

# Advancements in Continuous Approximation Models for Logistics and Transportation Systems: 1996 - 2016

Sina Ansari<sup>a</sup>, Mehmet Başdere<sup>a,\*</sup>, Xiaopeng Li<sup>b</sup>, Yanfeng Ouyang<sup>c</sup>, Karen Smilowitz<sup>a</sup>

<sup>a</sup>Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208

<sup>b</sup>Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620

<sup>c</sup>Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

---

## Abstract

Continuous Approximation (CA) is an efficient and parsimonious technique for modeling complex logistics problems. In this paper, we review recent studies that develop CA models for transportation, distribution and logistics problems with the aim of synthesizing recent advancements and identifying current research gaps. This survey focuses on important principles and key results from CA models. In particular, we consider how these studies fill the gaps identified by the most recent literature reviews in this field. We observe that CA models are used in a wider range of applications, especially in the areas of facility location and integrated supply chain management. Most studies use CA as an alternative and a complement to discrete solution approaches; however, CA can also be used in combination with discrete approaches. We conclude with promising areas of future work.

**Keywords:** continuous approximation, logistics, facility location, distribution and transit, supply chain management.

---

## 1. Introduction

Simchi-Levi et al. (1999) define supply chain and logistics management as “the set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses, and stores, so that merchandise is produced and distributed at the right quantities, to the right locations, and at the right time, in order to minimize system wide costs while satisfying service level requirements”. Numerous studies have been conducted to characterize, analyze and optimize planning, design and operations of logistics and transportation systems. Typical examples of such problems include those related to facility location planning and vehicle routing. Traditional approaches tended to characterize these problems in a discrete setting, e.g., with a fixed set of candidate facility locations, discrete time periods, and discrete customer demand points, so that these problems can be solved by well-developed integer mathematical programming techniques. For example, Daskin (1995) and Drezner (1995) systematically introduced a range of classic discrete facility location models including covering problems (Christofides, 1975; Church & ReVelle, 1974), center and median problems (Hakimi, 1964) and fixed-charge location problems (Cornejols et al., 1977; Mirzain, 1985). Later, a series of new discrete models have been proposed to address location problems with stochastic demand (Daskin, 1982, 1983;

---

\*Corresponding author  
Email address: mbasdere@u.northwestern.edu (Mehmet Başdere)

<sup>14</sup> Batta et al., 1989; Dasci & Laporte, 2005) and unreliable facility services (Church & ReVelle, 1974; Snyder & Daskin, 2005; Qi & Shen, 2007; Berman et al., 2007; Qi et al., 2009; Cui et al., 2010; Lim et al., 2010; Chen et al., 2011; Li & Ouyang, 2011, 2012; Yun et al., 2015). Numerous discrete models have also been developed to address vehicle routing issues at the operational level in both deterministic and stochastic environments. See Baldacci et al. (2007); Cordeau et al. (2007); Laporte (2009); Toth & Vigo (2002); Gendreau et al. (1996) for some reviews.

<sup>19</sup> Although discrete models, especially with the help of modern computation power, can sometimes yield *exact* (optimal) solutions to large-scale logistics problems, they generally have a relatively complex formulation structure that <sup>20</sup> may hinder our understanding of problem properties and managerial insights. Often, the problems belong to the <sup>21</sup> class of NP-hard problems, and hence solving large-scale instances would require enormous computational efforts <sup>22</sup> which likely increase exponentially with the problem instance size. Hence, it is often not practical to solve large- <sup>23</sup> scale logistics problems to optimality. Further, there is often uncertainty in the corresponding data and the lack of <sup>24</sup> precision leads to inaccuracies in the optimal solution (Daganzo, 1987). These drawbacks are particularly prominent <sup>25</sup> if one attempts to make decisions (e.g., those on location, inventory and routing) in stochastic, time-varying, com- <sup>26</sup> petitive and coupled environments. For example, stochasticity could arise from both the demand side (e.g., random <sup>27</sup> customers) and the supply side (e.g., service disruptions) and imposes a large number of induced realization sce- <sup>28</sup> narios. System operation characteristics, such as link travel time and resource availability, can be time-dependent <sup>29</sup> due to exogenous (e.g., weather condition) or endogenous factors (e.g., congestion). Competition among service <sup>30</sup> providers and/or customers may require equilibrium considerations to be blended through a hierarchical modeling <sup>31</sup> structure, such as a mathematical program with equilibrium constraints (MPEC) or an equilibrium problem with <sup>32</sup> equilibrium constraints (EPEC) involving nonlinearities, which adds another layer of difficulty when tackled via dis- <sup>33</sup> crete models. Emerging vehicle technologies (e.g., electric vehicles and autonomous cars) and transportation modes <sup>34</sup> (e.g., car-sharing and ride-sourcing) pose new constraints to daily operations of vehicle fleets (e.g., electric vehicle <sup>35</sup> charging) and create new mobility paradigms bridging traditional public and private transportation services, ne- <sup>36</sup> cessitating fast, adaptable and easily implementable solutions which are computationally demanding to obtain via <sup>37</sup> discrete models.

<sup>39</sup> The concept of continuous approximation (CA) as a complement to discrete models has been shown suitable for <sup>40</sup> addressing these above-mentioned challenges in various contexts<sup>1</sup>. The CA approach was first proposed by Newell <sup>41</sup> (1971) and Newell (1973) and has been widely applied to various logistics problems including facility location, inven- <sup>42</sup> tory management and vehicle routing. CA models feature continuous representations of input data and decision vari- <sup>43</sup> ables as density functions over time and space, and the key idea is to approximate the objective into a functional (e.g., <sup>44</sup> integration) of localized functions that can be optimized by relatively simple analytical operations. Each localized <sup>45</sup> function approximates the cost structure of a local neighborhood with nearly homogeneous settings. Such homoge- <sup>46</sup> neous approximation enables mapping otherwise high-dimensional decision variables into a low-dimensional space,

<sup>1</sup>In the literature, ‘continuous approximation’ and ‘continuum approximation’ have been used interchangeably. In this paper, we use ‘continuous approximation’ but include papers using both terms.

47 allowing the optimal design for this neighborhood to be obtained with simple calculus, even when spatial stochasticity, temporal dynamics and other operational complexities are present. The results from such models often bear  
48 closed-form analytical structures that help reveal managerial insights. Compared with their discrete counterparts,  
49 CA methods generally incur less computational burden, require less accurate input data, and, more importantly,  
50 can conveniently reveal managerial insights, especially for large-scale practical problems. These appealing features  
51 have motivated researchers to explore simple solutions for various complex problems arising in the logistics and  
52 transportation fields in the past few decades.

53 CA has been applied to three basic logistics problem classes: location, routing and inventory management. In  
54 earlier applications, CA was used to determine facility locations and corresponding assignments of customers to  
55 these facilities in a continuous space (Newell, 1973; Daganzo & Newell, 1986). The key to a CA location problem is  
56 to balance the tradeoff between long-term transportation cost and one-time facility investment, which is usually  
57 formulated as analytical functions of local facility density (or its inverse, a facility's service area). Further, CA is  
58 used to formulate routing problems that determine the most economic routes for vehicles to deliver or pickup com-  
59 modities or people across a continuous space. The scope of routing problems includes single vehicle delivery (also  
60 known as the traveling salesman problem) (Daganzo, 1984), multi-vehicle based distribution (Newell & Daganzo,  
61 1986), and multi-echelon distribution with intermediate consolidation and transshipment facilities (Daganzo, 1988).  
62 A fundamental problem in CA-based routing is to format or partition the space into certain geometries suitable for  
63 constructing near-optimum vehicle routes with simple heuristics. An inventory management problem investigates  
64 the trade-off between the inventory size and the corresponding transportation cost at a supply chain facility (Blu-  
65 menfeld et al., 1991). With homogeneous approximation in local spatiotemporal neighborhoods, the basic system  
66 cost in an inventory management problem can be often formulated into an economic-order-quantity (EOQ) function  
67 that has a simple analytical solution to the optimal design (Harris, 1990).

68 These three basic problem classes have been integrated in different combinations to address more complex prob-  
69 lems faced in real-world logistics systems. Inventory operations at a facility are ultimately determined by the de-  
70 mand size and the service area of this facility, which is the outcome of location decisions. This connection is modeled  
71 with CA integrating both location and routing decisions (Rosenfield et al., 1992). An apparent tradeoff is that a higher  
72 investment of facilities usually reduces long-haul distances for delivery vehicles and thus decreases the total routing  
73 cost. In problems integrating routing and inventory decisions, CA relates service area sizes and frequencies of deliv-  
74 ery trucks to inventory sizes and holding costs (Daganzo, 1988). The basic tradeoff is that a higher delivery frequency  
75 and a smaller service area often reduce inventory costs while increasing transportation costs. In problems where  
76 location, inventory and routing costs are all considered, these three cost components shall be integrated together  
77 for solving the optimal design for the entire system. Integrating these three cost components in the CA framework  
78 is simply a summation of their respective analytical cost functions, which oftentimes yields closed-form analytical  
79 solutions as well (Campbell, 1990, 1993). The classic book by Daganzo (2005) provides a comprehensive review of  
80 CA models in the context of one-to-one, one-to-many and many-to-many distribution systems. A later survey by  
81 Langevin et al. (1996) covers the history, basic concepts, and developments of the CA models for freight distribution  
82

83 problems up to the mid-1990s.

84 Since 1996, CA methods have continued to undergo significant adaptations and advancements in the contexts  
85 of a variety of emerging problems. In this paper, we provide a review of the methodological advancements and  
86 applications of CA models in the period of 1996-2016, which were not covered in the previous surveys and yet had  
87 a major impact on the current state of the art. Most notably, a number of efforts have been made to address issues  
88 related to service reliability, competition, time-dependency and emerging services and technologies. We will discuss  
89 the areas that had been covered, and propose research directions that need further work. We note that this survey  
90 paper focuses on CA methods that approximate local neighborhoods of an otherwise complex system by assuming  
91 that the local condition of each neighborhood can be approximated by a counterpart in an infinite homogeneous  
92 space. There also exists a large body of literature on continuous models that address similar problems without using  
93 local approximations. While these continuous models bear some resemblance and relevance to CA, they often have  
94 complex modeling structures and different solution techniques. In this paper, we do not review such continuous  
95 models.

96 In paper organization, we classify the reviewed studies into three broad categories: (i) facility location studies,  
97 (ii) distribution and transit studies, and (iii) integrated supply chain and logistics studies, as a large portion of recent  
98 studies in CA can be covered with one of these three classes. We note that this classification is not necessarily disjoint  
99 nor is it exhaustive. Similar to many other systems, the complexity of modern logistics and distribution systems is  
100 high. Many recent studies integrate various components of these systems. For example, some facility location stud-  
101 ies consider routing and distribution costs as a part of the objective whereas some distribution problems consider  
102 different service regions as in facility location problems. Our classification is based on decision variables of the prob-  
103 lem. If the decision variables represent the locations (areas) of the facilities to be located or to be strengthened, then  
104 the study is classified under facility location studies. If the decision variables represent the vehicle's routing, then  
105 the study is classified under transit and distribution studies. Studies that combine location decisions with routing  
106 or inventory decisions are reviewed under the integrated supply chain and logistics studies.

107 The remainder of this paper is organized as follows: The location models are reviewed in Section 2, and the  
108 distribution and transit models are reviewed in Section 3. The integrated models are discussed in 4. Finally, Section  
109 5 concludes this paper by discussing current trends and potential gaps in CA.

