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1. Introduction

There exists a multitude of viable approaches to quantum
gravity, among which causal set theory is perhaps the most min-
imalistic in terms of baseline assumptions. It is based on the hy-
pothesis that spacetime at the Planck scale is composed of discrete
“spacetime atoms” related by causality [1]. These “atoms”,
hereafter called elements, possess a partial order which encodes
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all information about the causal structure of spacetime, while
the number of these elements is proportional to the spacetime
volume—*“Order + Number = Geometry” [2]. One of the first suc-
cesses of the theory was the prediction of the order of magnitude of
the cosmological constant long before experimental evidence [3],
while one of the most recent significant advances was the def-
inition of a statistical partition function for the canonical causal
set ensemble £2 [4] based on the Benincasa-Dowker action [5].
This work, which examined the space of 2D orders £2,p C £2
defined in [6], provided a framework to study phase transitions and
measure observables, with paths towards developing a dynamical
theory of causal sets from which Einstein’s equations could possi-
bly emerge in the continuum limit. Yet the progress along this path
is partly blocked on numerical limitations. Since the theory is non-
local, the combination of action computation running times, O(N>),
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and thermalization times, O(N?), of Monte Carlo methods used
to sample causal sets from the ensemble, result in O(N>) overall
running times, limiting numerical experimentation to causal set
sizes N of just tens of elements.

Here we present new fast algorithms to generate causal
sets sprinkled onto a Lorentzian manifold and to compute the
Benincasa-Dowker action, with an emphasis on how these algo-
rithms are optimized by leveraging the computer’s architecture
and instruction pipelines. After providing a short background on
causal sets and the Benincasa-Dowker action in Sections 1.1 and
1.2, we describe several algorithm implementations to generate
causal sets in Section 2. Section 3 presents a highly optimized data
structure to represent causal sets that speeds up the computation
of the action, Section 4, by orders of magnitude. Section 5 presents
an analysis of algorithms’ running times as functions of the causal
set size and available computational resources. We conclude with
a summary in Section 6.

1.1. Causal sets

Causal sets, or locally-finite partially ordered sets, are the cen-
tral object in the causal set approach to quantum gravity [1,7,8].
These structures are modeled as directed acyclic graphs (DAGs)
with N labeled elements (nq, n,, ..., ny) and directed pairwise re-
lations (n;, n;). If obtained by sprinkling onto a Lorentzian manifold,
they approximate the manifold in the continuum limit N — oc.
Lorentzian manifolds are (d+1)-dimensional manifolds with d spa-
tial dimensions and one temporal dimension whose metric tensors
gu» b, v =0,1,...,d have one negative eigenvalue [9,10]. These
DAGs are a particular type of random geometric graph [11]: ele-
ments are assigned coordinates in time and d-dimensional space
via a Poisson point process with intensity &, and they are linked
pairwise if they are causally related, i.e., timelike separated in the
spacetime with respect to the underlying metric (Fig. 1). As a side
note, sprinkling onto a given Lorentzian manifold is definitely not
the only way to generate random causal sets. The general definition
of a causal set can be found in [1], and random causal sets also
can be obtained by sampling from the canonical ensemble £2 [4],
or more generally, from the ensemble of random partial orders
P, p [12], i.e, they can in general be treated as unlabeled partial
orders. Due to the non-locality implied by the causal structure,
causal sets have an information content which scales at least as
O(N?) compared to that in competing theories of discrete space-
time which scales as O(N) [13-15]. As a result, by using the causal
structure information contained in these DAG ensembles, one can
recover the spacetime dimension [ 16,17], continuum geodesic dis-
tance [18], differential structure [19-22], Ricci curvature [5], and
the Einstein-Hilbert action [13,23-25], among other properties.

1.2. The Benincasa-Dowker action

In many areas of physics, the action (S) plays the most fun-
damental role: using the least action principle [26,27], one can
recover the dynamic laws of the theory as the Euler-Lagrange
equations that represent the necessary condition for action ex-
tremization §S = 0. In general relativity, from the Einstein-Hilbert
(EH) action,

Seon = %/R(x“w?gdx“, (1)

where R is the Ricci scalar curvature and g is the metric tensor
determinant, Einstein’s field equations can be explicitly derived
and then solved given a particular set of constraints [28]. Therefore,
if one hopes to develop a dynamical theory of quantum gravity,
one would hope that either the discrete action in the quantum
theory converges to (1) in the large-N limit, as we find with the
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Fig. 1. The causal set as a random geometric graph. Elements of the causal
set are sprinkled uniformly at random with intensity & into a particular region of
spacetime, where n and 6 respectively refer to the temporal and spatial coordinates
in (1 + 1) dimensions. Light cones, drawn by 45-degree lines in these conformal
coordinates, bound the causal future and past of each element. When light cones
of a pair of elements (shown in blue and green) overlap, the elements are said to
be causally related, or timelike separated, as indicated by the bold red line. The
black elements both to the future of the signal and to the past of the observer form
the pair’s Alexandroff set shown by the teal color. Not all pairwise relations are
drawn. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Regge action for gravitation [29], or an interacting theory leads to
an effective action, as we see with the Wilson action in quantum
chromodynamics [30]. The numerical investigation of whether
such a transition does indeed take place can be quite difficult: the
quantum gravity scale is the Planck scale, so that if the convergence
is slow, it may be extremely challenging to observe it numerically.
This is indeed the case for the causal set discrete action, known
as the Benincasa-Dowker (BD) action [5], which has been shown
to converge slowly to the EH action in curved higher-dimensional
spacetimes such as (3+ 1)-dimensional de Sitter spacetime [22,24].

