Debugging SDN in HPC Environments

Mami Hayashida Sergio Rivera James Griffioen
Lab for Advanced Networking Lab for Advanced Networking Lab for Advanced Networking
University of Kentucky University of Kentucky University of Kentucky
Lexington, Kentucky 40506 Lexington, Kentucky 40506 Lexington, Kentucky 40506
mhaya2@netlab.uky.edu sergio@netlab.uky.edu griff@netlab.uky.edu
Zongming Fei Yongwook Song

Lab for Advanced Networking
University of Kentucky
Lexington, Kentucky 40506
fei@netlab.uky.edu

ABSTRACT

HPC networks and campus networks are beginning to leverage vari-
ous levels of network programmability ranging from programmable
network configuration (e.g., NETCONF/YANG, SNMP, OF-CONFIG)
to software-based controllers (e.g., OpenFlow Controllers) to dy-

namic function placement via network function virtualization (NFV).

While programmable networks offer new capabilities, they also
make the network more difficult to debug. When applications expe-
rience unexpected network behavior, there is no established method
to investigate the cause in a programmable network and many of
the conventional troubleshooting debugging tools (e.g., ping and
traceroute) can turn out to be completely useless. This absence of
troubleshooting tools that support programmability is a serious
challenge for researchers trying to understand the root cause of
their networking problems.

This paper explores the challenges of debugging an all-campus
science DMZ network that leverages SDN-based network paths for
high-performance flows. We propose Flow Tracer, a light-weight,
data-plane-based debugging tool for SDN-enabled networks that
allows end users to dynamically discover how the network is han-
dling their packets. In particular, we focus on solving the problem
of identifying an SDN path by using actual packets from the flow
being analyzed as opposed to existing expensive approaches where
either probe packets are injected into the network or actual packets
are duplicated for tracing purposes. Our simulation experiments
show that Flow Tracer has negligible impact on the performance
of monitored flows. Moreover, our tool can be extended to obtain
further information about the actual switch behavior, topology,
and other flow information without privileged access to the SDN
control plane.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6446-1/18/07...$15.00
https://doi.org/10.1145/3219104.3229277

Lab for Advanced Networking
University of Kentucky
Lexington, Kentucky 40506
ywsong2@netlab.uky.edu

CCS CONCEPTS

» Networks — Network management; Programmable networks;

KEYWORDS

network management, network debugging, software-defined net-
working, traceroute

ACM Reference format:

Mami Hayashida, Sergio Rivera, James Griffioen, Zongming Fei, and Yong-
wook Song. 2018. Debugging SDN in HPC Environments. In Proceedings
of Practice and Experience in Advanced Research Computing, Pittsburgh, PA,
USA, Fuly 22-26, 2018 (PEARC ’18), 8 pages.
https://doi.org/10.1145/3219104.3229277

1 INTRODUCTION

HPC users increasingly find themselves working with very large
data sets. These big data sets place high demands on the com-
putational infrastructure, storage infrastructure, and networking
infrastructure. In recent years, much attention has been given to the
development of new processing and storage techniques designed
for big data [1, 4-7, 9, 11, 28]. The associated network challenges,
on the other hand, have often been overlooked. However, recent ad-
vances in high-speed programmable and software defined networks
(SDN) [17] are beginning to be used to effectively address the net-
work challenges associated with big data. Many campus network
infrastructures have been updated recently [22] with high-speed
programmable switches that enable new, effective, and efficient
solutions to the networking challenges caused by big data.

One such example is the VIP (Very Important Packets) Lanes
system [12] actively being developed on the campus of the Uni-
versity of Kentucky that leverages SDN capabilities to provide re-
searchers with an interface that allows them to set up high-speed,
middlebox-free paths for their research traffic across the campus
network. Authorized researchers (i.e., scientists) on campus can
now move their large data sets to various destinations, including
national laboratories, local storage systems (e.g., tape drives, ob-
ject stores), or commercial cloud services (e.g., Google Drive, AWS
S3), at significantly faster speeds (approaching two orders of mag-
nitude speedups [12]) over what is supported by the traditional
campus infrastructure. More generally, programmable networks
allow for custom, application-specific software to be developed and
deployed that makes efficient use of the network [25], for example,

https://doi.org/10.1145/3219104.3229277
https://doi.org/10.1145/3219104.3229277

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

by maximizing throughput, minimizing latency, load balancing traf-
fic, protecting/firewalling traffic, or performing network address
translation (NAT), all on individual flows.

While programmable networks enable highly-customized
application-specific communication, they also create new network
debugging challenges. Debugging networks has never been easy
- even for conventional non-programmable networks — but the
problems are only magnified by SDN-enabled networks. Moreover,
common tools used for network debugging such as ping [20] and
traceroute [18] are of little help in the context of programmable
networks. Indeed, the absence of trouble-shooting tools for SDN
networks has impacted the VIP Lanes project as well, increasing
the difficulty of debugging applications running across the cam-
pus SDN network infrastructure. Identifying and locating causes
of unexpected network traffic behavior has often been difficult
and resource-consuming. The combination of faulty equipment,
continuous changes to the controller and switch state/rules by
one or more controller modules/applications, an enhanced num-
ber of packet handling options (e.g., forwarding, header modifica-
tion, rate-limiting), and other SDN “features” only compound the
network debugging process. Our own experience has shown that
trouble-shooting SDN networks often requires manual box-by-box
inspection by a human operator, debugging installed configurations,
comparing against controller state, and working closely with the
SDN software developers and end-users.

