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Abstract 

Autonomous vehicle (AV) technology holds great promise for improving the efficiency of 
traditional vehicle sharing systems. In this paper, we investigate a new vehicle sharing system 
using AVs, referred to as autonomous vehicle sharing and reservation (AVSR). In such a system, 
travelers can request AV trips ahead of time and the AVSR system operator will optimally 
arrange AV pickup and delivery schedules and AV trip chains based on these requests. A linear 
programming model is proposed to efficiently solve for optimal solutions for AV trip chains and 
required fleet size through constructed AVSR networks. Case studies show that AVSR can 
significantly increase vehicle use rate (VUR) and consequentially reduce vehicle ownership 
significantly. In the meantime, it is found that the actual vehicle miles traveled (VMT) in AVSR 
systems is not significantly more than that of conventional taxis, despite inevitable empty hauls 
for vehicle relocation in AVSR systems. The results imply huge potential benefits from AVSR 
systems on improving mobility and sustainability of our current transportation systems. 
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1 Introduction 

Privately owned vehicles provide incomparable mobility, flexibility, and freedom to travel. The 
private auto mode constitutes over 83% of the total passenger trips in the U.S.; however, they 
pose great challenges to transportation sustainability. Every year in the U.S., private vehicles are 
a major contributor to approximately 17% of household expenses allocated to transportation, 
70% of the total petroleum consumption, and 30% of greenhouse gas emissions (Bureau, 2014). 
Additionally, private vehicles are left unused for 23 hours a day (Litman, 2007) and the 
increased parking occupies 25% of urban surfaces (Jakle and Sculle, 2004). Public transit 
systems have the potential to overcome these difficulties, but they may not have as high service 
quality and flexibility, e.g., passenger discomfort and difficulty in accessibility (Sinha, 2003). 

Vehicle sharing is an alternative to private vehicle ownership. A group of people collectively 
owns a number of spatially distributed vehicles (Cooper et al., 2000). This mode provides a 
comfort level similar to that of private vehicles and also reduces ownership significantly. Over 
the past decade in North America, the number of shared vehicles has increased from under 700 
to over 15,000, and the number of people who use this service has grown from 16,000 to over a 
million (Shaheen and Cohen, 2013). Well-known vehicle sharing services include Zipcar 
(http://www.zipcar.com/), JustShareIt (http://www.justshareit.com/), Autolib 
(https://www.autolib.eu/en/) and City Car Club (http://www.citycarclub.co.uk/). Vehicle sharing 
has become a major transportation mode with high spatial accessibility and holds the promise of 
a future sustainable transportation system with high vehicle use rates, minimum land occupancy, 
significant cost savings, and likely environmental and social benefits (Millard-Ball, 2005). 
Traditional vehicle sharing, however, still faces one major challenge that prevents it from being 
widely used among the public: nearby vehicle availability. If no vehicles are nearby, a person 
may be stranded, thus having to wait a long time or walk a great distance. Thus, under such 
circumstances this person may not continue to use shared vehicles for future travels.  

The emerging technologies of mobile communications and autonomous vehicles (AV) have the 
potential to address the previously mentioned concerns. Through connectivity using certain 
mobile devices, travelers can request vehicles that are relatively far away before traveling, so that 
they do not need to walk long distances to available vehicles. Also, different from current on-
demand ride-hailing services (excluding ride-sharing), AVs can be fully self-driving and can 
relocate themselves automatically to any traveler’s location upon request without human 
operations.  

Autonomous vehicle sharing (AVS) has the potential to provide significant environmental and 
mobility benefits, particularly in reducing vehicle ownership and parking demands. Using an 
agent-based simulation approach, Fagnant and Kockelman (2014) indicate that each shared AV 
can replace 11 conventional vehicles though increasing Vehicle Miles Traveled (VMT) by 10%, 
and the sharing system results in overall benefits in regards to emissions. These benefits are 
approved using an agent-based simulation with pre-specified agent rules, such as how 

http://www.justshareit.com/
http://www.citycarclub.co.uk/
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unoccupied AVs should be relocated to other zones to meet potential future demands and reduce 
passenger waiting times. Further, if trip demands in the next period (e.g., a day, three hours, or 
one hour) are known to the AVS system operator, it is possible to optimally plan AV pickup and 
delivery routes for all travelers ahead of time. The resultant optimal AV trip chains have the 
potential to provide best system performance. 

In this paper, we investigate a new vehicle sharing system, referred to as autonomous vehicle 
sharing and reservation (AVSR). In such a system, travelers can request AVs for trips ahead of 
time and the AVSR system operator will optimally arrange the AV pickup and delivery before 
requested time and design AV trip chains on the basis of the recorded trip demand requests. 
Particularly, instead of relocating unoccupied AVs heuristically (e.g., to areas with less 
unoccupied AVs at current time), all AV routes and schedules for the next planning horizon can 
be optimally planned and determined. Also note that, if optimally designed, AVSR systems can 
provide upper bound of benefits for different AVS systems, including current on-demand ride-
hailing systems (ride sharing excluded). An AVSR system has the following characteristics:  

1. A fleet of AVs is distributed and shared by different users over the road network. 
2. Each AV serves a passenger or a group of passengers with the same trip at a time. No 

ride sharing is considered. For a group of passengers with the same trip (i.e., same OD 
and departure time), if the number of passengers NP in a group exceeds a vehicle’s 
capacity C, the system will automatically consider this as ceil(NP/C) subgroups and 
dispatch one AV for each subgroup to meet these “separate” demands. For 
implementation, users can specify the number of passengers when making requests, or 
consider this constraint when specifying the number of vehicles to be reserved. In this 
paper, we assume that the subgroups have already been generated beforehand by 
considering the sizes of passenger groups and vehicle capacity. 

3. Each trip – a pickup and delivery – is served without any interruption from other pickup 
and delivery jobs; thus in this paper, AVSR only considers vehicle sharing, and does not 
consider ride sharing. 

4. There is a hard time window specified by users – the latest pickup time. This time can be 
the latest departure time of the user, or the user will complain if the taxi is late. 
Predicative technologies are available to AVSR operators to estimate potential travel 
times using a selected path. 

5. Users make requests ahead of time, but with different request horizon options. They can 
request a vehicle one day before or one hour ahead of the travel.  Users need to enter 
locations for pickup and delivery and preferred pickup time. For requests with short 
horizons, it is necessary to have an efficient algorithm for near real-time trip chain 
planning. AVSR planning needs to consider both future trips and trips that are currently 
being served (due to the availability of AVs at a later time when the current trip is 
completed). 

 

In addition to the above AVSR characteristics, there are a few more assumptions that are made 
for this paper. It is assumed that each AV only returns to the depot at the end of the day for basic 
maintenance and preparation for the next day’s service. For modeling simplicity, it is assumed 
that there are two virtual depots – an origin depot and a destination depot. All AVs are assigned 
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from the origin depot and collected at the destination depot at the end of the day. This 
assumption does not affect the formulation and is only for modeling simplicity, and can be 
relaxed easily to include multiple real repots at different locations (e.g., by adding certain depot 
nodes and corresponding links connecting these depots and relevant trips). This will be further 
discussed in the model formulation section. It is also assumed that empty AVs will always find a 
place for temporary parking during the day, either at certain designated locations or the next 
pickup location, before picking up the next traveler. An AVSR system can even decide where to 
park with consideration of other constraints (e.g., traffic congestion) to ensure the service quality 
is guaranteed.  

The AVSR systems can be considered as a vehicle sharing or autonomous taxi service, 
depending on how the service is provided. If the former, the AVs are owned collectively by 
users/travelers through certain mechanisms and a third-party company will be responsible for 
vehicle maintenance and dispatching. If the latter, AVs can be owned by a taxi company and 
AVSR is offered as an advanced service. AVSR, however, is different from an on-demand taxi 
and ride-hailing service as there is no competition between vehicles and it involves no driver 
decision on accepting or rejecting requests. AVSR is aimed at optimal system performance while 
ensuring travelers are picked up before the requested pickup time. 

 

2 Literature Review 

To the best of the research team’s knowledge, there is no research work investigating the 
proposed AVSR or similar systems using AVs. However, vehicle sharing, particularly on the 
policy side, has been extensively studied and much research on autonomous vehicle sharing, 
autonomous taxis, or other similar services has been seen in recent literature. This section 
reviews existing research on these topics focusing on quantitative system design and analysis. 

Millard-Ball (2005) is one of the early quantitative studies of vehicle sharing systems, but the 
system only serves a small number of members. Du and Hall (1997) use models from fleet 
assignment problems and analyze operations of vehicle sharing systems. Simulation models 
(e.g., Barth and Todd (1999); Uesugi et al. (2007); Ciari et al. (2008)) are used to analyze the 
sensitivity of system costs and service quality to system parameters such as fleet size and vehicle 
relocation. George and Xia (2011) proposed a queuing model to determine the optimal fleet size 
of shared vehicles. Mathematical programming models were developed to determine optimal 
vehicle relocation, considering stationary demand (Chauvet et al., 1997) and dynamic demand 
(Fan et al., 2008; Kek et al., 2009). A couple of recent studies took a step further and addressed 
the location of vehicle sharing stations using discrete integer programming models (Kumar and 
Bierlaire, 2012) or continuous approximation (Li et al., 2016). 

AVS has seldom been investigated until recent literature. Ford (2012) investigates the 
autonomous taxi service that has a fixed taxi service and allows AVs to operate between stands 
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to pick up passengers. Vehicles are allowed to relocate to more favorable locations for potential 
next demand when needed. Kornhauser et al. (2013) investigates extending this idea to exploring 
dynamic ride sharing implications for all person-trips across New Jersey. In these models, one or 
more passengers boarded at fixed stations, where a taxi waits a given time before departing, and 
all passengers having similar destinations share a ride. Passengers are expected to relocate 
themselves to these stands and they do not solve the first-mile, last-mile problem, while one 
advantage of AVS or autonomous taxis is the capability of driving or relocating themselves to 
provide door-to-door service. 