## 110 2. Location Studies

111 Facility location problems determine the optimal configuration of a facility network to meet a given objective  
112 (e.g., maximize service level, minimize cost). Such problems involve various types of cost components such as fixed  
113 facility opening and variable operating costs, inventory costs, transportation costs and so forth. In the discrete  
114 setting, the underlying network consists of demand (customer) and potential facility location points. The facility  
115 location problem and its extensions have been carefully investigated in reviews such as [Aikens \(1985\)](#), [Owen & Daskin \(1998\)](#), [Klose & Drexl \(2005\)](#), [Shen & Qi \(2007\)](#) and [Melo et al. \(2009\)](#).

117 As the numbers of customers and potential facility locations increase, the number of variables in the underlying  
118 mathematical programming model increases, resulting in hard-to-solve large-scale problems. As mentioned before,  
119 CA enables us to handle these large-scale problems. In addition, decision makers must account for uncertainty in  
120 demand while locating the facilities in the network, see [Snyder \(2006\)](#) for a review on facility location under un-  
121 certainty. Aggregating customers and representing the total demand of customers in the aggregated region as a  
122 demand density per area, as is done in CA, can help reduce the uncertainty for the decision makers. For example,  
123 [Cui et al. \(2010\)](#) show that the CA method is a promising tool for finding near-optimum solutions, within 4% - 7% of  
124 optimality, even when the demand distribution is highly variable across space.

125 Applications of CA in facility location problems have increased in two decades, and there are four streams of stud-  
126 ies. The first stream focuses on the deterministic setting of facility location problems which is finding the location  
127 of facilities to be opened. The term "deterministic" is used here to describe the facility location problems that do not  
128 consider disruption of facilities in their models. In other words, the deterministic problems assume the settings are  
129 deterministic and known and the facilities never fail to serve their customers due to disruptions. As counterparts of  
130 these deterministic facility location problems, the second stream of studies considers stochasticity and uncertainty  
131 from internal operations and external environments by taking into account the disruption of facilities in modeling.  
132 The third stream includes studies that adopted CA methods to make location decisions for a set of competing compa-  
133 nies in a Nash or Stackelberg game setting where either two companies simultaneously make location decisions, or  
134 the *leader* company decides first with anticipation of optimal decisions of the *follower* companies. Finally, the fourth  
135 stream consists of studies that focus on the problem of region partitioning which generally deals with solution im-  
136 plementation; i.e., transforming CA solutions to a discrete setting. Such studies allow for greater implementation of  
137 CA solution.

138 After the review of basic concepts and formulations, this section reviews recent studies using CA models to obtain  
139 the optimal location of various facilities and its extensions.

#### 140 2.1. Basic Concepts

141 CA is initially applied to one-dimensional Uncapacitated Facility Location (UFL) problems ([Newell, 1973](#); [Daganzo](#)  
142 & [Newell, 1986](#)), as illustrated in Figure 1(a). The simple structure of the one-dimensional UFL helps illustrate the  
143 fundamental concept of location continuous approximation. Further, the one-dimensional UFL is applicable to a  
144 number of real-world infrastructure system design problems, such as locating stops along a bus route, planning  
145 distribution centers along a strip region (e.g., Chile), and deploying traffic sensors on a corridor. This problem has  
146 the following settings: Customer demand density at each location  $t \in \mathbf{T} := [t_0, T]$  is denoted by  $d(t)$ , and then its  
147 accumulation from locations  $t_0$  to  $t$  is  $D(t)$  as shown in Figure 1(a). Facilities are built at locations  $t = t_1, \dots, t_N$ , each  
148 with opening cost  $f(t)$ . Once facilities are built, each customer will be served by its closest facility. It is assumed that  
149 the transportation cost to serve each unit demand at location  $t$  is the product of its travel distance and a constant  
150 scalar  $c$ , i.e.,  $c|t - t_i|$  where  $t_i$  is the closest point to  $t$  among  $\mathbf{T}$ . Thus, the total travel cost can be represented as  
151 the shaded area in Figure 1(a). For the convenience of the notation, define  $t'_i := (t_i + t_{i+1})/2, \forall i = 1, \dots, N - 1$ ,

152  $t'_0 = t_0$  and  $t'_N = T$ . Then the objective of this problem is to determine the optimal facility locations that minimize  
153 the total cost integrating both facility opening expenses and transportation costs, as formulated below:

$$\min_{t_1 \leq t_2 \leq \dots \leq t_N \in \mathbf{T}} \sum_{i=1}^N \left( f(t_i) + c \int_{t'_{i-1} \leq t \leq t'_i} |t - t_i| d(t) dt \right) \quad (1)$$

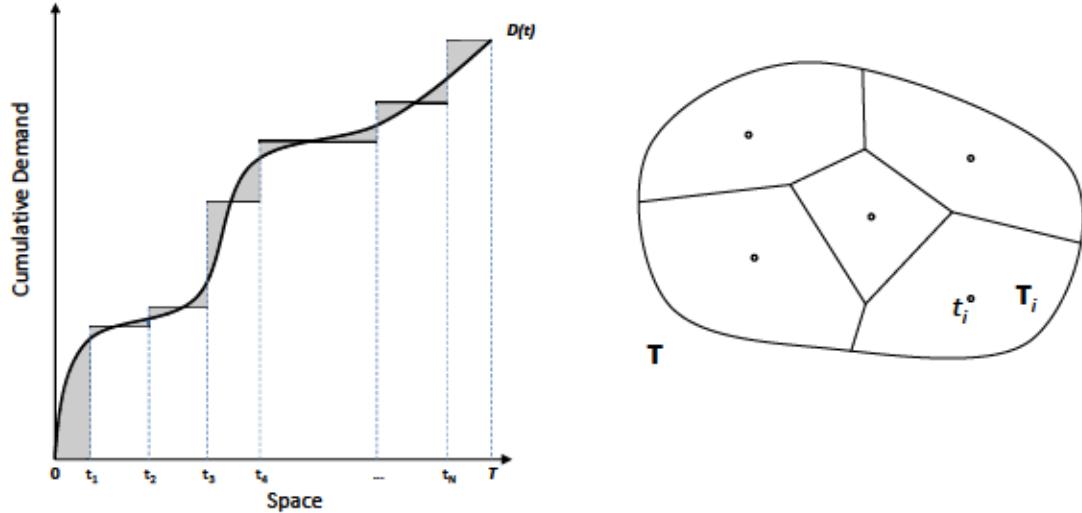



Figure 1: Uncapacitated facility location problems: (a) one-dimensional; (b) two-dimensional.

154 See from Figure 1(a) that the influence area of facility  $i$  (i.e., the area that facility  $i$  serves) is  $\mathbf{T}_i := [t'_{i-1}, t'_i]$ , and  
155 its size is  $A_s(t) = |t'_{i+1} - t'_i|, \forall i = 1, \dots, N$ . Then, the total cost (1) can be rewritten as:

$$\min_{t_1 \leq t_2 \leq \dots \leq t_N \in \mathbf{T}} \sum_{i=1}^N \int_{\mathbf{T}_i} \left[ \frac{f(t_i)}{A_s(t)} + \frac{cA_s(t)}{4} d(t_i^*) \right] dt, \quad (2)$$

156 where  $t_i^* \in \mathbf{T}_i$  satisfies that  $\frac{1}{4}(t'_i - t'_{i-1})^2 d(t_i^*)$  equals the shaded area in this interval  $\mathbf{T}_i$  in Figure 1(a).

157 We assume that functions  $d(t)$  and  $f(t)$  vary slowly across  $\mathbf{T}$ . Then without loss of accuracy, demand  $d(t_i^*)$  can  
158 be well approximated by  $d(t)$  in (2), and step function  $A_s(t)$  can be replaced by a continuous service area function  
159  $A(t)$ . This yields a CA model of equation (2) as follows:

$$\min_{\{A(t)\}_{t \in \mathbf{T}}} \int_{\mathbf{T}} \left[ \frac{f(t)}{A(t)} + \frac{cA(t)}{4} d(t) \right] dt. \quad (3)$$

160 Model (3) can be easily solved by optimizing each integrand component independently, which yields the optimal  
161 service area function as follows:

$$A(t) = [4f(t)/(cd(t))]^{1/2}, \forall t \in \mathbf{T}. \quad (4)$$

162 The modeling concepts underlying this one-dimensional problem have been generalized to UFL problems in two-  
163 dimensional spaces (Daganzo & Newell, 1986) or even three dimensional spatio-temporal cubes (Daganzo, 2005).

164 Figure 1(b) presents a two-dimensional example. In space  $\mathbf{T} \in \mathbb{R}^2$ , a set of facilities, each denoted by  $t_i$ , serves  
 165 distributed customers that have density  $d(t), \forall t \in \mathbf{T}$ . Since each customer is served by its closest facility,  $\mathbf{T}$  is  
 166 tessellated into regions such that facility  $t_i$  serves customers in region  $\mathbf{T}_i$  (which is also called Voronoi Tessellation).  
 167 All other parameters remain the same. The objective again is to find the optimal facility location to minimize the total  
 168 system cost. By extending the CA scheme to two-dimensional space, we can formulate the continuous counterpart  
 169 of this problem as follows:

$$\min_{\{A(t)\}_{t \in \mathbf{T}}} \int_{\mathbf{T}} \left[ \frac{f(t)}{A(t)} + c_m c \sqrt{A(t)} d(t) \right] dt, \quad (5)$$

170 where scalar  $c_m$  represents the ratio of the average transportation distance in the service region, which is deter-  
 171 mined by the distance metric and the assumption of geometry of the influence area (Newell, 1973). With a Euclidean  
 172 distance metric,  $c_m$  is 0.376, 0.377, 0.382 and 0.403 respectively for a circular, hexagonal, square and triangular influ-  
 173 ence area. While circles yield the minimum average distance, they can not fill up the space. It has been proven that  
 174 the hexagonal tessellation is the optimal feasible layout, when the space is homogeneous and large (Cui et al., 2010).  
 175 Overall, these  $c_m$  values are close (particular for circular, hexagonal and square areas). This suggests that the effect  
 176 of influence area geometry is rather minor as long as the area does not become too elongated. If the Manhattan  
 177 metric is used, then the optimal influence area shall be a square and the corresponding  $c_m$  value is 0.454. Again, the  
 178 minimizer of (5) can be solved for each integrand as follows:

$$A(t) = \left[ \frac{f(t)}{2c_m d(t)} \right]^{2/3}, \forall t \in \mathbf{T}. \quad (6)$$

179 2.2. Deterministic Facility Location

180 Langevin et al. (1996) review the early studies that analyze the location of facilities using continuous models  
 181 (Beckmann & Micksch, 1968; Larson & Stevenson, 1972; Love, 1972; Newell, 1973, 1980; Erlenkotter, 1989; Klincewicz  
 182 et al., 1990; Geoffrion et al., 1995). In this section, we review recent papers that study the deterministic facility  
 183 location problem using CA. Deterministic models assume that customer demand is deterministic and known and  
 184 facilities are always properly functioning. Please see Table 1 for the summary of the papers. As with all tables in the  
 185 paper, we rename some variable and cost terms to obtain a common framework to compare across papers.

