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Abstract 1 

This paper proposes a reliable facility location design model under imperfect information with 2 

site-dependent disruptions; i.e., each facility is subject to a unique disruption probability that varies 3 

across the space. In the imperfect information contexts, customers adopt a realistic “trial-and-error” 4 

strategy to visit facilities; i.e., they visit a number of pre-assigned facilities sequentially until they 5 

arrive at the first operational facility or give up looking for the service. This proposed model aims 6 

to balance initial facility investment and expected long-term operational cost by finding the 7 

optimal facility locations. A nonlinear integer programming model is proposed to describe this 8 

problem. We apply a linearization technique to reduce the difficulty of solving the proposed model. 9 

A number of problem instances are studied to illustrate the performance of the proposed model. 10 

The results indicate that our proposed model can reveal a number of interesting insights into the 11 

facility location design with site-dependent disruptions, including the benefit of backup facilities 12 

and system robustness against variation of the loss-of-service penalty. 13 

Introduction 14 

In the early studies on the facility location design problem, the facilities, once built, will 15 

remain functioning all the time. Based on this assumption, scientists propose a number of 16 

traditional models for the different facility location design problems (see Drezne [1] and Daskin 17 

[2] for a review on this topic). These works help decision makers obtain economic facility location 18 

design assuming all facilities are operating normally all the time. However, in recent year, there 19 

are increasing recognitions on the fact that constructed facilities may be disrupted any time during 20 

operations by either anthropogenic or natural disastrous events, such as the 2002 west-coast port 21 

lockout [3], the 2003 massive power outage [4] and 2012 Hurricane sandy [5]. Snyder and Daskin 22 
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[6] pointed out that the traditional facility location design models that ignore facility disruption 1 

possibilities often yield suboptimal facility location design. In order to obtain the optimal facility 2 

location design considering possible facility disruptions, a number of reliable facility location 3 

models have been proposed. 4 

In the reliable facility location design models, a huge number of facility disruption scenarios 5 

should be handled even if each facility has two states (operating or not). Each scenario is a unique 6 

combination of all facility states. In order to reduce the complexity of modeling reliable facility 7 

location problems, most existing studies assume that facility disruptions take place independently 8 

with an identical probability. However, this assumption may not reasonably reflect realistic facility 9 

reliability. In the real world, facilities likely have distinguished features (e.g., capacity, equipment, 10 

labor skills, etc.) and are subject to different levels of disruption risks depending on their 11 

geographic environment (e.g., a place closer to a river is subject to a higher flooding risk). As such, 12 

a facility is likely subject to a site-dependent disruption probability that varies across the space. 13 

Such site-dependent disruptions significantly raise the difficulty of describing and modeling 14 

relevant facility location design problems. Thus, only limited works have been done in the facility 15 

location literature to address site-dependent disruptions [7-11]. All these studies investigate 16 

problems under perfect information; i.e., customers know the exact real-time information of 17 

facility states and always visit the nearest functional facility directly in any disruption scenario. 18 

In many real world problems, however, customers may not get the real-time information of 19 

facility states. Even in the information-rich environment, sharing real-time information remains a 20 

critical challenge due to sensor technology limitations [12] and various institutional and 21 

technological barriers [13]. Further, a severe disruption scenario is often accompanied with losses 22 

of communication infrastructures [14], which may cut off customers' communications with their 23 
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services facilities and thus make them blind to facility disruption states. Under such circumstance, 1 

which we refer as "imperfect information", a customer is likely to adopt a “trial-and-error” strategy 2 

such that they keep visiting facilities according to a pre-assigned sequence regardless of the 3 

disruption scenario until they arrive at the first operating facility or give up looking for the service. 4 

This "trial-and-error" visiting behavior further complicates quantification of associated operational 5 

costs. Only a few studies have been conducted for suitable reliable facility location design [15, 16] 6 

under imperfect information. All these studies assume that all candidate facilities have the identical 7 

independent disruption probabilities, while site-dependent disruptions under imperfect 8 

information remain unaddressed probably due to modeling difficulties. 9 

To bridge this gap, this study proposed an innovative solution approach for the reliable facility 10 

location design problem with site-dependent disruptions under imperfect information. This study 11 

overcomes the aforementioned modeling challenges and formulates a compact polynomial-sized 12 

mixed integer programming model for this problem without enumerating the exponential number 13 

of disruption scenarios. This model is further linearized to enable it to be solved with existing 14 

mixed linear integer programming solution methods. A case study is constructed to show that this 15 

compact model can be efficiently solved by off-the-shelf commercial solver and to draw insights 16 

into the impact of disruption site-dependence and other key parameters on the optimal system costs 17 

and location design. This development enables planners to design reliable infrastructure systems 18 

that not only have appealing performance in the normal scenario but also provide reasonable 19 

service when facilities are disrupted with site-dependent probabilities and customers have no way 20 

to access facility disruption states. 21 

The remainder of this paper is organized as follow. The next section reviews the relevant 22 

literature on the facility location design problem. The third section states the research problem, 23 
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formulates it as the non-linear integer programming model, and further simplifies it as an 1 

equivalent linear integer programming model that can be directly fed into a commercial solver. 2 