Some studies address related problems to the one investigated in this paper. Fagnant and 
Kockelman’s (2014) and Chen et al. (2016) adopted agent-based simulation approaches for 
similar concepts. They consider each AV as an agent and defined rules for AV behavior such as 
relocation and EV charging, and the resultant system benefits of AV sharing are significant. 
Heuristic rules are used when relocating AVs and this may result in suboptimal system 
performance. Mahmoudi and Zhou (2016) study vehicle routing problem with pickup and 
delivery services with time windows using a dynamic programming approach based on state–
space–time network representations. While exact optimality is guaranteed, the computational 
burden makes it still challenging to solve large-scale instances to the full optimality. Also 
considering vehicle reservation, Wang et al. (2014) studied a Taxi Dispatch problem with 
advance reservations. A trip-chaining strategy based on a customized algorithm of the pickup 
and delivery problem with time windows is proposed using certain heuristic dispatching rules 
and a Tabu search. This cannot guarantee the optimal solution and the tradeoff between 
computational burden and optimality is unknown. 

None of these papers specifically addresses the unique opportunities of the AVSR concept, 
which combines three components – AVs, vehicle sharing and service reservation – to achieve 
more significant system benefits. Many proposed methods in the literature, such as integer 
programming and dynamic programming, are computationally intensive and are not suitable for 
large scale AVS/AVSR system design. Therefore, there is a need for an efficient model for 
optimizing a large number of AV trips over large areas. To bridge these gaps, this study proposes 
linear programming models that can solve AVSR problems using constructed AVSR space-time 
networks. The efficiency brought by linear programming models allows AVSR system operators 
to make optimal AV sharing decisions on large-scale AVSR problems with lowest operational 
costs and computational burden. 

Note that the paper does not intend to propose a competing model to existing integer 
programming-based models for Pickup and Delivery Problems with Time Windows (PDPTW). 
We focus on large-scale, real-world problems yet with exact pickup times, suitable for reserved 
car sharing transportation service, while the literature (e.g., Savelsbergh and Sol, 1998; Ropke 
and Cordeau, 2009)  focus on relatively small- or medium-sized instances (less than 100 request 
nodes and vehicles) with more complex operational settings, such as flexible time windows and 
ride sharing. Traditional PDPTW models are computationally intensive and have difficulty in 
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handling problems of the sizes that this paper considers. Therefore with additional but reasonable 
attributes of the operational settings (e.g., allowing reservations), this paper’s main contribution 
is the introduction of more computationally efficient linear programming models to solve these 
new problems.  

 

3 Problem Statement 

For the convenience of the readers, key symbols used in this study are listed in Table 1. 

Table 1 Notation of parameters and variables 

Parameters  
𝑖𝑖 ∈ 𝐼𝐼 Index of trip demand 𝑖𝑖 ∈ 𝐼𝐼 
𝑖𝑖− ∈ 𝐼𝐼− Pickup location node of trip demand 𝑖𝑖 ∈ 𝐼𝐼 
𝑖𝑖+ ∈ 𝐼𝐼+ Delivery location/node of trip demand 𝑖𝑖 ∈ 𝐼𝐼 

𝐼𝐼 Set of trip demands in a planning horizon [0,𝑇𝑇]; |𝐼𝐼| = 𝑁𝑁 
𝐼𝐼−, 𝐼𝐼+ Set of pickup and delivery nodes for all trip demands in 𝐼𝐼 
𝑇𝑇 AVSR planning horizon [0,𝑇𝑇] 

(𝑖𝑖−, 𝑖𝑖+, 𝑡𝑡𝑖𝑖) Trip demand 𝑖𝑖 departing from origin 𝑖𝑖− to destination 𝑖𝑖+ at time 𝑡𝑡𝑖𝑖  
𝐴𝐴 Reachable demand set 𝐴𝐴𝑟𝑟 = {(𝑖𝑖, 𝑗𝑗) | 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑗𝑗} 
𝑙𝑙𝑖𝑖 Cost of losing demand 𝑖𝑖 
𝑑𝑑𝑖𝑖𝑖𝑖 Driving cost from demand 𝑖𝑖 to demand 𝑗𝑗, ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝐴𝐴 
𝑝𝑝𝑖𝑖𝑖𝑖 Parking cost between delivery 𝑖𝑖 and pickup 𝑗𝑗 
𝑑𝑑𝑖𝑖 Cost to initially dispatch a vehicle to 𝑖𝑖 or collect a vehicle in the end from 𝑖𝑖 
𝐹𝐹 Total fleet size (total number of available AVs) 
𝑓𝑓 Fleet cost per vehicle 
𝑚𝑚𝑖𝑖𝑖𝑖 Capacity of link (𝑖𝑖, 𝑗𝑗) 
𝑐𝑐𝑖𝑖𝑖𝑖 Cost of using link (𝑖𝑖, 𝑗𝑗) 

𝑡𝑡𝑖𝑖− , 𝑡𝑡𝑖𝑖+ Start and end time of trip 𝑖𝑖 
𝑣𝑣(𝑎𝑎, 𝑏𝑏, 𝑡𝑡) Travel speed when a vehicle travel from 𝑎𝑎 to 𝑏𝑏 at time 𝑡𝑡, where 𝑎𝑎 and 𝑏𝑏 can 

be any pickup or delivery location for same or different demands 
𝑇𝑇𝑇𝑇(𝑎𝑎, 𝑏𝑏) Actual travel distance from location 𝑎𝑎 to 𝑏𝑏 

𝜃𝜃 AV relocation buffer time 
𝜇𝜇 AV relocation buffer distance 
𝑇𝑇′ Rolling horizon 
𝑡𝑡𝑢𝑢 Update interval for rolling horizon approach 

Decision Variables  
𝑥𝑥𝑖𝑖𝑖𝑖 Linear variable: the number of vehicles using link (𝑖𝑖, 𝑗𝑗); 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0 
𝑦𝑦𝑖𝑖𝑖𝑖  Binary variable:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 1 if link (𝑖𝑖, 𝑗𝑗) is used by a vehicle; 𝑦𝑦𝑖𝑖𝑖𝑖 = 0 otherwise 
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Figure 1 Illustration of trip demands and trip chaining on a space-time diagram 
 

The problem is illustrated in Figure 1 where there are three trip demands: 1− → 1+, 2− → 2+ and 
3− → 3+ along a linear corridor. Without loss of generality, our model assumes the existence of 
a general depot, where vehicles can be dispatched from and collected at it. This depot is 
represented by using a source node and destination node in Figure 1. These two nodes are virtual 
and can represent one real depot or multiple depots in large urban areas. The model in the paper 
can be easily extended to multi-depot models as will be discussed later. Each demand needs to be 
served before a requested departure time. The research problem is how many AVs are needed 
and how to dispatch them to serve the three space-time demands. In Figure 1, the three trips are 
represented on a space-time diagram where vehicles are assumed to travel one unit of distance 
per unit of time. If not well-coordinated, three AVs may be needed to meet all three demands. 
However, it is possible to assign one AV to serve demand 1 first and then travel back to serve 
demand 2 because the start time of demand 2 is greater than the end time of demand 1, resulting 
in a time difference that is sufficient for a vehicle to be relocated from 1+ to 2−. Such patterns in 
which multiple trips are served by a single AV, such as 1− → 1+ → 2− → 2+, are referred to as 
an AV trip chain in this paper. 

As discussed above, when all three trip demands are known in advance through certain on-line 
request systems, an AVS problem becomes an AVSR problem. The reservation period can be as 
short as 5 minutes (Fagnant et al, 2014) to 30 minutes (e.g., Wang et al [2014]), or as long as a 
few hours to a day. When there is a large number of trip demands over a long period (e.g., daily 
peak periods or whole days), an efficient approach is needed to determine the trip chains for each 
AV, concerning which travelers are to be transported by this AV and the sequence to pick up and 
deliver each traveler at a required time. In the example in Figure 1, the trip chain includes 
information on two AVs that are going to be used to meet three demands. The vehicle use rate 
(VUR), defined as the required number of private vehicles in the base case (which we assume to 
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be identical to the number of trips) divided by that for AVSR, in this case is 3
2

= 1.5. The AVs 
are initially going to be dispatched to location 1− and 3−, and then one AV will serve demand 3 
and the other will serve demand 1 and 2 sequentially. The trip chains need to be optimally 
designed in terms of certain objective functions, such as total AVSR system operation costs, such 
that the system operator can best manage the vehicle sharing systems. 

An important objective of this paper’s effort is to automatically determine the required minimum 
number of AVs, referred to as required fleet size, given demand requests (𝑖𝑖−, 𝑖𝑖+, 𝑡𝑡𝑖𝑖), where 𝑖𝑖 ∈ 𝐼𝐼. 
The literature used simulation approaches to decide the required fleet size. For example, Fagnant 
et al. (2014) runs the model 20 times with different trip demand patterns to determine how many 
vehicles are needed and where they should start (i.e., where to be initially dispatched). In our 
effort, we hope to simultaneously determine minimum required fleet size and trip chains given a 
certain demand pattern. AVs will only need to be initially dispatched to the pickup location of 
the first demand of each AV’s trip chain. 