186 There are three main divisions of studies. The first division includes papers that solely focus on facility location  
 187 problems. In most studies using CA, cost metrics are assumed to be constant over the entire region. Thus, the cor-  
 188 responding CA model returns the service regions for each facility and a Weber-type problem (Weber & Friedrich,  
 189 1929) is solved to finalize their location decisions. Dasci & Verter (2001) determine the locations of the facilities  
 190 that minimize the total fixed facility opening costs, facility operating costs and transportation costs in production  
 191 distribution systems. To find the average distance from the facility to a customer in the service region and therefore  
 192 the transportation cost, unlike most studies that use the exact locations of the facilities, they use a distance metric  
 193 that varies over the service region. In a more generalized case of the continuous facility location problem, Dasci &

Table 1: Deterministic facility location papers summary.

|                         | Study                       | Cost Structure   |                    |                |           | Main Contribution(s)                                                                                                                      |
|-------------------------|-----------------------------|------------------|--------------------|----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                             | Facility opening | Facility operating | Transportation | Inventory |                                                                                                                                           |
| Location                | Dasci and Verter (2001)     | X                | X                  | X              |           | Varies distance metric.                                                                                                                   |
|                         | Wiles and Brunt (2001)      |                  | X                  | X              |           | Introduces circular continuous region and direct route between the continuous location and the transshipment depot.                       |
|                         | Dasci and Verter (2005)     | X                |                    | X              |           | Analyzes product focus and market focus strategies.                                                                                       |
|                         | Carlsson and Jia (2013)     | X                |                    | X              | X         | Considers asymptotic behavior of the optimal solution in Euclidean Hub-and-Spoke networks and does input parameters analysis.             |
|                         | Carlsson and Jia (2014)     | X                |                    | X              | X         | Introduces backbone network costs and fast constant-factor approximation algorithm for placing facilities in any convex polygonal region. |
| Location & Allocation   | Murat et al. (2010)         | X                |                    | X              |           | Prioritizes allocation decisions over location decisions and solves the problem in allocation space.                                      |
|                         | Bouchery and Fransoo (2015) |                  |                    | X              |           | Analyzes intermodal network design decisions from a cost, carbon emissions and modal shift perspective.                                   |
| Other Oper. Constraints | Wang et al. (2014)          | X                | X                  | X              |           | Adds a time dimension.                                                                                                                    |
|                         | Ouyang et al. (2015)        | X                |                    | X              | X         | Integrates both facility location decisions and traffic equilibrium in a continuous space.                                                |

194 [Verter \(2005\)](#) develop a methodology based on a facility design model to select between product focus <sup>2</sup> and market  
 195 focus strategies. They use continuous functions to represent the spatial distribution of demand and cost parame-  
 196 ters. [Wiles & van Brunt \(2001\)](#) formulate a problem of finding an optimal location of transshipment depots within  
 197 a harvesting region. They assume that the agriculture commodities are distributed in a circular continuous region  
 198 and that a transshipment depot would be located for the collection and export of the product. Instead of taking the  
 199 radial and circumferential route ([Lam & Newell, 1967](#); [Blumenfeld & Weiss, 1970](#)) for the circular modeling region,  
 200 the authors consider a direct route between the continuous harvesting location and the transshipment depot.  
 201 Considering fixed costs from facilities, backbone network costs proportional to the length of the TSP tour con-  
 202 nnecting these facilities and transportation costs proportional to the average direct trip length between a uniformly  
 203 sampled point in the service region to its closest facility, [Carlsson & Jia \(2014\)](#) seek location of facilities and the asso-  
 204 ciated TSP tour to minimize the total cost of providing service. The key difference of this paper with the literature is  
 205 the idea of considering the backbone network costs, costs from connecting the facilities to each other. They provide  
 206 a fast constant-factor approximation algorithm for placing facilities in any convex polygonal region. Extending the  
 207 analysis of backbone network cost by [Carlsson & Jia \(2014\)](#), [Carlsson & Jia \(2013\)](#) consider the problem of designing

<sup>2</sup>A firm's ability to increase productivity and lower cost by limiting the number and variety of operations at its production lines.

208 an optimal spoke-hub distribution network,<sup>3</sup> where the backbone network cost may not only be a travelling sales-  
209 man (TSP), but also may be a Euclidean Steiner or minimum spanning tree (MST), a star network (SN), a collection  
210 of capacitated vehicle routing (VRP) tours, a complete bipartite graph (CBG), or a complete graph (CG). They give an  
211 approximation algorithm to select the optimal locations of a set of hubs in a convex planar Euclidean region where  
212 the spokes are continuously and uniformly distributed in the region. Their work is different from location-routing  
213 problems where the network of customers is served by vehicle tours since they think of the backbone network of  
214 facilities instead of customers.

215 The second set of papers not only studies the location problem, but also considers allocation decisions which  
216 determine the assignment of customers to facilities once facility locations are known. [Murat et al. \(2010\)](#) find the lo-  
217 cations and allocations of facilities over a region with dense demand. The novelty of this paper is that they prioritize  
218 the determination of the service regions over the location decisions. The authors determine the boundaries of each  
219 service region using a gradient algorithm. Another recent location-allocation study is [Bouchery & Fransoo \(2015\)](#),  
220 who develop a model to optimize the terminal location and the allocation between direct truck transportation and  
221 inter-modal transportation. Approximating the demand as continuous, they analyze the dynamics of intermodal  
222 freight transportation with respect to cost, modal shift and carbon emissions.

223 The third set of papers extends the facility location problem by adding new operational constraints. Adding a  
224 time dimension, [Wang et al. \(2014\)](#) formulate a continuous model for the Dynamic Facility Location Problem (DFLP).  
225 Their proposed model finds the best location and timing of facility deployment that minimizes the logistics cost  
226 during a planning horizon. Unlike [Campbell \(1990\)](#) who considers mobile terminal locations, they force the locations  
227 of open facilities to remain unchanged in the remainder of the planning horizon (location consistency constraint). In  
228 [Wang et al. \(2014\)](#), CA is used to find the optimal facility density in the spatiotemporal continuum. To discretize the  
229 CA output into a set of discrete facility locations, they extend the disk model (for one static time period) of [Ouyang &](#)  
230 [Daganzo \(2006\)](#) to a tube model (for multiple time periods). Analyzing the accuracy and convergence of the proposed  
231 generic and flexible method, they show that it solves the DFLP to a reasonable accuracy.

232 The number of facilities to locate may also be an endogenous decision variable related to other factors such  
233 as the routing of inbound supply. [Ouyang et al. \(2015\)](#) study a median-type facility location problem under elastic  
234 customer demand and traffic equilibrium in a continuous space using both CA and mixed-integer programming.  
235 The median-type facility location problem seeks optimal facility locations to minimize the transportation costs for  
236 serving spatially distributed customers, subject to a budget constraint for facility investments. Unlike the traditional  
237 models, they model the destination and routing decisions of customers endogenously with the decisions on facility  
238 locations. The locations of facilities are not given in advance in their model.

239 In sum, we observe a shift from problems focusing solely on the locations of the facilities to more integrated  
240 models that not only provide solutions to the facility location problem but also consider operational constraints such

---

<sup>3</sup>The spoke-hub distribution network is a system of connections arranged like a chariot wheel, in which all traffic moves along spokes connected to the hub at the center.

241 as allocation decisions, number of facilities, time windows and so on (see Section 4 for further details on integrated  
 242 studies). The application of CA, due to its modeling convenience, is more vivid, when the mode is more complex.

243 *2.3. Disruption and Facility Reliability*

244 In this section, we review facility location problems where facilities are subject to disruptions. When a facility  
 245 fails to provide service for some period of time, the customers in the corresponding region are either served by  
 246 the closest facilities or not served at all. Reliability models have been developed to include the effect of random  
 247 disruptions when determining facility locations. See Table 2 for the summary of reliability papers.

Table 2: Disruption and reliability papers summary.

|           | Study                    | Cost Structure   |                    |                |           |       | Main Contribution(s)                                                                                            |
|-----------|--------------------------|------------------|--------------------|----------------|-----------|-------|-----------------------------------------------------------------------------------------------------------------|
|           |                          | Facility opening | Facility operating | Transportation | Inventory | Other |                                                                                                                 |
| Locations | Dasci and Laporte (2005) | X                | X                  | X              |           |       | Considers stochastic demand and capacity acquisition as a decision variable.                                    |
|           | Cui et al (2010)         | X                |                    | X              |           |       | Considers site dependent disruption probabilities.                                                              |
|           | Li and Ouyang (2010)     |                  | X                  |                | X         |       | Considers probabilistic facility disruption risks.                                                              |
|           | Li and Ouyang (2012)     |                  | X                  |                |           |       | Considers location dependent failure probabilities.                                                             |
|           | Lim et al. (2013)        | X                |                    | X              |           |       | Assumes disruption probabilities known imperfectly and computes the cost of underestimation and overestimation. |
| Other     | Hong et al. (2012)       | X                |                    | X              |           |       | Introduces Robust Integer Facility Location (RIFL) and Robust Continuous Facility Location (RCFL) models.       |
|           | Bai et al. (2015)        | X                |                    | X              | X         |       | Models facility disruptions in biofuel supply chain design.                                                     |

248 Earlier studies focused on the design of systems with sufficient redundancy under stochastic demand fluctua-  
 249 tions. [Dasci & Laporte \(2005\)](#) consider the location and capacity acquisition problem with stochastic demand. They  
 250 determine the optimal market area of the facilities instead of exact locations. They also consider two different  
 251 strategies for insufficient capacity: outsourcing the extra demand or considering the extra demand as lost sales.  
 252 The optimal market areas are found using CA which minimizes total cost. This cost includes the cost of the facility,  
 253 capacity acquisition and operation, transportation, and shortages. They find that the solution to the outsourcing  
 254 strategy requires more facilities. Their model also shows that the out-sourcing solution depends on demand, fixed  
 255 costs, and transportation cost, while the lost sales solution additionally depends on the distribution of demand and  
 256 the shortage cost.

257 For emergency response facility and transportation problems, [Hong et al. \(2012\)](#) initially introduce an integrated  
 258 facility location (IFL) model that finds locations of distribution warehouses (DWHs) to relief items and break-of-bulk  
 259 points (BOBs) through which these items are sent, and allocations of neighborhoods to BOBs. Since some DWHs

260 may not be operational during the disaster, they introduce and compare two robust models: Robust Integer Facility  
261 Location (RIFL) and Robust Continuous Facility Location (RCFL). In RIFL model, each BOB is assigned to a backup DWH  
262 in addition to its main DWH to be covered in case the main one is not operational. In RCFL, each BOB is assigned to  
263 multiple DWHs and is allowed to be partially covered by multiple DWHs at the same time. The authors show that  
264 under normal conditions, IFL outperforms the robust models in terms of cost; however, under emergency conditions,  
265 robust models, especially RCFL, outperform IFL in terms of the overall logistics costs and the robustness level.

266 Among studies with uncorrelated disruptions, [Cui et al. \(2010\)](#) seek location of facilities which fail independently  
267 with site-dependent disruption probabilities. Assuming that the facilities are uncapacitated and the distance met-  
268 ric is Euclidean, the authors develop a discrete model and a continuous model to solve the problem over infinite  
269 homogeneous and heterogeneous planes. The homogeneous case results in a simpler continuous model whose so-  
270 lution leads to the hexagonal tessellation of the entire region due to Euclidean metric. For the non-homogeneous  
271 case, they calculate optimal service regions using the discretization algorithm of [Ouyang & Daganzo \(2006\)](#). Their  
272 CA model tends to build fewer facilities than the discrete model in small networks ( $7 \times 7$  network, 49 demand aggre-  
273 gation nodes) with dense demand as the demand is distributed throughout the entire region in the former making  
274 the marginal benefit of an additional facility smaller compared to the latter. However, the performance of CA model  
275 becomes more consistent with the discrete model on larger networks with more demand aggregation nodes ( $10 \times 10$   
276 network, 100 demand aggregation nodes) as such networks provide finer resolution inputs to the discrete model with  
277 large number of candidate locations, decreasing the marginal benefit of additional facilities. [Li & Ouyang \(2012\)](#) max-  
278 imize the surveillance of traffic flow by locating sensors (facilities) with a limited budget. Similar to [Cui et al. \(2010\)](#),  
279 the sensors are subject to independent disruptions with location-dependent probabilities. They show that, under  
280 certain conditions, CA provides a lower bound for MILP. Considering discrete and continuous reliable facility location  
281 models, [Bai et al. \(2015\)](#) design a model for reliable bio-ethanol supply chains with potential operational disruptions.  
282 Their model assumes that the disruptions are independent and includes the possibility of simultaneous disruptions  
283 of multiple facilities serving the same customer. The impacts of independent disruptions with both site-independent  
284 (similar to [Cui et al. \(2010\)](#)) and dependent probabilities are analyzed in an empirical case study.