The fourth section conducts a case study to illustrate applications of the proposed model and draw 3 

relevant managerial insights. The last section concludes this work and briefly discusses future 4 

research directions. 5 

Literature review 6 

The studies on facility location design problems that aim to obtain the optimal economic 7 

benefit for decision makers have been extended to various industries (e.g., logistics, energy system, 8 

traffic system, etc.) in the past decades. Weber [17] first initiated pioneering study on the facility 9 

location problem which objective is the minimization of transportation costs. In the later decades, 10 

the studies on facility location design have experienced a long period of development and many 11 

classic facility location design models are proposed for solving different facility location problems 12 

in ideal conditions. Then, Daskin [2] made a review on different classic facility location design 13 

models and introduced a number of key algorithms to solve these models. Later, a number of 14 

studies that focus on solving various realistic facility location problems sprang up by the modified 15 

classic models, i.e., facility locations and network topology design [18], inventory-location [19] 16 

and joint inventory-location [20], transportation-inventory network design [21], sensor placement 17 

in municipal water networks [22], Remanufacturing Network with reverse flows [23], and multiple 18 

distribution centers under fuzzy environment [24]. These studies share the same assumption that 19 

each facility, once built, will always be operational forever. With this assumption, these studies 20 

obtain the economic facility location design that yields the minimum system cost.  21 

In the recent decades, due to frequent anthropogenic or natural disastrous events [3-5], 22 

researchers have paid more attentions to the influence of the facility disruption. Due to the facility 23 
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disruption, customers cannot obtain the service from the pre-assign facility as planning. As a result, 1 

the total system cost will increase sharply and the economic facility location design obtained by 2 

classic facility location models will become suboptimal design. To address the facility disruption 3 

problems, a number of reliable facility location models are proposed by considering possible 4 

facility disruptions which have been observed in the real world. The optimal facility location 5 

design may cause some backup facilities to be constructed in case of possible facility disruption, 6 

but for a long time period the total system cost will be reduced if the infrequent facility disruptions 7 

occur. These models have to handle a huge number of facility disruption scenarios even the facility 8 

only has two states: operating and complete disrupted. To reduce the complexity of modeling these 9 

reliable facility location problems, most of reliability models assume that the facilities are 10 

independent with identical disruption probability. The initial representative study is that Snyder 11 

and Daskin [6] proposed two reliable models based on P-median problem (PMP) and uncapacitated 12 

fixed location problem (UFLP) and presented a Lagrangian relaxation algorithm to solve them. 13 

Further, a number of reliable facility location models with independent identical disruption 14 

probability are proposed to address different issues, i.e., joint inventory-location [25], reliable 15 

sensor deployment [26], emergency service network [27, 28], supply chain [29, 30]. However, 16 

modeling facility location problems with site-dependent disruption probability are inevitable. Cui 17 

et al. [7] proposed two distinct models to study the reliable uncapacitated fixed charge location 18 

problem (RUFL) with site-dependent failure probabilities. The two models can deal with different 19 

scale problems and obtain optimal or near-optimal facility location design. Later, a number of 20 

studies extend the general facility location problem to various aspects including sensor deployment 21 

[8], biofuel supply chain [9, 10] and joint location-inventory problem [11]. The studies on the 22 

facility location problem with either independent identical or site-dependent disruption probability 23 



7 
 

have the same assumption that customers have perfect information of facility states so that they 1 

can visit the nearest operating facility directly. 2 

On the other hand, a handful of studies investigated reliable location problems under imperfect 3 

information. Berman et.al [15] proposed the reliable p-median facility location model with 4 

imperfect information by assuming that the customer always visits the closest facility one by one 5 

in any facility disruption scenario. This assumption may yield a significantly higher cost compared 6 

to the true optimal sequence. Later, Yun et al. [16] proposed another reliability model to study the 7 

RUFL problem, which assumes that the customer’s visit sequence yields the minimum 8 

transportation cost, and developed a special LR algorithm to solve it.  9 

From the previous literature review, we find that there is no study on the reliable facility 10 

location design problem with site-dependent disruption probabilities and imperfect information. 11 

This research gap will be addressed in the following sections through developing a new reliable 12 

location model. 13 

Model formulation 14 

Problem statement 15 

This section models the reliable facility location problem with site-dependent disruptions and 16 

imperfect information. In this problem, a number of candidate facility locations are provided for 17 

the decision maker to select. Building a facility in the candidate location needs a certain 18 

construction cost. To capture site-dependence of disruptions, we allow facilities at different 19 

locations to have different special disruption probabilities. Once the facilities are built, each 20 

customer will be assigned a number of facilities with different priorities to obtain the service. The 21 

aim of this assignment is to optimize the customers' visiting sequences. When any facility 22 

disruption scenario occurs, a customer cannot get the disruption information of her pre-assigned 23 
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facilities. Thus she has to visit the pre-assigned facilities sequentially according to the assigned 1 

priorities, until she arrives at the first operating facility to obtain the service. Or she may have to 2 

give up the service when all the pre-assigned facilities have been found failed or a further trial is 3 

too expensive. Visiting each pre-assigned facility incurs a certain transportation cost to the 4 

customer. The customer bears a certain penalty cost when she gives up the service. The objective 5 

of this reliable facility location problem is to determine the optimal facility location scheme and 6 

the corresponding facility assignments for all customers in order to minimize the total expected 7 

system cost considering all possible facility disruption scenarios, including facility construction 8 

cost, customer transportation and penalty costs. 9 

Cost component expression 10 

This research considers a set of spatially distributed customers and a set of facilities which 11 

provide certain service to the nearby customers in the imperfect information context. In this section, 12 

we calculate the total system cost that includes the total prorated facility cost and the total expected 13 

operational cost. At first, a number of facilities have been built and their locations are denoted by 14 

set *J . Building a facility at location *j J∈  (or facility j  as short) needs a fixed investment 15 

equivalent to an prorated cost of jf . Therefore, the total facility construction cost is formulated by 16 