The BD action was discovered in the study of the discrete
d’Alembertian (B), i.e., the discrete covariant second-derivative
approximating 0 = —83 + V2, defined in (1 + 1) dimensions, for
instance, as

2
By (x*) = 12<_ ¢ (x") +2

Y2+ ¢(y“>>, (2)

yelq yely  yels

where ¢(x*) is a scalar field on the causal set, | = &~1/(d+1D jg
the discreteness scale, and the ith order inclusive order interval
(I0I) L; corresponds to the set of elements {y} which precede x
with exactly (i — 1) elements {z;} within each open Alexandroff
set,i.e., y < {z} < xVy € Lyand |{z}| = i — 1. In [5] it was
shown that in the continuum limit, (2) converges in expectation
to the continuum d’Alembertian plus another term proportional to
the Ricci scalar curvature

Jim E[Bp (k)] = O¢ (") — %R(X“)tﬁ(x") : (3)

From (2) and (3) one can see when the field is constant everywhere,
so that O¢(x*) = 0, then (2) converges to the Ricci curvature in
the continuum limit, and therefore to the EH action when summed
over the entire causal set. It was also shown in [5] that the expres-
sion for the BD action in (1 + 1) dimensions is

SBD = Z(N — 21’1] + 41’12 — 2713) s (4)

where n; is the abundance of the ith order IO], i.e., the cardinality
of the set L; (Fig. 2). While (4) converges in expectation, any typical
causal set tends to have a BD action far from the mean. This poses a
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Fig. 2. Proper distance and the order intervals. The left panel shows discrete hypersurfaces of constant proper time r = +/x? — t2 (dashed) are approximated using the
graph distance. If the black point is some element x in a larger causal set, then the order intervals would be found by counting the number of elements belonging to each
hypersurface, i.e.,n; = |L;|.In general the structure is not tree-like. The top of the right panel shows the subgraphs associated with each of the first four inclusive order intervals
used in (4), and the bottom part shows how they are detected using the causal (adjacency) matrix, assuming the graph has been topologically sorted, i.e., time-ordered. For
each pair of timelike separated elements (i, j), we take the inner product of rows i and j between columns i and j using the bitwise AND in place of multiplication and the
popcntq instruction in place of a sum. The resulting value tells how many elements lie within the Alexandroff set. Details of the algorithm can be found in Section 3.3.

serious problem for numerical experiments which already require
large graphs, N > 2'¢ to show convergence, and also indicates
that Monte Carlo experiments must have relatively large ther-
malization times. To partially alleviate this problem, it is not (2)
which one usually calculates, but rather another expression, called
the “smeared” or “non-local” action (S.), which is obtained by
averaging (or smearing) over subgraphs described by a mesoscale
characterized by ¢ € (0, 1). The new expression which replaces (4)
is

N—1

Se=26|N—=2e) mfi(i—12)|,
i=1 (5)
, ; 2ei gfi(i— 1)]

f.e) (18>P e yepel B
The smeared action (5) was shown to also converge to the EH
action in expectation, while fluctuations are greatly suppressed so
that numerical experiments with the same degree of convergence
accuracy can be performed with orders of magnitude smaller graph
sizes [22].

While in some cases one might want to compare directly the
expectation of the BD action to the continuum result (1), in Monte
Carlo experiments with the canonical causal set ensemble one
uses (5) in the quantum partition function

Z(N.d, T)=Y &>/, (6)
C

where the sum is over the ensemble of all causal sets C with fixed
size N, dimension d, and topology 7. The analytically continued
partition function used in numerical experiment is

Z(N.d,T)=) e, 7)

C

where i — 1and B8 € RT. Methods for generating causal set
Markov chains using this partition function are discussed in [4,31].

1.3. Computational tasks

Generating causal sets involves an O(N) coordinate generation
operation followed by an O(N?) element linking operation, both
of which can be parallelized (Section 2). Yet the bottleneck is not
graph generation but the O(N3) action computation. After each
causal set is constructed, the primary computationally intensive

task in computing (5) is counting the IOIs. For each pair of causally
related elements we must count the number of elements within
their Alexandroff set. As a result, the runtime depends greatly
on the ordering fraction, defined as the fraction of related pairs,
which in turn depends on the choice of manifold, dimension, and
bounding region.

Previous work implemented as a part of the Cactus Frame-
work [32] has been quite successful, but because the causal set
toolkit is part of a broader numerical relativity package it is chal-
lenging to modify core data structures and to take advantage of
platform-specific architectures. Therefore, one of the main new
features of the software suite presented here is a new efficient
data structure called the FastBitset (Section 3), which offers
compressed-bit storage and several highly optimized algorithms
designed specially to calculate the smeared BD action. As a result,
larger causal sets may be studied in the asymptotic regime N > 216,
possibly up to the extreme sizes N ~ 224, and the Markov chains
generated by smaller causal sets may be extended further than
before to enable a closer examination of phase transitions [4,13].

We note that if other possible forms of the causal set action
arise in the future, as soon as their definitions rely only on the
adjacency matrix of a causal set, they can also take advantage of
the presented algorithms, since these algorithms use only causal
set adjacency matrices, and rely on optimized set and counting
operations. For the same reasons, i.e., since these algorithms use
causal set adjacency matrices only, they can be applied without
modification not only to causal sets obtained by sprinkling onto
a Lorentzian manifold, but also to any other causal sets, e.g., to
Kleitman-Rothschild partial orders [33].

