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ABSTRACT

Recently, significant accuracy improvement has been achieved for
acoustic recognition systems by increasing the model size of Long
Short-Term Memory (LSTM) networks. Unfortunately, the ever-
increasing size of LSTM model leads to inefficient designs on FPGAs
due to the limited on-chip resources. The previous work proposes to
use a pruning based compression technique to reduce the model size
and thus speedups the inference on FPGAs. However, the random
nature of the pruning technique transforms the dense matrices
of the model to highly unstructured sparse ones, which leads to
unbalanced computation and irregular memory accesses and thus
hurts the overall performance and energy efficiency.

In contrast, we propose to use a structured compression tech-
nique which could not only reduce the LSTM model size but also
eliminate the irregularities of computation and memory accesses.
This approach employs block-circulant instead of sparse matrices
to compress weight matrices and reduces the storage requirement
from O(k?) to O(k). Fast Fourier Transform algorithm is utilized
to further accelerate the inference by reducing the computational
complexity from O(k?) to O(klogk). The datapath and activation
functions are quantized as 16-bit to improve the resource utilization.
More importantly, we propose a comprehensive framework called
C-LSTM to automatically optimize and implement a wide range of
LSTM variants on FPGAs. According to the experimental results,
C-LSTM achieves up to 18.8X and 33.5X gains for performance and
energy efficiency compared with the state-of-the-art LSTM imple-
mentation under the same experimental setup, and the accuracy
degradation is very small.

KEYWORDS
FPGA; RNNs; LSTM; compression; block-circulant matrix; FFT

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA’18, Feb. 25-27, 2018, Monterey, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5614-5/18/02...$15.00
https://doi.org/10.1145/3174243.3174253

1

ACM Reference Format:

Shuo Wang!*, Zhe Li%>*, Caiwen Ding®*, Bo Yuan?, Qinru Qiu?, Yanzhi
Wang? and Yun Liang" . 2018. C-LSTM: Enabling Efficient LSTM using Struc-
tured Compression Techniques on FPGAs. In FPGA’18: 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, February 25—
27, 2018, Monterey, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3174243.3174253

1 INTRODUCTION

Recurrent neural networks (RNNs) represent an important class
of neural networks that contain cycles to carry information across
neurons while reading inputs. Long Short-Term Memory (LSTM),
one of the most popular types of RNNSs, achieves great success in
the domains such as speech recognition, machine translation, scene
analysis, etc. [25]. However, the significant recognition accuracy
improvement comes at the cost of increased computational com-
plexity of larger model size [9]. Therefore, customized hardware
acceleration is increasingly important for LSTMs, as exemplified
by recent works on employing GPUs [5, 17], FPGAs [13, 16] and
ASICs [7] as accelerators to speedup LSTMs.

Among the numerous platforms, FPGA has emerged as a promis-
ing solution for hardware acceleration as it provides customized
hardware performance with flexible reconfigurability. By creating
dedicated pipelines, parallel processing units, customized bit width,
and etc., application designers can accelerate many workloads by
orders of magnitude using FPGAs [24]. More importantly, High-
level Synthesis (HLS) has greatly lowered the programming hurdle
of FPGAs and improved the productivity by raising the program-
ming abstraction from tedious RTL to high-level languages such as
C/C++ [4] and OpenCL [26].

While the benefits of FPGAs is clear, it is still challenging to de-
sign efficient designs for LSTMs on FPGAs mainly for two reasons.
On one hand, the capacity of the FPGA on-chip memory (a few or
tens of Mb on-chip memory) is usually not large enough to store
all the weight matrices of a standard LSTM inference model (e.g.
hundreds of Mb). Although the previous work ESE [13] proposes
to use the parameter pruning based compression technique to com-
press the dense weight matrices in the LSTM model into sparse
ones, the sparse matrices need extra storage and processing units
to store and decode the indices of the non-zero data, respectively.
The skewed distribution of the data is likely to cause unbalanced
workloads among parallel compute units. Therefore, the benefits of
unstructured model compression is diminished by the sparsity of
weight matrices. On the other hand, the computational complexity
among the operators of the LSTMs is highly skewed and the data
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dependencies between operator are complicated. So, it is difficult
to evenly allocate computing resources under the FPGA resource
constraints while guaranteeing the complex data dependencies.

In this work, we propose to compress the weight matrices in
the LSTM inference model in a structured manner by using block-
circulant matrix [22]. The circulant matrix is a square matrix, of
which each row (column) vector is the circulant reformat of the
row (column) vector. Any matrix could be transformed into a set of
circulant submatrices aka block-circulant matrices. Therefore, by
representing each block-circulant matrix with a vector, the storage
requirement could be reduced from O(k?) to O(k) if the block
(vector) size is k. Since the compressed weight matrices are still
dense, the block-circulant matrix based compression is amenable
to hardware acceleration on FPGAs. In order to further speed up
the computation of LSTMs, we propose to accelerate the most
computation-intensive circulant convolution operator by applying
Fast Fourier Transform (FFT) algorithm to reduce the computational
complexity from O(k?) to O(nlogn).

