 262 0.5 0.95 263 0.7
32 %32 1.05 70 0.45 352 1.7 0.52 350 5.5 0.40 351 1.6
100 0.04 359 2.5 0.03 359 16.8 0.04 359 1.6
40 0.99 268 0.2 1.00 267 0.3 0.99 269 0.1
1.10 70 0.84 371 0.6 0.82 369 2.6 0.80 371 0.5
100 0.33 417 2.6 0.27 417 15.3 0.29 418 2.3

Table 1: Benchmark results comparing task assignment followed by ECBS with ECBS-TA for different suboptimality bounds
w. Each data point averages 100 randomly generated 4-connected grids with random start and goal locations.

time to 30 s and mark a trial as a failure if no solution was found
within the time limit. We vary the number of agents and report the
success rate, average cost, and average runtime over 100 randomly
created examples per number of agents. For CBS-TA, we use the
shortest distance as heuristic in the low-level search.

6.1.1 TA+CBS versus CBS-TA. We compare CBS-TA to task as-
signment followed by CBS (TA+CBS). To ensure fair runtime com-
parison, we implement TA+CBS by executing the same CBS-TA
implementation with an artificial limit of a single root-node expan-
sion. Our results (see Figure 3) show that the success rate of CBS-TA
is higher compared to TA+CBS. For examples that were successful
with both algorithms, we compute the average cost and average
runtime. CBS-TA achieves a lower average cost in a shorter average
time compared to TA+CBS. We analyze the relative frequency of
this effect by looking at individual histograms of the cost savings
(that is cost(TA+CBS) - cost(CBS-TA)) and runtime savings, compar-
ing only examples that were successful with both algorithms. With
only 5 agents, over 80% of the test cases show no cost difference
and the runtime is identical in nearly all cases. With 19 agents,
however, the cost improvement peaks at an improvement of 7 (over
20% of the examples), while the runtime is identical in over 75% of
the cases. This shows, that CBS-TA is in particular beneficial for
dense cases, where the task assignment and path planning are more
tightly coupled. Additionally, CBS-TA does not seem to require
additional runtime, even for sparser examples.

6.1.2 CBS-TA versus ILP. Integer Linear Program (ILP) formu-
lations have been used for the non-anonymous MAPF problem
minimizing different objectives including makespan and sum-of-
cost [25]. The idea behind such formulations is to construct a time-
expanded flow graph and formulate a multi-commodity flow prob-
lem. We implement an ILP based on this idea assuming M = N

and a fully anonymous assignment. This is challenging for CBS-TA
(because N! possible assignments have to be considered), but easier
for the ILP formulation because it can be framed as a single com-
modity flow. Such instances can be solved in polynomial time when
optimizing for makespan [14]. In order to be able to minimize for
the sum-of-cost instead, we use the following steps. First, we gen-
erate the time-expanded flow graph and formulate an ILP, similar
to [25], but using a single commodity for all agents, rather than one
commodity per agent. Second, we add one additional auxiliary inte-
ger variable for each goal capturing the time until an agent reaches
and stays at that goal. Third, we set our optimization objective to
minimize the sum of all such auxiliary variables [14].

We use Gurobi 7.5 as ILP solver [8]. In order to solve an instance,
we need an upper bound of the makespan of the optimal solution.
We find an upper bound dynamically, by doubling the makespan on
each attempt. Only if the cost between two successive attempts did
not change do we report a solution. This avoids solutions where
the makespan but not sum-of-cost is minimal.

The ILP solver computes results with the same minimum cost in
all solved cases, as expected. However, the runtime is significantly
higher compared to CBS-TA. For example, the average runtime for
10 agents is 21s. This also affects the success rate (see Figure 3),
which is significantly lower compared to CBS-TA for larger numbers
of agents.

6.2 ECBS-TA

We use benchmarks to compare the two ECBS-TA variants to opti-
mal task assignment followed by ECBS using different environment
sizes and suboptimality bounds. Note that even though we use the
same suboptimality bound for ECBS-TA and ECBS, they have dif-
ferent semantics. In the ECBS-case we guarantee that the returned
result is within a factor of w given that the task assignment is fixed.
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Figure 4: Benchmark results comparing CBM with ECBS-TA for 8 x 8 4-connected grid environments. ECBS-TA achieves a
higher success rate at comparable runtime with w = 2. For all used suboptimality bounds the achieved sum of costs is lower
when using ECBS-TA when compared to CBM. However, because CBM optimizes makespan, it outperforms ECBS-TA with

respect to makespan.