2. Causal set generation
2.1. Coordinate generation

For a finite region of a particular Lorentzian manifold, coordi-
nates are sampled via a Poisson point process with intensity &,
using the normalized distributions given by the volume form of
the metric. For instance, for any (d + 1)-dimensional Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime [34] with compact
spatial hypersurfaces, the volume form may be written

dv = a(t)dt d24, (8)

where a(t) is the scale factor, which describes how space expands
with time, and d$2; is the differential form for the d-dimensional
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sphere. From this expression, we find the normalized temporal
distribution is p(t) = a(t)?/ [ a(t')*dt’, and spatial coordinates
are sampled from the surface of the d-dimensional unit sphere.
Because the (d + 1) x N coordinates of the elements sprinkled
within a spacetime are all independent with respect to each other,
these may easily be generated in parallel using OpenMP, which is
a C/C++ and Fortran library used to distribute parallel tasks over
multiple CPU cores [35].

2.2. Pairwise relations

Once coordinates are assigned to the elements, the pairwise
relations are found by identifying pairs of elements which are
timelike separated, and efficient storage requires the proper choice
of the representative data structure. A causal set is a graph, i.e.,a set
of N labeled elements along with a set of pairs (i, j) which describe
pairwise relations between elements, so the most straightforward
representation uses an adjacency matrix of size N x N. If the graph
is simply-connected, i.e., there exist no self-loops or multiply-
connected pairs, then this matrix contains only 1's and Q’s, with
each entry indicating the existence or non-existence of a relation
between the pair of elements specified by a particular pair of row
and column indices. Moreover, if this graph is undirected, the ma-
trix will be symmetric. We represent naturally ordered causal sets
as undirected graphs with topologically sorted elements, meaning
that elements are labeled such that an element with a larger
index will never precede an element with a smaller index. In the
context of a conformally flat embedding space, which is the only
type we consider in this work, this simply means elements are
sorted by their time coordinate before relations are identified.
Yet this does not mean that the presented causal set generation
algorithms are impossible to adjust to generate causal set sprinkled
onto spacetimes that are not conformally flat. Indeed, in such
spacetimes topological sorting can be used, as any partial order can
be topologically sorted by the order-extension principle [36].

2.2.1. Naive CPU linking algorithm

The naive implementation of the linking algorithm using the
CPU uses a sparse representation in the compressed sparse row
format [37,38]. Because the elements have been sorted, we require
twice the memory to store sorted lists of both future-directed and
past-directed relations, i.e., one list identifies relations to the future
and the other those to the past. While identification of the relations
is in fact only O(N?) in time, the data reformatting (list sorting)
pushes it roughly to O(N%%), as we will see in Section 5.

2.2.2. OpenMP linking algorithm

The second implementation uses the dense graph representa-
tion and is parallelized using OpenMP. Using this dense repre-
sentation for a sparse graph can waste a relatively large amount
of memory compared to the information content; however, the
nature of the problem described in the previous section dictates
a dense representation will permit a much faster algorithm, as
we will discuss later in Sections 4 and 5. Moreover, the sparsity
will depend greatly on the input parameters, so in many cases the
binary adjacency matrix is the ideal representation.

2.2.3. Naive GPU linking algorithm

While OpenMP offers a great speedup over the naive imple-
mentation, the linking algorithm is several orders of magnitude
faster when instead we use one or more Graphics Processing Units
(GPUs) with the CUDA library [39]. Since they have many more
cores than CPUs, GPUs are typically best at solving problems which
require many thousands of independent low-memory tasks to be
performed. There are many difficulties in designing appropriate
algorithms to run on a GPU: one must consider size limitations of

the global memory, which is the GPU equivalent of the RAM, and
the GPU’s L1 and L2 memory caches, as well as the most efficient
memory access patterns. One particularly common optimization
uses the shared memory, which is a reserved portion of up to
48 KB of the GPU’s 64 KB L1 cache. This allows a single memory
transfer from global memory to the L1 cache so that spatially local
memory reads and writes by individual threads afterwards are at
least 10x faster. At the same time, an additional layer of synchro-
nizations among threads in the same thread block (i.e., threads
which execute concurrently) must be considered to avoid thread
divergence [40] and unnecessary if/else branching. It also puts
constraints on data structures since it requires spatially local data
or else the cache miss rate, i.e., the percent of time data is pulled
from the RAM instead of the cache, will drastically increase.

The first GPU implementation offers a significant speedup by
allowing each of the 2496 cores in the NVIDIA K80m (using a single
GK210 processor) to perform a single comparison of two elements.
The output is a sparse edge list of 64-bit unsigned integers, so that
the lower and upper 32 bits each contain a 32-bit unsigned integer
corresponding to a pair of indices of related elements. After the list
is fully generated, it is decoded on the GPU using a parallel bitonic
sort to construct the past and future sparse edge lists. During this
procedure, vectors containing degree data are also constructed by
counting the number of writes to the edge list.

2.2.4. Optimized GPU linking algorithm

Despite the great increase in efficiency, this method fails if N
is too large for the edge list to fit in global GPU memory or if N is
not a multiple of 256. The latter failure occurs because the thread
block size is set to 128 for architectural reasons,' and the factor of
two comes from the index mapping used internally which treats
the adjacency matrix as four square submatrices of equal size. The
second GPU implementation addresses these limitations by tiling
the adjacency matrix, i.e., sending smaller submatrices to the GPU
serially. Further, when N is not a round number these edge cases
are handled by exiting threads with indices outside the proper
bounds so that no improper memory accesses are performed.

This second implementation also greatly improves the speed
by having each thread work on four pairs of elements instead of
just one. Since each of the four pairs has the same first element by
construction, the corresponding data for that element may be read
into the shared memory, thereby reducing the number of accesses
to global memory. Moreover, threads in the same thread block also
use shared memory for the second element in each pair. Hence,
since each thread block has 128 threads and each thread works
on four pairs, there are only 132 reads (128+4) to global memory
rather than 512 (128 x 4), where each read consists of reading
(d + 1) floats for a (d + 1)-dimensional causal set. Finally, when
the dense graph representation is used, the decoding step may be
skipped, which offers a rather substantial speedup when the graph
is dense. There are other optimizations to reduce the number of
writes to global memory using similar techniques via the shared
memory cache.