 
*

F
j

j J

C f
∈

= ∑   (1) 17 

Then we try to formulate the total expected operational cost that is constituted by the 18 

transportation cost and penalty cost. For each customer i∈ , her demand is denoted by iλ . The 19 

subset * *
iJ J⊆ denotes the set of the facilities which are assigned to service customer i . We rank 20 

the facilities in *
iJ  as { }* 10 1, , , , , iJr

i i i ij j j j +
  . We define r

ij  as the level-r assigned facility for 21 
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customer i . Facility 0
ij  is treated as customer 'si  primary facility and the other facilities in *

iJ  1 

are treated as her backup facilities. ijd  denotes the Euclidean distance from customer i  to facility 2 

j . 'jjd  denotes the Euclidean distance from facility j   to another facility 'j . We define 0
iij

c  as 3 

the unit-demand transportation cost (which could be the product of 0
iij

d  and a transportation rate 4 

α ). We define 1r r
i iij j r

c −  as the unit-demand transportation cost when customer i  goes to facility r
ij  5 

from 1r
ij
−  (which could similarly be α  times distance 1r r

i ij j
d − ). For each facility *j J∈ , its 6 

disruption probability is denoted by jq , which apparently depends on location j . If customer i  7 

gives up looking for the service, she will bear a unit-demand penalty cost which is denoted by π . 8 

Fig 1 illustrates the visiting sequence for arbitrary customer i .  9 

 10 
Fig 1. Visiting sequence for arbitrary customer i . 11 

For each customer i∈ , she goes to her primary facility 0
ij  at first. If facility 0

ij  is operating, 12 

she obtains the service and her transportation cost is formulated by 13 

 ( )0 01 .
i i

i j ij
q cλ −   (2) 14 

Otherwise, she goes to her next level facility 1
ij  from her present location. If the facility 1

ij  is 15 

operating, she obtains the service and her transportation cost is formulated by 16 

 ( )( )0 1 0 0 11
1 .

i i i i i
i j j ij ij j
q q c cλ − +   (3) 17 

Customer Facility Visting sequence 

0
ij

1
ij

0
iij

c
1r

ij
− r

ij

1r r
i iij j r

c −

* 1iJ
ij

+

Penalty

π0 11i iij j
c

i
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Otherwise, she goes to her next level facility 2
ij . The process will be going on until she reaches 1 

facility 
* 1iJ

ij
+

. If this facility is operating, she obtains the service and her transportation cost is 2 

formulated by 3 

 ( )
* *

0 1

1

10

1 .
i i

r R r r
i i i i i

J J

i j j ij ij j r
rr

q q c cλ −

+

==

   
   − +

  
  

∑∏   (4) 4 

Otherwise, she gives up the service and bears the penalty cost which is formulated as 5 

 
* 1

0

.
i

r
i

J

i j
r

qλ π
+

=

 
 
 
 
∏   (5) 6 

And she also has the transportation cost formulated as 7 

 
* *

0 1

1 1

10

.
i i

r r r
i i i i

J J

i j ij ij j r
rr

q c cλ −

+ +

==

  
  +

  
  

∑∏   (6) 8 

Therefore, the expected transportation cost for customer i  is formulated by 9 

 ( ) ( )
** *

0 0 ' 0 ' 1 ' 0 1

11 11

'
1 ' 1 1' 0 0

1 1 .
ii i

r r r r r r r
i i i i i i i i i i i

JJ Jr r

i j ij j j ij ij j r j ij ij j r
r r rr r

q c q q c c q c cλ − −

++ +−

= = == =

          − + − + + +              
∑ ∑ ∑∏ ∏   (7) 10 

This formulation can be simplified and rewritten as 11 

 
*

0 ' 1

1 1

1 ' 0

.
i

r r r
i i i i

J r

i ij j ij j r
r r

c q cλ −

+ −

= =

   +     
∑ ∏   (8) 12 

According to Equations (5) and (8), we can obtains the total expected operational cost 13 

formulated as 14 

 
**

0 ' 1

11 1
O

1 ' 0 0

,
ii

r r r r
i i i i i

JJ r

i ij j ij j r j
i r r r

C c q c qλ π−

++ −

∈ = = =

     = + +       
∑ ∑ ∏ ∏


  (9) 15 

And thus the total expected system cost is formulated by 16 
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**

0 ' 1
*

11 1
F O

1 ' 0 0

.
ii

r r r r
i i i i i

JJ r

j i ij j ij j r j
i r r rj J

C C C f c q c qλ π−

++ −

∈ = = =∈

     = + = + + +       
∑ ∑ ∑ ∏ ∏



  (10) 1 

In order to formulate the total expected system cost conveniently, we reformulate the 2 

operational costs associated with different customers into a unified form (which facilitates 3 

formulation of the location design model in the next section). Fig 2 shows the unified form of 4 

visiting sequence for arbitrary customer i . In this figure, the triangle denotes the customer, the 5 

circle denotes the actual built facilities, and the square denotes the dummy facility defined as 6 

follows. We introduce a dummy facility location 0j  such that customer i 's loss of service is 7 

equivalently represented by visiting the dummy facility 0j  from the last actual facility 
* 1iJ