To address this problem, we propose Flow Tracer, a powerful data-
plane packet tracing tool for programmable networks designed to
trace the flow-specific forwarding rules defined by the (application-
specific) control software. Unlike traceroute for legacy networks,
Flow Tracer traces actual data streams as opposed to artificially
created probe packets. The tool is able to associate packets with
flows and returns, to the requesting user, the list of SDN switches
that packets from the tracked flow has traveled through. Although
other SDN data-plane path tracing tools have been proposed, they
all follow the conventional traceroute approach based on probe
packets, which are not well suited for SDN environments.

The remainder of this paper is organized as follows. Section 2
outlines the issues and challenges in debugging SDN environments.
Section 3 describes the limitations and problems with conventional
traceroute approaches. Section 4 then lays out the design goals and
overall architecture of our Flow Tracer approach. It also describes
the sequence of events that occur as part of the trace. We present
experimental results of our Flow Tracer prototype in Section 5.
Existing approaches for troubleshooting programmable networks
and how they compare to Flow Tracer are described in Section 6.
Lastly, in Section 7, we report contributions and limitations of Flow
Tracer, and Section 8 concludes the paper.

2 SDN TRACING CHALLENGES

While SDN technology has matured significantly in recent years,
it does not offer the same level of stability, robustness to failures,
or even assurances of correct operation as the time-tested conven-
tional router hardware/software implementations that have been
in use for decades. As a result, there are far more potential sources
of errors in an SDN network than a conventional network which
makes SDN networks much harder to debug.

M. Hayashida et al.

The first challenge is the SDN hardware itself. SDN switches are
constantly evolving, adding new features and/or increased perfor-
mance, increasing the likelihood of some sort of hardware error.
Each new revision to an SDN specifications, such as OpenFlow [19],
brings with it significant feature enhancements, many of which
have not been thoroughly tested and are susceptible to failures
or unexpected behavior from the SDN switch. In addition, the in-
creased performance (e.g., link speeds) that come with each new
generation of hardware is particularly problematic for SDN switches
where programmability must also keep pace with the enhanced
link speeds — creating another opportunity for errors. Example
OpenFlow hardware issues we have observed in commercial Open-
Flow switches include missing or partially implemented OpenFlow
functionality; incoming packets not being sent to the OpenFlow
rules for processing; metrics/counters not reporting correct values;
switches or machines in the topology not being reported to the
control software; extremely slow throughput (e.g., rules being un-
expectedly pushed to software, rather than hardware, tables); silent
hardware failures (e.g., unreported link failures); and incorrect fail-
ure messages (e.g., working links marked as failed). All of the above
make debugging SDN networks more difficult than conventional
networks, illustrating the dire need for new tools to help debug
SDN networks.

SDN controller implementations are arguably even more error-
prone than the SDN hardware. Like the hardware, controllers are
evolving quickly, increasing the potential for errors. Information
can easily become inconsistent between the switches and the con-
troller for a variety of reasons, leading to incorrect decisions by the
control software/applications. Moreover, the software must keep
track of a complex and continuously changing set of OpenFlow
rules that have the potential to interfere with one another. Unlike
IP routing, where forwarding rules are based only on the desti-
nation IP address, OpenFlow rules can include a large number of
variables that may overlap in unexpected ways with other rules
causing unintended consequences. To further complicate the mat-
ter, OpenFlow rules can be assigned to various priority levels in
multiple tables. While this design enables fine-grained forward-
ing, it makes network behavior much more complicated especially
when forwarding and rewriting rules are installed into switches by
multiple controller applications/modules.

3 CONVENTIONAL APPROACHES

As noted in Section 1, debugging SDN network problems often
requires the expertise of a (human) network operator — possibly
working in conjunction with an end system user — manually in-
specting SDN configurations switch by switch in an attempt to
identify the “bug” in the control software.

In conventional IP-based networks, network problems can often
be identified by end system users using basic network trouble-
shooting tools like ping [20] and traceroute [18] without the
involvement or privileges of a network operator. Unfortunately,
tools like ping and traceroute are of limited, if any, value in an SDN
setting. To fill this void, a number of traceroute-like tools have been
proposed [2, 10, 13, 29, 32]. Like traceroute, these tools are based on
a model that uses artificially generated probe packets to understand
network behavior and identify problems. Although probe packets

Debugging SDN in HPC Environments

are useful in an IP-based network (where an end system’s only
option is to inject packets into the network - i.e, it cannot control
or program the network), probe packets are not the best approach
for an SDN network that can be programmed.