After the model is compressed, we propose an automatic opti-
mization and synthesis framework called C-LSTM to port efficient
LSTM designs onto FPGAs. The framework is composed of model
training and implementation flows. The former one is in charge
of iteratively training the compressed LSTM model and exploring
the trade-offs between compression ratio and prediction accuracy.
As for the model implementation, it mainly consists of two parts
which are (1) template generation and (2) automatic LSTM synthe-
sis framework. For the former part, after analyzing a wide range
of LSTM algorithms, we generalize a suite of LSTM primitive op-
erators which is general enough to accommodate even the most
complicated LSTM variant [25]. Then, a suite of highly optimized
C/C++ templates of the primitive operators are manually gener-
ated by walking through a series of optimizations such as datapath
and activation quantization, DFT-IDFT decoupling and etc. As for
the latter part, the well-trained LSTM inference model is first ana-
lyzed and transformed into a directed acyclic dependency graph,
where each node represents an operator and each edge indicates
the associated data dependency between two operators. Secondly,
we propose a specialized pipeline optimization algorithm consid-
ering both coarse-grained and fine-grained pipelining schemes to
schedule the operators into appropriate stages. In the third step,
we use an accurate performance and resource model to enable a
fast design space exploration for optimal design parameters. Lastly,
the scheduling results and optimization parameters are fed to code
generator and backend toolchain as to implement the optimized
LSTM accelerator design on FPGAs.

Overall, the contributions of this paper are listed as:

e We employ the block-circulant matrices based structured
compression technique for LSTMs which largely reduces
the computation complexity and memory footprint without
incurring any computation and memory access irregularities.
This method results in both compression and acceleration
of the LSTM models.

e We develop a general LSTM optimization and synthesis
framework C-LSTM to enable automatic and efficient im-
plementations of a wide range of LSTM variants on FPGAs.
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Figure 1: An LSTM based RNN architecture.

The framework mainly consists of a suite of highly opti-
mized C/C++ based templates of primitive operators and an
automatic LSTM synthesis flow.

e We present efficient implementations of LSTMs which achieve
up to 18.8X and 33.5X gains in performance and energy ef-
ficiency, respectively, compared with the state-of-the-art.
The proposed implementations incur very small accuracy
degradation.

2 LSTM BACKGROUND

LSTM is a key component of the acoustic model in modern large-
scale automatic speech recognition (ASR) systems [9, 25], and also
the most computation and memory-intensive part. Due to the com-
plicated and flexible data dependencies among gates, cells, and
outputs, a lot of LSTM variants have been proposed. In this paper,
we use a widely deployed variant called Google LSTM [25] as an
example throughout this paper without loss of generality. The ar-
chitecture details of the Google LSTM is shown in Figure 1. The
LSTM accepts an input sequence X = (x1;X2;X3;...;XT) (each of
x; is a vector corresponding to time t) with the output sequence
from last step yT-1 = (yo;¥1:¥2; .- yT—1) (each of y; is a vector).
The input of Google LSTM at time ¢ depends on the output at t — 1.
The LSTM contains a special memory cell storing the temporal
state of the network.It also contains three special multiplicative
units which are input, output and forget gates. The output sequence
Y = (y1;y2;¥3; --; yT) is computed by using the following equa-
tions iteratively from t = 1 to T:

ir = c(Wixxt + Wiryr—1 + Wicer—1 +bi), (1)
fr = c(Wpxx + Wyt + Weecr—1 + by), (1b)
gr = 0(Wexxs + Weryi—1 + be), (1¢)
c; =f; ©cr1 + 81 Oy, (1d)
0t = 0(WoxXt + Woryr—1 + Woccr +by), (1e)
m; = oy © h(cy), (1f)
vyt = Wymmy, (1g)

where symbols i, f, o, ¢, m, and y are respectively the input gate,
forget gate, output gate, cell state, cell output, and a projected out-
put; the © operator denotes the element-wise multiplication, and
the + operator denotes the element-wise addition. The W terms
denote weight matrices (e.g. Wiy is the matrix of weights from
the input vector x; to the input gate), and the b terms denote bias
vectors. Please note W, ch, and W, are diagonal matrices for
peephole connections, thus they are essentially a vector, and the
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matrix-vector multiplication like W;cc;—1 can be calculated by the
© operator. o is the logistic activation function and h is a user-
defined activation function. Here we use hyperbolic tangent (tanh)
activation function as h. Overall, we have nine matrix-vector multi-
plications (excluding peephole connections which can be calculated
by ©). In one gate/cell, W.xx; + W, y;—1 can be combined/fused
in one matrix-vector multiplication by concatenating the matrix
and vector as W, () [Xz, y¢-1].

3 STRUCTURED COMPRESSION

Deep neural networks (DNNs) bear a significant amount of redun-
dancy [12] and thus model compression is a natural method to
mitigate the computation and memory storage requirements for
the hardware implementations on FPGAs. In this section, we pro-
pose to employ a structured compression technique to compress the
weight matrices of LSTM model by using block-circulant matrices.
We first introduce the block-circulant matrix and then integrate it
with the inference and training algorithms of LSTMs. In the last,
we explore the trade-offs between compression ratio and prediction
error rate.