2.2.5. Asynchronous GPU linking algorithm

A third version of the GPU linking algorithm also exists which
uses asynchronous CUDA calls to multiple concurrent streams [39].
By further tiling the problem, simultaneously data can be passed
to and from the GPU while another stream executes the kernel,
i.e,, the linking operations. This helps reduce the required band-
width over the PCle bus, which connects the GPU to the CPU and

1 On the NVIDIA K80m, which has a Compute Capability of 3.7, each thread
block cannot have greater than 1024 threads, there can be at most 16 thread
blocks per multiprocessor, and at the same time no greater than 2048 threads per
multiprocessor.
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other devices, and can sometimes improve performance when the
data transfer time is on par with the kernel execution time. We
find in Section 5 this does not provide as great a speedup as we
expected, so this is one area for future improvement should this
end up being a bottleneck in other applications.

3. The FastBitset class
3.1. Problems with existing data structures

The relations found by the linking algorithm are best stored in
dense matrix format for the action algorithm, as we will see in
Section 4. A binary adjacency matrix can be implemented in several
ways in C++. The naive approachistousea std: : vector<bool>
object. While this is a compact data structure, there is no guarantee
memory is contiguously stored internally and, moreover, reading
from and writing to individual locations is computationally ex-
pensive. Because the data is stored in binary, there is necessarily
an internal conversion involving several bitwise and type-casting
operations which make these simple operations take longer than
they would for other data structures.

The next best option is the std: :bitset<> object. This is
a better option than the std::vector<bool> because it has
bitwise operators pre-defined for the object as a whole, i.e., to
multiply two objects one need not use a for loop; rather, oper-
ations like ¢ = a & b are already implemented. Further, it has
a bit-counting operation defined, making it easy to immediately
count the number of bits set to ‘1’ in the object. Still, there is no
guarantee of contiguous memory storage and, worst of all, the size
must be known at compile-time. These two limitations make this
data structure impossible to use if we want to specify the size of
the causal set at runtime.

Finally, the last option we will examine is the boost : : dynamic
_bitset<> provided in the Boost C++ Libraries [41]. While this
is not a part of the ISO C++ Standard, it is a well-maintained and
trusted library. Boost is known for offering more efficient imple-
mentations of many common data structures and algorithms. The
boost: :dynamic_bitset<> can be dynamically sized, unlike
the std: :bitset<>, the memory is stored contiguously, and it
even has pre-defined bitwise and bit-counting operations. Still, it
does not suit the needs of the abovementioned problem because
it is not possible to access individual portions of the bitset: we are
limited to work only with individual bits or the entire bitset.

Given these limitations, we have developed the FastBitset
class to represent causal sets in a way which is most efficient for
non-local algorithms such as the one used to find the BD action.
The adjacency matrix is comprised of a std: :vector of these
FastBitset objects, with each object corresponding to a row of
the matrix. Internally, this data structure holds an array of 64-bit
unsigned integers, referred to as blocks, which contain the matrix
elements in their raw bits. We have provided all four set operations
(intersection, union, disjoint union, and difference) and several
bit-counting operations, including variations which may be used
on a proper subset of the entire object. The performance-critical
algorithms used to calculate the BD action have been optimized
using inline assembly and Intel’s Streaming SIMD Extensions (SSE)
and Advanced Vector Extensions (AVX) instructions [42].

3.2. Optimized algorithms in the FastBitset

One of the most frequently used operations in the action cal-
culation is the set intersection, i.e., row multiplication using the
bitwise AND operator (Fig. 2 (right)). The naive implementation
uses a for loop, but the optimized algorithm takes advantage
of the 256-bit YMM registers located within each physical CPU
core [42]. For a review of x86 microarchitectures, see [43,44]. The

larger width of these registers means that in a single CPU cycle
we may perform a bitwise AND on four times the number of bits
as in the naive implementation at the expense of moving data to
and from these registers. The outline is described in Algorithm 1. It
is important to note that for such an operation to be possible, the
array of blocks must be 256-bit aligned. Any bits used as padding
are always set to zero so they do not affect any results.

Algorithm 1 Set Intersection with AVX

Input:
A > The bit array of the first FastBitset
B > The bit array of the second FastBitset
n > The number of blocks
1: procedure INTERSECTION(A,B,n)
2 for i=0;i<n; i+=4do
3 ymmO <« Ali]
4: ymm1 <« BJi]
5: ymmO <« (ymmO) & (ymm1)
6: Ali] < ymmO
Output
A > The first bit array now holds the result

The code shown inside the for loop is written entirely in inline
assembly, with Operation 5 using the SIMD instruction vpand
provided by AVX. Therefore, for each set of 256 bits, we use two
move operations from the L1 or L2 cache to the YMM registers,
one bitwise AND operation, and one final move operation of the
result back to the general purpose registers. The bottleneck in
this operation is not the bitwise operation, but rather the move
instructions vmovdqu, which limits throughput due to the bus
bandwidth to these registers. As a result, it is not faster to use all 16
of the YMM registers, but rather only two. While certain prefetch
instructions were tested we found no further speedup.

One of the reasons this data structure was developed was so we
could perform such an operation on a subset of two arrays of bits.
We apply the same principle as in Algorithm 1, but with unwanted
bits masked out, i.e., set to zero after the operation. For blocks
which lie outside the range we want to study, they are not even
included in the for loop. The new operation, denoted the partial
intersection, is outlined in Algorithm 2.

In the partial intersection algorithm, we consider two scenarios:
in one the entire range of bits lies within a single block, and in the
second it lies over some range of blocks, in which case the original
intersection algorithm may be used on those full blocks. In either
case, it is essential all bits outside the range of interest are set to
zero, as shown by the memset and get_bitmask operations.