285 [Li & Ouyang \(2011\)](#) locate facilities in an environment with correlated disruptions. Assuming that the facility  
286 locations are fixed and facilities are uncapacitated, the authors develop a CA formulation to solve the problem over  
287 an infinite homogeneous plane with independent disruptions. They use the results of this simplistic model as a  
288 building block for correlated disruptions. In the non-homogeneous and correlated case, the CA method returns the  
289 service regions for each facility and the authors suggest the use of discretization method developed in the study  
290 of [Ouyang & Daganzo \(2006\)](#). Different from the previously discussed studies which assume that the disruption  
291 probability estimates are accurate, [Lim et al. \(2013\)](#) determine the locations of reliable and unreliable facilities in an  
292 environment with imperfect disruption probability estimates. Under such a setting, they formulate a CA model and  
293 show that underestimating both disruption probability and correlation degree results in a greater increase in the  
294 expected total cost compared to the overestimating.

295 In sum, CA has been widely used to facilitate developing facility location models with more realistic disruption

296 setting implemented in novel application areas.

297 *2.4. Competitive Facility Location Models*

298 In this section, we review recent papers that study the competitive facility location problem using CA. Please see  
299 Table 3 for the summary of the papers. The location models introduced in Section 2 assume a centralized system  
300 structure; i.e., a centralized agency makes all location decisions and its goal is to maximize a single system benefit  
301 measurement (or minimize a single system cost measurement). While these models can address location planning  
302 for a public agency or a monopolistic private corporation, they are not suitable for an open market environment  
303 where multiple players are competing against each other and each makes separate facility planning decisions so  
304 as to maximize its own profit. Recently, several multi-store competitive location models have been proposed in  
305 literature to address the facility location design problem in such a competitive environment.

Table 3: Competitive facility location papers summary.

| Study                     | Cost Structure   |                    |                |           |       | Main Contribution(s)                                                                                          |
|---------------------------|------------------|--------------------|----------------|-----------|-------|---------------------------------------------------------------------------------------------------------------|
|                           | Facility opening | Facility operating | Transportation | Inventory | Other |                                                                                                               |
| Dasci and Laporte (2005b) | X                |                    |                | X         |       | Considers a competitive environment.                                                                          |
| Wang and Ouyang (2013)    | X                |                    | X              |           |       | Uses game-theoretical models under spatial competition and considers probabilistic facility disruption risks. |
| Wang et al. (2015)        | X                | X                  | X              |           |       | Considers spatially correlated, site-dependent probabilistic distribution for the resource supply.            |
| Wang et al. (2017)        | X                | X                  | X              |           | X     | Considers three stage Stackelberg-Nash competition framework.                                                 |

306 As a pioneer in using CA in a competitive environment, [Dasci & Laporte \(2005\)](#) study the multi-store competitive  
307 location problem. Treating the consumers as entities continuously spread over the market, they consider competi-  
308 tion based on location density. Assuming that the customers go to the nearest store, the paper provides insights for  
309 different strategies of leader and follower companies. Their model decides whether or not a company should enter  
310 the market as well as the optimal number and locations of stores.

311 Considering facility disruptions, [Wang & Ouyang \(2013\)](#) find the optimal facility location design under spatial  
312 competitions and general transportation cost functions. This problem involves discrete bi-level optimization and  
313 probabilistic facility disruption considerations, both of which are notoriously difficult. In addition to the Stackel-  
314 berg setting (Leader-Follower) considered in [Dasci & Laporte \(2005\)](#), they consider Nash setting for the competing  
315 companies. Following the CA approach, the paper replaces discrete location variables by continuous and differen-  
316 tiable density functions to approximate the bi-level competition problem with closed-form formulas. Results of a  
317 case study for competitive bio-fuel supply chain design show insights on how competing bio-fuel companies should

318 optimally plan their refinery location decisions. Incorporating uncertainties in supply/demand and the risk of fa-  
319 cility disruptions, [Wang et al. \(2015\)](#) develop a game-theoretic modeling framework using CA to study the impacts  
320 of competition on the optimal infrastructure deployment. Similar to [Carlsson & Jia \(2013\)](#) and [Carlsson & Jia \(2014\)](#),  
321 they choose bio-fuel industry to conduct their case study and focus on the resource supply competition in this indus-  
322 try. Unlike [Wang et al. \(2004\)](#), which study deterministic market share competition between two firms, they focus  
323 on the post-entry facility deployment plan for an emerging industry under uncertainties. Specifically, they assume  
324 a spatially correlated, site-dependent probabilistic distribution for the resource supply, while each built facility may  
325 be disrupted independently with a site-dependent probability.

326 [Wang et al. \(2017\)](#) propose a CA model to analyze policies for mandate and subsidy levels in the biofuel industry  
327 along with their effects on industry development. The work focuses on the question of stimulating growth in biofuel  
328 industry while considering food security and environmental sustainability. In their Stackelberg-Nash competition  
329 framework, the authors initially consider two levels: At Level 1, the biofuel firm (the leader) maximizes profit by  
330 making refinery density and pricing decisions where density decisions capture firm's trade-off between transporta-  
331 tion and refinery deployment costs by approximating the number and locations of refineries to deploy. At this level,  
332 the biofuel firm is competing against the food market industry (which as a matured distribution network) and the  
333 land reservation market (which intends to preserve farmlands). At Level 2, farmers (followers) maximize their prof-  
334 its by making a decision on the land use (food crop, energy crop or reservation). Later, the authors add an initial level  
335 (Level 0) which considers government agencies' policy decisions on mandate and subsidy levels. Then, the optimal  
336 decision strategies of all stakeholders are incorporated into a three-level game-theoretic model.

337 In sum, there are just a few studies that use the CA for modeling competitive environments in the literature.  
338 However, recent advances in game theory and interests in addressing problems in an open market environment may  
339 encourage more researchers to tackle problems existing in this area.

### 340 2.5. Region Partitioning

341 The problem of optimally partitioning a region into smaller units (districts or zones), subject to constraints such  
342 as balance, contiguity and compactness is called the districting problem ([Bunge, 1966](#)). The continuous district-  
343 ing problem is the problem in which the underlying space for facility sites and demand points are determined by  
344 continuous variables. Voronoi diagrams in combination with CA models can be useful in solving continuous location-  
345 districting problems; see [Aurenhammer \(1991\)](#) for a review on Voronoi Diagrams. Given a set of finite distinct points  
346 in a continuous planar space, associating all locations in that space with the closest member(s) of the point set with  
347 respect to the Euclidean distance, results in a tessellation of the space into a set of regions. This tessellation is called  
348 an ordinary Voronoi diagram. (For further explanation please refer to [Okabe et al. \(1992\)](#), p. 66.)

349 In this section, we review papers that allow for greater implementation of CA solutions by providing tools and  
350 methods for service region partitioning. See Table 4 for the summary of region partitioning papers.

351 In a review paper, [Okabe & Suzuki \(1997\)](#) identify eight classes of continuous locational optimization problems  
352 that can be solved through the Voronoi diagram method. [Du et al. \(1999\)](#) also provide a general discussion on Central

Table 4: Region partitioning papers summary.

| Study                     | Facility opening | Facility operating | Transportation | Inventory | Other | Main Contribution(s)                                                                    |
|---------------------------|------------------|--------------------|----------------|-----------|-------|-----------------------------------------------------------------------------------------|
|                           |                  |                    |                |           |       | Cost Structure                                                                          |
| Okabe and Suzuki (1997)   |                  |                    |                |           |       | Reviews continuous locational optimization problems with Voronoi diagram.               |
| Du et al. (1999)          |                  |                    |                |           |       | Discusses Central Voronoi Tessellations (CVT).                                          |
| Galvao et al. (2006)      |                  |                    | X              |           |       | Develops a new partitioning scheme based on multiplicatively-weighted Voronoi diagrams. |
| Ouyang and Daganzo (2006) |                  |                    |                |           |       | Improves CVT discretization. Generalizes to L1 norm with square influence regions.      |
| Novaes et al. (2009)      |                  |                    |                | X         |       | Uses the plane-sweep and the quad-tree techniques to construct Voronoi diagram.         |
| Novaes et al. (2010)      |                  |                    |                | X         |       | Gives an application of the Power Voronoi diagram.                                      |

353 Voronoi Tessellations (CVT). CVT divides a region into sub-regions where the points in each sub-region are closer to  
 354 this sub-region center compared to the centers of the other regions. This provides useful insights about one of the  
 355 most frequently used tessellations in CA literature. One of the potential application areas that the authors mention  
 356 is the mailbox placement problem, which belongs to the general class of facility location problems.

357 [Ouyang & Daganzo \(2006\)](#) introduce a procedure that is an improvement on the well-known CVT method, avoid-  
 358 ing undesirable shape formation. Assuming Euclidean distance metric, the authors define the optimal service regions  
 359 to be circular with facilities at the center points (see Figure 2). Using this property, they develop a method which uses  
 360 different types of forces in the center and on the boundaries of the service regions to move and iterate through the  
 361 regions. Focusing on logistic districting problems, [Galvão et al. \(2006\)](#) develop a new partitioning scheme based on  
 362 multiplicatively-weighted Voronoi diagrams. The method uses predetermined weights and compares the closeness  
 363 of points to the centers by considering weighted distances. The procedure is repeated until load factors in differ-  
 364 ent regions are balanced sufficiently. The study compares the solutions generated by using Voronoi diagrams with  
 365 a preliminary solution based on radial-ring. It is shown that the iterative Voronoi diagram generation procedure  
 366 balances the load factors better than the ring-radial based procedure; however, the total travel distance is slightly  
 367 lower in the latter procedure. The proposed approach can be used in environments with different road types and  
 368 physical obstacles.

369 Combining a non-ordinary Voronoi diagram approach with an optimization algorithm, [Novaes et al. \(2009\)](#) de-  
 370 velop two continuous location-districting models applied to transportation and logistics problems. They use Voronoi  
 371 diagram construction methods such as the plane-sweep and the quad-tree techniques in transportation and logistics  
 372 problems which were previously applied in non-logistic problems such as computer graphics and robotics. In the  
 373 plane-sweep technique, a horizontal line is swept across the region of interest where the Voronoi diagram is con-

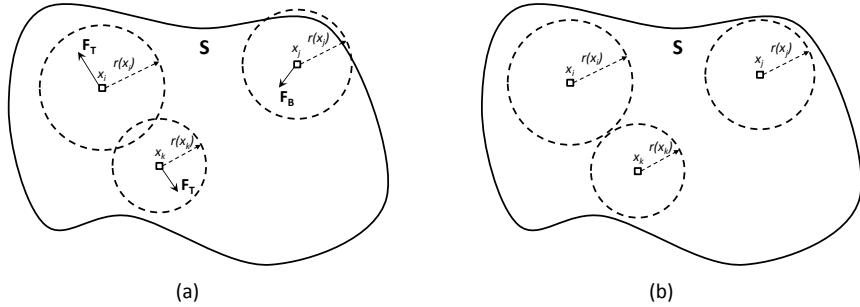



Figure 2: Circular service regions with facilities in the center: (a) An infeasible pattern with overlapping regions; (b) A feasible pattern with nonoverlapping regions. (Adapted from [Ouyang & Daganzo \(2006\)](#))

374     structed for the points below the sweep line regardless of the points above the line. In the quad-tree technique, the  
 375     region of interest is successively subdivided into quadrants such as squares or rectangles, and the quadrants rep-  
 376     resenting Voronoi diagram bisectors are kept in a hierarchical data structure. The authors also extend the Voronoi  
 377     diagram methodology to solve logistics districting problems with spatial barriers. Later, [Novaes et al. \(2010\)](#) invest-  
 378     igate the application of the power Voronoi diagram in logistics districting problems. Associated with a continuous  
 379     demand approach, they allow physical barriers such as rivers, reservoirs, hills, etc. into the vehicle displacement  
 380     representation. The power Voronoi diagram is in the class of non-ordinary Voronoi diagrams useful in solving dis-  
 381     tricting problems with barriers since the resulting Voronoi polygons are always convex. They compare the resulting  
 382     district contours to the traditional wedge-shape formulation and show that not only they are smooth and closer to  
 383     the configuration contours in practical situations, but also the resulting partition of the region leads to more bal-  
 384     anced time/capacity utilization (load factors) across the districts. In conclusion, region partitioning studies bridge  
 385     the gap between CA solutions (or guidelines) and their practical implementations through discrete designs. Using  
 386     more complex partitioning tools such as non-ordinary Voronoi diagrams enables CA models to represent more re-  
 387     alistic settings with not only physical obstacles from geographical properties of the region but also those due to  
 388     thoroughfares, municipal boundaries and regulations.