3.1 Block-Circulant Matrix

The circulant matrix is a square matrix whose each row (or column)
vector is the circulant reformat of the row (or column) vectors [3, 22].
Any matrix could be transformed into a set of circulant submatrices
(blocks) and we define the transformed matrix as a block-circulant
matrix. For example, Figure 2 shows that the 8 X 4 weight matrix
(on the left) is reformatted into a block-circulant matrix containing
two 4 X 4 circulant matrices (on the right). Since each row vector
of the circulant submatrix is a reformat of the first row vector, we
could use a row vector to represent a circulant submatrix. Therefore,
the first obvious benefit of the block-circulant matrix is that the
number of parameters in each weight matrix is reduced by a factor
of the block size O(k). As for the example in Figure 2, the 8 X 4
weight matrix (on the left) holding 32 parameters is reduced to two
4 % 4 circulant matrices (on the right) containing only 8 parameters,
which easily leads to 4X model size reduction.

Intuitively, the model compression ratio is determined by the
block size of the circulant submatrices: larger block size leads to
higher compression ratio and vice versa. However, high compres-
sion ratio may degrade the prediction accuracy. Specifically, a larger
block size should be selected to achieve a higher compression ratio
but lower accuracy and the smaller block size provides higher accu-
racy but less compression ratio. The block size is 1 if no compression
is utilized. It is necessary to note that block-circulant matrix based
DNN s have been proved to asymptotically approach the original
networks in accuracy with mathematical rigor [31]. Therefore, if
the compression ratio is selected properly, the accuracy loss would
be negligible. The trade-offs between compression ratio and predi-
cation accuracy are discussed in Section 3.3

3.2 Inference and Training Algorithms

The primary idea of introducing block-circulant matrix into LSTM
model is to partition a m X n weight matrix W into p X g blocks,
where p = 7, ¢ =  and each block is a k X k circulant matrix.
With bias and activation function omitted, the forward propagation
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Figure 2: Block-circulant matrices for weight representa-
tion.

process of LSTM model in the inference phase is then given by:

q .
Zj:l Wijx; a;
9 Wyix; a
a=Wx ZJ:l AR =2 )
q s
21 WpjX; ap

where a; is a column vector. Since each circulant matrix W;; could
be simplified as a vector wjj, i.e., w;; is the first row vector of
Wi;, the structure of block-circulant matrix enables the use of Fast
Fourier Transform (FFT) algorithm to speed up the circulant con-
volution Z;Izl W;;x;. Therefore the Equation 2 can be performed
as:
—1

F [ F(wij) © F(x))] ®3)

q
a; =

j=1
where F () is the Discrete Fourier Transform (DFT) operator, 7~ (-)
is the inverse DFT (IDFT) operator, and © is the element-wise
multiply operator. Therefore, after applying FFT algorithm to the
circulant convolution, the computational complexity of the LSTM
inference model is reduced from O (pgk?) to O (pgk log k), meaning
that the computational complexity of the LSTM inference model is
reduced by a factor of O(@).

The backward propagation process in the training phase can also
be implemented using block-circulant matrices. Here we use a;; to
denote the [-th output element in a;, and L to represent the loss
function. Then by using the chain rule we can derive the backward
propagation process as follows:

oL =Zk: oL day _ OL da; W
owij i da;) Owij  Oa; dwij’
oL =izk:_8L 9ay _ 3 OL da; )
0x; = Oa;; 0x;j — Oa; 0x;

where 66& and % are proved to be block-circulant matrices [31].
W X

2
aL % % can be calculated similarly as Equation (3)
z J

Thus, Ow and
ij

with the same computational complexity. The details of the training

procedure for a fully-connected layer in DNNs are presented in [6,

27] and also applicable to the LSTM based RNNs.



Special Session: Deep Learning

Table 1: Comparison among different LSTM models.

Block #Model Computational PER / PER
Size | Parameters Complexity | Degradation (%)
1 8.01M 1 24.15/ 0.00
2 4.03M 0.50 24.09 / —0.06
4 2.04M 0.50 24.23/ 0.08
8 1.05M 0.39 24.57/ 0.32
16 0.55M 0.27 25.48/ 1.23

3.3 Compression and Accuracy Trade-offs

The block-circulant matrix based LSTM inference model enables
a comprehensive tuning of model compression ratio by varying
the block size k, thus leading to fine-grained trade-offs among the
model size, computational complexity, and prediction accuracy.
The proposed inference model of Google LSTM [25] is evaluated
on the widely used TIMIT dataset [8]. Similar to [10], the audio
data of TIMIT is preprocessed using a Fourier transform based
filterbank with 50 coefficients (plus energy) distributed on a mel-
scale, together with their first and second temporal derivatives.
The number of features of the input speech and the architecture
of Google LSTM used in this work is the same as ESE [13]. It is
necessary to note that we use the widely adopted Phone Error Rate
(PER) as the metric for the model prediction accuracy. The lower
the PER value is, the higher the model prediction accuracy is and
vice versa.

Table 1 presents the details of the trade-offs among three different
metrics of Google LSTM using the block-circulant matrix based
structured compression technique. We observe that the number
of model parameters decreases linearly as the block size increases.
Meanwhile, the PERs of different models do not have a severe
degradation. For the block-circulant matrix based LSTM with block
size of 2, the PER is even lower than non-compressed LSTM model
whose block size is 1. For the LSTM models with block size of
8 and 16, we achieve 7.6X and 14.6X model size reduction and
the computational complexity is reduced by factors of 2.6X and
3.7X while the PERs are only 0.32% and 1.23% higher than the non-
compressed one, respectively. Therefore, we choose the compressed
models of Google LSTM with block sizes of 8 and 16 to be further
studied in this work.