The final operation which we must optimize to efficiently cal-
culate the action is the bit count and, therefore, the partial bit
count as well. This is a well-studied operation which has many
implementations and is strongly dependent on the hardware and
compiler being used. The bit count operation takes some binary
string, usually in the form of an unsigned integer, and returns
the number of bits set to one. Because it is such a fundamental
operation, some processors support a native assembly instruction
called popcnt which acts on a 32- or 64-bit unsigned integer. Even
on systems which support these instructions, the compiler is not
always guaranteed to choose these instructions. For instance, the
GNU function __builtin_popcount actually uses a lookup table,
as does Boost’s do_count method used in its dynamic_bitset.
Both are rather fast, but they are not fully optimized, and for this
reason we will attempt to package the fastest known implemen-
tation with the FastBitset. When such an instruction is not
supported the code will default to Boost’s implementation.

The fastest known implementation of the bit count algorithm
uses the native 64-bit CPU instruction popcntq, where the trail-
ing ‘q’ indicates the instruction operates on a (64-bit) quadword
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Algorithm 2 Partial Intersection with AVX

Input:
A > The first bit array
B > The second bit array
0 > Starting bit index
n > Length of subset

1: function GET_BITMASK(offset)
2: return (1 < offset) — 1

3: procedure PARTIAL_INTERSECTION(A,B,0,n)
4 > Divide o by 64 to get the block index
5: X < 0/64

6 > Indices within the blocks

7 a<o0%64

8 b <« (o+n)%64

9 if range inside single block then
10: Alx]

<~ Ax] & B[x] & get_bitmask(a) &
get_bitmask(b)
11: u<«1 > Used one block
12: else
13: > Intersection on full blocks
14: m<« (n—1)/64 > Number of full blocks
15: intersection(A[x + 1], B[x + 1], m)
16: > Intersection on end blocks
17: A[x] &= B[x] & get_bitmask(a)
18: Alx + m] &= B[x + m] & get_bitmask(b)
19: u<«m+2 > Used m + 2 blocks
20: > Set other blocks to zero
21: | <a

22: h < A.getNumBlocks()—I—u
23:  ifl > Othen

24: memset (A, 0, 8 x[)
25: if h > 0 then
26: memset (A[l + u], 0, 8 x h)
Output:
A > The first bit array now holds the result

Algorithm 3 Optimized Bit Counting

Input:
A > The bit array
N > The number of blocks
1: procedure COUNT_BITS(A,N)
2 > The counter variables
3 c[4] < {0,0,0,0}
4 fori=0;i<N;i+=4do
5: Ali] <—popcntq (A[i])
6: c[0] += A[i]
7 Ali + 1] <—popcntq(A[i + 1])
8 c[1] +=A[i + 1]
9: Ali + 2] <popcntq(Ali + 2])
10: c2] +=A[i + 2]
11: Ali + 3] <popentq(A[i + 3])
12: c[3] +=A[i + 3]
Output:

c[0] + c[1] + c[2] + c[3] > Number of set bits

operand. While we could use a for loop with a simple assembly
call, we would not be taking advantage of the modern pipeline
architecture [44] with just one call to one register. For this rea-
son, we unroll the loop and perform the operation in pseudo-
parallel fashion, i.e., in a way in which prefetching and prediction
mechanisms will improve the instruction throughput by our ex-
plicit suggestions to the out-of-order execution (OoOE) units in the
CPU. We demonstrate how this works in Algorithm 3.

This algorithm is so successful because the instructions are not
blocked nearly as much here as if they were performed using a
single register. This is because the popcnt instruction has a latency
of three cycles, but a throughput of just one cycle, meaning x
popcnt instructions can be executed in x + 2 cycles instead of 3x
cycles when they are all independent operations [45]. As a result,
the Intel instruction pipeline allows the four sets of operations to
be performed nearly simultaneously (i.e., instruction-level paral-
lelism) via the O0OE units. While it would be possible to extend this
performance to use another four registers, this would then mean
the bitset would need to be 512-bit aligned.

3.3. The vector product

To execute the vector product operation, we want to utilize the
features described above. If the popcnt is performed directly after
the intersection, a lot of time is wasted copying data to and from
YMM registers when the sum variable could be stored directly in
the YMM registers, for instance. Since the vmovdqu operations are
comparatively expensive, removing one out of three offers a great
speedup. Furthermore, for large bitsets it is in fact faster to use
an AVX implementation of the bit count [46]. We show such an
implementation below in Algorithm 4.

Algorithm 4 Optimized Vector Product

Input:
A > The first bit array
B > The second bit array
N > The number of blocks
1: procedure VECPROD(A,B,N)
2 ymm2<«—table > Lookup table
3 ymm3<«—0xf > Mask variable
4 fori=0;i <N;i++do
5: ymmO <— A[i]
6 ymm1 < B[i]
7 ymm0 < (ymmO) & (ymm1) > Intersection
8 ymm4 <— (ymm0) & (ymm3) > Lower Mask
9: ymm5 < ((ymmO0) > 4) & (ymm3) > High Mask
10: ymm4 <—vpshufb (ymm2, ymm4) > Shulffle
11: ymm5 <—vpshufb (ymm3, ymm5) > Shuffle
12: ymm5 <—vpaddb (ymm4, ymm5) > Horiz. Add
13: ymm5 <—vpsadbw (ymm5, ymm7) > Horiz. Add
14: ymm6 <—ymm5+ ymm6 > Accumulator
15: ¢ <ymm6
Output:

c[0] + c[1] + c[2] + c[3] > Vector product sum

This algorithm is among the best known SIMD algorithms for
bit accumulation [46]. At the very start, a lookup table and mask
variable are each loaded into a YMM register. The table is actually
the first half of the Boost lookup table, stored as an unsigned
char array. These variables are essential for the instructions later
to work properly, but their contents are not particularly inter-
esting. Once the intersection is performed, two mask variables
are created using the preset mask. The bits in these masks are
then shuffled (vpshufb) according to the contents of the lookup
table in a way which allows the horizontal additions (vpaddb,
vpsadbw) to store the sum of bits in each 64-bit range in the
respective range. Finally, the accumulator saves these values in
ymm6. The instructions are once again paired in a way which allows
the instruction throughput to be maximized via instruction-level
parallelism, and the partial vector product uses a very similar setup
to the partial intersection with respect to masking and memset
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operations. If the bitset is too short, i.e., if the causal set is too small,
this algorithm will perform poorly due to the larger number of
instructions, though it is easy to experimentally determine which
to use on a particular system and then hard-code a threshold.

All of the algorithms mentioned so far may be easily optimized
for a system with (512-bit) ZMM registers, and we should expect
the greatest speedup for the set operations. Using Intel Skylake
X-series and newer processors, which support 512-bit SIMD in-
structions, we may replace something like vpand with the 512-bit
equivalent vpandd. An optimal configuration today would use a
Xeon E3 processor with a Kaby Lake microarchitecture, which can
have up to a 3.9 GHz base clock speed, together with a Xeon Phi
Knights Landing co-processor, where AVX-512 instructions may
be used together with OpenMP to broadcast data over 72 physical
(288 logical) cores.

4. Action computation
4.1. Naive action algorithm

The optimizations described above which use AVX and OpenMP
are orders of magnitude faster than the naive action algorithm,
which we review here. The primary goal in the action algorithm is
to identify the abundance n; of the subgraphs L; identified in Fig. 2.
When we use the smeared action rather than the local action, this
series of subgraphs continues all the way up to those defined by the
set of elements Ly_», i.e., the largest possible subgraph is an open
Alexandroff set containing N — 2 elements. Therefore, the naive
implementation of this algorithm is an O(N3) procedure which uses
three nested for loops to count the number of elements in the
Alexandroff set of every pair of related elements. For each non-zero
entry (i, j) of the causal matrix, withi < j due to time-ordering, we
calculate the number of elements k both to the future of element i
and to the past of element j and then add one to the array of interval
abundances at index k.

4.2. OpenMP action algorithm

The most obvious optimization uses OpenMP to parallelize the
two outer loops of the naive action algorithm, since the properties
of each Alexandroff set in the causal set are mutually independent.
Therefore, we combine the two outer loops into a single loop of size
N(N — 1)/2 which is parallelized with OpenMP, and then keep the
final inner loop serialized. When we do this, we must make sure
we avoid write conflicts to the interval abundance array: if two
or more threads try to modify the same spot in the array, some
attempts may fail. To avoid this, we generate T copies of this array
so that each of the T threads can write to its own array. After the
action algorithm has finished, we perform a reduction on the T
arrays to add all results to the first array in the master thread. This
algorithm still scales like O(N3) since the outer loop is still O(N?) in
size.

4.3. AVX action algorithm

The partial vector product algorithms described in Section 3.3
naturally provide a highly efficient modification to the naive action
algorithm. The partial intersection returns a binary string where
indices with 1’s indicate elements both to the future of element i
and to the past of element j, and then a bit count will return the
total number of elements within this interval. A summary of this
procedure is given in Algorithm 5.

This algorithm is able to be further optimized by using OpenMP
with a reduction clause (which prevents write conflicts) to accu-
mulate the cardinalities. In turn, each physical core is parallelizing

Algorithm 5 Optimized Cardinality Measurement

Input:
A > The adjacency matrix
c > The array of cardinalities
P > The number of element pairs
1: procedure CARDINALITY(A,C,p)
2 fork =0; k < p; k ++ do
3 > Convert the pair index to two element indices
4 {i,j} <convert_index (k)
5: if elements are not related then
6 continue
7: > Cardinality for pair (i, j)
8: m < Ali].partial_vecprod(A[jl,i,j —i+ 1)
9: cm+ 1] ++
Output
c > The populated array

instructions via AVX, and then each CPU is parallelizing instruc-
tions by distributing tasks in this outer loop to each core. While
it is typical to use the number of logical cores during OpenMP
parallelization, we instead use the number of physical cores (typi-
cally half the logical cores, or a quarter in a Xeon Phi co-processor)
because it is not always efficient to use hyperthreading alongside
AVX.

4.4. MPI optimization: static design

When the graph is small, so that the entire adjacency matrix
fits in memory on each computer, we can simply split the for
loop in Algorithm 5 evenly among all the cores on all computers
using a hybrid OpenMP and Platform MPI approach. But when the
graph is extremely large, e.g., N > 22! we cannot necessarily fit
the entire adjacency matrix in memory. To address this limitation,
we use MPI to split the entire problem among 2* computers, where
x € Z*. Each computer will generate some fraction of the element
coordinates, and after sharing them among all other computers,
will generate its portion of the adjacency matrix, hereafter referred
to as the adjacency submatrix. In general, these steps are fast
compared to the action algorithm.

The MPI version of the action algorithm is performed in several
steps. It begins by performing every pairwise operation possible
on each adjacency submatrix, without any memory swaps among
computers. Afterward, each adjacency submatrix is labeled by two
numbers: the first refers to the first half of rows of the adjacency
submatrix on that computer while the second corresponds to
the second half, so that there are 2**! groups of rows labeled
{0, ...,2%*1 — 1}. There will never be an odd number since the
matrix is 256-bit aligned. We then wish to perform the minimal
number of swaps of these row groups necessary to operate on
every pair of rows of the original matrix. Within each row group
all pairwise operations have already been performed, so moving
forward only operations among rows of different groups are per-
formed.