Through the mechanism of reservation, AVSR can reduce travelers’ waiting times, compared to 
traditional taxi or ride-hailing services which require travelers to wait for a certain period of time 
for the vehicles to travel from a different location to the traveler’s location after the request. 
When AVSR is well designed and the fleet size is large enough, the trip chaining designed from 
the proposed model requires that vehicles arrive before a trip’s pickup time given that vehicle 
on-road travel time is assumed to be known/deterministic. When travel time is stochastic due to 
traffic congestion, the system can be designed to allow some buffer time 𝜃𝜃 to ensure that the 
AVs wait for travelers at requested times and locations instead of the opposite. Spatially, how far 
away AVs should relocate themselves to pick up the next traveler is another interesting 
parameter that is referred to as buffer distance 𝜇𝜇. While this parameter should not be bounded 
from the perspective of solution optimality, limiting this parameter can reduce the problem size 
and thus also computational burden, which will be discussed in the next section of model 
development. 

In optimal planning problems such as AVSR, planning horizon 𝑇𝑇  is another critical 
consideration. Ideally, travelers who use the service (e.g., 5% of the total travel demand) make 
requests one day ahead and the AVSR system can plan AV trips to meet all requested demands 
throughout a day. On one hand, this approach may cause high computational burdens; therefore a 
highly efficient model is needed. Planning for a shorter horizon and less demand can 
significantly reduce computational requirements but may lead to suboptimal solutions. 
Additionally, the quality of solutions from smaller planning horizon needs to be studied. One 
research question of this paper is to investigate the impact of the length of planning horizon on 
system performance. On the other hand, some travel requests may only be made a few hours 
before the actual trip and thus the AVSR system should be able to account for such “temporary” 
demands. A mixture of the length of planning horizon 𝑇𝑇  for different travelers needs to be 
addressed by the model. 
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4 Methodology 

4.1 Single-horizon Model 

This section develops an optimization model that can efficiently solve the proposed AVSR 
problem with a defined horizon for all travelers. Consider a set of trip demands, indexed by 𝑖𝑖, 
distributed in the studied space. To prepare for model construction, an AVSR network (𝑉𝑉,𝐸𝐸) is 
constructed. There are two different types of nodes in the AVSR network. One type is trip nodes 
– pickup and delivery nodes for each trip demand. We denote pickup nodes with 𝑖𝑖− and delivery 
node with 𝑖𝑖+ for each trip demand 𝑖𝑖 ∈ 𝐼𝐼.  Another type is origin and destination nodes where 
AVs are dispatched and collected. For the network modeling purpose, we set a dummy source 
node 𝑜𝑜 and a dummy sink node 𝑑𝑑. All AVs will be dispatched from source node 𝑜𝑜 and finally 
collected to sink node 𝑑𝑑. The final node set is  𝑁𝑁 = {𝑖𝑖−, 𝑖𝑖+ | ∀𝑖𝑖 ∈ 𝐼𝐼} ∪ {𝑜𝑜,𝑑𝑑}. In the meantime, an 
AVSR network has five different types of links with the final edge set denoted as 𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 ∪
{(𝑜𝑜, 𝑖𝑖−), }𝑖𝑖∈𝐼𝐼 ∪ {(𝑖𝑖+,𝑑𝑑)}𝑖𝑖∈𝐼𝐼 ∪ {(𝑜𝑜,𝑑𝑑)} , where 𝐴𝐴1 = {(𝑖𝑖−, 𝑖𝑖+) | ∀𝑖𝑖 ∈ 𝐼𝐼}  and 𝐴𝐴2 =
{(𝑖𝑖+, 𝑗𝑗−) | ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑟𝑟}. The five types of links are as follows: 

• Dispatch link (𝑜𝑜, 𝑖𝑖−) : each AV is dispatched to its first trip demand 𝑖𝑖  through this 
dispatch link before serving demand 𝑖𝑖; 

• Service link (𝑖𝑖−, 𝑖𝑖+): each demand 𝑖𝑖 is served by this service link; 
• Relocation link (𝑖𝑖+, 𝑗𝑗−): after delivery of demand 𝑖𝑖 at its delivery node 𝑖𝑖+, an AV needs 

to be relocated to pickup node 𝑗𝑗− for the next assigned trip demand 𝑗𝑗; 
• Collection link (𝑖𝑖+,𝑑𝑑): each AV is collected from its last trip demand 𝑖𝑖  through this 

collection link after demand 𝑖𝑖 is served; 
• Virtual link (𝑜𝑜,𝑑𝑑): the link is added as a virtual link for modeling purposes for AVs to 

flow directly from 𝑜𝑜 to 𝑑𝑑 without any cost to the system. This link allows required fleet 
size to be an implicit variable for optimization, and thus the model can determine 
required vehicle fleet size while solving for trip chains. 

Note that any relocation link (𝑖𝑖+, 𝑗𝑗−) should follow the principle of reachability, which can be 
defined as that the required travel time1 on the relocation link (𝑖𝑖+, 𝑗𝑗−) should be less than the 
difference between the end time of trip 𝑖𝑖 and the start time of trip 𝑗𝑗, 𝑡𝑡𝑗𝑗− − 𝑡𝑡𝑖𝑖+, as shown in Eq. 1.  

𝑡𝑡𝑗𝑗− − 𝑡𝑡𝑖𝑖+ ≥
𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−)
𝑣𝑣(𝑖𝑖+, 𝑗𝑗−, 𝑡𝑡𝑖𝑖+) (1) 

After defining and identifying various types of links, an AVSR network is built as illustrated in 
Figure 2 using the three-demand example in Figure 1. Different types of links are illustrated with 
different types of lines. All links are uni-directional. 

                                                            
1 If travel time stochasticity is considered, the corresponding travel time can be quantified with 
certain reliability measures (e.g., certain percentile travel time). 
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Figure 2 AVSR network for three-demand example 

 

Each link is assigned with multiple link attributes including link distance, travel time, cost, and 
capacity. Link capacity is assigned according to Eq. 2, which indicates that all links but the 
virtual link have a capacity of 1, because a trip demand only needs to be served once. The 
capacity of the virtual link (𝑜𝑜,𝑑𝑑) is the maximum available number of AVs, i.e., fleet size 𝐹𝐹. 
Note that 𝐹𝐹  is not the actual required fleet size output from the model. It reflects the total 
available AV resources that can be potentially used for an AVSR system. 

𝑚𝑚𝑖𝑖𝑖𝑖 = �
1, 𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴\{(𝑜𝑜,𝑑𝑑)}
𝐹𝐹, 𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) = (𝑜𝑜,𝑑𝑑)  (2) 

Determination of link costs is dependent on the actual objective function of the proposed 
optimization model. The objective can be minimization of the total VMT of all AVs. The 
objective can also be minimizing total cost for AVSR system operations, or total system costs 
including operator and traveler costs such as travel time and toll use. In this paper, we consider 
an objective function composed of costs of vehicle usage, fleet ownership, vehicle dispatch and 
collection, parking, and the penalty from unserved trip demands. Also, different types of links 
will be assigned with different link costs as shown in Eq. 3. It can be conveniently modified 
when other objectives are considered. 

𝑐𝑐𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

0, 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑜𝑜, 𝑗𝑗 = 𝑑𝑑
𝑑𝑑𝑗𝑗 ,

𝑓𝑓 + 𝑑𝑑𝑖𝑖 ,
−𝑙𝑙𝑖𝑖 ,

𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑜𝑜, 𝑗𝑗 = 𝑑𝑑
𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑜𝑜, 𝑗𝑗 ≠ 𝑑𝑑
𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴1

𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴2

 (3) 
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The virtual link is only for modeling purposes and incurs no costs. A cost 𝑑𝑑𝑖𝑖 or 𝑑𝑑𝑗𝑗 is considered 
for each dispatch or collection link, respectively. To extend this model to a multi-depot scenario, 
we can make 𝑑𝑑𝑖𝑖 or 𝑑𝑑𝑗𝑗 represent the travel cost between 𝑖𝑖− or 𝑗𝑗+ and its closest depot. An extra 
cost 𝑓𝑓 is added to each dispatch link to consider AV maintenance, refueling, and others. While 
serving a demand on a service link generates no operation costs, losing a demand because of 
suboptimal planning of AV trip chains will result in revenue reduction and customer 
dissatisfaction. Therefore, a link cost of −𝑙𝑙𝑖𝑖  is assigned to each service link where 𝑙𝑙𝑖𝑖  is the 
penalty value for losing a demand 𝑖𝑖. This cost can also be interpreted as the negation of the 
revenue collected from serving this trip. Lastly, AV relocation may generate costs in travel (e.g., 
fuel use) and parking, denoted by 𝑑𝑑𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑖𝑖 respectively. 

The network construction process involves other key considerations, particularly during the 
establishment of relocation links. The following parameters help define key attributes of AVSR.  

Buffer time 𝜃𝜃 

For a relocation link (𝑖𝑖+, 𝑗𝑗−), the maximum time difference between the delivery time of demand 
𝑖𝑖 and the pickup time of demand 𝑗𝑗 should be greater than actual travel time from 𝑖𝑖+ to 𝑗𝑗−, as 
shown in Eq. 4. However, considering that travel time may be unreliable due to congestion 
during AV relocation, a parameter, buffer time bound 𝜃𝜃, is added to account for travel delay 
from a travel reliability perspective, as shown in Eq. 4. During network construction, only a 
relocation link (𝑖𝑖+, 𝑗𝑗−) that meets the condition in Eq. 4 is allowed.  

𝑡𝑡𝑗𝑗− − 𝑡𝑡𝑖𝑖+ ≥ 𝜃𝜃 +
𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−)
𝑣𝑣(𝑖𝑖+, 𝑗𝑗−, 𝑡𝑡𝑖𝑖+) (4) 

This parameter also implicitly incorporates delays due to other vehicle operations during 
relocation, e.g., refueling and routine check. Alternatively, Buffer time 𝜃𝜃 can be replaced by 𝜃𝜃𝑖𝑖 
specific to each trip demand 𝑖𝑖, specified by travelers when making requests. Since this does not 
significantly affect the model structure, in the following modeling, we only use  𝜃𝜃  for simplicity. 
𝑣𝑣(𝑖𝑖+, 𝑗𝑗−, 𝑡𝑡𝑖𝑖+) indicates the average travel speed from location 𝑖𝑖+ to location 𝑗𝑗− departing at time 
𝑡𝑡𝑖𝑖+. The value of this variable can be different throughout the day because of the time-varying 
traffic congestion effect. This value can be obtained from historical data (e.g., speed logs from 
roadway sensors) or future predictions (e.g., with traffic network flow models). 