4 FPGA ACCELERATION

In this section, we start by introducing a set of FPGA optimization
techniques for circulant convolution operator and then apply quan-
tizations to activation and element-wise operators. In the last, we
propose an operator scheduling algorithm to generate the whole
LSTM pipeline with the help of performance and resource models.

4.1 Circulant Convolution Optimization

Since the FFT based circulant convolution operator in the form of
Equation 3 is the most computation-intensive operator in the LSTM
inference model, we propose three techniques to further reduce
the computational complexity by reducing the number of DFT and
IDFT operator calls, and the redundant arithmetic operations of its
complex number multiplication operators.
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Figure 3: An illustration of the (a) circulant convolution op-
erator; (b) its original implementation; (c) and the optimized
implementation.

In order to reduce the number of IDFT calls in the circulant con-
volution operator, we propose the DFT-IDFT decoupling technique.
Since DFT and IDFT are linear operators [21], we could decouple
the DFT and IDFT operators in Equation 3 and move the IDFT
operator F~1(-) outside the accumulation operator Y as following,

9
ai=F 1 ) Fowy) © Foxy)|. (6)

Jj=1

where the number of IDFT operator calls for each circulant convo-
lution operator is reduced from g to 1 and the numbers of the other
operator calls are kept the same as before.

According to Equation 6, the number of DFT operator F(-) calls
in a circulant convolution operator is determined by q the number
of weight vectors 7 (w;;) and input vectors . (x;). Since the weight
vectors w;; are fixed when the training process is done, we could
precalculate the 7 (w;;) values and store them in the BRAM buffers
of FPGAs and fetch the required values when needed instead of
computing the associated DFT values at runtime. This method com-
pletely eliminates the DFT operator F(-) calls for weight vectors
and reduces the number of calls from 2gk to gk for each circulant
convolution operator. The BRAM buffer size, however, would be
doubled since the outputs of DFT values F(w;;) are complex num-
bers whose both real and imaginary parts are needed to be stored.
In order to alleviate the BRAM buffer overhead, we propose to
exploit the complex conjugate symmetry property of DFT output
values, where almost half of the conjugate complex numbers could
be eliminated [21, 23]. Therefore, there is only negligible BRAM
buffer overhead to store the DFT results of weight vectors 7 (wy;).

The element-wise multiplication © between two complex num-
ber vectors F(w;;) and F(x;) requires 4k multiplications and 3k
additions. Due to the complex conjugate symmetry property of DFT
F(:) results, about half of the multiplications and additions could
be eliminated. Overall, Figure 3 illustrates the implementations of
the original and optimized circulant convolution operators when
the block size is 8.
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Figure 4: Piece-wise linear activation functions.

4.2 Datapath and Activation Quantization

The LSTM model size could be further compressed without accuracy
degradation if the datapath of LSTM implementation on FPGA is
carefully quantized into shorter bitwidth. We design a bit-accurate
software simulator to study the impact of the bitwidth of datapath
on the prediction accuracy. We first analyze the numerical range of
the trained weights in the LSTM, and then determine the bitwidth
of integer and fractional parts to avoid data overflow and accuracy
degradation. We observe that 16-bit fixed point is accurate enough
for implementing the LSTM inference model on FPGAs.

In order to alleviate accuracy degradation problem caused by
the data truncation and overflow problems in the architecture of
the proposed circulant convolution operator. It is observed that
the output data of IDFT are first divided by the block size (or IDFT
input size) k, which is implemented as right shifting the numbers
by loglg bits, and then output in the last stage of IDFT pipeline.
However, the more bits are right shifted, the more fractional bits
are truncated and thus degrading the overall accuracy. In order
to deal with the accuracy loss caused by the data truncation, we
propose to evenly distribute the shift operations inside the stages of
the IDFT pipeline based on the observation that right shifting one
bit at a time achieves better accuracy than right shifting multiple
bits at once. As for the data overflow problem, it is most likely to
occur in the accumulation stage of circulant convolution operator
since multiple values are summed here. We propose to move the
evenly distributed right shifting operations from stages of IDFT
pipeline to the ones of DFT. Since the DFT is processed before
accumulation operator and right shifting makes the number to be
smaller and, it is less likely to cause overflow in accumulation stage.

The activation functions in LSTMs are all transcendental func-
tions whose implementations on FPGA are very expensive with
respect to resource utilization. In order to achieve a balance between
accuracy and resource cost, we propose to utilize quantized piece-
wise linear functions to approximate them. Figure 4 shows that
the sigmoid and tanh functions are approximated using piece-wise
linear functions with 22 segments. As we can see from the figure,
the approximated and the original functions are almost the same
and the error rate is less than 1%. Since the linear function could
be represented in the slope-intercept form like y = ax + b, we only
need to store the associated slope a and intercept b for each piece of
linear function. In the real implementation, the computation com-
plexity of activation functions only involves a simple comparison
to index the associated pair of slope and intercept and one 16-bit
fixed point multiplication followed by an addition. It is necessary
to note that, according to our experimental results, the piece-wise
linear approximation incurs negligible accuracy degradation for
LSTMs.
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Figure 5: Computational complexity of LSTM operators.
4.3 Operator Scheduling