Solutions based on probe packets suffer from a number of prob-
lems. First, the probe packet must be able to mimic the structure and
content of the packets that are experiencing problems (i.e., being de-
bugged). In a conventional IP network where routers only examine
the destination IP address, creating a representative probe packet
that has the same IP address is straightforward. However, in an SDN
network where forwarding decisions can be based on one or more
fields of a packet, creating representative probe packets requires
understanding the packet structure of the flow being traced and
the fields used by the SDN software to make forwarding decisions.
Failure to exactly replicate the flow traffic could result in differ-
ent SDN processing inside the network; in other words, the probe
packet could take a different path than the real packets. In addition,
every packet from a flow in a conventional IP based network has
the same IP destination address and can be represented by a single
probe packet. In contrast, the fields used for forwarding decisions
in an SDN network could change over the lifetime of a flow, which
means a single probe packet cannot be constructed to represent
all packets in a flow (even if the fields used for forwarding were
known). Second, use of probe packets carrying a special marker
that causes them to be sent to the SDN controller for analysis [2, 13]
opens the door for denial-of-service attacks on the tracing mech-
anism itself (and indirectly on the entire network control plane).
Thirdly, some SDN probe packet marking approaches [2] do not
include mechanisms to restrict a flow’s path information to the end
systems associated with the flow — in other words, spying on other
flows is possible.

In short, because software dynamically determines which bits
in a packet (header) will be used to make forwarding decisions in
an SDN network, a system based on general-purpose end system
tools that inject representative probe packets is not an appropriate
model for SDN networks. To the best of our knowledge, our model
is the first data-plane based SDN path tracing tool that does not rely
on probe packet generation, but instead traces “live traffic” sent by
real applications.

4 FLOW TRACER

To address the problems associated with the use of probe packets in
an SDN network setting, we developed a Flow Tracer tool capable
of tracing unmodified packets that comprise real flow traffic. We
implemented our Flow Tracer tool in the context of an OpenFlow
network, but the general approach could be applied to any SDN
network with an SDN controller. In the following we discuss the
goals and overall architecture of Flow Tracer as well as the sequence
of events that occur when tracing a flow.

4.1 Design Goals
In contrast to existing path tracing tools, we established the follow-
ing design goals for the Flow Tracer tool:

e Usable by End-host Users: Most of the previously proposed
SDN path tracing tools are designed to be used by network
administrators with full network privileges. Our tool, like

PEARC "18, July 22-26, 2018, Pittsburgh, PA, USA

traceroute, is intended to be used by authorized end-
users without full access privileges to the controller or any
other network device in the network.

® No Representative probe packets: Unlike other tracing tools
based on artificially generated probe packets (see Section 3),
Flow Tracer should trace the path of the actual data transfer,
leveraging SDN features to capture one, or a small number
of, packets from the monitored flow.

e Existing Rules Must Remain In-place and In-use: All packets,
including those in the traced flow, must be forwarded (after
possibly being modified) by the existing rules currently in
place. Any new rules inserted for the purpose of tracing
should not be used when forwarding a traced packet to-
ward the next-hop switch. Similarly, the controller should
not bypass existing rules — say by directly sending a packet
out an output port without consulting the OpenFlow rules.

o Prevent DoS Attacks on the Trace Mechanism: Another prob-
lem with the probe packet model is the increased risk of
DoS (Denial of Service) attacks: if an attacker learns how
probe packets are tagged, they can launch a DoS attack by
injecting a large number of such packets into the network.

o Keep Trace Results Private: To prevent attackers from steal-
ing trace result data (e.g., spying on other flows), Flow
Tracer trace operations should only be initiated by autho-
rized users and should go through an SDN Tracing Service
system that verifies the user’s right to trace a flow.

4.2 Flow Tracing Components

SDN Controller

Figure 1: Overview of Flow Tracer Architecture

Figure 1 shows the global architecture of Flow Tracer which
consists of four main components described below:

e SDN Tracing Service: A service that accepts flow trace
requests from the Flow Tracer program running on a user’s
end system over a secure channel. The service authenti-
cates users, checks to see if the user is allowed to trace
the specified flow, and communicates with the Flow Tracer
SDN controller module to install OpenFlow trace rules

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

in switches. When a trace is complete, the SDN Tracing
Service returns the results to users.

e Flow Tracer Module: An internal SDN controller applica-
tion that receives flow trace requests from the SDN Tracing
Service and implements the Flow Tracer logic by installing
OpenFlow rules in switches. It also inspects packets inter-
cepted by switches, records the trace result, and removes
the Flow Tracer rules upon completion of the flow trace
operation.

e Switches: SDN-enabled switching/routing devices in a
network where Flow Tracer rules intercept traced packets.

e Flow Tracer Program: The Flow Tracer program is run
on end system by users to initiate a flow trace request with
the SDN Tracing Service.

4.3 Tracing Steps

The following section outlines the sequence of events that com-
pose a path-tracing session using Flow Tracer. It assumes that
Flow Tracer module (internal application) has been activated in the
controller.

controller

Priority |Match Action Pricrity |Match Action

highest | source_addr Out.controller highest | source_addr Outcondroller

destination_addr destination_addr

lorwer E:wisting forwarding miles lpwiar E:asting forwarding rules

Figure 2: Sequence of events after a tracing session is ini-
tiated (Note: source and destination addresses in the match
field are given simply as an example of a flow identification.)