Buffer bounds for distance 𝜇𝜇 and time 𝜃𝜃 

Buffer distance bound 𝜇𝜇 determines an important attribute of AVSR – the AV relocation range. 
The distance between the delivery and pickup locations of two consecutive demands of an AV is 
bounded by this parameter. Ideally, this constraint should be relaxed to ensure optimality of the 
model result. However, using this parameter also significantly reduces the AVSR network size 
(number of relocation links) and thus enhances model efficiency. In many cases, particularly for 
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relatively large networks with dense space-time demands, AVs will always pick up nearby 
demands instead of wasting resources during relocation to pick up distant demands. 

Another parameter, buffer time bound 𝜃𝜃, is less relevant to the AVSR strategy but can also help 
reduce network size. For a relocation link (𝑖𝑖+, 𝑗𝑗−), the maximum time difference between the 
delivery time of demand 𝑖𝑖 , 𝑖𝑖+ , and the pickup time of demand 𝑗𝑗, 𝑗𝑗− , should not exceed the 
threshold 𝜃𝜃. It is usually not a good plan to let an AV wait for many hours to pick up the next 
demand except for certain special demand patterns. Therefore, such links can be avoided when 
building the AVSR network without much impact on the optimality of the final result while 
largely reducing computational burden. 

With the constructed AVSR network above, the following integer programming model is 
established for the AVSR system design problem.  

min
{𝑦𝑦𝑖𝑖𝑖𝑖}

� 𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 (5) 

subject to  

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑖𝑖𝑖𝑖 ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (6) 

�𝑦𝑦𝑗𝑗𝑗𝑗
𝑗𝑗

= �𝑦𝑦𝑖𝑖𝑖𝑖
𝑗𝑗

,∀𝑖𝑖 ∈ 𝐼𝐼\{𝑜𝑜,𝑑𝑑} (7) 

� 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐹𝐹
𝑗𝑗∈𝐼𝐼\{𝑜𝑜}

, 𝑖𝑖 = 𝑜𝑜 (8) 

� 𝑦𝑦𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐼𝐼\{𝑑𝑑}

= 𝐹𝐹, 𝑖𝑖 = 𝑑𝑑 (9) 

𝑦𝑦𝑖𝑖𝑖𝑖 = 0 𝑜𝑜𝑜𝑜 1,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (10) 
  
This is very similar to a standard minimum cost flow problem. Eq. (5) shows that the objective 
function is the total cost for AVSR system operations. Constraints (6) are standard capacity 
constraints. With all link capacity except virtual link bounded by 1, these constraints indicate 
these links can only be visited by no more than one AV. Constraints (7) – (9) are flow balance 
constraints for intermediate nodes {𝑖𝑖−, 𝑖𝑖+ | 𝑖𝑖 ∈ 𝐼𝐼\(𝑜𝑜,𝑑𝑑)} , source node 𝑜𝑜  and sink node 𝑑𝑑 , 
repectively. Eq. (7) and (8) require that all available 𝐹𝐹 AVs are dispatched either to real demands 
or to the sink node directly (equivalent to not using these AVs). Note that this limit in AV fleet 
size also indicates that when the optimal solution cannot meet all demand requests, the model 
will select the best AV trip chains. However, this will only occur when AV resources are limited. 
In our model, fleet size 𝐹𝐹 can be set as a relatively large number to ensure that all demands can 
be met, unless the model decides that serving certain demands is too costly. Constraint (10) are 
binary constraints.  

Remark: Integer Program (5) – (10) is equivalent to Linear Program (11) – (16). 
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A general integer program is usually hard to solve when the problem scale is large. Fortunately, 
the coefficient matrix of constraints (6) – (10) can be proven to be totally unimodular (Schrijver, 
1998), and thus the Integer Program (5) – (10) is equivalent to the following Linear Program (11) 
– (16): 

min
{𝑥𝑥𝑖𝑖𝑖𝑖}

� 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 (11) 

subject to  

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑖𝑖𝑖𝑖 ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (12) 

�𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗

= �𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗

,∀𝑖𝑖 ∈ 𝐼𝐼\{𝑜𝑜,𝑑𝑑} (13) 

� 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐹𝐹
𝑗𝑗∈𝐼𝐼\{𝑜𝑜}

, 𝑖𝑖 = 𝑜𝑜 (14) 

� 𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐼𝐼\{𝑑𝑑}

= 𝐹𝐹, 𝑖𝑖 = 𝑑𝑑 (15) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0 ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (16) 
Proof: 

Equality constraints (7) – (9) can be expressed in matrix format 𝐴𝐴𝐴𝐴 = 𝑏𝑏 , where 𝐴𝐴 ∈
𝒁𝒁(2𝑁𝑁+2)×�4𝑁𝑁2+2𝑁𝑁+1� , 𝑏𝑏 ∈ 𝒁𝒁�4𝑁𝑁2+2𝑁𝑁+1�×1  and 𝑁𝑁 is the total number of demand nodes, i.e., the 
total number of demand requests. Therefore, the number of 𝑖𝑖− will be N and the number of 𝑖𝑖+ is 
also N. 

According to Schrijver (1998), Linear Program (11) – (16) is equivalent to Integer Program (5) – 
(10) if matrix 𝐴𝐴  is totally unimodular. Also, any matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� , where 𝑎𝑎𝑖𝑖𝑖𝑖  is matrix 𝐴𝐴 ’s 
element at the i-th row and j-th column, is totally unimodular if it satisfies the following three 
conditions: 

Condition 1: 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1,−1} for all 𝑖𝑖𝑖𝑖. 

Condition 2: Every column of 𝐴𝐴 has at most two non-zero entries. 

Condition 3: The rows of A can be partitioned into two index sets 𝐼𝐼1 and 𝐼𝐼2 such that 

3(a) If a column has two entries of different signs, then the indices of the rows 
corresponding to these non-zero entries must be in the same index set. 

3(b) If a column has two entries of the same sign, then the indices of the rows 
corresponding to these non-zero entries must be in different index sets. 

Matrix 𝐴𝐴 can be expressed as below:  



14 
 

1.1   1.2  … 1.2N 2.1  …   3.1  …  2N.2N      o.1  …  o.2N      1.d  …  2N.d  o.d

1 
2 

.
.

.  
2 N

o
d

 0     …   …   …   …   …   …   ...  0         1     …   1       0     …    0

 0     …   …   …   …   …   …   ...  0         0     …   0       1     …    1

 0    -1  …  -1    1  0 … 1  ...   0   

 0   

. . .   . . .

 0   

 0   
. . .   . . .

. . .   . . .

 1   

 1   
  

It is obvious that Condition 1 is met. From Column o.1 to Column o.d, only one entry is nonzero, 
either at Row o or Row d. From Column 1.1 to Column 2N.2N, only two entries are nonzero, 
one row has the value of 1 and the other has the value of -1, and both of these non-zero entries 
are from Row 1 to Row 2N. If matrix 𝐴𝐴 is partitioned into two index sets 𝐼𝐼1: 1 − 2𝑁𝑁 and 𝐼𝐼2: 𝑜𝑜 −
𝑑𝑑, it is obvious that Condition 3 is met based on the above analysis. Thus, it can be proven that 
matrix A is totally unimodular. Therefore, Linear Program (11) – (16) is a linear relaxed form of 
Integer Program (5) – (10), and all solutions of Linear Program (11) – (16) are integers. 

Note that matrix 𝐴𝐴 expressed in the above format is loose because not all columns exist. 
However, we expressed the loose format when proving unimodularity of matrix 𝐴𝐴 because any 
compact matrix 𝐴𝐴 obtained by removing certain columns will still be unimodular. 
 
When constructing an AVSR network, in addition to N service links (𝑖𝑖−, 𝑖𝑖+), the number of 
relocation links (𝑖𝑖+, 𝑗𝑗−) is 𝑁𝑁 × (𝑁𝑁 − 1). Therefore, the possible number of columns of matrix 𝐴𝐴 
is 𝑁𝑁 + 𝑁𝑁 × (𝑁𝑁 − 1) + 2𝑁𝑁 + 1 = 𝑁𝑁2 + 2𝑁𝑁 + 1 . Additionally, because of spatial and time 
constraints imposed for the AVSR network construction, the actual column dimension is further 
reduced, but the attribute of unimodularity still holds. 

The solution to models (11) – (16) is a complete set of strategies to dispatch AVs to meet 
demand requests in the planning horizon 𝑇𝑇, including required AV vehicle fleet size, initial 
dispatch location (pickup node of first trip demand for each AV), and AV trip chains (the vector 
of trip demands to be sequentially served by each AV). These results can be easily extracted 
from the binary values of decision variable 𝑥𝑥𝑖𝑖𝑖𝑖. 

 

4.2 Multi-horizon Model 

The single-horizon model proposed in Section 4.1 optimizes AVSR system for one service 
horizon. A service horizon is defined as a period in which all demand requests have been made 
in the previous period and trip chains are generated before the start of this period. One example 
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of a 24-hour service horizon is that all travelers make the next day’s travel requests during the 
previous day before midnight and the AVSR system will generate dispatch decisions on the AV 
fleet size and trip chains for each AV before midnight.  If the AVSR service provider only allows 
one service horizon of reservation, the model in Section 4.1 applies. The service provider may 
also allow travelers to make requests of different service horizons, though the service fee of 
longer service horizons is likely to be less than that of shorter horizons. Therefore, it is still 
necessary for the provider to be able to respond to a mixture of requests of different service 
horizons.  

