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Optimal Estimation Versus MCMC for CO2
Retrievals

Jenny Brynjarsdottir , Jonathan Hobbs, Amy Braverman, and
LukasMandrake

The Orbiting Carbon Observatory-2 (OCO-2) collects infrared spectra from which
atmospheric properties are retrieved. OCO-2 operational data processing uses optimal
estimation (OE), a state-of-the-art approach to inference of atmospheric properties from
satellite measurements. One of themain advantages of the OE approach is computational
efficiency, but it only characterizes the first two moments of the posterior distribution
of interest. Here we obtain samples from the posterior using a Markov Chain Monte
Carlo (MCMC) algorithm and compare this empirical estimate of the true posterior to
the OE results. We focus on 600 simulated soundings that represent the variability of
physical conditions encountered by OCO-2 between November 2014 and January 2016.
We treat the two retrieval methods as ensemble and density probabilistic forecasts, where
the MCMC yields an ensemble from the posterior and the OE retrieval result provide
the first two moments of a normal distribution. To compare these methods, we apply
both univariate and multivariate diagnostic tools and proper scoring rules. The general
impression from our study is that when compared to MCMC, the OE retrieval performs
reasonablywell for themain quantity of interest, the column-averagedCO2 concentration
XCO2 , but not for the full state vector X which includes a profile of CO2 concentrations
over 20 pressure levels, as well as several other atmospheric properties.

Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

One of the most urgent challenges in Earth science today is to better determine the
physical mechanisms that govern carbon sources and sinks around the globe (Crisp et al.
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2004; Friedlingstein et al. 2006; O’Dell et al. 2012). Despite decades of research, there
remain significant uncertainties inmany elements of the global carbon cycle and its response
to anthropogenic perturbations. Carbon flux inversion models are essential to global carbon
cycle science (Battle et al. 2000; Bousquet et al. 2000; Schuh et al. 2010), and they require
accurate measurements of CO2 concentration with both high spatial resolution and global
coverage. Satellite instruments are needed to achieve such a data record, current in situ
observation networks are not sufficient. Furthermore, according to Miller et al. (2007),
an absolute accuracy of 1–2ppm is required in order to substantially reduce surface flux
uncertainties. A big step toward having an ongoing measurement system that satisfies this
need is the Orbiting Carbon Observatory-2 (OCO-2) mission (Crisp et al. 2004; Eldering
et al. 2017) carried out by the National Aeronautics and Space Administration (NASA) and
the Jet Propulsion Laboratory (JPL). Since its launch in July 2014 the OCO-2 instrument
has provided measurements and uncertainty estimates of the column-averaged dry air mole
fraction, XCO2 , with an unprecedented spatial resolution.

The OCO-2 instrument measures radiances (i.e., reflected sunlight) in a range of wave-
lengths that are known to be affected by CO2 and O2 absorption. The vector of radiances,
Y, is then inverted to an estimate of a state vector X that represents atmospheric conditions
at that time and location. This state vector includes CO2 concentrations at 20 pressure levels
of the atmospheric column and about 40 other elements such as surface pressure, albedo and
aerosol information. The inversion is performed with a retrieval algorithmwhich includes a
physical forwardmodelF, called the full physicsmodel, that describes how radiances depend
on the atmospheric state. In statistical parlance, the retrieved state vector is an estimate of
a parameter vector X in the statistical model

Y = F(X,b) + ε (1)

where the constant vectorb is assumed known and the randomvector ε contains independent
normal measurement errors with mean zero and known variances. A multivariate normal
prior distribution is assigned to X, and Bayes Theorem is used to estimate X. The OCO-2
mission uses a procedure known as optimal estimation (OE) in the remote sensing literature
(Rodgers 2000), that finds the posterior mode of [X | Y], called X̂, using the Levenberg–
Marquardt optimization algorithm. An estimate of the posterior covariance matrix Ŝ is also
obtained, using linear approximations. Here, “[X]” and “[X | Y]” denote the probability
density function (pdf) of X and the conditional pdf of X given Y, respectively. The main
quantity of interest is the column-averaged dry air mole fraction, XCO2 , which is a weighted
average of the CO2 concentrations in 20 vertical layers:

X̂CO2 = hT X̂p (2)

where X̂p = (X̂1, . . . , X̂20)
T contains the estimated CO2 profile and h is a vector of weights

that partly depends on other elements of the state vector. The data product also includes the
posterior variance of XCO2:

ŝ2XCO2
= hT Ŝph (3)

where the matrix Ŝp contains the first 20 rows and columns of Ŝ.
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The OE method is the state-of-the-art approach to retrievals of atmospheric properties
from satellite measurements (Bösch et al. 2011; Crisp et al. 2012; O’Dell et al. 2012; Line
et al. 2013; Eldering et al. 2017). One of its main advantages is computational efficiency.
The OCO-2 instrument, for example, collects 24 observations every second. Using OE,
the OCO-2 retrieval currently takes a few minutes per observation, which is achieved via
high-performance computing systems at NASA. It is clear, however, that the OE method
does not characterize the full posterior distribution [X | Y], or the posterior of the quantity
of interest

[
XCO2 | Y]