ij
+

. Then 8 

we expand the set *
iJ  to *

iJ  by padding it with 0j  to length R , where R  is a sufficiently large 9 

number. We usually set { }*max 2i i
R J

∈
= +


.  The facilities in set *

iJ  can be ranked as 10 

{ }0 1, , , , ,r R
i i i ij j j j  . When * 1ir J> + , we set 0

r
ij j= . We also define 

0
,ijc iπ= ∀ ∈ , 11 

0

*, , 1, 2,, ,iijj r ji Rc J rπ= ∀ ∈ ∈ =   and 
0 0

0, , 1, 2, ,ij j rc i r R= ∀ ∈ =  . Then the equation (9) 12 

can be rewritten as 13 

 0 ' 1

1
O

1 ' 0

.r r r
i i i i

rR

i ij j ij j r
i r r

C c q cλ −

−

∈ = =

  
= +  

  
∑ ∑ ∏


  (11) 14 

Accordingly, the total expected system cost is formulated as below 15 

 0 ' 1
*

1

1 ' 0
r r r

i i i i

rR

j i ij j ij j r
i r rj J

C f c q cλ −

−

∈ = =∈

  
= + +  

  
∑ ∑ ∑ ∏



  (12) 16 
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 1 
Fig 2. Visiting sequence of assigned facilities with padding dummy facility. 2 

In Equation (12), the pattern of disruption probabilities { }r
ri
i

j j
q

∀
 captures site-dependence of 3 

facility disruptions, and thus mark the major contribution of the proposed model that is formulated 4 

in detail in the next section.  5 

Reliable facility location design model 6 

The investigated reliable facility location design problem aims is to find the optimal facility 7 

locations among all candidates to minimize the total cost including the one-time facility built cost 8 

and the long-term operational cost. We define the set   to denote all candidate facility locations. 9 

According to the description of the system framework in the previous section, we formulate this 10 

problem as follows 11 

 
{ }

0
*

1
*

*
'

1

1 ' 0,
min .r r

i i

r
i i i i

rR

j i ij j ij j r
i r rjJ JJ

C f c q cλ
∈

−

−

∈ = =∈⊆

  
= + +  

  
∑ ∑ ∑ ∏


 

  (13) 12 

Model (13) is however highly nonlinear and might not be easy to solve efficiently. The 13 

remainder of this section will propose an equivalent linear integer programming (LIP) model that 14 

is suitable for commercial solvers and systematic algorithms. We define decision variables to 15 

specify the location decision { }j j
Y y

∈
=


, where 16 

 
*

*

  1, if facility  is open (or );
  0, otherwise (or ).j

j j J
y

j J
 ∈

= 
∉

  (14) 17 

Customer Facility 

0
ij

1
ij

0
iij

c ( )
* 1 *

0 2
:

Ji
i iij j J

c π
+

+
=

Dummy Facility

0 11i iij j
c

i

Visting sequence 

* 1iJ
ij

+ * 2
0:iJ

ij j+
=

* 3
0:iJ

ij j+
= 0:R

ij j=

( )*
0 0 3

: 0
iij j J

c
+

=
0 0

: 0ij j Rc =

Dummy Visting sequence 
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Then the annual total facility construction cost (1) can be equivalently formulated as  1 

 j j
j

f y
∈
∑


  (15) 2 

For notation convenience, we define 3 

 { } { } { }
0 00

0
00

;;
: , : : , ,

,, ,j j

j j jj j
j j

j j jj j j
+ − = = = = = ∀ ∈  ≠≠ 




    

  
  (16) 4 

where j
+  and j

−  are the candidate facility locations that can be visited before and after facility 5 

j , respectively. 6 

We define two sets of auxiliary decision variables to specify facility assignments, 7 

{ }
, jij i

X x
∈ ∈

=
 

 and { }
, ,' ' , 1,2, ,

'
jj jijj r i r R

X x −∈ ∈ =∈
=

  
, where  8 

 
1, if customer  is assigned to faiclity  at rank 0;
0, otherwise,ij

i j
x 

= 


  (17) 9 

and  10 

 '

1, if  is assigned to  at rank -1 and to ' at rank , 1, 2, , ;
0, otherwise.ijj r

i j r j r r R
x

∀ =
= 




  (18) 11 

Because '

1

' 0
r
i

r

j
r

q
−

=

 
 
 
∏  is variable with the different customer’s visiting sequence, we define the 12 

set of probability variables { }' , , ' , 1,2, ,jj jijj r i r R
P p −∈ ∈ =∈
=

  
. In this set, 'ijj rp  is the probability that 13 

customer i  visits facility 'j  at level r  after visiting facility j .  14 

With these definitions, the total expected operational cost (11) can be rewritten as 15 

 ' ' '
1'

.
j

R

i ij ij ijj r ijj r ijj r
i j rj

c x c p xλ
−∈ ∈ =∈

 
+ 

 
 

∑ ∑ ∑ ∑
  

  (19) 16 
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With formulation (15) and (19), the reliable facility location design problem can be formulated 1 

into an LIP model as follows: 2 

 ' ' ', ', , 1'

min
j

R

j j i ij ij ijj r ijj r ijj rX X Y P j i j rj

f y c x c p xλ
−∈ ∈ ∈ =∈

 
+ + 

 
 

∑ ∑ ∑ ∑ ∑
   

  (20) 3 

subject to 4 

 '
1'

, ,
j

R

ij ij jr j
rj

x x y i j
+ =∈

∈+ ≤ ∀ ∈∑ ∑


    (21) 5 

 1,ij
j

x i
∈

= ∀ ∈∑


   (22) 6 

 '1
'