The recurrent nature of LSTM enforces strict data dependency
among operators inside the LSTM module. In order to accommo-
date the complicated interactions of LSTM primitive operators, we
propose a graph generator to transform the LSTM algorithm speci-
fication in the form of the equations like Equation 1 to a directed
acyclic data dependency graph. Figure 6 (a) shows the generated
LSTM directed operator graph from the LSTM descriptions, where
each node is an LSTM primitive operator and the edge represents
the data dependency between two operators. It is necessary to note
that the generated graph is acyclic because we deliberately remove
the feedback edges from cell output ¢t to the LSTM module output
yit. Since the backward edges are taken care of by the double-buffer
mechanism, this practice would never harm the correctness and
efficiency of the final LSTM accelerator design.

LSTMs exhibit a highly skewed distribution of computation com-
plexity among the primitive operators. Figure 5 shows the normal-
ized computational complexity of the five primitive operators of
the Google LSTM [25] studied in this work. The computational
complexity gap between the circulant convolution operator and
element-wise multiply operator © is as large as 128 times. So, if
we want to pipeline these two operators we must either boost
the parallelism of the former operator or make the latter opera-
tor wait (idle) for the former one. However, the reality is that the
limited on-chip resources of FPGAs generally cannot sustain suffi-
cient parallelism and the idle operators make the design inefficient.
Therefore, pipelining a complex LSTM algorithm as a whole, such
as the Google LSTM [25] shown in 6(a), is very inefficient on FPGAs.

In order to deal with this problem, we propose to break down the
original single pipeline into several smaller coarse-grained pipelines
and overlap their execution time by inserting double-buffers for
each concatenated pipeline pair. For example, the original operator
graph of Google LSTM [25] in 6(a) is divided into three stages in 6(b),
where each stage will be implemented as a coarse-grained pipeline
on FPGAs. The double-buffers added between stages are used to
buffer the data produced/consumed by the previous/current stage.
However, scheduling the operators to different stages in an efficient
way is still a problem. We propose an operator scheduling algorithm
shown in Algorithm 1 to tackle this problem. The algorithm takes
the original operator graph G = (V, E), operator weight set W(V),
and operator priority set P(V) as input and outputs several operator
subgraphs Gg. For original operator graph G = (V, E), each vertex
v; € V represents an operator and the edge e;; represents the data
dependency between v; and v;. Each vertex v; has a weight W (w;)
which is the associated arithmetic computational complexity. The
algorithm first traverses down the graph from the source vertex
computing the priority of each vertex by
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Figure 6: Illustration of operator scheduling on data dependency graph. The circle represents the element-wise operator, and

the square represents the circulant convolution operator.

W(vj) +  max

vj€Succ(v;)
W(vsink)’

Since P(v;) is accumulated with the maximum value of successors
P(vj) as shown in Equation 7, priority set P(V) is topologically
ordered, which means that it is guaranteed that all predecessor
operators are scheduled before scheduling a new operator [15].
After the prioritization, the algorithm selects the operator with the
highest priority value and then determines the parallelism of the
operator N(v;) and whether it should be added to the current or
a new stage according to the resource utilization of FPGAs. Then,
the operator subgraphs Gy and the operator parallelism set N (V)
are output by this algorithm, where each stage represents a cor-
responding LSTM execution stage that will be implemented as a
coarse-grained pipeline on FPGAs. Since the overall throughput of
this coarse-grained pipeline design is constrained by the slowest
stage, we need to further determine the pipeline replication factor
R(Gy.) for each stage. To fully utilize the resources of a certain FPGA
chip, we also need to take into account of the resource utilization
of each stage, and thus we propose to enumerate pipeline replica-
tion factor R(Gy) to get the optimal setting with the help of our
analytical performance and resource models which are presented
in Section 4.4.

P(Uj)’ Vi # Ugink
P(v;) = 7)

otherwise

4.4 Performance and Resource Models
Since the throughput of the proposed coarse-grained pipeline de-

sign is constrained by the slowest stage, the analytical performance
model is built as following,

Frequency
. ®

Ty, Tk}

where FPS is the number of frames per second of C-LSTM acceler-

ator, Ty represents the number of execution clock cycles of stage k,

FPS =
max {T], Tg, .
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Algorithm 1: Operator Scheduling Algorithm

Input: operator graph G = (V, E), operator weight set W (V'), and priority set P(V);
Output: operator subgraph of each stage G = (Vi Er);
Traverse G = (V, E) and compute priority set P(V);
k0, N(V) « {1};
foreach v; € Vin decreasing order of P(v) do
if k = 0 then
k—k+1;
‘ Gk < v;// add the operator to a new stage
else
foreach N'(v;) € G do

Wi,
N'(@)) < N@y) - Tgis T

end
if resource constraints are satisfied then
Gj « v;// add the operator to current stage
‘ N(V) « N’(V);// update operator parallelisms
else
‘ ke—k+1;
Gj < vj;// add the operator to a new stage
end

end

end

K « k;

Enumerate R(Gy.) values to maximize throughput and fully utilize FPGA resource;
return N(V), (Gy, Gy, ..., Gk}, and (R(G1), R(Gy), ... (Gk));

and K is the total number of stages. Ty is calculated by considering
the parallelism and input data size of each stage as following,

[ max Q(vi) 9
v;€G N(vi)

where Q(v;) is the workload of operator v; and Dy is the pipeline
depth of stage k. It is necessary to note that, the compression ratio
of the block-circulant matrices based technique is large enough
to store the whole LSTM model on BRAMs of FPGAs, and for
each frame, we only need to load very limited size of input data
which makes computation time of LSTM to be overlapped with
data loading.