. For example, while the retrieved state vector X̂ gives the mode of
[X | Y], X̂CO2 in (2) is not necessarily the mode of

[
XCO2 | Y]

. In addition, users of the
OCO-2 data product, e.g., carbon flux modelers, usually assume that the distribution of
XCO2 is normal with mean X̂CO2 and variance ŝ2XCO2

(Engelen et al. 2002), and the flux
inversion community has been increasingly interested in assimilating the full CO2 profile
Xp using the multivariate normal distribution N (X̂p, Ŝp). The normality assumption is at
best an approximation since the forward model F is not linear, and the posterior distribution
[X | Y] is therefore not multivariate normal. To date, there has been no systematic study
of how well the OE algorithm performs in representing the actual posterior distributions of
XCO2 or the full state vector X. Furthermore, it is important to characterize how well the
OE approximation of the actual posterior performs as an estimate of the true state X true

CO2

or Xtrue, as compared to, e.g., the Bayes estimate (posterior mean) which is obtained via
MCMC. The performance of OE will of course depend on the particular forward model
F, whether F(X,b) is roughly linear around Xtrue, and the value of the true state (i.e., the
physical conditions). This article addresses these issues for the retrievals performed byOCO-
2, by estimating the posterior distributions using a Markov Chain Monte Carlo (MCMC)
algorithm and comparing them to OE results. The application of the OE algorithm to a
vector of observed radiances will hereafter be referred to as “OE retrieval” and application
of MCMC to estimate posterior distributions will be called “MCMC retrievals”.

Given the massive number of observations made by OCO-2, it is not possible to apply
MCMC to every single retrieval so here we focus on 600 simulated soundings that represent
the variability of physical conditions encountered by OCO-2 between November 2014 and
January 2016. Furthermore, the full physics forward model (F in Eq. 1) used in the OCO-2
operational data processing is too computationally slow to be feasible to use in an MCMC
algorithm where we require an evaluation of F(X,b) in each iteration. However, a surrogate
model exists,Fsurr (Hobbs et al. 2017), that is much faster but still includes themost essential
physics and uses the same computational tools and tables (i.e., b) as the operational data
processing does. We perform both OE and MCMC retrievals on the selected soundings,
using the surrogate forward model in both cases. We note that the analyses in this paper do
not address all sources of error in a retrieval, e.g., parameter error andmodel discrepancy. No
full exploration of the posterior distribution has been done for the OCO-2 retrieval before,
for either full physics or surrogate forward model. In general, MCMC methods have rarely
been applied to retrievals of atmospheric entities, exceptions include Haario et al. (2004),
Wang et al. (2013), and Tukiainen et al. (2016).

When comparing and evaluating the two retrieval approaches as estimates of the true
state we will view the methods as probabilistic forecasts. The OE retrieval will be treated as
a density forecast, i.e., N (x̂, Ŝ), whereas MCMC retrievals provide an ensemble forecast.
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We note that even though x̂ is actually the posterior mode, Ŝ is only an approximation to the
posterior covariance matrix, and the posterior is not actually Gaussian, the N (x̂, Ŝ) distri-
bution reflects the way the OCO-2 data product is used in practice. In our simulations, the
true state is known, and we can therefore apply various forecast calibration diagnostics and
proper scoring rules (Gneiting andRaftery 2007; Gneiting et al. 2008; Gneiting andKatzfuss
2014; Thorarinsdottir et al. 2016) to evaluate the two retrieval methods. Furthermore, we are
concerned with the estimation of the multivariate state vector X, the CO2 profile vector Xp,
and the univariate quantity of interest XCO2 . We therefore need comparison methods that
can be applied to both density and ensemble forecasts, in both multivariate and univariate
setting. For example, we utilize the continuous ranked probability score (CRPS) and its
multivariate extension to compare the retrieval methods, and various rank histograms for
diagnostics (see Sect. 4 for details). Viewing the OE retrieval as an approximation to the
actual posterior we assess this approximation via the Kulback–Leibler divergence and asses
normality of the actual posterior via probability plots of MCMC samples. Comparing the
OE retrievals to the actual posteriors gives invaluable insight into whether and where the
approximate OE retrievals provide satisfactory results and where they do not. For example,
the OE retrieval may perform quite well in certain locations or at certain physical conditions
(e.g., at certain values of aerosol optical depth, surface pressure, land surface type etc.) but
fail in other locations.

We provide background onOCO-2, the forwardmodel andOptimal Estimation in Sect. 2.
The simulated data set is described in Sect. 3. A few details about the MCMC algorithm are
given in Sect. 4.1 and in Sects. 4.2 and 4.3, and we describe the diagnostic tools and scoring
rules we use to compare and evaluate the OE and MCMC retrievals. Results are presented
in Sect. 5, and we conclude with a discussion in Sect. 6.

2. BACKGROUND

NASA’s Orbiting Carbon Observatory-2 (OCO-2) is now in the process of collecting
space-based measurements of atmospheric carbon dioxide, CO2. The scientific basis of the
OCOmission is described, e.g., by Crisp et al. (2004), Crisp et al. (2007), Crisp and Johnson
(2005) and Crisp et al. (2014), and recent update is given in Eldering et al. (2017). The data
product is publicly available, e.g., at co2.jpl.nasa.gov. Here we briefly describe the
OCO-2 instrument (Sect. 2.1), the physical forward models (Sects. 2.2, 2.3), and the OE
algorithm (Sect. 2.4).