ECBS-TA, on the other hand, guarantees to return a solution that is
within a factor of w for the optimal valid task assignment. Thus, the
guarantee given by ECBS-TA is stronger. In all cases we numerically
verified that the suboptimality bounds are fulfilled.

6.2.1 Small Environments. In the first set of tests, we use the
same 8 X 8 4-connected grids with 20% obstacles as for the CBS-TA
analysis in the previous section. We vary the number of agents and
report the success rate, average cost, and average runtime over 100
examples per numbers of agents. A subset of our results is shown in
Table 1. Both ECBS-TA variants achieve higher success rates, lower
or comparable costs, and lower runtime compared to ECBS when
used with the same suboptimality bound. When comparing the
two different ECBS-TA versions, we notice that the CBS-TA style
root-node expansion results in lower costs at higher suboptimality
bounds. In case (w = 1.3), this version also provides a higher success
rate at a lower runtime, compared to the MinRoot expansion policy.

6.22 Large Environments. In another set of tests (see Table 1) we
used 32 % 32 4-connected grids, again with 20% obstacles. Instead of
up to 20 robots we test with up to 100 robots. This results in longer
required paths for each robot, but has a lower robot-to-free-space
density of 12% compared to the 38% of the smaller maps.

When computing the optimal solution (w = 1), the success rate
of ECBS-TA (both variants) is now significantly lower than ECBS.
For instances that could be solved by all variants, the solution
found by ECBS-TA has a lower cost, but not significantly (less
than 5% on average). Higher suboptimality bounds (w = 1.05 and
w = 1.1) improve the success rate of ECBS-TA to a comparable
level and the solution quality is nearly identical for ECBS and
ECBS-TA. However, the runtime of ECBS-TA using the CBS-TA
style expansion is significantly higher and grows quickly with the
number of agents. Our MinRoot expansion on the other hand has
the same (and sometimes better) runtime than ECBS.

This effect can be explained as follows. The number of possible
task assignments grows factorially in the number of robots. Thus,
instances with many robots have many possible assignments with
identical cost (we noticed several hundred possible assignments
with optimal cost for some of our examples). Adding another root

node in the ECBS forest is time-consuming, because another as-
signment needs to be computed and low-level search for each robot
for this assignment needs to be executed. Therefore, our CBS-TA
style expansion will create many additional root nodes, but those
root nodes do not help significantly to find lower cost solutions.
The MinRoot expansion delays creating additional root-nodes as
long as possible for the given w. High suboptimality bounds might
not trigger the creation of any additional root node.

Consequently, instances with many robots should use ECBS-TA
with the MinRoot expansion. This provides stronger suboptimality
guarantees compared to ECBS and better results with low subop-
timality bounds. At the same time ECBS-TA achieves the same
results in terms of runtime and cost as ECBS for high suboptimality
bounds.

6.3 TAPF

Thus far our experiments have only considered the unlabeled case.
We now evaluate cases where the target assignment is more con-
strained. To be able to compare to a baseline we set N = M and
arrange agents into groups, such that agents within the same group
are interchangeable. We solve the same problem instance using the
Conflict-Based Min-Cost-Flow (CBM) algorithm [12], and compare
it with ECBS-TA (MinRoot expansion) with varying suboptimal-
ity bounds. Both algorithm use different objective functions: CBM
finds solutions with minimal makespan, while ECBS-TA minimizes
the sum of cost up to a given suboptimality factor. The CBM imple-
mentation is written in C++ and uses boost graph as well.

6.3.1 Small Environments. In the first set of tests we run both
algorithms on the same 8 X 8 maps with varying number of agents,
but fixed group size of 5 agents per group.> We report the success
rate, average cost, runtime, and makespan for CBM and ECBS-
TA with different suboptimality bounds (w = 1.0,1.3,2.0), see
Figure 4. We notice that the achieved average cost (that is, the
sum of the individual agent costs) is smaller for ECBS-TA in all
cases, while the makespan (as the metric being optimized in CBM)
is lowest for CBM. When we choose w = 2.0, ECBS-TA achieves
a higher success rate at comparable runtimes compared to CBM.

3The last group may have less than 5 agents.
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Figure 5: Benchmark results comparing CBM with ECBS-TA
for 32x32 4-connected grid environments. ECBS-TA achieves
lower cost and runtime compared to CBM.