We label all possible permutations except those which provide
trivial swaps, i.e., moves which would swap the submatrix rows in
memory buffers within a single computer, or moves which swap
buffers in only some computers. The non-trivial configurations are
shown for four computers in Table 1. By organizing the data in this
way, we can ensure no computer will be idle after each data trans-
fer. We use a cycle sort to determine the order of permutations
so that we can use the minimal number of total buffer swaps. We
are able to simulate this using a simple array of integers populated
by a given permutation, after which the actual operation takes
place. By starting at the current permutation and sorting to each
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Fig. 3. Load-balanced action algorithm using MPI. When the adjacency matrix is split among multiple computers, we want to make sure no computers end up idle for long
periods of time, yet to move from an Idle to Busy state at least one other computer must have finished its work. Initially, all computers are Active and Busy, indicating they
are not waiting for another task to finish and are currently working on the action algorithm. If two other computers have requested an exchange, an Active, Busy computer
will allow them to use part of its memory for temporary storage (Transfer). Once a computer finishes its portion of work on the action algorithm, it will enter the Active, Not
Busy state, at which point it will add its pair of buffer indices to the global list of available buffers. An MPI spinlock, developed specifically for this algorithm, is implemented
to ensure only one computer can manage a transfer. If another pair of computers is exchanging data, the Active, Not Busy computer will enter a Queued state, where it will
remain until other transfers have completed. Otherwise, it will attempt a memory transfer if possible by checking the list of available buffers. If no other buffers are available,
or if any available transfers would lead to redundant calculations, the computer enters the Idle, Not Busy state, where it waits for another computer to initiate a transfer.

Once all buffer pairs have been used, the algorithm ends.

Table 1

Permutations of MPI buffers using four computers.
Rank 0 Rank 1 Rank 2 Rank 3
0 1 2 3 4 5 6 7
0 3 2 5 4 7 6 1
0 5 2 7 4 1 6 3
0 7 2 1 4 3 6 5
0 2 1 3 4 6 5 7
0 4 1 5 2 6 3 7
0 6 1 7 4 2 5 3

Each of four computers, identified by its rank, holds a quarter of the adjacency
matrix. Two buffers on each computer each hold an eighth of the entire matrix,
labeled {0, ..., 7}, so that all pairwise row operations may be performed using the
minimal number of inter-rank transfers. Each of the seven rows is a non-trivial
permutation of the eight buffers, indicating only six rounds of MPI data transfers are
necessary to calculate the action when the algorithm is split over four computers.

unvisited permutation, we can record how many steps each would
take. Often it is the case that several will use the same number of
steps, in which case we may move from the current permutation to
any of the others which use the fewest number of swaps. Once all
pairwise partial vector products have completed on all computers
for a particular permutation, that permutation is removed from

the global list of unused permutations which is shared across all
computers.

4.5. MPI optimization: load balancing

The MPI algorithm described in the previous section grows
increasingly inefficient when the pairwise partial vector prod-
uct operations are not load-balanced across all computers. In
Algorithm 5, there is a continue statement which can dramati-
cally reduce the runtime when the subgraph studied by one com-
puter is less dense than that on another computer. When the entire
adjacency matrix fits on all computers, this is easily addressed
by identifying a random graph automorphism by performing a
Fisher-Yates shuffle [47] of labels. This allows each computer to
choose unique random pairs, though it introduces a small amount
of overhead.

On the other hand, if the adjacency matrix must be split among
multiple computers, load balancing is much more difficult. If we
suppose that in a four-computer setup the for loops on two
computers finish long before those on the other two, it would make
sense for the idle computers to perform possible memory swaps
and resume work rather than remain idle. The dynamic design in
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Fig. 3 addresses this flaw by permitting transfers to be performed
independently until all operations are finished.

The primary difficulty with such a design is that for this prob-
lem, MPI calls require all computers to listen and respond, even
if they do not participate in a particular data transfer. The reason
for this is that the temporary storage used for an individual swap
is spread across all computers to minimize overhead and balance
memory requirements. Therefore, each computer uses two POSIX
threads: a master thread listens and responds to all MPI calls,
and also monitors whether the computer is active or idle with
respect to action calculations, while a slave thread performs all
tasks related to those calculations. A shared flag variable indicates
the active/idle status on each computer.

As opposed to static MPI action algorithm, where whole per-
mutations are fundamental, buffer pairs are fundamental in the
load-balanced implementation. This means there is a list of unused
pairs as well as a list of pairs available for trading, i.e., those pairs
on idle computers. When two computers are both idle, they check
to see if a buffer swap would give either an unused pair, and if so
they perform a swap. After a swap to an unused pair, the computer
moves back from an idle to an active status.

5. Simulations and scaling evaluations
5.1. Spacetime region considered

In benchmarking experiments, we choose to study a (1 + 1)-
dimensional compact region of de Sitter spacetime. The de Sitter
manifold is one of the three maximally symmetric solutions to
Einstein’s equations, and it is well-studied because its spherical
foliation has compact spatial slices (i.e., no contributing boundary
terms), constant curvature everywhere, and most importantly, a
non-zero value for the action. We study a region bounded by
some constant conformal time 7 so that the majority of elements,
which lay near the minimal and maximal spatial hypersurfaces, are
connected to each other in a bipartite-like graph.