### 389     3. Distribution and Transit Studies

390     This section reviews recent developments in using CA methods to solve vehicle routing related problems. The  
 391     basic continuous models for routing problems are introduced in Section 3.1. The developments since 1996 based on  
 392     these models are reviewed in the following sections. Section 3.2 discusses studies with a distribution focus where  
 393     the aim is to determine the least cost routes to visit the demand nodes in a given network with a certain number  
 394     of vehicles. For most of the realistic distribution systems, discrete models to these problems are not tractable due  
 395     to the size of underlying instances and exact solution approaches to such models are likely to fail in providing high  
 396     quality solutions within an acceptable amount of time. Section 3.3 discusses studies with a transit focus. In transit  
 397     studies, the aim is to design efficient networks by using various types of service options and routing the vehicles in

398 the existing systems more efficiently. Overall, newly developed deterministic and stochastic CA models have been  
 399 applied to a wide range of routing problems, including both supply chain management in private sectors and transit  
 400 route design for public agencies. Various models have been built for planning and operation applications of different  
 401 scopes. Discretization methods have also been proposed to convert a CA solution into implementable discrete route  
 402 design.

403 *3.1. Basic Concepts*

404 Routing models are built on traditional routing problems, including Traveling Salesman Problem (TSP) and Chi-  
 405 nese Postman Problem (CPP), and further consider a number of new components and aspects, such as special spatial  
 406 partitions, customer service levels, multiple transportation modes, and service time windows. In TSP,  $N$  customers  
 407 are randomly distributed in a region  $\mathbf{T}$  with a size of  $T := |\mathbf{T}|$ , and a salesman needs to visit each customer within  
 408 one tour and come back to where he starts. The objective is to minimize the salesman's total travel distance in this  
 409 tour. Asymptotic analysis has shown that the optimal total travel distance can be approximated with:

$$k_{TSP} \sqrt{TN}, \quad (7)$$

410 where  $k_{TSP}$  is a constant, whose value is determined by the distance metric (Beardwood et al., 1959). Stein (1978)  
 411 estimates  $k_{TSP}$  to be 0.765 for  $l_2$  metric (Euclidean distance) through Monte Carlo experiments and Jaijlet (1988)  
 412 estimates it to be 0.97 for  $l_1$  metric (Manhattan distance). In their asymptotic analysis, Beardwood et al. (1959) show  
 413 that expression (7) is asymptotically optimal; however, the authors do not indicate how to construct such an optimal  
 414 tour. Furthermore, the asymptotic value of  $k_{TSP}$  is likely to underestimate the length of this tour for a finite-size  
 415 problem with an irregular-shaped region. Daganzo (1984) proposed a strip strategy (see Figure 3(a)) to construct  
 416 a near-optimal tour in a generic irregular region. The expected tour length using the strip strategy is again in the  
 417 form of (7) where the  $k_{TSP}$  value is only slightly higher than its asymptotic optimal value for different distance  
 418 metrics and region shapes: Assuming that the underlying area is not too elongated, the expected tour length is  
 419 estimated to be  $0.9\sqrt{TN}$  for  $l_2$  metric and  $1.15\sqrt{TN}$  for  $l_1$  metric. In a related study, Ong & Huang (1989) empirically  
 420 demonstrates the asymptotic validity of expression (7) on tours constructed by using various TSP heuristics. Hindle &  
 421 Worthington (2004) provide two regression models which consider spatial characteristics of demand surfaces when  
 422 estimating average route lengths. The first model assumes that demand points are randomly located in a square  
 423 region and the second model assumes that certain areas in the region are more likely to be visited as defined by  
 424 an underlying demand surface. In a recent study, Çavdar & Sokol (2015) develop a regression-based tour length  
 425 estimation model which provides accurate estimates when the distribution of nodes is unknown or non-integrable.  
 426 Their model uses dispersion related attributes in addition to the number of nodes and the area of the graph. Note that  
 427 the asymptotic results discussed in this section are closely related to the findings in geometric probability theory  
 428 regarding combinatorial optimization problems (see Steele (1990); Yukich (2006)).

429 del Castillo (1999) proposed a new TSP tour construction strategy for uniformly distributed locations in a circular  
 430 sector area, as illustrated in Figure 4. This strategy splits a circular sector into three parts: two symmetric circular



Figure 3: (a) The strip strategy in [Daganzo \(1984\)](#) and (b) the ring sweep strategy in [Daganzo \(1984\)](#). (Adapted from [Daganzo \(1984\)](#).)

431 sub-sectors near the origin and a ring sub-sector around them. The tour visits locations in these three sub-sectors  
 432 sequentially without backtracking. It starts from the circular sub-sector on the left, goes through the above ring sub-  
 433 sector, and comes back along the circular sub-sector on the right. Under this tour construction strategy, this paper  
 434 derived analytical formulas of tour lengths for both Euclidean and ring-radial distance metrics. From experiments,  
 435 this paper found that a tour length constructed with this strategy is comparable to that from equation 7 with the  
 436 strip strategy in [Daganzo \(1984\)](#) (Figure 3(a)), while it is claimed that the new strategy is more suitable for computer-  
 437 based calculations and provides more flexibility with respect to the shape of the region. Numerical examples were  
 438 conducted to demonstrate how this strategy can be applied to a VRP in a region of an irregular shape.

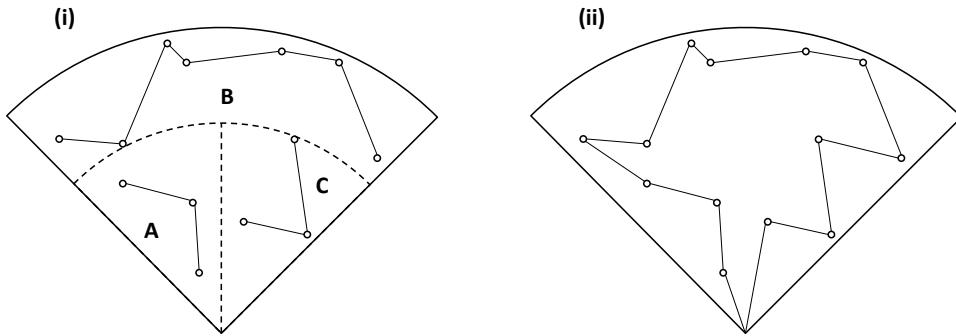



Figure 4: Tour construction strategy for a ring sector in [del Castillo \(1999\)](#). (Adapted from [del Castillo \(1999\)](#))

439 This idea has been extended to the vehicle routing problem (VRP) where a fleet of vehicles (instead of a single  
 440 salesman) serves region  $T$ . Each customer has a random demand with the expectation of  $v$ . All vehicles shall start  
 441 from and return to a depot  $r$  distance away from the center of  $T$ , and each of them can serve  $V$  unit demand. With a  
 442 similar asymptotic analysis, it has been shown that the optimal value of the total expected all-vehicle travel distance

443 can be approximated by:

$$2r(v/V)N + k_{VRP}\sqrt{TN}, \quad (8)$$

444 where  $k_{VRP}$  is again a constant scalar determined by the metric. This approximated optimal distance can be  
445 achieved by using a ring and sweep strategy as shown in Figure 3(b). Traditional VRPs have been adapted and ex-  
446 tended in several dimensions in recent two decades. With the rapid growth of VRP problem sizes, some studies  
447 restrict the VPR partition scheme to certain specific patterns (e.g., ring sectors) so as to cope with the challenges  
448 from increasing computational complexity. For these new problems, multiple distance metrics including the ring-  
449 radial metric have been explored. Furthermore, several new factors that affect optimal routing design, such as ser-  
450 vice frequency and time windows, have been incorporated in travel distance calculations (Francis & Smilowitz, 2006;  
451 Figliozzi, 2009).

452 In terms of traditional models, Torres & Anton (1999) consider a garbage pickup problem that requires all links  
453 in a transportation network to be visited which can be viewed as a generalization of the CPP by using multiple  
454 vehicles rather than a single postman for the delivery (or pickup). Torres & Anton (1999) propose a CA model to  
455 create the routes for the garbage pickup problem in an urban region of the square grid metric. Using grid metric  
456 approximation proposed by Daganzo (1984), the authors first approximate the total travel distance of CPP tours  
457 under different graph orientations while considering additional properties such as existence of diagonal roads and  
458 inaccessible nodes. Then, they sequentially identify equi-travel time contours, determine zone sizes, lay out zone  
459 geometry, and finally use an iterative procedure to design the optimal routes.

460 3.2. Distribution Studies

461 In Langevin et al. (1996), freight distribution systems are divided into six classes in terms of the general distri-  
462 bution structure and existence of transshipment: (1) one-to-many distribution without transshipment, (2) many-  
463 to-one distribution without transshipment, (3) many-to-many distribution without transshipment, (4) one-to-many  
464 distribution with transshipments, (5) many-to-many distribution with transshipments and lastly (6) integrated works.  
465 In the first three classes, the distribution is directly from the origin(s) to destination(s) without any transshipment  
466 in between whereas classes 4 and 5 include distribution centers (transshipment locations) over which the goods are  
467 distributed. In other words, the distribution is carried out in two stages for classes 4 and 5: The first stage is from ori-  
468 gins to distribution centers and the second one is from distribution centers to the end users. The last class considers  
469 studies that integrate continuous and discrete models. The review paper does not have a many-to-one distribution  
470 with transshipments class since no such paper was written until 1996 (we have not found any recent studies under  
471 this setting either). Table 5 provides a summary of problem types, cost components and main contributions of the  
472 distribution related studies in the present review.