2.1. REMOTE SENSING OF CO2

The OCO-2 instrument collects eight observations every 0.333 seconds with a surface
footprint of less than 2.25km down-track and between 0.1 and 1.3km cross-track. The
satellite flies in a polar, sun-synchronous orbit, providing global coverage with a 233-orbit
16-day repeat cycle. The instrument has three observation modes: nadir (preferred over
land), glint (preferred over ocean) and target mode.
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Figure 1. Example of an observed sounding Y over Madagascar in October 2015.

The instrument incorporates three high-resolution imaging grating spectrometers that
make coincident measurements in three spectral bands. These bands are called O2 A, weak
CO2, and strong CO2 bands, and are centered around 0.765, 1.61, and 2.06µm respectively.
Each observation consists of 1016 radiances from each band and the 3048-dimensional
observed vector Y is called a sounding. An example of an observed sounding is shown in
Fig. 1. The sharp drops in radiances correspond to howmuch light is absorbed by molecules
in the atmosphere at that wavelength. A physical forward model describes this absorption
for a given amount of relevant molecules, represented by the state vector X.

2.2. FULL PHYSICS FORWARD MODEL

The OCO-2 science team has developed a physical forward function for use in OCO-2
retrievals, referred to as the Full Physics forward model. This is a state-of-the-art physical
model with minor simplifications to ease computation. For given inputs, the forward model
F(X,b) simulates solar spectra, a 3048-dimensional vectorY, and radiance Jacobians. This
involves numerically solving the radiative transfer equation, an ordinary integro-differential
equation, for each sounding [more details are given in O’Dell et al. (2012)].

The input vector b is treated as known and includes tens of thousands of constants.
Many elements of b, such as gas absorption coefficients, are estimated from laboratory
experiments. The OCO-2 retrieval algorithm uses precalculated lookup tables of absorption
coefficients (ABSCO) for the calculation of gas absorption cross sections. The ABSCO
tables contain molecular absorption cross sections over the range of relevant wavelengths,
temperatures and pressures (Thompson et al. 2012). Other elements of b, such as aerosol
properties, are estimated from other remote sensing data as well as airborne/field measure-
ment campaigns. Details about the nature and origins of various elements of the b vector
are given in Crisp et al. (2014).

The state vector,X, has about 60 elements, 20 ofwhich areCO2 concentration in 20 layers
in the atmospheric column. The remaining elements include surface pressure, albedo, 4
different species of aerosols, weather variables such as temperature and wind speed, a water
vapor multiplier, instrument wavelength shifts, and residual empirical orthogonal function
(EOF) amplitudes. Prior means and variances for the state vector are determined using other
measurement networks, such as the European Centre for Medium-RangeWeather Forecasts
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(ECMWF) daily forecasts of pressure, temperature profile, water vapor profile, and wind
speed, the GLOBALVIEW dataset (GLOBALVIEW-CO2 2013) for the CO2 profile and
MERRA climatology (Rienecker et al. 2011) for aerosols.

2.3. SURROGATE FORWARD MODEL

The surrogate forward model, Fsurr(X,b), used in this paper is described in detail by
Hobbs et al. (2017), we give a brief description here. The surrogate model assumes a 39-
dimensional state vector, X, which includes the 20 layers of CO2 concentration, surface
pressure, coefficients for 4 different species of aerosols, and albedo for the three spectral
bands. It does not include the full physics state vector elements that account for tempera-
ture and humidity adjustments, wavelength offsets, and solar-induced fluorescence. These
components are fixed, where necessary in the surrogate model. The surrogate model uses
a similar wavelength resolution in the three bands to yield a 3048-dimensional radiance
vector Y.

As for the full physics model, the surrogate forward function Fsurr is a numerical solution
to the radiative transfer equation, which is an ordinary integro-differential equation defined
along the vertical path through the atmosphere. In general this solution is nonlinear in the
state X. Other simplifications are made for computational efficiency, including additional
numerical approximations in solving the radiative transfer equation, and fixed ABSCO
tables for a given location and time which results in a smaller b vector. This yields a speed
improvement on the order of 20 times over the full physics forward model.

2.4. OPTIMAL ESTIMATION (OE) RETRIEVAL

Details of the retrieval algorithm used by OCO-2 are given, e.g., by O’Dell et al. (2012),
Crisp et al. (2012), and Crisp et al. (2014). Briefly, the retrieved state vector x̂ is the vector
that minimizes the following cost function:

c = (y − F(x,b))��−1
ε (y − F(x,b)) + (x − μa)

��−1
a (x − μa) (4)

where y is the observed sounding (3048-dim vector), F is the full physics forward model,
b is a constant vector and �ε is a diagonal matrix of measurement error variances, which
also are assumed known. The vector μa is the prior mean for the state vector and �a is
the prior covariance matrix. The minimization is performed with the Levenberg–Marquardt
algorithm. Uncertainty estimates are given by the covariance matrix:

Ŝ = (K��−1
ε K + �−1

a )−1 (5)

where K is the linearization of F(x,b), evaluated at the retrieved value:

K = δF(x,b)

δx

∣∣∣∣
x=x̂

. (6)
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The main data product of interest is the column-averaged CO2 dry air mole fraction,
X̂CO2 , and its variance, ŝ2XCO2

. This is a weighted average of the 20 CO2 concentrations,
which depends in part on elements of the retrieved state vector, i.e.,

X̂CO2 = h�x̂p and ŝ2XCO2
= h� Ŝph (7)

where x̂p = (x̂1, . . . , x̂20)T is the retrieved CO2 profile and Ŝp is the corresponding 20×20-
dimensional retrieved covariance matrix. The pressure weighting function h represents the
proportion of the mass of the full column of dry air represented by each vertical level in the
CO2 profile portion of the state vector. For OCO-2 these weights are nearly uniform, with
a slight adjustment due to water vapor (Crisp et al. 2014).

The OE retrievals performed in this paper use surrogate forward model Fsurr instead of
F. For prior distributions we use the same mean vectors and covariance matrices (μa and
�a) used in the OCO-2 operational processing for given time and location. In the surrogate
model, the water vapor is fixed, so the pressure weight vector h is constant from sounding
to sounding. As in the operational retrieval, the measurement error covariance matrix �ε is
diagonal with variances proportional to the mean radiance, setting the signal-to-noise ratio
comparable to that for the actual OCO-2 instrument (see also Hobbs et al. (2017)).

The approach described above is called optimal estimation (Rodgers 2000) in remote
sensing circles, but is of course an application of a nonlinear normal model with a normal
prior on the parameters:

Y | X ∼ N (F(X,b), �ε)

X ∼ N
(
μa, �a

)
. (8)

Therefore, x̂ is an estimate of the posterior mode (although often treated as the posterior
mean) and Ŝ is an estimate of the posterior variance-covariance matrix.

We note that if F is a linear function of X, then the posterior [X | Y] is a multivariate
normal distributionwithmean x̂ and covariancematrix Ŝ. But sinceF is not a linear function,
the posterior is not normal. Therefore, the posterior mode x̂ is not necessarily the same as the
posterior mean. Note also that OE retrieval estimates the posterior mode of the multivariate
distribution [X | Y] while the interest is mainly in the marginal posterior of a transformation
of the first 20 elements

[
XCO2 | Y]

. Even though x̂ is the mode of [X | Y] the estimate of
X̂CO2 in Eq. (7) is not necessarily the mode of

[
XCO2 | Y]

.

3. DATA USED IN THIS STUDY

To assess the OE approximation to the actual posterior in a meaningful way we need
observations Y and state vectors X that are representative of the actual observations and
atmospheric conditions the OCO-2 satellite encounters. For this and related mission simula-
tion activities, the first 18months of the OCO-2 Level 2 retrieved state vectors were analyzed
with the t distributed stochastic neighbor embedding (tSNE) dimension-reduction proce-
dure (Van Der Maaten and Hinton 2008). A cluster analysis was performed on the results,
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Figure 2. The 100 available data templates colored by the Transcom Region. The 20 templates selected for paper
are circled black (Color figure online).

and a collection of 100 cluster centers and singleton outliers were identified as “template
soundings”. The analysis was performed separately on land nadir, land glint, and ocean glint
data. The present study uses land nadir templates only.

By design, the collection of template soundings span the range of atmospheric CO2

and aerosol concentrations estimated by OCO-2. In the process, the templates additionally
span across seasons and geographical regions. For our MCMC experiments, we selected 20
land nadir templates that include all of the thirteen Transcom regions (Gurney et al. 2003)
and cover a large range of total aerosol depth (AOD) values. The locations of the selected
templates are shown in Fig. 2 and information about dates, aerosol species and total AOD
are given in Table 1.

Within a template, we wish to study a set of plausible state vectors X that are randomly
sampled from a common marginal distribution. The marginal distribution is estimated using
a Gaussian mixture model, with data assembled from OCO-2 CO2 retrievals and MERRA
aerosol datawithin 300kmand in the samemeteorological season (i.e., within approximately
2months) as the template sounding. For each template, we simulate 30 random state vectors
from this mixture model and simulate a synthetic radianceY from the surrogate model, with
measurement error, to pair with eachX. In total, we have 600 pairs of synthetic state vectors
and soundings. The optimal estimation algorithm was applied to these synthetic soundings,
using the surrogate forward model and the same priors as the mission uses for the template
location and time. We note that the distribution from which the X are simulated is generally
not the same as the prior distribution used in the retrieval.

4. METHODS

4.1. MCMC METHODS

We obtained samples from the posterior
[
X | Y]

in model (8), referred to here as the
“MCMC retrieval”, using the adaptiveMetropolis algorithm ofHaario et al. (2001). For each



Optimal Estimation Versus MCMC for CO2 Retrievals

Table 1. Information about the 20 selected data templates used in this paper.