The concept of multi-horizon planning for AVSR is explained in Figure 3, where three different 
service horizons, 24 hours, 12 hours and 8 hours, are represented in three parallel timelines. Use 
an 8-hour service horizon as an example. All requests for the next 8-hour service horizon need to 
be made ε time ahead of the start of this 8-hour period. The time of ε is considered to account for 
computational time. Because new demand requests are made every 8 hours, it is necessary to 
update the solution every 8 hours. Note that in the above example, the service horizon is 8 hours. 
It is also referred to as update interval 𝑡𝑡𝑢𝑢 in the model because the solution needs to be updated 
every 8 hours. Therefore, with different service horizons under consideration, the shortest service 
horizon should be used as update interval 𝑡𝑡𝑢𝑢. 

Since some travelers may make requests of longer service horizons than others (e.g., 24 hours or 
12 hours in Figure 3), it is necessary to select a rolling horizon 𝑇𝑇′ to account for other service 
horizons. If 𝑇𝑇′ = 𝑡𝑡𝑢𝑢, then the demands of longer service horizons are considered only when this 
demand falls under next update interval 𝑡𝑡𝑢𝑢. Ideally, the rolling horizon 𝑇𝑇′ should be as large as 
possible to ensure solution optimality. Using a rolling horizon 𝑇𝑇′ > 𝑡𝑡𝑢𝑢  can increase solution 
quality because parts of later demands are also accounted for and resultant trip chains for current 
update interval 𝑡𝑡𝑢𝑢 can be closer to an optimal solution. Out of computational consideration, a 
reasonable rolling horizon 𝑇𝑇′ should be selected. With that being said, in the example of Figure 
3, with a service horizon or update interval 𝑡𝑡𝑢𝑢 of 8 hours, a rolling horizon 𝑇𝑇′ equal to or greater 
than 8 hours can be selected. 

8 hour

12 hour

24 hour

12 AM 8 AM 4 PM 12 AM 8 AM 4 PM 12 AMTimeline

 

Figure 3 Illustration of multi-horizon planning 
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Note the model is proposed for reservation services in AVSR for relatively long service horizons 
𝑡𝑡𝑢𝑢 . The effectiveness for extremely short request horizon similar to ride-hailing, such as 15 
minutes, as compared with other on-demand algorithms, needs to be investigated in future 
studies. 

The multi-horizon model is proposed in this paper by adapting the single-horizon model in 
Section 4.1, with a rolling horizon 𝑇𝑇′ and an update interval of 𝑡𝑡𝑢𝑢. In addition to the fact that new 
demand requests come in every service horizon 𝑡𝑡𝑢𝑢, unlike “one-shot” scenario in Section 4.1, 
some AVs may be available during the mid of next planning horizon after they complete current 
ongoing trip and their trip chains should be re-planned to account for new demands. 

In this case, AVs that have been dispatched to serve earlier demands are also assumed to start 
from the virtual source node 𝑜𝑜 , and we create a new type of dispatch link (𝑜𝑜, 𝑖𝑖+) for each 
uncompleted trip during last service horizon that is expected to end during the next rolling 
horizon  𝑇𝑇′. These new dispatch links are assigned with negative link costs of −𝑀𝑀, where M is a 
large positive number, to ensure that these links will be selected by the linear program. For these 
completed demands, no service links are constructed and relocation links are constructed from 
node 𝑖𝑖+. With such an AVSR network reconstruction, as shown in Figure 4, the efficient linear 
programming model (9) – (14) remains applicable. The AVSR network is constructed and the 
model is run for each update interval 𝑡𝑡𝑢𝑢.  

1- 1+

3- 3+

2- 2+o d

Service Link

Relocation Link

Dispatch/Collection Link

Virtual Link

i+

 

Figure 4 Expanded AVSR network for three-demand example 

 

4.3 Modeling Considerations 



17 
 

The proposed model is to design strategies to dispatch AVs to meet demand requests, including 
required AV fleet size, initial dispatch location (pickup node of the first trip demand for each 
AV), and AV trip chains (the vector of trip demands to be sequentially served by each AV). Ride 
sharing is not considered and one AV will serve one demand request at a time.  

This model can also be considered as an adapted special case of PDPTW, but can solve problems 
of significantly larger scales. The three-index formulation of Cordeau (2006) for the PDPTW in 
the origin–destination network is presented in Appendix A. Table 2 shows an analogy between 
Cordeau’s model and our model for considerations of similar system attributes. Note that this is a 
comparison of two models that solve different problems, and this comparison is provided to 
clarify how the proposed model considers some key factors that are addressed in PDPTW 
problems. 

Table 2 Analogy between Cordeau’s model and our model for considerations of similar system attributes 

Cordeau’s model considerations AVSR model considerations 

(A.1) minimizes the total routing cost. (11) minimizes the total system operational costs.  

(A.2) guarantees that each passenger is 
definitely picked up. 

In (11), 𝑐𝑐𝑖𝑖𝑖𝑖 uses negative costs −𝑙𝑙𝑖𝑖𝑖𝑖 for service links (𝑖𝑖−, 𝑖𝑖+) 
to meet demands; if 𝑙𝑙𝑖𝑖𝑖𝑖  is a sufficiently large number, all 
demands will be met (unless vehicle fleet size is too small); 
by picking a reasonable value of 𝑙𝑙𝑖𝑖𝑖𝑖 , the model will meet 
demands to minimize system costs, and this is valuable when 
the vehicle fleet size is not large enough. 

(A.2) and (A.3) ensure that each 
passenger’s origin and destination are 
visited exactly once by the same 
vehicle. 

(12) serves the same purpose; but the capacity of virtual link 
(𝑜𝑜,𝑑𝑑) helps determine the required fleet size. 

(A.4) and (A.5) express that each 
vehicle 𝑘𝑘 starts the trip from the source 
depot and ends the trip at the sink 
depot. (A.6) ensures flow balance on 
each node. 

(13) – (15) also ensure flow balance at source, sink and 
intermediate nodes. However, the number of actual 
constraints for a constructed AVSR network can be 
significantly reduced because of pre-imposed spatial and 
temporal constraints, such as buffer time 𝜃𝜃  and buffer 
distance 𝜇𝜇. Through the use of an AVSR virtual link (𝑜𝑜,𝑑𝑑), 
the minimization of (11) can automatically calculate optimal 
fleet size. 

(A.7) and (A.8) ensure the validity of 
the time and load variables, and 
constant 𝑀𝑀 is defined as a sufficiently 
large number. 

Time constraints are already fulfilled during construction of 
the AVSR network; Load constraints do not apply. 

(A.9) ensures that pickup nodes are 
visited before delivery nodes. 

Not applicable because no ride sharing is considered. 

(A.10) imposes constraints on time 
windows. 

The time buffer 𝜃𝜃 requires the vehicle needs to arrive at the 
pickup location ahead of the ideal pickup time, and the 
pickup time window can be considered as [𝑡𝑡𝑖𝑖− − 𝜃𝜃,𝜃𝜃]. But 
this is a simplified consideration and 𝜃𝜃  also has other 
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purposes, such as serving as a buffer time for travel delay. 

(A.11) imposes constraints on vehicle 
capacity. 

This types of capacity constraints are not needed because no 
ride sharing is considered. Vehicle capacity is considered 
when constructing the AVSR network, by dividing large 
passenger groups into subgroups. 

(A.12) imposes the integrality of 
variables. 

(16) indicates linearity of the model and it ensures efficiency 
of the proposed model to solve real-world, large-scale 
problems.   

 

Also, Section 4.2 extends the model to efficiently solve multi-horizon cases, which makes the 
model applicable to real-world scenarios and implementable in real time. This model focuses on 
large-scale, real-world problems yet with exact pickup times, suitable for reserved car sharing 
transportation service. Traditional PDPTW models are computationally intensive and hard to 
handle problems of the sizes that this paper considers. Therefore with additional but reasonable 
attributes of the operational settings (e.g., allowing reservations), this paper’s main contribution 
is introduction of more computationally efficient linear programming models to solve these new 
problems.  

 

5 Case Study 

5.1 Standard Grid Dataset 

The model is firstly tested on a standard grid dataset that is widely used in the PDPTW literature. 
The purpose is to understand model efficiency and solution optimality under different demand 
patterns. Test instances similar to those in Savelsbergh and Sol (1998) are generated with the 
following approach. 

The planning horizon is 600 time units. Multiple demand levels (i.e., number of requests) 𝑁𝑁 are 
tested: 50, 100 and 500. We first randomly select 𝑁𝑁  pickup times, for each of which, the 
coordinates of the pickup and delivery locations are randomly chosen according to a uniform 
distribution over a 𝑚𝑚 × 𝑚𝑚  square, where 𝑚𝑚  is grid network dimension and 𝑚𝑚 = 50, 200  are 
tested. The distance between every two adjacent points, horizontally or vertically, is 1 distance 
unit. It costs 1 time unit to travel 1 distance unit. We use 𝜃𝜃 = 0, 𝜇𝜇 = 300 and very small cost 
rates for parking 𝑝𝑝𝑖𝑖𝑖𝑖, driving 𝑑𝑑𝑖𝑖𝑖𝑖 and daily dispatch/collection 𝑑𝑑𝑖𝑖. We use very large vehicle fleet 
cost 𝑓𝑓 and cost of losing a demand 𝑙𝑙𝑖𝑖, such that the minimum number of AVs will be used. The 
purpose of this case study is to understand model efficiency and the potential of AV sharing, as 
measured by Vehicle Use Rate (VUR), defined in Section 3 as the required number of private 
vehicles/traditional taxis in the base case (which we assume to be identical to the number of 
trips) divided by that for AVSR.  
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Since the AVSR formulation generates large-scale linear programming models, the IBM CPLEX 
solver is used directly and it was proven effective in the case study. Once the model is built up 
and loaded to the computer memory, it takes only a few seconds to solve the linear programs on 
a PC with 16 GB memory and a dual-core central processor unit running at 2.70 GHz. One 
advantage of formulating this linear programming formulation is that even large-scale instances 
of this problem now can be directly fed into and efficiently solved with available commercial 
solvers.  