Initiating a Tracing Session: Each Flow Tracer request begins
with a user sending a request to the SDN Tracing Service. The
request contains the user credentials that the SDN Tracing Service
uses to authorize the tracing request. Upon authentication, or as
part of the authentication process, the user must provide the flow
specification of the flow the user desires to trace. Typically this
will be specified using a tuple that uniquely identifies the flow
(e.g., source and destination IP addresses, source and destination
port numbers, and the protocol number). Once the validity of a
flow trace request is confirmed, the SDN Tracing Service sends a
tracing session request to the Flow Tracer module within the SDN
controller along with the specific flow parameters it has received
from the user.

Insertion of Flow Tracer Rules: The Flow Tracer module installs
a trace rule at every switch in the network based on the flow pa-
rameters provided by the user (step 1 in Figure 2). The rule, which

M. Hayashida et al.

is identical for all switches, matches on the flow specification pro-
vided by the user and instructs the switch to send packet(s) from
that particular flow to the controller. The Flow Tracer rule must be
assigned a higher priority level than that of all other forwarding
rules in order to capture every packet that matches the criteria
while the rule exists. Since we are installing rules at every switch
in the network, some rules may never be hit. Therefore, to prevent
Flow Tracer rules no longer in use from lingering on, our imple-
mentation sets its idle timeout value to 30 seconds, assuming the
trace will begin within that amount of time.

User Begins Data Transfer: Once the network is set up for tracing
(i.e., the session-specific Flow Tracer rule has been installed on every
switch), the SDN Tracing Service notifies the user that a test may
begin. If a data flow between the source and destination hosts of
the traced path is already under way, the user simply waits for the
trace request results from the SDN Tracing Service. Otherwise, the
user starts sending data between the two hosts.

Trace Rule Captures Packet(s): When the first packet of the
traced flow — typically a TCP SYN packet — reaches the first hop,
the packet is sent to the controller using an OpenFlow PACKET_IN
message (steps 2 and 3 in Figure 2). The Flow Tracer module then
examines the packet, records its arrival time and the switch DPid,
and instructs the switch to remove the trace rule from the switch
to prevent any subsequent packets matching the rule from being
forwarded to the controller (step 4 in Figure 3). The Flow Tracer
module then returns the recorded packet to the switch that in-
tercepted it. The switch will then apply the previously existing
OpenFlow rules - the ones that existed prior to the trace rules be-
ing inserted — ensuring that the packet is forwarded in exactly the
same way as it would have been forwarded if tracing had not been
invoked (see steps 5 and 6 in Figure 3). Any subsequent packets
from the same flow will not be intercepted by trace rules at that
switch, because the trace rules have been removed. This process
repeats itself at each switch along the path the packets follow.

controller

-

&
F W
&

Priosity |Match Action
highast |source_addr

Priority |Match |Aclinn
Existing forwarding rules

@ lower

Figure 3: Removing a Trace Rule After Capturing a Traced
Packet

Out.controllar

destnation_addr

Existing forwarding rules

Removal of Remaining Trace Rules: The flow trace completes
when the Flow Tracer module determines that the last hop switch

Debugging SDN in HPC Environments

has reported the traced packet to the controller. (The last hop router
is identified as the last router traversed before the packet exits the
“traceable” part of the network — which can be determined from
inserted SDN rules.) In cases where the packets do not reach a
last hop router (is dropped or does not leave a switch), the trace
times-out after a specified amount of time, and the partial path is
recorded. Once the trace completes, the Flow Tracer rule is removed
from all switches, and thus no more packets from the traced flow
will be sent to the controller from any switches.

Reporting the Trace Result: Once the flow trace is complete, the
result of the trace is obtained by the SDN Tracing Service from
the Flow Tracer module and is sent to the end system Flow Tracer
program.

5 EVALUATION

We implemented our Flow Tracer prototype on an Aruba VAN
controller [15] using version 1.3 of the OpenFlow protocol. Our
preliminary tests were performed on Mininet [18] virtual network
topologies. Our controller was running on an OpenStack [23] virtual
instance with 2 vCPUs and 4GB of RAM running Ubuntu 14.04.4 LTS
(x86_64); similarly, we created a Mininet topology on an OpenStack
virtual instance with 2 vCPUs and 4GB of RAM running Ubuntu
14.04.5 LTS (x86_64) for the first two experiments (Figure 4); the
second Mininet topology (Figure 8) was created on a VirtualBox [24]
guest machine with 1 vCPU and 1GB of RAM running Ubuntu
14.04.4 LTS (x86_64).

00:00:00:00:00:00:00:02

2N

00:00:00:00:00:00:00:01 00:00:00:00:00:00:00:03
~

3
- -

00:00:00:00:00:00:00:05 00:00:00:00:00:00:00:04

Figure 4: Mininet Test Topology

Validity: In order to verify the correctness of our Flow Tracer
results, we created the topology shown in Figure 4 and installed
OpenFlow rules in such a way that TCP, UDP and ICMP packets are
treated differently when going from 10.0.0.1 to 10.0.0.2. Specifically,
TCP packets take the longer of the two routes, ie., [01, 05, 04, 03]%;
UDP packets are forwarded through the shorter of the two routes
(i.e, [01, 02, 03]) whereas ICMP packets are dropped at the first
switch (i.e., 01). The corresponding OpenFlow rules, including one

for the reverse direction, installed on DPid 01 are shown in Table 1.