Transcom Region Month/year Aerosols AOD

1 South American Temperate 1/2015 DU-SO 0.126
2 South American Tropical 2/2015 SO-SS 0.035
3 North American Temperate 7/2015 DU-SO 0.175
4 North American Temperate 6/2015 DU-SO 0.062
5 North Pacific Temperate 11/2014 SO-SS 0.040
6 North American Boreal 6/2015 DU-OC 0.042
7 Northern Africa 7/2015 DU-SO 0.182
8 Northern Africa 2/2016 DU-OC 0.285
9 Northern Africa 5/2015 DU-OC 0.249
10 Southern Africa 10/2015 BC-OC 0.039
11 South Indian Temperate 1/2016 SO-SS 0.202
12 Eurasia Temperate 12/2014 DU-SO 0.149
13 Europe 9/2015 DU-SO 0.047
14 Eurasia Temperate 1/2016 OC-SO 0.567
15 Eurasia Temperate 2/2015 DU-OC 0.021
16 Eurasia Temperate 9/2015 BC-SO 0.534
17 Eurasia Boreal 8/2015 DU-SO 0.094
18 Tropical Asia 11/2015 SO-SS 0.155
19 Australia 6/2015 DU-SS 0.044
20 Australia 12/2014 DU-SS 0.050

Locations span the whole globe, dates range from November 2014 to February 2016 and the total aerosol optical
depth (AOD) ranges from 0.021 to 0.567. The aerosol species are: Black Carbon (BC), Dust (DU), Organic Carbon
(OC), Sulfate (SO), and Sea Salt (SS).

of the 600 soundings we ran four independent chains, starting at different initial values, with
250,000 iterations per chain. The computation for each chain took about 24h, but we ran
many independent chains in parallel on a JPL computing cluster, reducing the overall time
used for computations. Of the 2400 chains, 18were terminated due to unsuccessful Cholesky
factorization and 9 were terminated due to numerical issues in the forward model. For each
chain, the first 100,000 iterations were set as burn-in and acceptance rate after burn-in
ranged from 0.5 to 14.5% with a median of 3.72%. Furthermore, the chains were thinned by
retaining every 100th MCMC sample leaving 1500 MCMC samples for inference, or 6000
in total if all four chains ran to completion. We performed convergence diagnostics both
via visual inspection of traceplots of all 39 state vector elements and using the Gelman–
Rubin convergence statistic (Gelman and Rubin 1992; Brooks and Gelman 1998). Of the
600 MCMC retrievals, 457 were deemed converged.

4.2. ASSESSING RETRIEVAL METHODS

In our assessments and comparisons of OE and MCMC retrievals, we do not make a
distinction between the statistical concepts of estimation and prediction. TheCO2 retrieval is
technically a (probabilistic) parameter estimation, and in practice the data product is usually
viewed as a measurement with accompanying measurement error. The estimation of the
atmospheric state comes in the form of posterior samples (MCMC retrieval) andmultivariate
normal posterior distributions (OE retrieval), which are analogous to an ensemble forecast



J. Brynjarsdottir et al.

and a density forecast. The true states of the atmosphere (known within the realm of our
simulations) are treated here as the observations the MCMC and OE retrievals are supposed
to predict. We can therefore utilize various probabilistic forecast assessment methods, many
of which are frequently used in assessing weather forecasts (see, e.g., Gneiting and Katzfuss
2014, for a recent overview). In fact, the goals of our retrieval methods are the same as in
forecasting: sharp distributions (low variance) and calibrated prediction, i.e., distributions
that are statistically compatible to the true values.

In univariate settings (i.e., estimation of XCO2), we use diagnostic tools commonly used in
forecast evaluation (Gneiting et al. 2007), probability integral transform (PIT) histogram for
theOE retrieval and verification rank histogram for theMCMCretrieval to assess calibration.
A PIT histogram (Dawid 1984; Diebold et al. 1998; Gneiting and Raftery 2007) is simply a
histogram of the cumulative distribution functions (cdf) evaluated at the true values, which
are uniformly distributed if the true values are realization of the posterior distributions. A
verification rankhistogram (Anderson1996;Hamill andColucci 1997) orTalagranddiagram
(Talagrand et al. 1997) shows the ranks (or sample percentile rank) of the true values in the
posterior samples. These two histograms are equivalent and therefore comparable for the
OE and MCMC retrievals (Gneiting et al. 2007).

Diagnostic tools for multivariate ensemble and density forecasts are an area of active
research. For ensemble forecasts we consider two approaches. Firstly, the average rank his-
togram, where ensembles are ordered according to average univariate ranks (Thorarinsdottir
et al. 2016), and secondly, the band depth rank histogram where the concept of band dept
is used for ordering (López-Pintado and Romo 2009; Sun and Genton 2011, 2012; Sun
et al. 2012). For density forecasts (OE), we apply the Box density ordinate transform (BOT)
proposed by Box (1980), O’Hagan (2003), and Gneiting et al. (2008), which in our case is
simply a histogram of the percentile ranks of the true values:

u = 1 − χ2
39

(
(xtrue − x̂)T Ŝ−1(xtrue − x̂)

)

where x̂ and Ŝ are the OE estimates of the posterior mode and posterior covariance matrix,
and χ2

39(·) is the cdf of a chi-square distribution with 39 degrees of freedom. For all three
diagnostic tools, the histograms show a uniform distribution if observations are a random
sample from the posteriors. Interpretation of average rank histograms is equivalent to the
standard univariate rank histograms, outlying observations can give either high or low rank
values. However, both band depth andBOTs are center-outward orderings so outlying values
tend to lead to low-rank and in-lying observations tend to yield high values.