, ,
j

ij ijj
j

x i jx
−∈

= ∀ ∈ ∈∑


    (23) 7 

 ( ) '' 1
' '

, , 2,3, ,,
j j

ijj rij j r
j j

x x j r Ri
+ −

−
∈ ∈

∈= ∀ ∈ =∑ ∑ 

 

    (24) 8 

 
0

1,ijj R
j

x i
∈

= ∀ ∈∑


   (25) 9 

 '1 , , , 'ijj j jp q i j j −= ∀ ∈ ∈ ∈     (26) 10 

 ( ) ( )' ' 1 ' 1
'

, , ' , 2, ,3, ,
j

ijj r j ij j r ij j r j
j

p q p x i j j r R
+

−
∈

−
− ∈= ∀ ∈ ∈ =∑ 



     (27) 11 

 {0,1},  jy j∈ ∀ ∈   (28) 12 

 { }0,1 , ,ij jx i∈ ∀ ∈∈    (29) 13 

 { }' , , ' , 1, 2,0, ,1 ,i jjj rx j j r Ri −∈ =∈ ∈∀ ∈     (30) 14 

Objective function Equation (20) aims to find the minimum system cost and the optimal 15 

facility location scheme accordingly. Constraints (21) prohibit an assignment to an unbuilt facility 16 

or multiple assignments of the same built facility to a customer.  Constraints (22) ensure that each 17 

customer must be assigned to only one primary facility. Constraints (23) and (24) mean that a 18 
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customer’s move at the level r   facility always starts from her level ( )1r −   assigned facility. 1 

Constraints (25) ensure that the customer will finally move to the dummy facility so as to correctly 2 

account for the penalty cost. Constraints (26) and (27) illustrate the transformation between the 3 

facilities in the adjacent level. Constraints (28)-(30) postulate integral constraints to all decision 4 

variables. 5 

Model (20)-(30) is a concise mathematic programming model for the reliable facility location 6 

design with site-independent disruptions under imperfection information. However, the model is 7 

still nonlinear even without the integer constraints. Note that the only nonlinear terms in this model 8 

are ' ' , , ' , 1, 2 ,, ,ijj r ijj r jp x i j j r R−∈ =∀ ∈∈     , each of which is the product of a continuous 9 

variable and a binary variable. We apply the linearization technique used in the previous literature 10 

[7, 31], to replace each ' 'ijj r ijj rp x  term with a new variable 'ijj rw . Then a set of new constraints are 11 

added to Model (20)-(30) to enforce ' ' ' , , ' , 1, 2 ,, ,:ijj r ijj r ijj r jw p x j j ri R−= ∀ ∈ ∈ ∈ =     , as 12 

follows: 13 

 ' ' , , ' ,, 1, 2, ,ijj r ijj jr j j rp i Rw −∈ ∈ =≤ ∀ ∈      (31) 14 

 ' ' , , ' ,, 1, 2, ,ijj r ijj jr j j rx i Rw −∈ ∈ =≤ ∀ ∈      (32) 15 

 ' , , ' , 1, 2, ,0,ijj r jj jw r Ri −∈ ∈ =≥ ∀ ∈      (33) 16 

 ' ' ' 1, , , ' , 1, 2, ,ijj r ijj r i r jjjw p x i j j r R−≥ + − ∀ ∈ ∈ ∈ =      (34) 17 

The linearize formulation of model (20)-(30) is stated below: 18 

 ' ', ', , 1'

min
j

R

j j i ij ij ijj r ijj rX X Y P j i j rj

f y c x c wλ
−∈ ∈ ∈ =∈

 
+ + 

 
 

∑ ∑ ∑ ∑ ∑
   

  (35) 19 

subject to 20 
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 '
1'

, ,
j

R

ij ij jr j
rj

x x y i j
+ =∈

∈+ ≤ ∀ ∈∑ ∑


    (36) 1 

 1,ij
j

x i
∈

= ∀ ∈∑


   (37) 2 

 '1
'

, ,
j

ij ijj
j

x i jx
−∈

= ∀ ∈ ∈∑


    (38) 3 

 ( ) '' 1
' '

, , 2,3, ,,
j j

ijj rij j r
j j

x x j r Ri
+ −

−
∈ ∈

∈= ∀ ∈ =∑ ∑ 

 

    (39) 4 

 
0

1,ijj R
j

x i
∈

= ∀ ∈∑


   (40) 5 

 ' ' , , ' ,, 1, 2, ,ijj r ijj jr j j rp i Rw −∈ ∈ =≤ ∀ ∈      (41) 6 

 ' ' , , ' ,, 1, 2, ,ijj r ijj jr j j rx i Rw −∈ ∈ =≤ ∀ ∈      (42) 7 

 ' , , ' , 1, 2, ,0,ijj r jj jw r Ri −∈ ∈ =≥ ∀ ∈      (43) 8 

 ' ' ' 1, , , ' , 1, 2, ,ijj r ijj r i r jjjw p x i j j r R−≥ + − ∀ ∈ ∈ ∈ =      (44) 9 

 '1 , , , 'ijj j jp q i j j −= ∀ ∈ ∈ ∈     (45) 10 

 ( )' ' 1
'