Table 2 shows the initial setup for a Flow Tracer session to track a
flow from 10.0.0.1 to 10.0.0.2. This rule is inserted on every switch
in the topology.

For our first test, we sent TCP, UDP, and ICMP packets from
10.0.0.1 to 10.0.0.2, using hping3 [27]. We authorized Flow Tracer
!Each of these numbers represents the rightmost none-zero values of the 8

two-digit DPid (Datapath ID) groups. “01", for instance, corresponds to DPid
00:00:00:00:00:00:00:01.

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

Actions
output:1

Priority Match

30000 eth-type: IPV4
ipvé4-src: 10.0.0.2
ipv4-dst: 10.0.0.1

30000 eth-type: IVP4
ipv4-src: 10.0.0.1
ipv4-dst: 10.0.0.2
ip-proto: icmp

30000 eth-type: IPV4
ipv4-src: 10.0.0.1
ipv4-dst: 10.0.0.2
ip-proto: udp

30000 eth-type: IPV4
ipv4-src: 10.0.0.1
ipv4-dst: 10.0.0.2
ip-proto: tcp

(i.e.drop)

output:2

output:3

Table 1: Forwarding rules installed on switch 01
(00:00:00:00:00:00:00:01)

Actions
output:Controller

Priority Match
33000 eth-type: IPV4
ipv4-src: 10.0.0.1
ipv4-dst: 10.0.0.2
Table 2: Flow Tracer rule added for tracing flows from
10.0.0.1 to 10.0.0.2

to trace TCP, UDP, and ICMP packets before transmitting the data
packets. The results are shown in Figure 5, Figure 6, and Figure 7,
respectively.

00:00:00:00:00:00:00:01, 1521571956862
00:00:00:00:00:00:00:05, 1521571956871

00:00:00:00:00:00:00:04, 1521571956873
00:00:00:00:00:00:00:083, 1521571956875

Figure 5: TCP flow trace result (DPid, timestamp)

00:00:00:00:00:00:00:01, 1521572002859
00:00:00:00:00:00:00:02, 1521572002963

00:00:00:00:00:00:00:03, 1521572002904

Figure 6: UDP flow trace result (DPid, timestamp)

Our results show that Flow Tracer indeed reports the actual
packet behavior for each particular flow. For instance, if a user
realizes ICMP traffic is not reaching its destination, by starting a
debug session with Flow Tracer, the user can infer that packets are
not reaching any further than switch 01.

Tracing an Ongoing Flow: For this test, we used the same Mininet
topology and deployed Flow Tracer after flows have started. We
saturated the link capacity using iperf [16] with the default TCP

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

00:00:00:00:00:00:00:01, 1521572029212

Figure 7: ICMP flow trace result (DPid, timestamp)

window size of 85.3KBytes, host 10.0.0.2 acting as a server listening
on its TCP port 5001, and 10.0.0.1 acting as a client. We conducted
the test 10 times.

Despite a relatively large number of packets matching the Flow

Tracer rule on every switch along the path, Flow Tracer correctly
identified all the switches the flow has passed through each time,
and the flooding was never severe enough to cause any issues on the
controller. Unlike in the first test, however, switches cannot be listed
in the order in the path (from source to destination) as the packets
in the traced flow are being sent to the controller from all switches
simultaneously. Which packet from which switch is recorded by
the Flow Tracer module first is arbitrary. For this reason, the Flow
Tracer result here should be seen as a set of switches the flow has
gone through rather than an ordered list.
Effect on Throughput: To measure the effect of Flow Tracer on
the throughput of data transfer, we created another Mininet topol-
ogy, shown in Figure 8, in which packets from 10.0.0.1 to 10.0.0.7
passed through seven forwarding devices.

10.0.0.6 10.0.0.4 10.0.0.2

R R R A A = '_@ll :

10.0.0.7 10.0.0.5 10.0.0.3 10.0.0.1

Figure 8: Mininet Topology Used for Measuring Flow Tracer
Delays

For the first round of tests, we set the link bandwidth to the
value of 1Gbps and, using iperf, sent 1GB of data from 10.0.0.1 to
10.0.0.7 under three different conditions: no Flow Tracer deploy-
ment as benchmark; Flow Tracer deployed before the start of the
data transfer; Flow Tracer deployed during the data transfer. Each
setting was tested 10 times.

Condition Mean Median Range
Benchmark 791.4 793 784-798
Deployed Before 787.4 7875 781-796
Deployed During ~ 779.7 781.5 767-788

Table 3: Throughput reduction caused by Flow Tracer during
a 1GB transfer over 1 Gbps links. All units in Mbps.