The average solution times for instances with 𝑁𝑁= 50, 100, 500 and 1000 are 3, 16, 41 and 92 
milliseconds, respectively, indicating great efficiency of the AVSR model. Figure 5 shows VUR 
distribution under instances with different demand patterns. These results are obtained from 
randomly generated 100 instances for each scenario, which is defined by three elements: demand 
level 𝑁𝑁 (50, 500) – network dimension 𝑚𝑚 (50, 200) – planning horizon 𝑇𝑇 (600, 1200). It can be 
seen that VUR increases with larger demand levels and longer planning horizons, because more 
opportunities exist to form trip chains. Given the same planning horizon, a smaller network 
means shorter travel times and thus increases the possibility for any AV to serve more demands.  
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Figure 5 Vehicle use rate (VUR) distribution of 1000 instances with different demand patterns; scenarios 
are defined by three elements: demand level 𝑁𝑁 (50, 500) – network dimension 𝑚𝑚 (50, 200) – planning 
horizon 𝑇𝑇 (600, 1200). 

Note that in this case study, we only investigate the effects of above three parameters on AV 
sharing and model performance. As considered in the proposed model, many other factors will 
also have effects in practice, and sensitivity analysis of practical variables, such as time buffer 𝜃𝜃, 
distance buffer 𝜇𝜇, fleet cost 𝑓𝑓 and parking cost 𝑝𝑝𝑖𝑖𝑖𝑖, is conducted in the real-world case study in 
Section 5.2. 

 

5.2 New York Taxi Dataset 

The second case study of this paper uses taxi dataset from New York City. This dataset was 
obtained through a Freedom of Information Law (FOIL) request from the New York City Taxi & 
Limousine Commission (NYCT&L) (http://www.nyc.gov/html/tlc/html/home/home.shtml). It 
covers four years of taxi operations in New York City and includes 697,622,444 trips. Each row 
of the data represents a single taxi trip. Each trip includes information on the vehicle permit, 
vehicle license, vendor ID, rate code, pickup and delivery time, passenger count, trip time, trip 
distance, and the latitude and longitude coordinates for pickup and delivery locations. This 
dataset does not contain trips of unoccupied taxis between serving demands. The dataset also 
contains a large number of errors as documented in other work (Donovan and Wok, 2015). For 
example, there are several trips where the reported meter distances are significantly shorter than 
the straight-line distance, violating Euclidean geometry. Some trips have the same pickup and 
delivery locations. Additionally, many trips report GPS coordinates of (0, 0), or contain 
impossible distances, times, or velocities. All of these types of obvious errors account for 
roughly 10% of all trips and are discarded. Figure 6 shows an example of pickup (red) and 
delivery (green) locations on an example day of 1/17/2013. The data of this day is also picked for 
the case studies in the paper because it is a typical workday during the week and there are 
generally less errors in this dataset. The data will be randomly resampled to generate different 
traffic demand levels and patterns, and the details will be discussed in this section. 
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Figure 6 Example taxi data on 1/17/2013 

Since the dataset does not provide congestion information, for simplicity of model 
implementation in the paper, we use a distance expansion factor 𝜂𝜂(𝑖𝑖+, 𝑗𝑗−)  and congestion 
expansion factor 𝛿𝛿(𝑖𝑖+, 𝑗𝑗−)  to calculate actual travel distances and travel times for all relocation 
links (𝑖𝑖+, 𝑗𝑗−). Eqs. (17) and (18) use the average of the expansion factors of trips 𝑖𝑖 and 𝑗𝑗 to 
approximate the expansion factor of relocation link (𝑖𝑖+, 𝑗𝑗−). Future studies can use available 
traffic data and route selection tools to calculate travel time and distance. 

𝜂𝜂(𝑖𝑖+, 𝑗𝑗−) = 0.5�
𝑇𝑇𝑇𝑇(𝑖𝑖)

𝑆𝑆𝑆𝑆(𝑖𝑖−, 𝑖𝑖+) +
𝑇𝑇𝑇𝑇(𝑗𝑗)

𝑆𝑆𝑆𝑆(𝑗𝑗−, 𝑗𝑗+)� (17) 

𝛿𝛿(𝑖𝑖+, 𝑗𝑗−) = 0.5�
𝑇𝑇𝑇𝑇(𝑖𝑖)
𝑇𝑇𝑇𝑇(𝑖𝑖)

+
𝑇𝑇𝑇𝑇(𝑗𝑗)
𝑇𝑇𝑇𝑇(𝑗𝑗)

�   (18) 

where 𝑇𝑇𝑇𝑇(𝑖𝑖) is the travel distance obtained directly from the data, 𝑆𝑆𝑆𝑆(𝑖𝑖−, 𝑖𝑖+) is the Euclidian 
distance calculated based on the latitude and longitude of 𝑖𝑖− and 𝑖𝑖+, and 𝑇𝑇𝑇𝑇(𝑖𝑖) is the travel time 
obtained directly from the data. 

The actual travel distance of relocation link (𝑖𝑖+, 𝑗𝑗−) is estimated by 𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−) = 𝑆𝑆𝑆𝑆(𝑖𝑖+, 𝑗𝑗−) ∙
𝜂𝜂(𝑖𝑖+, 𝑗𝑗−), and the actual travel time by 𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−) = 𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−) ∙ 𝛿𝛿(𝑖𝑖+, 𝑗𝑗−). These results will 
need to be compared with buffer time bounds [𝜃𝜃, 𝜃𝜃]  and buffer distance 𝜇𝜇  to decide the 
feasibility of relocation links. Also, the cost of relocation link (𝑖𝑖+, 𝑗𝑗−) is  𝑑𝑑𝑖𝑖+𝑗𝑗− = 𝜀𝜀1 ∙
𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−) + 𝜀𝜀2 ∙ 𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−), where 𝜀𝜀1 is the relocation cost factor that considers fuel use and 
vehicle mileage, 𝜀𝜀2 is the parking cost, and 𝑇𝑇𝑇𝑇(𝑖𝑖+, 𝑗𝑗−) is the time of parking during relocation. 
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The models proposed in this paper aim to determine the optimal AV fleet size and AV service 
trip chains that minimize the objective function – the AVSR system operational cost. In addition, 
two other performance measures, VMT and VUR, are used to evaluate system effectiveness. 
Some literature (e.g., Fagnant, 2014) reported an increase in VMT of about 10% with 
autonomous vehicle sharing because of additional miles traveled during relocation. It is 
necessary to see the changes in VMT and VUR under different parameter settings of the 
proposed model. 

In the case studies, the cost of losing demand 𝑖𝑖  is assumed to be proportionate to the trip 
distance, 𝑙𝑙𝑖𝑖 = 𝜋𝜋 ∙ 𝑇𝑇𝑇𝑇(𝑖𝑖), where 𝜋𝜋 is a cost factor that considers trip fare and the penalty of not 
being able to serve a demand. If 𝜋𝜋 is very large, the model will meet all demands as long as 
enough AVs are available. For the default setting, we use 𝜋𝜋 = $100 per mile as a large value so 
all demands are required to be met given sufficient AV fleet size. Driving cost from demand 𝑖𝑖 to 
demand 𝑗𝑗, or relocation link cost factor, is 𝜀𝜀1 = $30 per hour and 𝜀𝜀2 = $5 per hour. The cost to 
dispatch or collect a vehicle from node 𝑖𝑖 is 𝑑𝑑𝑖𝑖 = $30 per vehicle. Fleet cost is assumed to be 𝑓𝑓 =
$30 per vehicle. The total fleet size is assumed to be relatively large: 𝐹𝐹 = 10,000. Parking rate 
is $5 per hour. In terms of parameters related to AVSR strategies, the buffer time is defaulted to 
be 𝜃𝜃 = 0  min. The buffer distance is defaulted to be 𝜇𝜇 = 20  miles, a large distance for 
relocation. 

Three key performance measures are used to indicate model effectiveness. VUR indicates the 
potential to decrease vehicle ownership. VMT indicates the total vehicle miles traveled by all 
vehicles to serve the demands. Since the dataset does not provide data other than each trip from 
pickup to delivery locations, we assume that, for other services, each vehicle needs to travel 
additional three miles when vehicles are empty, including miles traveled to be dispatched to 
pickup locations and/or collected from delivery locations and to wait for other passengers. With 
that being said, the total VMT for base case can be calculated as 𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ [𝑇𝑇𝐷𝐷𝑖𝑖(𝑖𝑖−, 𝑖𝑖+) +𝑖𝑖∈𝐼𝐼
3], where 𝑇𝑇𝐷𝐷𝑖𝑖(𝑖𝑖−, 𝑖𝑖+) is the distance between pickup location 𝑖𝑖−  and delivery location 𝑖𝑖+  for 
each demand 𝑖𝑖. With this assumption, in the case study, we compare the AVSR system with 
regular taxi or ride hailing services for which passengers request a ride when needed through 
phone calls or smartphone apps. Usually, nearby vehicles need to travel a few miles to the pickup 
location and they may relocate to places where there are more potential trip demands. Therefore 
this assumption is relatively conservative. VMT Ratio is defined as the average VMT of model 
results divided by the base case, in which each demand is served without any coordination. 