, , , ' , 2,3, ,
j

ijj r j ij j r j
j

j j r Rp q w i
+

−
∈

−= ∀ ∈ ∈ =∈∑ 



     (46) 11 

 {0,1},  jy j∈ ∀ ∈   (47) 12 

 { }0,1 , ,ij jx i∈ ∀ ∈∈    (48) 13 

 { }' , , ' , 1, 2, ,0,1 ,ijj r jj jx r Ri −∈ ∈ =∈ ∀ ∈      (49) 14 

Although this problem is an NP-hard problem, from our computational experiments, the linear 15 

structure of Model (35)-(49) allows it to be solved by existing state-of-the-art linear programming 16 

integer commercial solvers (e.g., Gurobi, CPLEX) to an exact or near-optimum solution in a 17 
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reasonable time. The following case study illustrates this with problem instances of reasonable 1 

sizes. 2 

Case study 3 

In this section, we will test the proposed model against a number of problem instances and 4 

draw interesting managerial insights into optimal facility layouts and parameter sensitivity. These 5 

problem instances are generated with one set of real-world data. The data set is derived by Daskin 6 

[2] from 1990 population and housing census data: the 49-node set including 48 US state capitals 7 

and Washington, DC. We process the data in a way similar to Snyder and Daskin [6] to obtain the 8 

model parameters. These nodes in the 49-node set are the locations for both candidate facilities 9 

and customers. Demands { }i i
λ

∈
 are set to the corresponding state population divided by 105 for 10 

the 49-node set. The fixed annual cost jf  at each city is set to the median home value in the city. 11 

To factor in detours due to roadway networks, the distance between two locations is calculated by 12 

multiplying a coefficient of 1.2 to their great circle distance [32]. We set the facility disruption 13 

probability 200000 ,jf
jq e jρ −= ∀ ∈ where coefficient ρ  is used to control the overall magnitude 14 

of the disruption probabilities. This disruption probability setting means a higher facility 15 

construction cost results a lower facility disruption probability. We set the default values of the key 16 

parameters as: 1α = , =0.1ρ , 10000π =  and 4R = . Note that these default values may vary in 17 

certain instances. All problem instances are solved by a commercial programming solver, Gurobi, 18 

on a PC with 3.4 GHz CPU and 16 GB RAM.  19 

Optimal facility layouts 20 

In this subsection, we discuss the model performance and the optimal facility layouts in 21 

different problem instances with the default parameter values. According to the populations of the 22 
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49-node set, we construct three data sets that include the first 15, 25 and 35 populous US state 1 

capitals respectively.  2 

Table 1 shows the model performance in the different instances with a solution time limit of 3 

3600s. In this table, we can see that most of instances except the last three instances can be solved 4 

by the solver Gurobi with a small optimal gap (no more than 5%), which shall suffice most 5 

engineering needs. This verifies the practical applicability of the proposed model in solving 6 

network infrastructure planning with site-dependent disruptions under imperfect information. 7 

However, the solution time and the optimality gap increase with the disruption probability for 8 

instances with same scale and increase with the instance scale for instances with the same 9 

disruption probability. The solution times of several instances reach the time limitation (3600 10 

seconds).  And the optimality gap is even up to 20% in the 49-node set with 0.3ρ = . It indicates 11 

that the off-the-shelf solver, Gurobi, has limitations when dealing with the large-scale or high 12 

disruption probability problem instances. Therefore, a customize algorithm should be proposed if 13 

we need solve large-scale problems efficiently, which is however out of the scope of this study and 14 

will be investigated in future study. In another aspect, we find that a few instances have the same 15 

optimal facility layouts, i.e., 25-node set and 35-node set with 0.05ρ = , 35-node set and 49-node 16 

set with 0.1ρ =  , 15-node set with 0.05ρ =   and 0.1ρ =  , 25-node with  0.05ρ =   and 0.1ρ =  . 17 

These findings indicate that the optimal facility layouts have a good robust performance in 18 

resisting facility disruptions and across small variations of the instance size 19 

Table 1. Model performance in the different instances. 20 

Node ρ  Best objective Best bound Gap(%) Locations Time(s) 

15 
0.0
5 

643425.58 6.43383.59. 0.0065 1,3,4,5,6,8 8 

25 
0.0
5 

823126.09 823124.37 0.0002 1,3,5,6,8,22 60 
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35 
0.0
5 

952731.61 950545.85 0.2294 1,3,5,6,8,22 235 

49 
0.0
5 

1019874.54 1.016689.51 0.3123 1,3,5,7,22,30 609 

15 0.1 692638.02 692611.80 0.0038 1,3,4,5,6,8 13 
25 0.1 882565.35 882483.94 0.0092 1,3,5,6,8,22 170 
35 0.1 1008318.81 1003288.80 0.4989 1,3,5,6,7,22,29 534 
49 0.1 1076761.78 1069289.67 0.6939 1,3,5,6,7,22,29 2931 
15 0.2 804767.21 796746.33 0.9967 1,3,4,5,6,7 834 
25 0.2 1014739.72 998609.18 1.5896 1,3,5,6,7,22 3600 
35 0.2 1130801.61 1096305.83 3.0506 1,3,5,6,9,14,22,29 3600 
49 0.2 1201601.49 1152557.85 4.0815 1,2,3,5,6,14,22,29 3600 
15 0.3 941342.42 896616.27 4.7513 1,3,4,5,6,7,9 3600 
25 0.3 1161838.52 1076286.93 7.3635 1,3,5,6,9,14,22,24 3600 
35 0.3 1286516.19 1149413.08 10.6569 1,3,5,6,9,14,22,29,31 3600 
49 0.3 1515634.15 1210586.69 20.1267 1,3,5,6,9,14,22,29,31 3600 