As shown in Table 3, the effect of Flow Tracer was minimal.
When Flow Tracer was deployed before the start of the flow, the
average data transfer rate of a 1GB file was 0.5% lower than the
benchmark; when it was deployed during the data transfer, the
average rate experienced 1.5% reduction. We repeated the same
test using Mininet with high-bandwidth links, which on our test
topology achieved slightly over 40 Gbps. To accommodate the much

M. Hayashida et al.

Condition Mean Median Range

Benchmark 42.04 4235 39.2-42.9
Deployed Before ~ 42.94 4295 42.1-43.6
Deployed During ~ 40.25 40.55 38.2-41.2

Table 4: Throughput reduction caused by Flow Tracer during
a 54GB transfer over high-speed links. All units in Gbps.

higher speeds, we transferred 54GB of data. As shown in Table 4,
the larger data size and bandwidths obscured the effect of Flow
Tracer even further. Those transfers for which Flow Tracer was
deployed ahead of time actually gave higher measurement values
than the benchmark, and those for which Flow Tracer was deployed
during the data transfer did almost as well as the benchmark. Given
that the difference in transfer rates among the three test cases was
no more than the variations among data for each case, we consider
these differences to be statistically insignificant. Also confirmed
in these tests is that even with a high transfer rate of roughly
40Gbps, not only the controller was able to handle packets being
sent from all seven switches through the Flow Tracer rules, but
also the TCP connection recovered reliably from the effect of out-
of-order packets caused by Flow Tracer.

6 RELATED WORK

The most often referenced work on data-plane-based SDN trac-
ing tool is SDN traceroute [2]. Once each SDN-enabled device is
assigned a color based on the graph-coloring algorithm and set
up with color-specific OpenFlow debugging rules, a color-tagged
probe packet is injected into the network. The probe packet is sent
to the controller at every hop; yet, due to the reassigning of its
color, it is forwarded to the next hop when sent back to the switch.
Although this approach is relatively simple to implement, there is
an obvious drawback: it assumes that the network topology infor-
mation obtained through the SDN controller is correct. While this
is ordinarily the case, a debug tracing tool is most needed when
there is an unidentified failure in the network; if the failure pre-
vents network administrators from obtaining an accurate map of
the whole network topology, the algorithm may fail. Furthermore,
this and almost all other tools rely on the production of a probe
packet. As discussed earlier, creating a “clone” packet that matches
all the OpenFlow rules as the actual flow packets experiencing net-
work issues can be difficult, if not outright impossible. There are
two additional unaddressed issues: First, use of the VLAN header
field to tag probe packets, as proposed in this paper, could be a
problem in networks where VLAN field is relevant; second, if the
probe packet tagging method becomes known, it would be easy to
launch a DoS attack by injecting a large number of probe packets.

There are several other works that can be considered extended
versions of SDN traceroute. Hybridtrace [29] is a tool that can be
used to trace paths that consist of both SDN and legacy network
devices; Track [32] adds capabilities to handle arbitrary network
functions (i.e., middle boxes). As both implementations are based on
SDN traceroute, they share the same advantages and disadvantages
outlined above.

SDNTrace [13] presents a contrasting approach using a special
type of Ethernet packet that carries the information (e.g., source,

Debugging SDN in HPC Environments

destination, protocol) about the path to be traced in its payload.
Each time a probe packet is sent to the controller from a switch, the
controller records its arrival and forwards it to the next hop based
on the OpenFlow rules installed on the switch. The disadvantage
of this approach lies in that if there is a discrepancy between the
actual state of the forwarding tables of the switch and controller’s
knowledge of them, the probe packet would be forwarded according
to the latter. In addition, while their design handles the end of the
debug session cleanly, it fails to return a tracing result when a probe
packet does not reach the last SDN device before reaching its path
destination. The challenge of generating a probe packet applies to
their work as well.

SFC Path Tracer [10], another path-tracing tool, is designed espe-
cially for an NFV/SDN environment. While it claims to take much
less time for probing than SDN traceroute, its probe packets are not
forwarded by existing forwarding rules, but by new trace rules that
are extended copies of original rules. Netography [33] compares
flow rules to a sequence of probe packet copies sent to a controller
from switches as the probe packet traverses through the network.
As in all other approaches, both of these works require generation
of probe packets. In case of Netography, the VLAN PCP field is used
as a flag-bit field, disallowing any other VLAN operations in the
network.

Additionally, there is a number of papers that incorporate path-
tracing as an integral part of examining whole network behavior.
This group of works include nbd [14], a debugger inspired by gdb;
PathSeer [3], that proposes an efficient method to trace packet
trajectories in SDN-enabled datacenter networks; RuleScope [30] 8]
that detects rule faults by sending probe packets; VeriDP [31], that
compares the data-plane handling of packets to network policies
and configurations in the control-plane; Simon [21], an interactive
debugging tool that examines network behavior through the use of
ICMP ping packets as probe packet; and CherryPick [26], another
work on how to efficiently perform packet-tracing at data centers
on their fat topologies.