473 The categories involving multiple end users are strongly related to the classical routing problems of the TSP  
474 and VRP, and their variants. Considering discrete end users over a region of interest, a one-to-many distribution  
475 problem without transshipment is a TSP when the underlying vehicle is uncapacitated and there is no limit on the

Table 5: Distribution papers summary.

|              | Study                        | Cost Structure |                 |          |      |       | Main Contribution(s)                                                                                               |
|--------------|------------------------------|----------------|-----------------|----------|------|-------|--------------------------------------------------------------------------------------------------------------------|
|              |                              | Routing        | Vehicle related | Terminal | Rent | Other |                                                                                                                    |
| One-to-many  | Daganzo and Erera (1999)     | X              | X               |          | X    |       | Considers robust logistics systems with redundancy.                                                                |
|              | Erera and Daganzo (2003)     | X              |                 |          |      |       | Extends Daganzo and Erera (1999) to dynamic VRP with uncertain demand.                                             |
|              | Francis and Smilowitz (2006) | X              |                 |          |      |       | Introduces a CA model to PVRP with service choices.                                                                |
|              | Sankaran and Wood (2007)     | X              | X               |          |      |       | Studies the impact of JIT replenishment, the length of a workday and traffic congestion on distribution costs.     |
|              | Geunes et al. (2007)         | X              | X               |          | X    |       | Considers the impact of delivery-pricing strategies on maximizing expected profit.                                 |
|              | You et al. (2011)            | X              |                 |          | X    |       | Integrates short-term distribution decisions with long-term inventory decisions in gas distribution systems.       |
|              | Agatz et al. (2011)          | X              |                 |          |      |       | Provides a fully automated approach that provides high-quality time slot schedules.                                |
|              | Pang and Muyldermans (2012)  | X              |                 |          |      |       | Analyzes the impact of service postponement on routing costs.                                                      |
|              | Saberi and Verbas (2012)     | X              |                 | X        | X    |       | Facilitates strategic planning in a time-dependent environment while considering emission costs.                   |
|              | Turkensteen and Klose (2012) | X              |                 |          |      |       | Derives logistics cost estimates from the dispersion of demand points for a one-to-many system.                    |
|              | Davis and Figliozzi (2013)   | X              | X               |          | X    |       | Analyzes the competitiveness of electric vehicles considering energy consumption costs.                            |
|              | Huang et al. (2013)          | X              |                 |          |      |       | Introduces a hybrid strategy that improves upon the solution from CA with a tabu search in humanitarian setting.   |
|              | Lei et al. (2016)            | X              | X               |          | X    |       | Uses PVRP-SC concept in a bilevel game-theoretic model to improve the effectiveness of parking enforcement patrol. |
| Many-to-many | Kawamura and Lu (2007)       | X              |                 | X        | X    |       | Analyzes the effect of consolidation in many-to-many systems.                                                      |
|              | Smilowitz and Daganzo (2007) | X              | X               | X        |      |       | Compares fully integrated networks and nonintegrated networks for expedited and deferred deliveries.               |
|              | Chen et al. (2012)           | X              |                 | X        | X    |       | Extends Kawamura and Lu (2007) to represent smaller businesses.                                                    |
|              | Campbell (2013)              | X              |                 |          |      |       | Provides expressions for the optimal number of hubs, hub locations and the related cost in time definite setting.  |
|              | Lin et al. (2014)            | X              |                 | X        | X    |       | Extends the study of Chen et al. (2012) considering energy consumption and PM2.5 emissions as additional costs.    |

476 maximum route distance. The problem becomes a capacitated VRP (CVRP) when the vehicles are capacitated and  
 477 a Distance-Constrained VRP (DCVRP) when distance restrictions are imposed. Multi-depot VRPs consider multiple  
 478 DCs as in many-to-many distribution problems while multi-echelon VRPs include transshipments where echelons  
 479 determine the level of interconnections between main DCs (depots) and end users.

480 [Turkensteen & Klose \(2012\)](#) derive logistics cost estimates from the dispersion of demand points for a system  
481 which serves a set of target customers from a single central facility. Their study focuses on outbound costs and  
482 they assume that demands of the customers are almost identical and deterministic. Furthermore, the products are  
483 delivered with fixed routes at fixed intervals. The authors claim that VRP length approximations as in (8) may not  
484 be accurate if customer locations are non-uniform, and they develop and test new travel distance estimates under  
485 various settings including uniform dispersion and non-uniform dispersion with different length metrics.

486 [You et al. \(2011\)](#) consider a one-to-many distribution problem without transshipment in the scope of optimal  
487 distribution and inventory planning of industrial gases. The decision maker determines tank sizing (inventory pro-  
488 file) at each customer location in addition to delivery and routing related decisions with the aim of minimizing the  
489 total cost. The study assumes that a single type of industrial gas (single product) is distributed with trucks that have  
490 the same traveling speed. The authors propose a CA-based solution strategy that divides the problem into an upper  
491 and a lower level and solves them sequentially.

492 [Sankaran & Wood \(2007\)](#) study the impact of just-in-time (JIT) replenishment policy, the length of a workday and  
493 traffic congestion on distribution costs of a one-to-many system without transshipment. They develop two CA mod-  
494 els to estimate the required number of vehicles in the corresponding vehicle routing, which depends on the average  
495 daily number of commercial trip chains per vehicle. The first model assumes homogeneous trip lengths where all  
496 route-sectors are pie-shaped with roughly the same length and duration and the second model assumes heteroge-  
497 neous trip lengths with varying length and duration. For the latter, the authors impose structural assumptions to  
498 make the problem analytically more tractable such as linear service region and one customer per trip.

499 [Geunes et al. \(2007\)](#) provides CA models for delivery route based services with price-sensitive demands. In their  
500 VRP setting, CA models aim to maximize expected profit where the delivery demand and the revenue generated  
501 by satisfying the demand are determined by the price on delivery services. Their study considers settings where  
502 customer demand quantities are price sensitive and number of customers is price sensitive, and introduces a variant  
503 which allows the delivery service provider to select a subset of customers to serve. They state that delivering at less  
504 than vehicle capacity can be optimal for certain price ranges.

505 [Saberi & Verbas \(2012\)](#) provide a CA model to minimize emissions in the emission VRP (EVRP). EVRP is a variant  
506 of time-dependent VRP as emissions strongly depend on congestion and average travel speed which can change  
507 significantly between peak and off-peak periods. Their model aims to facilitate strategic planning of one-to-many  
508 distribution systems without transshipment in a time-dependent environment. The routing costs are mainly based  
509 on the VRP approximations in [Daganzo \(2005\)](#); however, related emission costs are also included at each stage. The  
510 problem is decomposed geographically into a set of sufficiently large sub-regions with nearly constant customer  
511 density. Instead of considering emission costs, [Davis & Figliozzi \(2013\)](#) use CA as a part of their integrated cost model  
512 to evaluate the competitiveness of electric delivery trucks. CA is used to approximate the average cost of serving  
513 routes in VRP setting. Assuming that the number of customers per route is balanced and each vehicle is capacitated,  
514 they use a refined version of VRP approximation of [Daganzo \(2005\)](#), which is introduced by [Figliozzi \(2008\)](#) with an  
515 additional term to modify the local (service region) tour distance: [Figliozzi \(2008\)](#) replaces the local distance term

516  $k_{VRP}\sqrt{TN}$ , with  $k'_{VRP}\frac{(N-M)}{N}\sqrt{TN}$  where  $M$  represents the number of routes needed to serve all the customers  
517 and  $k'_{VRP}$  is estimated by linear regression. When  $M = N$  (each route contains only one customer), the local  
518 distance becomes zero whereas when  $N >> M$ , the expression tends to the original version. Furthermore, [Davis &](#)  
519 [Figliozzi \(2013\)](#) state that the VRP cost term can be generalized to the cases with time window constraints by using  
520 the approximation of [Figliozzi \(2009\)](#) for the average length of VRPs with time windows.

521 [Francis & Smilowitz \(2006\)](#) use a CA model to solve a periodic VRP with service choice (PVRP-SC), which is a VRP  
522 variant where the visit frequencies to the customers are considered as decisions of the model. This problem can be  
523 classified under one-to-many distribution without transshipment. The authors design a fast and valid approximation  
524 scheme for the strategic level PVRP-SC since the exact and heuristic solution methods to the discrete model are  
525 limited by the size of problem instance ([Francis et al., 2006](#)). Similar to VRP approximations in [Daganzo \(2005\)](#), the  
526 routing costs are divided into line haul and detour costs. The exact data for node locations and demand volumes are  
527 replaced with continuous density functions and a continuous model is developed for PVRP-SC. The concept of PVRP-  
528 SC is later used in a bilevel game-theoretic model to improve the effectiveness of parking enforcement patrol ([Lei](#)  
529 [et al., 2017](#)), where individual parking drivers' endogenous payment decisions (which are based on knowledge of the  
530 patrol visit frequencies) directly affect the number of vehicles in parking violation as well as the patrol officers' work  
531 efficiency. The CA model is compared with a discrete mathematical programming formulation to reveal managerial  
532 insights and to show computational efficiency. In a similar setting, [Pang & Muyldermaans \(2013\)](#) use CA to evaluate the  
533 value of postponing routing decisions on overall vehicle routing cost or distance when clients' requests accumulate  
534 over time and vehicles with fixed capacity visit clients regularly to cover the accumulated demand. Each client  
535 must be served with a single vehicle; i.e., demand splitting across vehicles is not allowed. They solve the underlying  
536 capacitated VRPs with a local search heuristic and CA. The CA model is also used in cases with different (asymmetric)  
537 demand rates. The results from local search and CA behave similarly and illustrate the benefit of postponement, yet  
538 the results of CA model overestimate the improvement compared to the local search as the asymmetric demand cases  
539 lead to inaccuracies in approximations.

540 [Agatz et al. \(2011\)](#) use CA to determine the set of delivery time slots to offer customers in different regions for  
541 an e-tailer in a one-to-many distribution system without transshipment. Similar to [Francis & Smilowitz \(2006\)](#), the  
542 authors provide an integer programming alternative and test the validity and quality of their CA model on different  
543 instances. Different from [Francis & Smilowitz \(2006\)](#), their CA model includes costs that stem from time slot config-  
544 urations (such as costs within the same zip and costs across different zips in the same time slot). Their CA model is  
545 able to provide high quality solutions in significantly shorter times compared to those of integer programming.

546 In another one-to-many distribution without transshipment setting, [Huang et al. \(2013\)](#) use CA to solve the so-  
547 called assessment routing problem which routes assessment teams to different communities to assess damage and  
548 relief needs following a disaster, and the aim is to minimize the sum of arrival times to communities. CA becomes  
549 useful in a disaster relief setting due to lack of precise data, time pressure and necessity for easy implementation.  
550 The study considers two different routing policies based on the separation of the region of interest, extending [Newell](#)  
551 & [Daganzo \(1986\)](#). Different from already discussed studies, the authors propose a hybrid solution approach which

552 improves the solutions of the CA model by using a restricted Tabu Search. Often CA approach is considered as a  
553 tractable complementary solution approach; this study provides a framework for the integration of CA and exact  
554 and/or heuristic methods.

555 [Daganzo & Erera \(1999\)](#) study the effects of uncertainty on logistics system design. To design a robust logistics  
556 system, they determine the optimal level of redundancy, which is both sufficient and cost-effective, along with the  
557 operating strategy necessary to utilize this redundancy. They consider two one-to-many problems, a static VRP (no  
558 transshipment) and a warehouse location-inventory-routing problem (with transshipment). Redundancy is intro-  
559 duced in the VRP by removing the single tour assumption made in the initial problem statement. The delivery zones  
560 and secondary vehicle routes must be determined, which is done using CA. They find that the total distance traveled  
561 is a function of primary and secondary line-haul distances as well as combined local delivery distance. The primary  
562 vehicles follow their tours and return when they reach capacity. The secondary vehicle tours serving the remaining  
563 customers can then be modeled deterministically. [Erera & Daganzo \(2003\)](#) further extend this model to dynamic  
564 vehicle routing with uncertain demand that is initially known only by its stochastic distribution and then realized  
565 over time. They suggest a threshold global sharing scheme, which requires the use of CA. In their model, the vehicles  
566 come from a central depot to serve the customers in the region. The customer demand and locations are initially  
567 only given as a distribution. As more information comes in, the vehicle routes are re-optimized in real-time in order  
568 to minimize cost. With their scheme, the customers are served in three phases. The first phase is a preplanned route.  
569 When the vehicles reach capacity, they return to the depot, even if they have not completed their planned route.  
570 When phase one is over, the remaining customers are assigned to the vehicles for phase two. Phase three consists of  
571 any customers that are still remaining at the end of phase two. The customer locations become known right before  
572 the vehicles leave the depot, and the demand size of each customer is only known when the vehicle reaches the  
573 customer. CA is used to estimate the total route length of all three phases.