The resource model of the highly optimized primitive opera-
tor templates is very straightforward because the linear model
with respect to the associated operator parallelism N(v;) and stage
parallelism R(Gg) is accurate enough to guide the design space

/R(Gi)1 + Dy
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exploration for energy-efficient designs. The models are shown in
the following,

K
DSP = ZR(Gk) : Z ADSP(v;) - N(v;), (10)
k=1 v; €V,
K
BRAM = > R(Gy) - . ABRAM(vi)-N(vi), (1)
k=1 v; €V,
K
LUT = Z R(Gy) - Z ALUT(v;) - N(v3), (12)
k=1 v; €V,

where ADSP(v;), ABRAM(v;), and ALUT (v;) are obtained by pro-
filing the resource consumption values for operator v; on the FPGA
using the manually optimized operator template.

4.5 Putting It All Together

The final hardware architecture of the Google LSTM algorithm [25]
is shown in Figure 7. This design mainly consists of three coarse-
grained pipeline stages corresponding to the operator scheduling
result shown in Figure 6(b). At Stage 1, the input vectors x; and the
prestored DFT values of weight matrices W are convolved using
the circulant convolution operator whose output is written into
the double-buffer. Since all the DFT values of weight matrices are
compressed small enough, they could be stored in on-chip BRAM
buffers instead of off-chip DDR memory. The performance of the
circulant convolution operator is thus no longer bottlenecked by
off-chip memory bandwidth and the parallel compute units could
be fully exploited on FPGAs. In stage 2, the input data are first read
from double-buffer of the previous stage and then processed by a
series of element-wise operators including addition, multiplication
and activation functions in the LSTM cell module. The output of
Stage 2 is also written to double-buffer for the next stage. As for
Stage 3, the results of the prior stage are fetched from double-buffer
and are then projected to output using the circulant convolution
operator. In the last, the projected output will be forwarded to Stage
1 for the next iteration.

5 C-LSTM FRAMEWORK

In order to embrace a wide range of LSTM architectures, we propose
a comprehensive framework called C-LSTM to assist the LSTM
model training using the block-circulant matrix based structured
compression and enable an automatic flow to generate efficient
LSTM inference designs on FPGAs. As shown in Figure 8, the C-
LSTM framework is mainly composed of two parts which are LSTM
model training and its implementation on FPGAs. The details of
the C-LSTM framework are explained in the following sections.

5.1 Model Training

The model training, which is shown on the left side of Figure 8,
accepts the LSTM architecture specifications in the form of Equa-
tion 1 as input. Then, the block-circulant matrix based structured
compression is applied to the weight matrices of the model. In the
following, TensorFlow [1] is used as the training framework to iter-
atively train the LSTM model. The trade-offs between compression
ratio and prediction accuracy is explored in this procedure. In the
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Figure 7: The proposed Google LSTM architecture.

last, the LSTM inference model is configured with the well-trained
weight matrices and sent to model implementation flow for further
acceleration on FPGAs.

5.2 Model Implementation

The model implementation of the C-LSTM framework is shown in
the right side of Figure 8, It mainly consists of two parts which are
operator templates generation (upper part) and automatic synthesis
framework (lower part). Since the number of primitive operators
of LSTMs is limited, we propose to manually write the template for
each primitive operator. As for the LSTM algorithms studied in this
work, we define hyperbolic tangent tanh, sigmoid o, element-wise
vector addition, element-wise vector multiplication, and circulant
convolution as primitive operators. The optimization techniques
presented in Section 4 are all applied to these operators. It is nec-
essary to note that, the proposed primitive operator templates are
general enough to implement almost any kind of LSTM variant to
best of our knowledge.

The automatic synthesis framework is fed with the well-trained
inference model provided by the model training flow. Then a di-
rected acyclic data dependency graph is generated to represent
the computation flow of LSTM. The operators in the graph are
scheduled to compose a multi-stage coarse-grained pipeline as to
maximize the performance under certain resource constraints with
the help of analytical performance and resource models. The sched-
uling result is then given to the code generator. The code generator
takes the operator scheduling result as input and generates the
final C/C++ based code automatically by integrating the associ-
ated primitive operator templates together. Since the interface of
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Figure 8: C-LSTM framework overview.

Table 2: Comparison of FPGA platforms

FPGA DSP | BRAM LUT FF Process
XCKU060 2,760 | 1,080 | 331,680 | 663,360 | 20nm
Virtex-7(690t) | 3,600 | 1,470 | 859,200 | 429,600 | 28nm

each template is well defined and the tunable parameters are ex-
pressed using C/C++ marcos, the code generation is very efficient.
The synthesis backend which is an off-the-shelf commercial HLS
tool, accepts the C/C++ code as input and outputs the optimized
LSTM hardware implementation on FPGAs. It is necessary to note
that each commercial HLS toolchain requires specific coding style
to achieve the best performance, and thus the templates of the
primitive operators should be tailored accordingly [29].