7 DISCUSSION

Our novel design eliminates the need for probe packets and instead
traces one or a very small number of actual data transfer packets. It
is a tool designed to be deployed by users on end-hosts to obtain data
on where and how far their packets have traversed over the network
especially when unexpected network behavior (e.g., packets getting
dropped or experiencing noticeable delays) has been observed. Our
implementation works especially well for TCP connections with
insignificant overhead during the trace. Assuming that Flow Tracer
is deployed before the beginning of a data transfer, the first SYN
packet (SYN-ACK if tracing the reverse direction) is sent to the
controller at every hop; by the time the subsequent packets flow
through the same switches, all of the Flow Tracer OpenFlow rules
have been removed. Initiating a Flow Tracer session after a flow
has already begun, as well as tracing UDP flow, is slightly more
problematic as multiple packets of a traced flow are sent from every
switch to a controller more or less simultaneously and, as a result,
the list of switches in a tracing result would not be ordered. Our
test results indicate, however, that flooding is kept to minimal with
our design and does not lead to any controller issues.

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

Even though Flow Tracer provides a useful understanding on
how packets are handled over an SDN-enabled network, there is a
limitation that deserves further investigation. If any of the existing
forwarding rules on the flow path matches ingress ports, it would be
incompatible with Flow Tracer. When a packet sent to a controller
via Flow Tracer is returned to the same switch, its ingress port
is now changed to the reserved “controller” port, rather than the
original ingress port. This could potentially cause the packet to be
misrouted if it were to be routed to the next hop based on its ingress
port match. While TCP connections would likely recover from a
small number of misrouted packets, the result of Flow Tracer would
be invalid as the misrouted packets, an undesirable side-effect of
Flow Tracer, could potentially report back paths not taken by the
rest of the packets in the flow.

8 CONCLUSION

In this paper, we presented Flow Tracer, an SDN path tracing tool
designed for end-users. Without modification to any of the existing
forwarding rules on switches, and with addition of one rule on each
switch per debug session, Flow Tracer is able to track the path of
data transfer by observing one or a small number of packet(s) of the
flow with negligible impact on performance. Unlike other models,
Flow Tracer requires no special probe packet for tracing, which
eliminates the non-trivial challenge of probe packet creation and
reduces DoS attack risks to the network.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-
tion under Grants ACI-1541380, ACI-1541426, and ACI-1642134. We
would also like to thank Lowell Pike and Jacob Chappell for their
technical guidance on test environment installation and configura-
tion.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Kanak Agarwal, Eric Rozner, Colin Dixon, and John Carter. 2014. SDN traceroute:
Tracing SDN forwarding without changing network behavior. In Proceedings of
the third workshop on Hot topics in software defined networking. ACM, 145-150.

[3] A. Aljaedi and C. E. Chow. 2016. Pathseer: a centralized tracer of packet trajec-
tories in software-defined datacenter networks. In 2016 Principles, Systems and
Applications of IP Telecommunications (IPTComm). 1-9.

[4] Apache Software Foundation. 2010-2018. Apache Hive. (2010-2018). https:
//hive.apache.org

[5] Apache Software Foundation. 2011-2018. Apache Hadoop. (2011-2018). https:
//hadoop.apache.org

[6] Apache Software Foundation. 2013-18. Impala. (2013-18). https://impala.apache.
org

[7] Apache Software Foundation. 2014-2018. Apache Spark. (2014-2018). https:
//spark.apache.org

[8] K.Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen. 2016. Is every flow on the
right track?: Inspect SDN forwarding with RuleScope. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Communications.
1-9. https://doi.org/10.1109/INFOCOM.2016.7524333

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Process-
ing on Large Clusters. In Proceedings of the 6th Conference on Symposium on

https://www.tensorflow.org/
https://hive.apache.org
https://hive.apache.org
https://hadoop.apache.org
https://hadoop.apache.org
https://impala.apache.org
https://impala.apache.org
https://spark.apache.org
https://spark.apache.org
https://doi.org/10.1109/INFOCOM.2016.7524333

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

[10

[14]

(15

(16]

[17

[18]

[19]

[27]

(28]

[29]

[30]

[31

[32]

Opearting Systems Design & Implementation - Volume 6 (OSDI'04). USENIX Asso-
ciation, Berkeley, CA, USA, 10-10. http://dl.acm.org/citation.cfm?id=1251254.
1251264

Rafael Anton Eichelberger, Tiago Ferreto, Sebastien Tandel, and Pedro Arthur PR
Duarte. 2017. SFC path tracer: a troubleshooting tool for service function chain-
ing. In Integrated Network and Service Management (IM), 2017 IFIP/IEEE Sympo-
sium on. IEEE, 568-571.

Facebook. 2012-2018. Presto. (2012-2018). https://prestodb.io/

J. Griffioen, K. Calvert, Z. Fei, S. Rivera, J. Chappell, M. Hayashida, C. Carpenter,
S. Yongwook, and H. Nasir. 2017. VIP Lanes: High-speed Custom Communication
Paths for Authorized Flows. In 2017 26th International Conference on Computer
Communication and Networks (ICCCN). [to appear].

Deniz Gurkan. 2015. SDNTrace Protocol Design and Testing. http://
sdntrace-protocol.readthedocs.io/en/latest/. (2015). Online, accessed 22-October-
2017.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and
Nick McKeown. 2012. Where is the debugger for my software-defined network?.
In Proceedings of the first workshop on Hot topics in software defined networks.
ACM, 55-60.