This paper accounts for random trip patterns from two different perspectives. First, we assume 
two levels of demands in the numerical study: 1% and 2% of the total demands. Second, since 
only a small percentage of travelers are assumed to use the ASVR service, these subsets of 
demands are randomly selected from the total demands. With each row in the dataset 
representing a single demand, 10 sample data subsets are generated for each demand level and 
the average values of VUR, VMT and VMT Ratio are reported. 
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The IBM CPLEX solver is used and this case study is tested using the same computer as in 
Section 5.1. Table 5 shows some basic statistics of model performance. Considering the problem 
planning horizon, which is significantly longer than the solution time, the efficiency of the model 
satisfies requirements for practical implementation. Also, it can be seen that a constrained choice 
of value of time buffer 𝜃𝜃 and distance buffer 𝜇𝜇 can significantly decrease the problem size and 
the corresponding solution time. Later in our case study, we also find that within a certain range 
of values of 𝜃𝜃 and 𝜇𝜇, the solution quality does not vary significantly. This is another feature that 
future enhances the efficiency of the proposed model. 

Table 5 Basic statistics of model performance 

Problem Size AVSR Network 
Link # Memory (GB) Performance (Solution 

Time, sec) Demand Level # of Trips 

𝜃𝜃 = 0, 𝜇𝜇 = 100 

1% 1168 546279 1.21 3.86 

2% 2336 2184026 2.65 21.07 

𝜃𝜃 = 15, 𝜇𝜇 = 20 

1% 1168 56651 0.18 0.15 

2% 2336 223740 0.41 0.61 
 

Single-horizon model 

The first set of analysis is to examine the performance of the single-horizon model proposed in 
Section 4.1 with different buffer time 𝜃𝜃 and buffer distance 𝜇𝜇, as shown in Table 4. It is expected 
that a larger buffer distance 𝜇𝜇 and a smaller buffer time 𝜃𝜃 result in a larger VUR because the 
model has more options of demands for trip chaining. Figure 7 shows this trend with more data 
points. It is interesting to notice that the VUR decreases dramatically from 𝜃𝜃 = 0 to 𝜃𝜃 = 5 and 
decreases slowly afterwards. This is partially because if the model allows five minutes between 
any two demands, this already significantly reduces the number of possible trip demands under 
consideration over the whole day and therefore, the decrease is less dramatic when 𝜃𝜃 > 5. When 
𝜃𝜃 > 20, VUR is close to 1 partially because possible trip demands under consideration for 
chaining are greatly limited and there can be a high cost of parking of vehicle while waiting for 
next demands. Interestingly, while VUR increases with varying 𝜃𝜃 and 𝜇𝜇, VMT does not increase 
significantly. It is demonstrated by the results that most VMT ratios are close to 1, indicating 
comparable VMTs of the model results and the base case. In some cases, taking 𝜃𝜃 = 0, 𝜇𝜇 = 100 
under 1% demand as an example, the VUR increases by 12.56−1

1
= 1156% (one AV replacing 

12.56 regular private vehicles) while VMT only increases by 15%  –  a much smaller percentage 
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change. Figure 6 also shows that VUR can vary under different demand levels. It is intuitive that 
more trip demands mean more opportunities of trip chaining. Lastly, it is noted that VUR results 
are only sensitive to 𝜇𝜇 when 𝜃𝜃 < 5 and sensitive to 𝜃𝜃 when 𝜃𝜃 < 5 independent of 𝜇𝜇. 

Table 4 Sensitivity analysis with varying 𝜃𝜃 and 𝜇𝜇 under different demand levels 

Scenario VUR VMT (miles) VMT Ratio 

1% of Daily Demand 

𝜃𝜃 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=100 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=100 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=100 

0 3.80 12.56 12.56 11013 12983 12998 0.97 1.14 1.15 

5 1.79 2.35 2.36 11095 12493 12525 0.98 1.10 1.10 

10 1.44 1.61 1.61 11199 11973 11973 0.99 1.06 1.06 

20 1.08 1.08 1.08 11326 11396 11396 1.00 1.00 1.00 

30 1.00 1.00 1.00 11343 11343 11343 1.00 1.00 1.00 

2% of Daily Demand 

𝜃𝜃 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=100 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=100 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=100 

0 4.03 13.90 13.90 21974 25706 25722 0.97 1.14 1.14 

5 1.81 2.39 2.39 22147 24912 24943 0.98 1.10 1.10 

10 1.44 1.60 1.61 22335 23778.34 23809.73 0.99 1.05 1.05 

20 1.08 1.09 1.09 22597 22735 22735 1.00 1.00 1.00 

30 1.00 1.00 1.00 22631 22631 22631 1.00 1.00 1.00 
 

  
(a) 1% demand (b) 2% demand 
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(c) Planning horizon 

Figure 7 Results of vehicle use rate with varying 𝜃𝜃 and 𝜇𝜇 under different demand levels and planning 
horizons 

 

Figure 7(c) presents the results of VUR with a different planning horizon 𝑇𝑇. We tested six 
different planning horizons for a single day of the AVSR service: 1 hour, 2 hours, 4 hours, 8 
hours, 12 hours and 24 hours. Results show that under more “constrained” AVSR strategies  –  
𝜃𝜃 = 0, 𝜇𝜇 = 5 and 𝜃𝜃 = 5, 𝜇𝜇 = 20, VUR results are not very sensitive to increases in planning 
horizons. When under favorable strategies, i.e.,𝜃𝜃 = 0, 𝜇𝜇 = 20 , VUR results are sensitive to 
different planning horizons and a dramatic increase in VUR occurs when 𝑇𝑇 > 8 hours. This 
indicates that ideally a planning horizon of more than 8 hours and a buffer time and distance of 
𝜃𝜃 = 0, 𝜇𝜇 = 20  are preferred for operators in this area. When travel time reliability and 
predictability significantly improved in the future, service quality can still be maintained even 
when 𝜃𝜃 = 0. 

Sensitivity analyses were also conducted to investigate the effects of fleet cost 𝑓𝑓, parking cost 𝑝𝑝𝑖𝑖𝑖𝑖 
and dispatch/collection cost 𝑑𝑑𝑖𝑖  on system performance under favorable AVSR strategies. i.e., 
𝜃𝜃 = 0, 𝜇𝜇 = 100 and demand level of 1%. Two different values of unit cost of losing demand 𝜋𝜋 
($30 and $100 per mile) were also tested. However, system results are not sensitive when 𝜋𝜋 =
$100, which is used in the default AVSR setting. It is expected because this value was set very 
high in the default setting such that all demands are met, and thus all results under different 
scenarios are the same. Table 5 shows the results when 𝜋𝜋 = $30 . As fleet cost 𝑓𝑓  and 
dispatch/collection cost 𝑑𝑑𝑖𝑖 increases, the model selectively ignored some demands to minimize 
system costs. Although VUR also increases, it is at the cost of serving less customers, and this 
can significantly reduce the service quality. Unfortunately, VMT also increases even when 
serving fewer demands. Interestingly, the variation of parking cost 𝑝𝑝𝑖𝑖𝑖𝑖 does not impact system 
performance. It is because the trip chaining design from the proposed model results in very 
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limited time of parking for each AV and thus parking cost is only a small part of total system 
cost. This further proves the effectiveness of the proposed model in designing an AVSR system. 

Table 5 Results of Sensitivity Analysis of Cost Parameters 

Scenario VUR VMT (miles) Demand Met Fleet Size 
𝑓𝑓 ($/veh)     

10 12.56 12998 1168 93 
30 12.56 12998 1168 93 
50 12.68 12996 1167 92 
70 13.36 13051 1162 87 
90 13.95 13098 1158 83 

𝑑𝑑𝑖𝑖 ($/veh)     
10 12.56 12998 1168 93 
30 12.56 12998 1168 93 
50 13.36 13051 1162 87 
70 14.11 13108 1157 82 
90 14.61 13130 1154 79 

𝑝𝑝𝑖𝑖𝑖𝑖 ($/mile)     
5 12.56 12998 1168 93 

20 12.56 12998 1168 93 
50 12.56 12998 1168 93 

 

Multi-horizon model 

The total planning horizon is 𝑇𝑇 = 4 hours. 𝑡𝑡𝑢𝑢 = 1, 2, 4 hours indicate the models are run at 1-
hour, 2-hour and 4-hour service intervals, respectively. It is also assumed that 10% of the 
demand requests are made before the start of first service interval 𝑡𝑡𝑢𝑢, and these demands spread 
across all four hours. For scenarios with different 𝑡𝑡𝑢𝑢, before each 𝑡𝑡𝑢𝑢, all demands during this 𝑡𝑡𝑢𝑢 
become known to the operator. 

Table 6 shows results from the multi-horizon model proposed for a selected peak period. Results 
of scenarios of 𝜃𝜃 = 0 are reported since it generates ideal system performance. The results are 
similar to that presented in Figure 7(c). The VUR increases as both 𝑡𝑡𝑢𝑢  and 𝑇𝑇′  increases, 
indicating benefits of having travelers with long service horizons. Again, the multi-horizon 
model also generates favorable results in VMT Ratio, implying no significant increase in VMT 
during relocation. 

Table 6 Results of multi-horizon model 

Scenario Vehicle Use Rate VMT Ratio 

10% of Peak Period* Demand 



27 
 

𝑡𝑡𝑢𝑢 – 𝑇𝑇′ 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=5 𝜇𝜇=15 

1 – 1 1.93 2.08 0.97 1.00 

1 – 2 1.99 2.15 0.97 1.00 

1 – 4 2.09 2.27 0.97 1.00 

2 – 2 2.20 2.40 0.97 1.01 

2 – 4 2.22 2.43 0.97 1.01 

4 – 4 2.30 2.59 0.97 1.01 

20% of Peak Period Demand 

𝑡𝑡𝑢𝑢 – 𝑇𝑇′ 𝜇𝜇=5 𝜇𝜇=15 𝜇𝜇=5 𝜇𝜇=15 

1 – 1 1.96 2.11 0.96 0.99 

1 – 2 2.00 2.15 0.96 0.99 

1 – 4 2.11 2.26 0.96 0.99 

2 – 2 2.21 2.42 0.96 1.00 

2 – 4 2.23 2.43 0.97 1.00 

4 – 4 2.35 2.57 0.97 1.00 
* Peak period indicates 6 AM – 10 AM. 
 