We apply proper scoring rules to compare the skill of OE and MCMC to recover the
true values that take into account both sharpness and calibration (Gneiting and Raftery
2007; Gneiting et al. 2007). In the univariate setting we consider both absolute error and
the continuous ranked probability score (CRPS) (Matheson and Winkler 1976; Gneiting
and Raftery 2007; Gneiting and Katzfuss 2014) as well as the squared prediction error. The
absolute and squared errors are simply AE = ∣∣x̂ − x

∣∣ and SPE = (x̂ − x)2 where x is the
true value and x̂ is a point estimate, either OE estimate of XCO2 or the MCMC estimate,
defined here as the posterior median. In other words, only point estimates are included. The
CRPS takes the whole predictive distribution in to account and is defined as



Optimal Estimation Versus MCMC for CO2 Retrievals

CRPS =
∫ ∞

−∞
(F(u) − 1(x ≤ u))2 du = EF |U − x | − 1

2
EF |U −U ′| (9)

where x is the observed value and U and U ′ are independent random variables with cdf F .
The CRPS is available in closed form for normal predictive distributions and can also be
estimated from samples using estimates of the empirical cdf (Hersbach 2000). Inmultivariate
setting there are not many scoring rules that can be applied to both density and ensemble
forecasts. Here we consider the energy score, a multivariate extension of CRPS (Gneiting
et al. 2008):

ES = EF ||U − x|| − 0.5EF ||U − U′|| (10)

where x is the true state vector and Y and Y′ are independent samples from F . We estimate
the energy score via Monte Carlo simulation for both ensemble and density forecasts.

4.3. KULLBACK–LEIBLER DIVERGENCE

The Kullback–Leibler divergence, though not mathematically a distance measure, can
be used to compare two distributions and is defined as

D(P||Q) =
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx (11)

in the univariate case. In our setting the distributions P and Q are the actual posterior and
the OE approximation, respectively. Since Q is a normal distribution we can evaluate the
density q(x) at any x , but we only have samples from P . To estimate the divergence in (11),
we obtain a kernel density estimate of p(x) and calculate

D̂(P||Q) = 1

M

M∑

m=1

log
p̂(x (m))

q(x (m))
(12)

where p̂ is the estimated density and {x (m)}Mm=1 are MCMC samples from P .

5. RESULTS

We compare the results of the computationally efficient, but approximate, OE retrievals
to results of MCMC retrievals. The MCMC retrievals provide samples from the posterior
and we treat OE retrievals as implying a Gaussian posterior distribution with means and
covariances given by the OE estimates. We apply methods laid out in Sects. 4.2 and 4.3 and
will focus on three viewpoints, the main quantity of interest XCO2 (Sect. 5.1), as well as the
CO2 profile Xp = (X1, X2, . . . , X20) and the full state vector X (Sect. 5.2).

5.1. UNIVARIATE ASSESSMENTS AND COMPARISONS FOR XCO2

We begin by examining the estimated posterior distributions of XCO2 for seven out of
the 457 successful retrieval, see Fig. 3. These seven were chosen to show examples of
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Figure 3. Posterior densities for one sample from seven templates as obtained by MCMC (black, solid) and
Optimal Estimation (blue, dashed). The vertical lines (magenta, solid) show the true value of XCO2 (Color figure
online).

the variety in results and a few things are worth noting. First, the posterior distributions
estimated with MCMC are not severely non-Gaussian. In fact, normal probability plots
(not shown here) indicated substantial deviation from normality in only about 10 of the
457 successful retrievals. A normal approximation to the posterior of XCO2 is therefore not
unreasonable. Second, in some cases theMCMC and OE retrievals give essentially the same
posterior (templates 2, 13, and 19) while in other cases they are quite different. Sometimes
the MCMC estimated posterior is much sharper than the OE (templates 1 and 6), that is
the posterior variance is smaller than what is implied by OE. This may seem surprising
since the uncertainty in the product is commonly believed to be underestimated rather than
overestimated, but keep in mind that this comparison is only between two computational
methods and there are many sources of uncertainty (unknown parameters, model error, etc.)
that neither the MCMC nor OE retrieval used here take into account. Third, sometimes
the distributions given by MCMC and OE retrievals are centered at very different values
(templates 1, 14, and 17). It may also seem surprising that the posterior modes estimated
with these twomethods can be so different, but keep inmind that OEfinds the posteriormode
of the joint posterior of the whole state vector

[
X | Y]

which after transformation to XCO2

may or may not correspond to the posterior mode of the univariate posterior
[
XCO2 | Y]

,
which is the distribution we obtain with MCMC methods. Furthermore, the posterior mode
can be missed by the OE retrieval if the Levenberg–Marquardt algorithm did not converge
properly, e.g., found a local minimum. Fourth, comparing the posterior distributions given
byMCMC andOE retrievals to true values for these seven examples only indicates that most
of the time both MCMC and OE retrievals recover the true values. Sometimes the MCMC
retrieval covers the true value better (e.g., template 14) and sometimes the OE retrieval does
(e.g., template 1).