The (1+ 1)-dimensional de Sitter spacetime using the spherical
foliation is defined by the metric

ds* = sec®n(—dn? + dv?), (9)

and volume element dV = sec?ndn df. This foliation of the de
Sitter manifold has compact spatial slices, meaning the mani-
fold has no timelike boundaries. Elements are sampled using the
probability distributions p(n|ny) = sec’n/tanng and p(8) =
1/2m, so that n € [—ng, nol and 6 € [0, 2x). Finally, the form
of (9) indicates elements are timelike-separated when d6? < dn?,
i.e,m —|m—|61 — 02| < |n1— ny| for two particular elements with
coordinates (11, 61) and (12, 6,). This condition is used in the CUDA
kernel which constructs the causal matrix in the asynchronous
GPU linking algorithm.

We expect the precision of the results to improve with the graph
size, so we study the convergence over the range N € [21°,217]
in these experiments. Larger graph sizes are typically used to
study higher-dimensional spacetimes and, therefore, will not be
considered here. We choose a cutoff 5 = 0.5 in particular because
for ny too small we begin to see a flat Minkowski manifold, whereas
for no too large, a larger N is needed for convergence since the
discreteness scale | = \/V /N is larger.

5.2. Convergence and running times

Initial experiments conducted to validate the BD action show
that the interval abundance distribution takes the form as in
manifold-like causal sets (versus in Kleitman-Rothschild partial
orders) [48], and that the mean begins to converge to the EH action

around N > 2' Fig. 4. The Ricci curvature for the constant-
curvature de Sitter manifold is given by R = d(d + 1) so that the
EH action is simply

dd+1)
2

We note that the standard deviation os in Fig. 4 (right) increases as
O(+/N) because we have chosen to keep the smearing parameter
¢ fixed as N increases, which is the more common practice, but
if we had instead chosen ¢ — 8/\/N, then o5 would go 0 as
N — oo [24]. While normally one would need to consider the
Gibbons-Hawking-York boundary terms which contribute to the
total gravitational action, it is known that spacelike boundaries
do not contribute to the BD action [25] and the codimension-2
boundary does not contribute, since the BD action violates the
Lorentzian Gauss-Bonnet Theorem [49,50].

These calculations are extremely efficient when the GPU is used
for element linking and AVX is used on top of OpenMP to find
the action (Fig. 5). The GPU and AVX optimizations offer nearly
a 1000x speedup compared to the naive linking and action algo-
rithms, which in turn allows us to study larger causal sets in the
same amount of time. The decreased performance of the naive
implementation of the linking algorithm, shown in the first panel
of Fig. 5, is indicative of the extra overhead required to generate
sparse edge lists for both future and past relations. There is a
minimal speedup from using asynchronous CUDA calls because
the memory transfer time is already much smaller than the kernel
execution time.

Sey = (no) = 4m tanmno . (10)

5.3. Scaling: Amdahl’s and Gustafson’s laws

We analyze how Algorithm 5 performs as a function of the
number of CPU cores (n.) to show both strong and weak scaling
properties (Fig. 6). Amdahl’s Law, which measures strong scaling,
describes speedup as a function of the number of cores at a fixed
problem size [51]. Since no real problem may be infinitely sub-
divided, and some finite portion of any algorithm is serial, such
as cache transfers, we expect at some finite number of cores the
speedup will no longer substantially increase when more cores
are added. In particular, strong scaling is important for Monte
Carlo experiments, where the action must be calculated many
thousands of times for smaller causal sets. We find, remarkably,
a superlinear speedup when the number of cores is a power of
two and hyperthreading is disabled, shown by the solid lines. The
dashed lines in Fig. 6 indicate the use of 28, 32, and 56 logical cores
on dual 14-core processors.

We also measure the weak scaling, described by Gustafson’s
Law [52], which tells how runtime varies when the problem size N3
per processor P is constant (Fig. 6(right)). This is widely considered
to be a more accurate measure of scaling, since we typically limit
our experiments by the runtime and not by the problem size.
Weak scaling is most relevant for convergence tests, where the
action of extremely large graphs must be studied in a reasonable
amount of time. Our results show nearly perfect weak scaling,
again deviating when the number of cores is not a power of two or
hyperthreading is enabled. We get slightly higher runtimes overall
when more computers are used for two reasons: the computers
are connected via a 10Gb TCP/IP cable rather than Infiniband and
the load imbalance becomes more apparent as more computers
are used. Since the curves have a nearly constant upward shift, we
believe the likely explanation is the high MPI latency. For each data
point in these experiments, we “warm up” the code by running
the algorithm three times, and then record the smallest of the
next five runtimes. All experiments were conducted using dual
Intel Xeon E5-2680v4 processors running at 2.4 GHz on a Redhat
6.3 operating system with 512 GB RAM, and code was compiled
with nvcc 8.0.61 and linked with g++/mpiCC 4.8.1 with Level 3
optimizations enabled.
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6. Conclusions

By using low-level optimization techniques which take advan-
tage of modern CPU and GPU architectures, we have shown it is
possible to reduce runtimes for causal set action experiments by a
factor of 1000. We used OpenMP to generate the element coordi-
nates in parallel in O(N) time and used the GPU to link elements
much faster than with OpenMP. By tiling the adjacency matrix and
balancing the amount of work each CUDA thread performs with
the physical cache sizes and memory accesses, we allowed the GPU
to generate causal sets of size N > 220 in just a few hours. We
developed the efficient and compact FastBitset data structure
to overcome limitations imposed by other similar data structures,
and implemented ultra-efficient intersection, bit counting, and
inner product methods using assembly in Algorithms 2, 3 and 5.
The MPI algorithms described in Sections 4.4 and 4.5 provide a
rigorous protocol for asynchronous information exchange in the
most efficient way when the adjacency matrix is too large to fit on
a single computer. Finally, we demonstrated superlinear scaling of
the action algorithm with the number of CPU cores, indicating that
the code is well-suited to run in its current form on large computer
clusters.
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