6 Conclusions and Future Research 

The emerging technologies of autonomous vehicles (AV) have the potential to further improve 
the efficiency of traditional sharing systems. Through connectivity using certain devices, 
travelers can request vehicles that are relatively far away before traveling, and AVs can be fully 
self-driving to relocate themselves automatically to any traveler location upon request without 
human drivers. In this paper, we examined a new vehicle sharing system, referred to as 
autonomous vehicle sharing and reservation (AVSR). In such a system, travelers can request AV 
trips ahead of time and the AVSR system operator will optimally arrange the AV pickup and 
delivery schedule and trip chaining patterns on the basis of the recorded trip demand requests. A 
linear programming model is proposed to efficiently solve for optimal solutions for AV trip 
chains under a single service horizon. It is noted that the optimal solutions to AVSR systems 
provide an upper bound benefits of similar AVS systems. A multi-horizon model, adapted from 
the single-horizon model, is also proposed to address scenarios where travelers to make requests 
of different service horizons, and the service operator needs to respond to a mixture of requests 
of different lengths of service horizons. 

Case study results show that AVSR can significantly increase vehicle use rate (VUR), for 
example, by replacing more than 13 private vehicles or traditional taxis. In the meantime, it is 
found that the actual VMT incurred by AVSR systems, though with much more vehicle 
relocation, is similar to that of private vehicles or taxis. This indicates that AVSR can reduce 
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vehicle ownership significantly and that the increased VMT incurred by relocation of sharing 
vehicles can be compensated by the reduction in required AV fleet size and optimized AV trip 
chains. This implies huge potential benefits for improving mobility and sustainability of our 
current transportation systems. 

The effectiveness of AVSR may be different in different cities because of distinct trip patterns, 
some of which may allow the existence of a large number of trip chains and some may not. The 
linear programming models proposed in this paper, however, can be applied to any trip pattern 
and can identify such trip patterns using an AVSR network.  

There are areas where this paper can be improved in future studies. First, ongoing research is 
investigating how the reduction of system operation cost can be used to reduce traveler cost as an 
incentive to increase market penetration and further reduce system costs. Second, the proposed 
model in this paper does not explicitly consider other vehicle operations such as refueling. 
Considering such a process would make the model more robust. This also applies to the idea of 
using real traffic data (even predicted traffic conditions) as the basis for constructing AVSR 
networks. We also only applied the model to one site as a case study to demonstrate the model 
efficiency. While the model can be applied to any network and demand pattern, it is an 
interesting question to research the efficiency of AVSR systems under different network and 
demand scenarios. 

Another key future work is extending the proposed models to account for ride sharing. If this 
service is offered as an alternative, it is usually less expensive for travelers. The major difference 
is construction of a AVSR network that allows ride sharing. If the network is appropriately 
constructed, it may still be possible to use highly efficient linear programs to optimize over the 
extended AVSR network. How to construct such networks that also consider complexities and 
different characteristics of ride sharing is currently being investigated. 
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Appendix A 

In this appendix, a standard three-index formulation of PDPTW, similar to Cordeau (2006), is 
introduced. The purpose is to provide a foundation for comparison with the proposed AVSR 
model. We use slightly different notations from the proposed model to comply with standard 
practice in PDPTW literature. 
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Let N be the total number of customer requests. The PDPTW can be represented by a complete 
graph 𝐺𝐺(𝑉𝑉,𝐴𝐴) defined by node set V and arc set A, where V =  {0, 1, 2, … , 2N + 1}. Nodes 0 
and 2N + 1 represent the source and sink nodes, respectively. Each node 𝑖𝑖 ∈ 𝑉𝑉 has a demand 𝑞𝑞𝑖𝑖 
and a non-negative service time 𝑑𝑑𝑖𝑖  where 𝑞𝑞0 = 𝑞𝑞2𝑁𝑁+1 = 0  and 𝑑𝑑0 = 𝑑𝑑2𝑁𝑁+1 = 0 . The subsets 
𝑃𝑃 = {1, … ,𝑁𝑁}  and 𝐷𝐷 = {𝑁𝑁 + 1, … , 2𝑁𝑁 + 1}  are pickup and delivery node sets, respectively. 
Each pickup node 𝑖𝑖 is associated with a delivery node 𝑁𝑁 + 𝑖𝑖, and 𝑒𝑒𝑖𝑖 and 𝑙𝑙𝑖𝑖 represent the earliest 
and latest time at which service is allowed to start at node 𝑖𝑖, respectively. Furthermore, a routing 
cost 𝑐𝑐𝑖𝑖𝑖𝑖 and a travel time 𝑡𝑡𝑖𝑖𝑖𝑖 are associated with each arc (𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉. The travel time 𝑡𝑡𝑖𝑖𝑖𝑖 includes 
service time 𝑑𝑑𝑖𝑖 at node 𝑖𝑖 and the triangle inequality holds for routing costs and travel times. Also, 
consider a homogeneous fleet of vehicles 𝐾𝐾 = {1, 2, … ,𝑚𝑚} is the set of identical vehicles with 
capacity 𝐶𝐶.  

A binary variable 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 is defined for each arc (𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉 and each vehicle 𝑘𝑘 ∈ 𝐾𝐾, such that, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 =
1  if and only if vehicle 𝑘𝑘  visits node 𝑖𝑖  and then travels directly to node 𝑗𝑗 . Non-negative 
continuous variables 𝑄𝑄𝑖𝑖𝑖𝑖 and 𝐵𝐵𝑖𝑖𝑖𝑖 respectively indicate the load of vehicle 𝑘𝑘 after visiting node 𝑖𝑖 
and the time that the vehicle 𝑘𝑘 starts servicing node 𝑖𝑖, for each 𝑖𝑖 ∈ 𝑉𝑉 and each 𝑘𝑘 ∈ 𝐾𝐾. The three-
index formulation is expressed as a mixed-integer programming: Eqs. A1 – A12. 

min
{𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖}

���𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉𝑘𝑘∈𝐾𝐾

 (A.1) 

subject to  

��𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉𝑘𝑘∈𝐾𝐾

    ∀𝑖𝑖 ∈ 𝑃𝑃 (A.2) 

�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉

= �𝑥𝑥𝑁𝑁+1,𝑗𝑗,𝑘𝑘
𝑗𝑗∈𝑉𝑉

   ∀𝑖𝑖 ∈ 𝑃𝑃;  𝑘𝑘 ∈ 𝐾𝐾 (A.3) 

�𝑥𝑥0𝑗𝑗𝑗𝑗 = 1
𝑗𝑗∈𝑉𝑉

   ∀𝑘𝑘 ∈ 𝐾𝐾 (A.4) 

�𝑥𝑥𝑖𝑖,2𝑁𝑁+1,𝑘𝑘 = 1
𝑖𝑖∈𝑉𝑉

   ∀𝑘𝑘 ∈ 𝐾𝐾 (A.5) 

�𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑉𝑉

= �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑉𝑉

   ∀𝑖𝑖 ∈ 𝑃𝑃 ∪ 𝐷𝐷;  𝑘𝑘 ∈ 𝐾𝐾 (A.6) 

𝐵𝐵𝑗𝑗𝑗𝑗 ≥ 𝐵𝐵𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖�   ∀𝑖𝑖 ∈ 𝑉𝑉;  𝑗𝑗 ∈ 𝑉𝑉; 𝑘𝑘 ∈ 𝐾𝐾 (A.7) 

𝑄𝑄𝑗𝑗𝑗𝑗 ≥ 𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑗𝑗 − 𝑀𝑀�1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖�   ∀𝑖𝑖 ∈ 𝑉𝑉;  𝑗𝑗 ∈ 𝑉𝑉; 𝑘𝑘 ∈ 𝐾𝐾 (A.8) 

𝐵𝐵𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖,𝑛𝑛+𝑖𝑖 ≤ 𝐵𝐵𝑁𝑁+𝑖𝑖,𝑘𝑘   ∀𝑖𝑖 ∈ 𝑃𝑃;  𝑘𝑘 ∈ 𝐾𝐾 (A.9) 

𝑒𝑒𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖𝑖𝑖 ≤ 𝑙𝑙𝑖𝑖   ∀𝑖𝑖 ∈ 𝑉𝑉;  𝑘𝑘 ∈ 𝐾𝐾 (A.10) 

max {0, 𝑞𝑞𝑖𝑖} ≤ 𝑄𝑄𝑖𝑖𝑖𝑖 ≤ min{𝐶𝐶,𝐶𝐶 + 𝑞𝑞𝑖𝑖}    ∀𝑖𝑖 ∈ 𝑉𝑉;  𝑘𝑘 ∈ 𝐾𝐾 (A.11) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0, 1} (A.12) 
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The objective function (A.1) minimizes the total routing cost. (A.2) guarantees that each 
passenger is definitely picked up. (A.2) and (A.3) ensure that each passenger’s origin and 
destination are visited exactly once by the same vehicle. (A.4) and (A.5) expresses that each 
vehicle 𝑘𝑘 starts the trip from the source depot and ends the trip at the sink depot. (A.6) ensures 
the flow balance on each node. (A.7) and (A.8) ensure the validity of the time and load variables, 
and the constant 𝑀𝑀 is defined as a sufficiently large number. (A.9) ensures that pickup nodes are 
visited before delivery nodes. (A.10) and (A.11) impose constraints on time windows and vehicle 
capacity, respectively. (A.12) imposes the integrality of variables. 
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