Fig 3 shows the optimal facility layouts and customer-facility assignments marked by different 1 

color lines for instances at different scales with =0.1ρ . In these figures, the circles denote built 2 

facilities, and the triangles denote customers. The blue solid arrows mark level-1 customer-facility 3 

assignments, the red dashed arrows mark level-2 customer-facility assignments, the yellow dashed 4 

arrows mark level-3 customer-facility assignments and the black dashed arrows mark level-4 5 

customer-facility assignments. We see that with the increase of instance scale, more facilities are 6 

constructed to minimize the total system cost. However, several facilities in the red circle do not 7 

change in different scale instances. It indicates that these facilities play a key role in the facility 8 

location layouts. We can reinforce these facilities, reducing their disruption probabilities to 9 

enhance the system reliability. In Table 1, we know that the 35-node set and 49-node set with 10 

0.1ρ =  have the same facility layouts. However, from Fig 3(c) and (d), we find that these two 11 

instances at different levels have the different customer-facility assignments. It indicates that we 12 

should adjust the customer-facility assignments for different conditions although the facility 13 

location layout remains unchanged. 14 
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  1 

(a) the 15-node set                                                                (b) the 25-node set 2 

3 

(c) the 35-node set                                                               (d) the 49-node set 4 

Fig 3. Optimal facility layouts in different scale instances. 5 

Fig 4 shows the optimal facility layouts and customer-facility assignments under different ρ6 

and π  values by using the 25-node data set. In Fig 4(a), when facilities do not suffer disruptions, 7 

the problem reduces to a classic uncapacitated fixed location problem where a customer is always 8 

served by her nearest operational facility. We consider this facility location solution as the 9 

benchmark solution. In Fig 4(b), as probability rate ρ  increases to 0.1, one additional facility is10 

built so that a customer has more convenient access to both primary and backup facilities. In Fig 11 

4(c), as probability rate ρ increases to 0.3, two more facilities are built to enhance the accessibility 12 

of backup services. Fig 4(d) shows the optimal facility layouts when the penalty cost is decreased 13 

into a smaller value, i.e.,103. We see that one facility is removed and a number of high level 14 

customer-facility assignments disappear. This means that customers only travel to their nearby 15 

facilities within a certain acceptable distance or completely give up the service if the service is not 16 
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Facility:
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worth the transportation cost. In other word, a larger penalty cost tends to force customers to try 1 

more backup facilities at higher level assignments so as to further reduce the risk of losing the 2 

service. 3 

  4 

(a) 0ρ = , 10000π =                                                                 (b) 0.1ρ = , 10000π =  5 

  6 

(c) 0.3ρ = , 10000π =                                                               (d) 0.3ρ = , 1000π =  7 

Fig 4. Optimal facility layouts under different disruption probability rate and penalty rate. 8 

Fig 5 compares the optimal facility layout under site-dependent disruptions with that under 9 

identical disruption probabilities by using the 49-node data set. In order to make the disruption 10 

probabilities as close as possible in the two cases, the disruption probability in the identical 11 

disruption scenario is set equal to the average value of the disruption probabilities in the site-12 

dependent case, i.e., j
j

p q
∈

= ∑


 . In this figure, we can see that compared to the identical 13 

independent disruption case, one facility is built at a different location to better support the other 14 

facilities under site-dependent disruptions (as highlighted by the red circle in Fig 5). Interestingly, 15 

the customer-facility assignments under site-dependent disruption are more complex than those 16 
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under identical disruptions, and the changes are mainly that customers are more likely to be 1 

assigned to facilities with lower disruption probabilities. 2 

 3 

(a) site-dependent ( 0.1ρ = )                                                     (b) independent ( 0.07p = ) 4 

Fig 5. Optimal facility layouts under site-dependent and identical independent disruption. 5 

Sensitivity analysis 6 

In this subsection, we discusses the sensitivity of the optimal results to parameters α , π , ρ ,  7 

and R  for the 25-node data set. In order to illustrate the benefit of backup facility, Table 2 shows 8 

the optimal facility locations and the corresponding cost components for instances with R  ranging 9 

from 1 through 10. The instance with 1R =  indicates that the customers can just obtain the service 10 

from the primary facility without the backup facility. In this table, we can see that the total system 11 

cost decreases 54% if we pad one backup facility for all customers. In other word, padding one 12 

backup facility brings a net social benefit about 54% of the maximum potential. With the increase 13 

of R , more backup facilities are padded. Both the construction cost and the penalty cost decrease. 14 

The transportation cost increases because the customer needs visit more facilities to obtain the 15 

service. As a result, the total system cost continues going down. Asymptotically, padding sufficient 16 

backup facilities can reduce the total system cost to 41% of that when only the primary facility is 17 

allowed (or when 1R = ). This indicates that padding backup facilities can bring a net social benefit 18 

about 59% of the maximum potential compared with only the primary facility. This suggests that 19 

a substantial saving can be achieved by allowing for providing backup facilities when the system 20 
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is properly designed, even under imperfect information. We also find that the total system cost 1 

change is less than 0.01% when R  is greater than or equal to 4. Therefore, we choose the value of 2 