Using lower suboptimality bounds results in lower cost solutions,
but finding solutions is significantly less successful and requires
longer runtimes compared to CBM.

6.3.2 Large Environments. We use the same fixed group size of
5 agents per group on the larger 32 x 32 maps that were also used in
the ECBS-TA experiments. Using ECBS-TA to compute cost-optimal
solutions (w = 1.0) leads to a low success rate (no instance with
100 agents can be solved within the timeout), while bounds with
w = 1.3 can solve all instances. In comparison, CBM solved 995 out
of the 1000 test instances in the given time limit. For brevity, we
report the results for w = 1.3 in Figure 5 on instances that were
solved by both algorithms. The achieved cost of CBM is more than
twice as high compared to ECBS-TA in the 100 agent case. It is
surprising that the difference is that large considering the relatively
high suboptimality bound used for ECBS-TA. Not surprisingly, CBM
achieves a lower makespan (the metric it is minimizing): in the 100
agent case CBM has an average makespan of 33 while ECBS-TA
achieves an average makespan of 47. The runtime of ECBS-TA is
significantly better compared to CBM, especially when more agents
are considered.

6.3.3 Varying Group Size. To evaluate the influence of the group
size, we use the 32 X 32 maps with 100 agents while varying the
group size. The results (using w = 1.3 for ECBS-TA) are shown in
Figure 6. As before, we limit the computation time to 30 s. ECBS-TA
was able to compute solutions for all cases within the given time
limit. If using 100 groups (group size of 1), CBM was not able to
compute a single solution, but it was successful for all other group
sizes and instances. If the group size is 1, we get the labeled case
where each agent has an assigned goal. The other extreme is the
unlabeled case, which we achieve with a group size of 100. CBM
uses a maximum flow algorithm in the low-level search that is
executed per robot group. Thus, it performs best if there is just
a single group (of size 100) and worst if there are 100 groups (of
size 1). ECBS-TA, on the other hand, considers a single possible
assignment if there are 100 groups, and 100! assignments if there is
a single group. The runtime results reflect this behavior: ECBS-TA
can find solutions much faster for small group sizes compared to
CBM. The runtime requirements slowly increase for larger group
sizes. The runtime of CBM decreases with the group size. As in the
previous results, the cost of the solution is lower for ECBS-TA in
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Figure 6: Benchmark results comparing CBM with ECBS-
TA for varying group sizes. The runtime of ECBS-TA slowly
grows, while the runtime of CBM rapidly decays with the
group size. The average cost of the solution is always smaller
when using ECBS-TA, independent of the group size.

all cases. Similarly, as expected, the makespan of CBM solutions is
always better than for ECBS-TA solutions.

7 CONCLUSION

In this work, we extended Conflict-Based Search to simultaneously
assign tasks and plan paths for multiple agents. The key insight is
the extension of the high-level search to operate on a search forest
rather than a search tree, where each root node represents a fixed
assignment. The forest can be efficiently constructed on demand,
avoiding the need to consider all irrelevant possible task assign-
ments. The use of the CBS framework provides two significant
advantages. First, other extensions of CBS, such as the bounded
suboptimal ECBS, are directly applicable. Second, we can optimize
for the sum of individual costs, which is more appropriate in some
domains than makespan.

We evaluated our algorithm extensively, with the following im-

portant results:

(1) We can compute solutions significantly faster than an ILP-
based solver while providing the same optimality guarantees.

(2) The traditional method of independently assigning tasks
followed by path planning can be improved in terms of so-
lution quality and runtime by using (E)CBS-TA in dense
environments with few agents. However, larger environ-
ments with many agents do not benefit significantly from
a joint optimization. Nevertheless, ECBS-TA (MinRoot ex-
pansion) provides stronger suboptimality guarantees than
before with negligible additional runtime overhead.

(3) ECBS-TA produces lower cost solutions than CBM (which
optimizes for a different objective) even when high subop-
timality bounds are used. For small group sizes, ECBS-TA
can produce such a solution in significantly shorter time
compared to CBM.

We believe that (E)CBS-TA can be used in all cases where task
assignment and path planning might be optimized jointly with
respect to the sum of costs of the individual agents’ plans.

In future work, we would like to apply (E)CBS-TA on more

realistic scenarios, such as planning for robots in warehouses.
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