574 In a many-to-many setting, [Smilowitz & Daganzo \(2007\)](#) analyze integrated package distribution systems in a  
575 multiple mode, multiple service level package distribution networks. Assuming two transportation modes (air and  
576 ground) and two service levels (express and deferred), the authors study two different network configurations: Fully  
577 integrated and non-integrated. Demand data is considered deterministic and stationary; however, an extension  
578 for stochastic case is also provided. The authors develop a CA model which represents the solution as functions  
579 (densities) of location (variables) under certain assumptions. This study differs from the existing studies in the  
580 literature since it considers multiple transshipments and multi-stop peddling tours in many-to-many setting and it  
581 includes additional operating costs such as repositioning empty vehicles.

582 The studies of [Kawamura & Lu \(2007\)](#), [Chen et al. \(2012\)](#) and [Lin et al. \(2016\)](#) use CA when evaluating the effects of  
583 delivery consolidation. The studies consider many-to-many networks with multiple suppliers and customers. When  
584 the distribution is consolidated, the suppliers cooperate and send their products to consolidation centers through  
585 which these products are distributed whereas the distribution is carried out directly from suppliers to customers in  
586 the unconsolidated case. [Kawamura & Lu \(2007\)](#) analyze the effect of consolidation in urban areas. They assume that  
587 each customer is treated equally and the same number of customers are visited at each dispatch with identical vehi-

588 cles of maximum capacity. Inventory costs are considered negligible. In addition, the consolidated setting assumes  
589 constant headways and coordination between the inbound and outbound shipments is not considered. With these  
590 assumptions, continuous cost functions are developed by considering inbound, outbound and terminal costs, and the  
591 optimal costs for both settings are calculated for two alternative types of vehicles. [Kawamura & Lu \(2007\)](#) conclude  
592 that consolidation is not significantly beneficial, particularly with the current regulations regarding vehicle size and  
593 weight. [Chen et al. \(2012\)](#) extend [Kawamura & Lu \(2007\)](#) to represent smaller businesses. They estimate parameters  
594 using additional data source and base cost-effectiveness comparison to additional factors such as customer density,  
595 demand quantity and vehicle specifications. Furthermore, they consider coordinated delivery consolidation strat-  
596 egy with synchronized inbound and outbound trips in addition to direct delivery and uncoordinated consolidation  
597 strategies. Their results show that consolidation can be cost-effective when the consolidation center is close to the  
598 suppliers, the underlying network consists of large number of customers and suppliers, and terminal operations are  
599 not expensive. [Lin et al. \(2016\)](#) extend the study of [Chen et al. \(2012\)](#) considering energy consumption and PM2.5  
600 emissions as additional costs. Their results suggest similar findings to [Chen et al. \(2012\)](#) for cost-effectiveness of  
601 consolidation strategies.

602 In another many-to-many distribution setting, [Campbell \(2013\)](#) considers time definite freight transportation  
603 in a one dimensional service region. The objective of the study is to minimize the maximum travel distance in the  
604 hub network for each origin-destination pair in order to achieve a certain service level. The author compares two  
605 different settings to achieve a given level of service: Use of a sufficient number of optimally located hubs (optimal  
606 in terms of transportation costs) and use of (potentially) fewer hubs, which are sufficient to satisfy the service level,  
607 without considering the transportation cost. Assuming that the hubs are equally separated, the author provides  
608 a CA model to determine the locations of the hubs over the service region. In conclusion, studies of distribution  
609 related problems within the last two decades focus more on real life problems with operational constraints instead  
610 of generic problems such as the traveling salesman problem and the VRP.

611 Many of these models only yield continuous vehicle routing characteristics that are not suitable for implemen-  
612 tation in practice. To the best of our knowledge, there are two studies that introduce methods to discretize the  
613 solutions from CA routing and distribution models. The first one is introduced by [Daganzo \(1984\)](#) where a strip-and-  
614 sweep strategy is used to construct the tours instead of asymptotically approximating the length. The second one is  
615 introduced by [Ouyang \(2007\)](#) where the author formulates an automated approach to discretize CA guidelines into  
616 discrete vehicle routing zones to enhance the practicality of the CA modeling framework for stochastic VRP. This is  
617 achieved by utilizing a disk model and weighted centroidal Voronoi tessellations. Customer demand is modeled in a  
618 region with a ring-radial network. The disk model is used to find an initial zone partition, including the approximate  
619 sizes and shapes of the partition areas. Then, the partition is further optimized by the weighted centroidal Voronoi  
620 tessellations, which equalizes the delivery load size in each zone. To solve stochastic problems, the customer demand  
621 just needs to be re-defined after the exact discrete information becomes known.

622 3.3. *Transit Studies*

623 CA has been used extensively in transit settings particularly for public transportation systems with one-to-many  
624 and many-to-one patterns; see [Langevin et al. \(1996\)](#) for a summary on the early papers. A critical issue in public  
625 transportation is to offer services that are relatively inexpensive and as competitive as automobiles in terms of  
626 transportation quality. For this purpose, many studies focus on designing efficient networks by using various types  
627 of service options and routing the vehicles in the existing systems more efficiently. Table 6 provides a summary of  
628 problem types, cost components and main contributions of the transit related studies considered in this review. In  
629 addition, CA is frequently used in traffic assignment problems to investigate traffic flow and route choice behaviors  
630 of travelers in a specific region (see [Jiang et al. \(2011\)](#) for a recent review).

631 The cost structure used in Table 6 can be summarized as follows: *Operational* costs involve vehicle related costs  
632 including travel distance (or time), rebalancing, repositioning and holding costs. *Infrastructure* costs are the fixed  
633 costs of building infrastructure for the underlying transit system such as charging stations for electric vehicles or  
634 parking spaces for a fleet of vehicles. *User* costs are related to passenger's disutility such as walking, waiting and  
635 in-transit (or ride) time. Lastly, *occupancy* considers utilization of vehicles for a proper fleet and/or vehicle size  
636 selection.

637 Transit related services are divided broadly into two service categories: fixed route transit (FRT) service and  
638 demand responsive transit (DRT) service. In FRT, a large-capacity vehicle follows a fixed route with a given schedule  
639 and passengers can get on the vehicle at predetermined stops. Due to its large capacity, the vehicle can consolidate  
640 many passengers, making FRT a cost-efficient option in public transportation. In DRT, the route is not fixed and  
641 relatively small vehicles provide a door-to-door transportation option for passengers (taxicabs, dial-a-ride). DRTs  
642 provide more flexibility to passengers yet they are more costly compared to FRTs.

643 [Munoz \(2002\)](#) studies an FRT system from a driver contract and schedule perspective. The objective cost function  
644 consists of vehicle operating cost and passenger delay cost. The author considers both contract scheduling work as  
645 well as the design of a timetable based upon pre-existing driver contracts. For the latter, the author uses CA in order  
646 to address the uncertainty of driver absences as well as to analyze the cost sensitivity of the final solution. The  
647 influence of driver's absence is analyzed by comparing the ideal model assuming that all drivers are present and the  
648 stochastic one accounting for driver absences. A numerical optimization method is then used to verify the optimal  
649 solution.

650 [Diana et al. \(2006\)](#) consider a fleet sizing problem for DRT services with time windows and develop a probabilistic  
651 model which inputs the demand distribution over the service region along with the desired service quality. While  
652 determining time windows, the authors consider an allowable level of waiting time implied by the considered quality  
653 level. Their DRT setting allows consolidation; i.e., the vehicle is allowed to pick up additional passengers before drop-  
654 ping off the current one(s). Their model uses CA to estimate the distribution of leg lengths in vehicle routes where  
655 leg length specifies the distance between two consecutively visited points. In a similar DRT setting, [Li et al. \(2016\)](#)  
656 uses CA to design an electrical vehicle (EV) sharing system without consolidation. Different from regular car shar-  
657 ing, EV sharing system must consider nonlinear vehicle charging times. The authors decompose the corresponding

Table 6: Transit papers summary.

|        |                                 | Study | Operational<br>Infrastructure | User<br>Occupancy                                                                                                                                         | Main Contribution(s)                                                                                                                   |                                                                                                                                                                               |
|--------|---------------------------------|-------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                 |       | Cost Structure                |                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                               |
| DRT    | Diana et al. (2006)             |       |                               |                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                               |
|        | Chandra and Quadrifoglio (2013) | X     | X                             | Estimates the optimal cycle length of DRT vehicles in feeder transit services.                                                                            |                                                                                                                                        |                                                                                                                                                                               |
|        | Li et al. (2016)                | X     | X                             | X                                                                                                                                                         | Considers car sharing in electrical vehicles.                                                                                          |                                                                                                                                                                               |
| FRT    | Munoz (2002)                    | X     |                               |                                                                                                                                                           | Considers driver contract and schedule.                                                                                                |                                                                                                                                                                               |
|        | Ellegood et al. (2015)          | X     |                               |                                                                                                                                                           | Analyzes the effect of mixed loading in school bus routing.                                                                            |                                                                                                                                                                               |
| Hybrid | Aldaihani et al. (2004)         | X     | X                             | Determines the number of zones allowing multiple on-demand vehicles at each zone and assuming the ride time on a fixed route is a function of zone count. |                                                                                                                                        |                                                                                                                                                                               |
|        | Quadrifoglio et al. (2006)      |       |                               | Develops bounds on the maximum longitudinal velocity in MAST setting.                                                                                     |                                                                                                                                        |                                                                                                                                                                               |
|        | Daganzo (2010)                  | X     | X                             | X                                                                                                                                                         | X                                                                                                                                      | Discusses network shapes and operating characteristics to make transit systems as attractive as using an automobile. Various different cost functions are used.               |
|        | Quadrifoglio and Li (2009)      |       |                               | X                                                                                                                                                         | Derives expressions that estimate the critical demand densities to decide when to switch the operation from DRT to FRT and vice versa. |                                                                                                                                                                               |
|        | Li and Quadrifoglio (2011)      |       |                               | X                                                                                                                                                         | Expands Quadrifoglio and Li (2009) by considering two vehicle operation in each zone.                                                  |                                                                                                                                                                               |
|        | Nourbakhsh and Ouyang (2012)    | X     | X                             | X                                                                                                                                                         | X                                                                                                                                      | Integrates the hybrid network structure of Daganzo (2010) with the flexible route idea of Quadrifoglio et al. (2006). Designs a flexible transit system for low demand areas. |
|        | Ouyang et al. (2014)            | X     | X                             | X                                                                                                                                                         | X                                                                                                                                      | Extends Daganzo (2010) to design bus networks under spatially heterogeneous demand, allowing denser local routes for high demand areas with smaller spacings.                 |

658 region into smaller regions and solve the problem in sub-linear time with bisection algorithm. Decisions such as  
 659 fleet sizes and sharing station locations are optimized jointly with EV sharing operations to ensure a reliable service  
 660 level under stochastic and dynamic customer demand.