We now turn to an overall assessment of the two methods using all 457 successful
retrievals. The PIT histogram (OE retrieval) and verification rank histogram (MCMC
retrieval) are shown in Fig. 4. The U-shaped histograms indicate that both methods are
under-dispersed, i.e., true values are in the far tails of the posterior in more cases than can
be explained by chance particularly the left tail. The OE retrieval is perhaps slightly less
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Figure 4. Verification rank histogram for the MCMC retrievals (left) and PIT histogram for OE retrievals (right).

Table 2. Average scores for column-averaged CO2 concentration XCO2 , CO2 profile vector Xp , and full state
vector X.

XCO2 , CRPS XCO2 , AE XCO2 , MSPE Xp , ES X, ES

OE 1.25 1.63 6.35 14.54 14.85
MCMC 0.97 1.28 4.09 13.29 13.58
Perc. MCMC < OC 67.0% 62.1% 62.1% 60.8% 62.6%

The scores are the average continuous ranked probability score (CRPS), average absolute error (AE), mean square
prediction error (MSPE), and the multivariate energy score (ES). In all cases, a lower score indicates a better
prediction.

under-dispersed, which can be explained by the typically larger OE posterior variances. In
fact, the standard deviations estimated by the OE are larger than those estimated by MCMC
retrieval in 440 of our 457 cases and the average difference is 0.289ppm (average ratio was
about 1.34).

For a quantitative comparison we calculate the absolute error, squared prediction error,
and CRPS using the R package scoringRules (Jordan et al. 2017). Average scores are shown
in Table 2, note that a lower score indicates a better prediction. We see that even though
OE retrieval seems slightly better calibrated (see Fig. 4), MCMC retrieval generally per-
forms better both as a point estimate (absolute/squared error) and as a probabilistic estimate
(CRPS).

We now give two examples of insights this and similar studies can give for the OCO-2
mission. First, Fig. 5 shows the CRPS and absolute error scores plotted against the aerosol
species of the state vector. The state vector includes information about four aerosol species,
two of which are fixed (water vapor and ice water) and two are chosen in the data processing
operation. The possible aerosol species are Black Carbon (BC), Dust (DU), Organic Carbon
(OC), Sulfate (SO), and Sea Salt (SS). The effect of which aerosol species are selected
is that the parameter vector b changes, as the aerosol species have different absorption
properties. For our dataset, the pair of flexible aerosol species are the same within template,
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Figure 5. Absolute error (left) and CRPS (right) for the 457 successful retrievals of XCO2 , plotted against the
pair of aerosol species. The first row shows the differences in scores betweenMCMC and OE retrievals, the second
and third row show the scores for MCMC and OE retrievals, respectively. The species are: Black Carbon (BC),
Dust (DU), Organic Carbon (OC), Sulfate (SO), and Sea Salt (SS).

e.g., in template 1 we have dust and sulfate, DU/SO (Table 1). We see from Fig. 5 that the
quality of the prediction varies between aerosol types (recall that a lower score indicates a
better prediction). For example, the median scores for both MCMC and OE retrievals for
templates with aerosol species DU/SS andDU/OC are lower than for others. Also, the scores
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for templates with species BC/OC and BC/SO are less variable than for any others. Largest
scores occur for templates with species DU/SO and SO/SS. This indicates that both OE
and MCMC retrievals tend to perform worse when the state vector includes sulfate paired
with dust, organic carbon or sea salt than for other aerosol combinations. The difference in
scores between retrieval methods (Fig. 5, top row) shows that MCMC performs better than
OE for almost all soundings in templates with aerosol species BC/OC and BC/SO. In all
cases the median difference is negative, i.e., MCMC performs better for all combinations
of aerosol species. Overall, MCMC performs better in 67 and 62.1% of cases in terms of
CRPS and absolute errors respectively. This indicates that while the OE retrieval tends to
perform worse than the MCMC retrieval in terms of predicting the true value in general, the
difference in performance is most persistent when the aerosol species include Black Carbon.

Second, Fig. 6 shows the estimatedKullback–Leibler divergences between posterior esti-
mated via MCMC and the OE approximation N (x̂CO2 , ŝ

2
XCO2

) for each template (location).
The Fig. 6 reveals that in terms of Kullback–Leibler divergence, the OE approximation tends
to be closer to the actual posterior for some templates (e.g., templates 3 and 11) than others
(e.g., templates 1 and 5).

5.2. MULTIVARIATE COMPARISONS

We now turn our attention to the retrievals of the 20-dimensional CO2 profile vector Xp

and the 39-dimensional full state vectorX. Our first question is whether the posterior
[
X | Y]
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Figure 7. Forecasting diagnostics for the full state vector X (top row) and the CO2 profile vector Xp (bottom
row). Left: average rank histograms (MCMC retrieval), middle: band depth rank histograms (MCMC retrieval),
and right: BOT histograms (OE retrieval).

or the marginal posterior
[
Xp | Y]

are (close to) multivariate normal. Chi-square probability
plots (not shown here) revealed that for almost all soundings,

[
X | Y]

and
[
Xp | Y]

are not
multivariate normally distributed, although plots for

[
Xp | Y]

tended to show less severe
inconsistencies with normality.