6 EXPERIMENT EVALUATION
6.1 Experiment Setup

The proposed techniques for LSTMs are evaluated on two platforms:
Xilinx KU060 and Alpha Data’s ADM-7V3. The Xilinx KU060 plat-
form consists of a Xilinx XCKU060 FPGA and two 4GB DDR3
memory. The ADM-7V3 board consists of a Xilinx Virtex-7 (690t)
FPGA and a 16GB DDR3 memory. The comparison of the FPGA
on-chip resources of the two platforms is presented in Table 2. The
ADM-7V3 FPGA board is connected to the host via PCI-e 3.0 X8
interface, and the host machine is a server with Intel Core i7-4790
CPU. Xilinx SDx 2017.1 is used as the commercial synthesis backend
to synthesize the C/C++ based LSTM design onto FPGAs. The pro-
posed FPGA implementations of LSTMs are operating at 200MHz
on both platforms.

We measure the latency of our C-LSTM designs on KU060 plat-
form using the number of clock cycles times the clock period (5ns)
reported by Xilinx SDx tools. To make a fair comparison with
ESE [13], the latency of ESE reported in Table 3 is its theoretical
time. Since we do not have the KU060 platform, we cannot give
out an accurate estimation and the associated power and energy
efficiency results are left blank. As for the ADM-7V3 platform, the
execution time of C-LSTM designs are obtained by using Xilinx
SDx runtime profiler, and the power is profiled using the TI Fusion
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Power device through the associated interface on ADM-7V3 with a
sampling rate of 100Hz.

Besides the LSTM based RNN architecture used in [13, 25], we
also evaluated the performance on a smaller LSTM model [20],
where the input feature is a 39-dimension vector (12 filterbank
coefficients plus energy and its first/second temporal derivatives),
and the gate/cell layers’ dimension is 512. In this small model,
the peephole connection and projection layer are not employed.
The model contains two stacked LSTM as well. However, we used
bidirectional architecture [2, 10] to get a better PER.

In order to make a convincing validation for the superiority of the
proposed C-LSTM optimization framework, we compare our design
with the state-of-the-art LSTM design ESE [13].The same dataset,
LSTM algorithm, and FPGA platforms are used in the associated
experiments as ESE to make a fair comparison.

6.2 Experimental Results of Google LSTM

With the compression technique of C-LSTM, we are able to store
all the weights matrices and the projection matrix in BRAM, after
performing compression on the baseline. The baseline has the same
structure as the baseline in ESE.

According to the results of latency and FPS in Table 3, we achieve
3.6X and 4.3X latency reduction and 11X and 13X performance
speedup for FFT8 and FFT16 based compression techniques com-
pared with ESE on the platform of KU060. It is necessary to note that
the gap between latency reduction and performance speedup stems
from the coarse-grained architecture of the proposed LSTM acceler-
ator. And thus the latency of our proposed C-LSTM accelerator for
Google LSTM algorithm is the latency of one stage multiplied by 3,
because each input frame needs to go through three coarse-grained
pipelines. However, after three frames have been processed, the
following frame could be processed at every one stage of latency.

As we can see from Table 2, the resource of the FPGA chip Virtex-
7 of the ADM-7V3 platform is 30% higher than the FPGA XCKU060
of KU060 platform. Therefore, to make a fair comparison, we use
the total resource of KU060 as the resource consumption bound for
the ADM-7v3 platform. Compared with ESE, we achieve 10.2X and
18.8X performance speedups and 19.1X and 33.5X energy efficiency
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Table 3: Detailed comparison for different LSTM designs.

ESE [13] C-LSTM FFT8 C-LSTM FFT16 C-LSTM FFT8 C-LSTM FFT16
(Block size: 8) (Block size: 16) (Block size: 8) (Block size: 16)
Al;(s)rTilt\/}[lm Google LSTM [25] Small LSTM [20]
Weight Matrix Size
(#Parameters of LSTM) 0.73M 0.41M 0.20M 0.28M 0.14M
Quantization 12bit fixed 16bit fixed 16bit fixed 16bit fixed 16bit fixed
Matrix 1
. . 45:1 79:1 159:1 79:1 159:1
Compression Ratio
Platform KU060 KU060 7V3 KU060 7V3 KU060 7V3 KU060 7V3
DSP (%) 54.5 96.5 74.3 98.0 77.4 77.6 60.5 84.9 65.2
BRAM (%) 87.7 87.6 65.7 89.1 63.3 83.3 66.9 87.2 64.1
LUT (%) 88.6 75.2 58.7 72.8 55.3 92.5 67.6 93.6 72.3
FF (%) 68.3 58.9 46.5 63.4 48.1 61.2 49.0 70.7 54.6
Frequency (MHz) 200
PER Degradation 0.30% 0.32% 1.23% 0.29% 1.16%
Latency (us) 57.0 15.4 16.7 8.1 9.1 8.9 9.8 4.8 5.4
Frames per
17,544 195,313 | 179,687 | 371,095 | 330,275 | 337,838 | 307,432 | 628,379 | 559,257
Second (FPS)
Power (W) 41 - 22 - 23 - 21 - 22
Energy
Efficiency 428 - 8,168 - 14,359 - 14,640 - 25,420
(FPS/W)

! This estimation considers both weights and indices (there is at least one index per weight after compression in ESE).
However, this is a pessimistic estimation for ESE because indices can use fewer bits for representation than weights;

gains using FFT8 and FFT16, respectively. Since the power con-
sumption of C-LSTM is only half of the ESE, the energy efficiency
gain is higher than performance. It is necessary to note that as
shown in Table 2, the manufacturing process of XCKU060 FPGA
is 20nm while the process of Virtex-7 is 28nm, which means the
energy efficiency gain reported here is pessimistic.