R  equal to 4 for the most instances. 3 

Table 2. Sensitivity to R. 4 

R Locations Construction cost Transportation cost Penalty cost Total system cost 

1 1,3,4,6,19 4.59E+05 4.63E+05 1.24E+06 2.16E+06 

2 1,3,5,6,7,22 4.14E+05 4.63E+05 1.08E+05 9.85E+05 

3 1,3,5,6,8,22 3.97E+05 4.85E+05 8.78E+03 8.90E+05 

4 1,3,5,6,8,22 3.97E+05 4.85E+05 6.59E+02 8.83E+05 

5 1,3,5,6,8,22 3.97E+05 4.85E+05 4.63E+01 8.82E+05 

6 1,3,5,6,8,22 3.97E+05 4.85E+05 0.00E+00 8.82E+05 

7 1,3,5,6,8,22 3.97E+05 4.85E+05 0.00E+00 8.82E+05 

8 1,3,5,6,8,22 3.97E+05 4.85E+05 0.00E+00 8.82E+05 

9 1,3,5,6,8,22 3.97E+05 4.85E+05 0.00E+00 8.82E+05 

10 1,3,5,6,8,22 3.97E+05 4.85E+05 0.00E+00 8.82E+05 

Fig 6 shows the sensitivity analysis results on how the optimal solution changes with 5 

parameter values. The default parameter values are 1α = , 0.1ρ = , 10000π = , and we vary one 6 

parameter at a time. 7 

Fig 6(a) and (b) show the effect of penalty rate π  on the cost components and the number of 8 

facilities respectively. When π  is small, only a few of facilities are built because a customer just 9 

obtains the service from the nearby facility and farther facilities is not worth building. As π  is 10 

increasing, customers are more intended to look for the service from backup facilities instead of 11 

easily giving up for the service. Therefore, additional facilities should be built to eliminate the 12 

unnecessary penalty cost. We see this regular in Fig 6(a) where the construction cost and 13 

transportation cost increase to high level sharply as the increase of π . Although π is increasing, 14 
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the penalty cost still decreases to a low level quickly because the probability of giving up the 1 

service decreases exponentially. When π  is more than 2000, the system seems to already have 2 

sufficient facilities and stay at a steady and reliable state. In this state, the transportation cost and 3 

construction cost remain the same and the total penalty cost increases at a low rate. These results 4 

provide a very useful guidance for designing a reliable system to be robust against the change of 5 

penalty rate.  6 

Fig 6(c) and (d) show how the cost components and the number of facilities, respectively, 7 

change as transportation rate α  increases. In Fig 6, as we can see, the construction cost, the 8 

transportation cost and the facility number increase with the increase of α  while the penalty cost 9 

remains at a low value across all α  values. It is intuitive that the increase of transportation rate 10 

results in the rise of the total transportation cost. In order to reduce the increase rate of the 11 

transportation cost, more facilities should be built consequentially. Since there are enough built 12 

facilities to be assigned to customers at all levels to satisfy the customers' demand, the penalty cost 13 

always occurs in the last level and remains at a low value regardless of the magnitude of α .  14 

Fig 6(e) and (f) show the effects from increasing disruption probability rate ρ . We see that as 15 

the facility disruption risks increase, the probability that customers suffer the penalty increases and 16 

thus it causes the penalty cost to increase. In the meanwhile, the transportation cost also increases 17 

because customers have a higher possibility to access their backup facilities. Once the increment 18 

of the transportation cost is worth the adjustment of facility layout, alternative facilities or 19 

additional facilities will be built (see Fig 6(f)) and the construction cost will increase (see Fig 6(e)). 20 

Then the customers are likely to access the service with relatively low transportation expenditures 21 

and the transportation cost will decrease for a while (see Fig 6(e)). On the other hand, for a certain 22 

facility layout, the system has a certain robust performance when the disruption probability 23 
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changes (see Fig 6(e), where the construction cost does not change much during a large range of 1 

ρ ). However, the total system cost is still increasing gradually as the disruption probability 2 

increases. 3 

4 

  (a)                                                                                      (b) 5 

6 

  (c)                                                                                      (d) 7 

 8 

(e)                                                                                      (f) 9 
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Fig 6. Sensitivity analysis. 1 

Conclusion 2 

This paper proposed a reliable facility location design model that allows each facility to be 3 

disrupted at a site-dependent probability. The model addresses the imperfect information context: 4 

a customer uses the “trial-or-error” strategy to search the service due to the lack of real time 5 

information of facility states. The formulated optimization model determines the optimal facility 6 

location and facility-customer assignments that minimize the total system cost including the 7 

facility construction investment and the expected transportation and penalty costs. A linearization 8 

technique is applied to transform the nonlinear programming model into a linear programming 9 

model so that this model is able to be solved by available commercial solvers. We tested the 10 

performance of the proposed model with a number of numerical instances. The results indicated 11 

that most of the instances can be efficiently solved to obtain the optimum solution with a tight 12 

optimality gap. We also made a series of sensitivity analysis to illustrate how the optimal solution 13 

changes with different parameter values. We found that padding backup facilities for the customers 14 

can significantly reduce the total system cost, and there exists a steady state of the reliable design 15 

where the system becomes robust against further increase of loss-of-service penalty. With the 16 

increase of transportation cost rate, redesigning the facility location layouts can reduce the total 17 

system cost compared with the previous facility layouts.  18 

This study focuses on facility location problems with the site-dependent disruption under 19 

imperfect information. It will be interesting to study the correlated or interdependent disruptions 20 

for facility location problems under imperfect information. Our proposed model is solved by a 21 

commercial solver for median or small scale instances with a reasonable gap. In order to deal with 22 

large-scale facility location problem instances, a customized algorithm will be needed to cut down 23 
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the computational time and enhance the solution quality. In addition, we assume that the customer 1 

demand is constant in our study. In order to capture stochastic systems with relatively volatile 2 

demand, it will be interesting to investigate how to integrate the dynamics and uncertain demand 3 

to this model framework. 4 
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