Turning to multivariate prediction diagnostics, Fig. 7 shows the average rank and band
depth rank-histograms for the MCMC retrieval and the BOT histogram for the OE retrieval.
From the BOT histogram we see that the OE retrieval is very poorly calibrated in the
multivariate case, but in different ways for Xp and X. The low values for the whole state
vector points to too many outlying values, i.e., the posterior N39(x̂, Ŝ) distributions tend
to not cover the true value. The high values for the profile vector (Fig. 7, bottom right)
may indicate the opposite is true there, N20(x̂p, Ŝp) is over dispersed in that dimension,
although bias and miss-specification of correlations cannot be ruled out as culprits. The
average rank and band depth histograms (Fig. 7, left and middle) show calibration diag-
nostics for MCMC retrieval. Neither reveal severe calibration issues for the full state
vector, both indicate only slightly too many outlying values for X. However, the band
depth histogram shows too many in-lying or biased values for Xp. The average rank
histograms are similar for X and Xp and both indicate slightly too many outlying val-
ues.

Average energy scores are shown in Table 2. As in the univariate case theMCMCmethod
performs better both for Xp and X. MCMC gave a lower (i.e., better) energy score in 60.8
and 62.6% of soundings for CO2 profile and full state vector respectively. Plotting energy
scores against aerosol species reveals a similar story as Fig. 5, i.e., the difference in energy
scores between the OE and MCMC retrievals vary across aerosol species.
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6. DISCUSSION

We have performed extensive comparisons of the OCO-2 operational data production
procedure, OE retrieval, and the actual posterior obtainedwithMCMCmethods. The general
indication from our results is that when compared to MCMC, the OE retrieval performs
reasonably well for the main quantity of interest XCO2 but not for the full state vector X.

We found that, for the cases considered in this paper, a normal approximation to[
XCO2 | Y]

is not unreasonable. Even though the posterior of the CO2 profileX is generally
not multivariate normal, the averaging in calculating XCO2 helps making its posterior rea-
sonably close to normal. Prediction performance of the two retrieval methods is similar, the
OE retrievals are slightly better calibrated but the MCMC retrievals generally have better
forecasting scores, both absolute errors and CRPS.

The source of the difference in OE and MCMC retrievals of XCO2 can be traced to at
least two issues with the OE retrieval. First, the estimate X̂CO2 is not necessarily the mode of
the posterior

[
XCO2 | Y]

so treating it as the mean of the posterior may be a source of bias.
In fact, the posterior median (from the MCMC retrieval) was on average closer to the true
value than X̂CO2 (absolute error was on average smaller). Second, the estimated variances
ŝ2CO2

are almost always larger than the variances derived from MCMC, and variances that
are too large will increase the CRPS.

TheOE retrieval almost always overestimated the posterior variances of XCO2 , on average
the OE standard deviation was about 34% larger than the actual posterior standard deviation.
It is generally acknowledged that the variance in the OCO-2 data product is too small, which
ismostly due to the omission ofmany sources of uncertainty, e.g., in parameters b andmodel
discrepancy. Neither of these sources are present her; however, both the parameter values
and forward models are the same for both generating soundings and for the retrievals. The
difference in variances detected here is due to theway theOE retrieval estimates the posterior
variance. The forward model is linearized around the estimated state vector x̂ (Eqs. 5, 6)
and then the posterior variance of XCO2 is calculated as if the posterior of the CO2 profile is
multivariate normal (Eq. 7). In our case this results in over estimating the posterior variance.

We found that for the multivariate cases the posteriors
[
Xp | Y]

and
[
X | Y]

are not well
represented with a normal distribution. This has potential ramifications for users of the data
product, e.g., when assimilating the whole CO2 profile Xp in carbon flux inversions. The
OE retrieval fails as a probabilistic estimator of the true state X, as indicated by the BOT
histogram in Fig. 7). As a probabilistic estimator ofXp the OE is too conservative (too large
variances) but so is the MCMC retrieval.

This article addresses one of many sources of uncertainty in the OCO-2 data product,
namely the computational approximations made to obtain a posterior distribution for XCO2 .
As in the operational retrieval, we treat many parameters as fixed, e.g., the b vector and
the measurement error variances in �ε . These parameters are too numerous to estimate
(via MCMC or OE) but a subset could be chosen based on expert knowledge about which
ones the forward model would be most sensitive to, and is a subject of our future work.
An overall quantification of sources of uncertainty for OCO-2 is a work in progress and an
active research area (Connor et al. 2016; Cressie et al. 2016; Hobbs et al. 2017).
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MCMC methods are currently too computationally expensive to be applied routinely in
the operational data processing for OCO-2. Future work will include alternative sampling
or approximation methods to obtain a more accurate representation of the posterior of the
quantity of interest. On the other hand, it is possible to apply MCMC methods on a limited
number of strategically selected soundings in the operational data processing. A comparison
between OE retrievals and the MCMC retrievals similar to those performed in this paper
could then help identify locations or physical conditions where the OE retrieval falls short
of representing the actual posterior and an MCMC retrieval would be beneficial.
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