Although the promising performance and energy gains are achieved
by C-LSTM, the resource utilization for LUT, FF, and BRAM are
less than ESE, and more important, the relative PER degradation is
very small, which are 0.32% and 1.23% using FFT8 and FFT16, re-
spectively. After detailed analysis, we summarize the fundamental
reasons for the high performance and power gains in three aspects.
First, the structured compression used in this work eliminates the
irregular computation and memory accesses which not only makes
the design more regular but also exposes more parallelism. This
could be verified in that the DSP resource consumption of the pro-
posed method is much more than ESE. Secondly, the whole model
(weights matrices and the projection matrix) could be stored on-
chip without fetching data from off-chip DRAM, making the LSTM
not bounded by memory. Lastly, the more efficient implementation
of LSTM on FPGAs contributes to the high efficiency. For example,
we use the 22-segment piece-wise linear function to approximate
the activation functions while ESE employs look-up tables which
break the activation down into 2048 segments and consume more re-
sources. Moreover, we propose to employ FFT based block-circulant
matrix multiplication while ESE uses sparse matrix multiplication
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which needs to store extra indices for sparse matrices and thus
prevents from storing the whole model on-chip.

6.3 Experimental Results of Small LSTM

In order to validate that proposed C-LSTM is not only appropriate
for Google LSTM model, we also implement a Small LSTM [20]
model on both FPGA platforms.

In KU060 platform, the FFT8 and FFT16 designs could achieve
19.3X and 35.9X performance speedup compared with ESE, respec-
tively. In the ADM-7V3 platform, the performance speedups are
17.5X and 31.9X and the energy efficiency gains are 34.2X and
59.4X compared with ESE, respectively. For both platforms, the PER
degradation is 0.29% and 1.16% for FFT8 and FFT16, respectively.

7 RELATED WORK

Recently, FPGA has emerged as a promising hardware acceleration
platform for DNNG as it provides high performance, low power and
reconfigurability. A lot of FPGA based accelerators have been pro-
posed for convolutional neural networks (CNNs) to overcome the
computing and energy efficiency challenges. [28] proposes to uti-
lize systolic array based convolution architecture to achieve better
frequency and thus performance for CNNs on FPGAs. [18] employs
the Winograd algorithm to reduce the multiplication operators as
to save DSP resources and accelerate matrix multiplication in CNNs.
[30] proposes to take advantage of the heterogeneous algorithms
to maximize the resource utilization for convolutional layers on
FPGAs. Some studies also propose to transform the CNN models
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to frequency domains and then exploit FFT algorithms for further
acceleration [14]. The FFT based acceleration scheme used in the
CNN model is completely different from this work, in which we
target on a totally different LSTM based RNN model and the FFT
algorithm is applied to the circulant convolution operators instead
of the convolution layers of CNNs.

There are also a lot of works on implementing RNN acceler-
ators for FPGAs [11, 16, 19]. [19] designs an accelerator for the
gated recurrent network (GRU) which embodies a different archi-
tecture from the LSTM based RNNs. [11] and [16] focus on LSTM
based RNNs but none of these works utilize compression techniques
to reduce the model size. The most relevant study to this work is
ESE [13], which proposes a software and hardware co-design frame-
work to accelerate compressed sparse LSTM model obtained by
parameter pruning [12]. The performance and energy efficiency
gains achieved by ESE is very promising compared with CPU and
GPU based implementations. However, due to the irregular compu-
tation and memory accesses caused by the sparse weight matrices
of the compressed model, the computing power of the FPGA is
not fully exerted by ESE. In order to deal with this problem, this
work proposes to employ a structured compression technique as to
completely eliminate the irregularities of computation and memory
accesses. Moreover, a suite of highly efficient optimization tech-
niques is enabled by an automatic synthesis framework to generate
LSTM accelerators with much higher performance and energy effi-
ciency under the same conditions.

8 CONCLUSION

In this paper, we propose to employ a structured compression tech-
nique using block-circulant matrices to compress the LSTM model
small enough to be fitted on BRAMs of FPGA. Besides the reduced
model size, the irregular computation and memory accesses have
been completely eliminated by the regular structure of the block-
circulant matrices. Moreover, an efficient FFT based fast circulant
convolution is applied to accelerate the LSTM computation by re-
ducing both the computational and storage complexities. In order
to accommodate a wide range of LSTM variants, we also propose
an automatic optimization and synthesis framework. Overall, com-
pared with the state-of-the-art LSTM implementation, the proposed
C-LSTM designs generated by our framework achieve up to 18.8X
and 33.5X gains for performance and energy efficiency with small
accuracy degradation, respectively.
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