Hewlett Packard Enterprise. 2017. HP Virtual Applications Network
SDN Controller. https://www.hpe.com/us/en/product-catalog/networking/
networking-software/pip.hpe-van-sdn-controller- software.5443866.html.
(2017).

JDugan, S.Elliott, B.Mah, J.Poskanzer, and K.Prabhu. 2003-18. iPerf. https:
//iperf.fr/. (2003-18).

D. Kreutz, F. M. V. Ramos, P. E. VerApssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. 2015. Software-Defined Networking: A Comprehensive Survey.
Proc. IEEE 103, 1 (Jan 2015), 14-76. https://doi.org/10.1109/JPROC.2014.2371999
Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 19.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. 2008. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Computer Communications Review 38, 2 (March 2008),
69-74. https://doi.org/10.1145/1355734.1355746

Mike Muuss. 1983. The story of the PING program. https://linux.die.net/man/8/
ping. (1983).

Tim Nelson, Da Yu, Yiming Li, Rodrigo Fonseca, and Shriram Krishnamurthi.
2015. Simon: Scriptable interactive monitoring for SDNs. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research. ACM, 19.
NSF. 2018. Campus Cyberinfrastructure (CC*). https://www.nsf.gov/funding/
pgm_summ.jsp?pims_id=504748. (2018).

OpenStack Foundation. 2010-2018. OpenStack. (2010-2018). https://www.
openstack.org/

Oracle. 2007-2018. VirtualBox. (2007-2018). https://www.virtualbox.org/
Sergio Rivera, Mami Hayashida, James Griffioen, and Zongming Fei. 2017. Dy-
namically Creating Custom SDN High-Speed Network Paths for Big Data Science
Flows. In Proceedings of the Practice and Experience in Advanced Research Com-
puting 2017 on Sustainability, Success and Impact. ACM, 59.

Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2015. Cherrypick: Tracing
packet trajectory in software-defined datacenter networks. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research. ACM,
23.

Kali Tools. 2005-18. hping3. https://tools.kali.org/information-gathering/hping3.
(2005-18).

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@Twitter. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data (SIGMOD °14). ACM, New York, NY, USA, 147-156. https://doi.org/10.
1145/2588555.2595641

Shie-Yuan Wang, Chia-Cheng Wu, and Chih-Liang Chou. 2016. Hybridtrace: A
traceroute tool for hybrid networks composed of SDN and legacy switches. In
Computers and Communication (ISCC), 2016 IEEE Symposium on. IEEE, 403-408.
X. Wen, K. Bu, B. Yang, Y. Chen, L. E. Li, X. Chen, J. Yang, and X. Leng. 2017.
RuleScope: Inspecting Forwarding Faults for Software-Defined Networking.
IEEE/ACM Transactions on Networking 25, 4 (Aug 2017), 2347-2360. https://doi.
org/10.1109/TNET.2017.2686443

P. Zhang, H. Li, C. Hu, L. Hu, and L. Xiong. 2016. Stick to the script: Monitoring
the policy compliance of SDN data plane. In 2016 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). 81-86. https:
//doi.org/10.1145/2881025.2881038

Y. Zhang, L. Cui, F. P. Tso, and Y. Zhang. 2017. Track: Tracerouting in SDN
networks with arbitrary network functions. In 2017 IEEE 6th International Con-
ference on Cloud Networking (CloudNet). 1-6. https://doi.org/10.1109/CloudNet.
2017.8071526

M. Hayashida et al.

[33] Y.Zhao,P. Zhang, and Y. Jin. 2016. Netography: Troubleshoot your network with

packet behavior in SDN. In NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium. 878-882. https://doi.org/10.1109/NOMS.2016.7502919

http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://prestodb.io/
http://sdntrace-protocol.readthedocs.io/en/latest/
http://sdntrace-protocol.readthedocs.io/en/latest/
https://www.hpe.com/us/en/product-catalog/networking/networking-software/pip.hpe-van-sdn-controller-software.5443866.html
https://www.hpe.com/us/en/product-catalog/networking/networking-software/pip.hpe-van-sdn-controller-software.5443866.html
https://iperf.fr/
https://iperf.fr/
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/1355734.1355746
https://linux.die.net/man/8/ping
https://linux.die.net/man/8/ping
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504748
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504748
https://www.openstack.org/
https://www.openstack.org/
https://www.virtualbox.org/
https://tools.kali.org/information-gathering/hping3
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1109/TNET.2017.2686443
https://doi.org/10.1109/TNET.2017.2686443
https://doi.org/10.1145/2881025.2881038
https://doi.org/10.1145/2881025.2881038
https://doi.org/10.1109/CloudNet.2017.8071526
https://doi.org/10.1109/CloudNet.2017.8071526
https://doi.org/10.1109/NOMS.2016.7502919

	Abstract
	1 Introduction
	2 SDN Tracing Challenges
	3 Conventional Approaches
	4 Flow Tracer
	4.1 Design Goals
	4.2 Flow Tracing Components
	4.3 Tracing Steps

	5 Evaluation
	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