661 [Chandra & Quadrifoglio \(2013\)](#) develop a two-step queuing model which estimates the optimal cycle length of  
 662 DRT vehicles in feeder transit services. Demand responsive feeder transit services connect passengers to major  
 663 networks with on-demand vehicles that generally pick up and drop off multiple passengers in a single trip. Serving  
 664 many passengers in each tour is beneficial as it increases ride sharing; however, it increases riding times for the  
 665 passengers. Having too few passengers in each tour may not be practical especially when the demand of the service  
 666 region is relatively high. The authors construct a utility based CA model by using inequalities that relate the number  
 667 of served passengers to the cycle length. Similarly, [Ellegood et al. \(2015\)](#) uses CA to analyze the effect of mixed loading  
 668 in school bus routing. School bus routing can be considered as an FRT and mixed loading indicates that a single

669 vehicle can carry students from different schools at the same time. [Aldaihani et al. \(2004\)](#), [Quadrifoglio et al. \(2006\)](#)  
670 and [Quadrifoglio & Li \(2009\)](#) use CA to design hybrid networks which combine DRT and FRT. [Aldaihani et al. \(2004\)](#)  
671 develop a model which divides the region into smaller zones such that across-zone transits are handled with fixed  
672 route vehicles whereas each zone is served by on-demand vehicles. Their model allows a maximum of three transfers  
673 for each passenger, assumes that each zone is covered by the same number of on-demand vehicles and prevents ride  
674 sharing on on-demand vehicles. The cost function tries to balance the cost to passenger (travel time) and cost of on-  
675 demand and fixed vehicles. Using approximations of travel times and passenger waiting times from [Larson & Odoni](#)  
676 ([1981](#)), they get a closed form representation of the cost function which is proven to be convex for certain parameter  
677 values. Furthermore, their sensitivity analysis indicates that demand density affects the optimal number of zones,  
678 but not the number of fixed buses per route. [Quadrifoglio et al. \(2006\)](#) study mobility allowance shuttle transit  
679 (MAST) in a rectangular region. In MAST, the fixed route vehicle is allowed to make deviations from the course  
680 to pick-up/drop-off passengers while maintaining an acceptable velocity level towards its destination. Their study  
681 focuses on developing bounds on the maximum longitudinal velocity of the MAST vehicle. Similar to Daganzo's strip  
682 strategy ([Daganzo, 1984](#)), the authors find a sufficient condition on the longitudinal distance between consecutive  
683 demand points for which no-backtracking is optimal. Assuming no-backtracking and using CA, the authors find a  
684 closed form formula for the lower bound on maximum velocity as a function of region length, region width, demand  
685 density, service time (pick-up / drop-off) and average vehicle speed. In addition, they develop two upper bounds  
686 on optimal value of maximum velocity. A different hybrid is proposed in the study of [Quadrifoglio & Li \(2009\)](#) for  
687 feeder lines that are used to connect service areas to a major transit network. The feeder lines work in FRT setting  
688 when the demand is high whereas they switch to DRT setting as the demand decreases. In this study, the authors  
689 identify the conditions that trigger the switch in a rectangular region. CA is used to formulate the utility functions  
690 of DRT and FRT with one-vehicle and two-vehicle settings, and switching conditions (critical demand densities) are  
691 identified based on various factors such as region geometry, vehicle speed and travel time. [Li & Quadrifoglio \(2011\)](#)  
692 expand this work by considering a two-vehicle operation in each zone, with each vehicle serving half of the zone.  
693 This model is better for a large service area with a high level of demand.

694 [Daganzo \(2010\)](#) focuses on designing network shapes and operating characteristics to make transit systems as  
695 attractive as using an automobile. Daganzo works on idealized square regions with uniform demand and provides  
696 network structures which combine grid and hub-and-spoke concepts. A hybrid of both networks can be formed by  
697 having a central square with grid structure in the center and branches from central square to cover periphery (see  
698 Figure 5). Daganzo's CA model uses agency cost metrics such as infrastructure costs and vehicle travel costs; and  
699 user cost metrics such as expected number of transfers, waiting time, travel distance, and travel time. The ideas  
700 are further extended in [Ouyang et al. \(2014\)](#) to design bus networks under spatially heterogeneous demand, where  
701 denser local routes are allowed for high demand areas with distinctly smaller spacings on a power-of-two scale. In a  
702 related study, [Nourbakhsh & Ouyang \(2012\)](#) integrate hybrid network structure of [Daganzo \(2010\)](#) with flexible route  
703 idea of [Quadrifoglio et al. \(2006\)](#) to design a flexible transit system for low demand areas. The continuous formulation  
704 allows them to derive analytical conditions in which flexible-route transit provides the most economic passenger

705 transportation service. In general, the applications of transit problems from public transportation and electrical  
706 vehicle perspective have been increased as alternatives to fuel consuming private cars become more desirable.

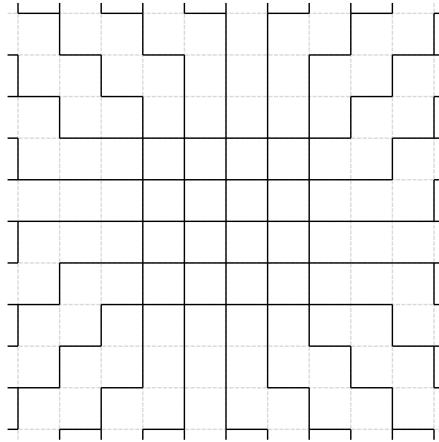



Figure 5: A hybrid network with a grid in the center and with branches in the peripherals. (Adapted from [Daganzo \(2010\)](#))

#### 707 4. Integrated Supply Chain and Logistics Studies

708 Integrated supply chain and logistics models have been widely taken into consideration recently. Whether it is  
709 the integration of location and inventory problems or the integration of location and transportation problems, the  
710 availability of better approximation tools to deal with the complexity can be identified as the main reason for this  
711 trend. See Table 7 for the summary of integrated supply chain papers.

712 One of the pioneering studies of integrated supply chain design is a paper by [Naseraldin & Herer \(2008\)](#). They  
713 model a continuous location-inventory problem on a line segment and analytically quantify the benefits of inte-  
714 grated modeling. Although this model considers only first-order inventory sharing, [Naseraldin & Herer \(2011\)](#) ex-  
715 tend the problem to allow transshipments of inventory between facilities. They point out several interesting results,  
716 e.g., that it can be optimal to increase the density of facilities when unit holding cost increases. Their results high-  
717 light the importance of modeling other forms of inventory sharing than the classical risk pooling. Incorporating  
718 the issues of location, production, inventory, and transportation within a supply chain, [Pujari et al. \(2008\)](#) present  
719 a multi-product, multi-period production-distribution system with deterministic demand and linear transportation  
720 costs. Once they determine the strategic level location-allocation decisions in a mixed-integer optimization model,  
721 a CA model is developed that uses these decisions as an input and fine-tunes them further to provide a detailed dis-  
722 tribution plan that optimizes the transportation and inventory costs and determines the optimal number and size  
723 of shipments under multiple scenarios arising from common production and shipping patterns.

724 [Mak & Shen \(2012\)](#) follow the idea of [Lim et al. \(2013\)](#) and further extend the CA model to incorporate inven-  
725 tory considerations into strategic facility location and network design decisions. Response to demand uncertainty

Table 7: Integrated supply chain papers summary.

| Study                        | Facility opening | Facility operating | Transportation | Inventory | Other | Main Contribution(s)                                                                                                                              |
|------------------------------|------------------|--------------------|----------------|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Cost             | Structure          |                |           |       |                                                                                                                                                   |
| Erlebacher and Meller (2000) | X                |                    | X              | X         |       | Considers location-inventory in a two-level distribution system.                                                                                  |
| Wang et al. (2004)           | X                |                    |                | X         |       | Studies the economics of park and ride facilities.                                                                                                |
| Shen and Qi (2007)           |                  |                    | X              | X         |       | Calculates the routing cost using CA.                                                                                                             |
| Pujari et al. (2008)         |                  |                    | X              | X         | X     | Uses mixed-integer programming models as input to and/or in conjunction with CA in a production-distribution system.                              |
| Naseraldin and Herer (2008)  |                  | X                  | X              | X         |       | Uses CA approach for integrated supply chain design with first order inventory sharing.                                                           |
| Naseraldin and Herer (2011)  |                  | X                  | X              | X         | X     | Integrates location and inventory decisions allowing transshipments of inventory between facilities.                                              |
| Mak and Shen (2012)          | X                | X                  |                | X         |       | Considers dynamic sourcing and inventory sharing in supply chain design.                                                                          |
| Tsao and Lu (2012)           |                  | X                  | X              | X         |       | Integrates facility location and inventory allocation problem with transportation cost discounts.                                                 |
| Tsao et al. (2012)           | X                |                    | X              | X         |       | Integrates a facility location-allocation with an inventory management problem.                                                                   |
| Tsao (2013)                  | X                | X                  | X              | X         |       | Studies distribution center network under trade credits.                                                                                          |
| Saberi and Mahmassani (2013) |                  |                    | X              |           |       | Introduces an application of CA in airline hub location problem.                                                                                  |
| Cachon (2014)                | X                | X                  | X              | X         |       | Combines an inventory model with the TSP and the k-median problem.                                                                                |
| Pulido et al. (2015)         |                  | X                  | X              | X         |       | Considers the spatial and time dimensions in a unique logistics problem.                                                                          |
| Xie and Ouyang (2015)        | X                | X                  | X              | X         |       | Proves optimal layout of a transshipment system that combines the TSP and the k-median problem, with inventory considerations.                    |
| Tsao (2016)                  |                  |                    | X              | X         | X     | Discusses supply chain network design problems for deteriorating items with trade credits.                                                        |
| Tsao et al. (2016)           | X                |                    | X              |           | X     | Considers multi-item distribution network design problems of multi-echelon supply chains under volume (weight) discounts on transportation costs. |
| Lim et al. (2016)            | X                |                    | X              | X         |       | Considers the supply chain's agility.                                                                                                             |

726 is allowed via inventory sharing arrangements, over both the temporal dimension (e.g., through uncertainty pooling)  
727 and the spatial dimension (e.g., through responsive transshipments). It is shown how inventory management  
728 strategies and location decisions are jointly optimized to affect the facility number and spatial distribution.

729 [Cachon \(2014\)](#) uses the CA approach to locate retail stores and evaluate their environmental impacts under dif-  
730 ferent governmental policies. The retail store density problem combines an inventory model with the TSP and the

731 continuous k-median problem. [Xie & Ouyang \(2015\)](#) further prove optimal spatial layout of transshipment facilities  
732 and the corresponding service regions in an infinite homogeneous plane to minimize the total cost for facility set-up,  
733 outbound delivery and inbound replenishment transportation. On a Euclidean plane, a tight upper bound (within  
734 0.3%) can be achieved by a type of elongated cyclic hexagons. A similar elongated non-cyclic hexagon shape, with  
735 proper orientation, is optimal for service regions on a rectilinear metric plane.

736 [Erlebacher & Meller \(2000\)](#) study a location-inventory model for designing a two-level distribution system. They  
737 assume the location of serving customers to be continuously distributed. More recently, [Tsao & Lu \(2012\)](#) study an  
738 integrated facility location and inventory allocation problem with transportation cost discounts. They develop a  
739 two-phase algorithm to solve the supply chain network design problem: In the first phase, they partition the service  
740 region into subregions (or subregion clusters) within which the demand values are varying slowly. In the second  
741 phase, they use a CA model to solve the resulting facility location and inventory allocation problem over those sub-  
742 regions with an approximate total network cost. This is the first study based on CA for a supply chain network design  
743 problem with transportation cost discounts and inventory decisions techniques. Similarly, [Tsao et al. \(2012\)](#) study  
744 an integrated facility location and inventory allocation problem for designing a distribution network with multiple  
745 distribution centers (DCs) and retailers. CA model is used to represent this complex network. In this study, they  
746 not only locate the regional DCs and assign retail stores to them, but also determine the inventory policy at each  
747 location. In a later study, [Tsao et al. \(2016\)](#) use CA to compare the effect of single cluster replenishment policy to  
748 joint cluster policy on supply chain network design. They assume that the locations of DCs and retailers are given  
749 and the transportation cost is affected by volume discounts. Their proposed solution defines the input data as con-  
750 tinuous functions similar to [Tsao & Lu \(2012\)](#) and [Tsao et al. \(2012\)](#). [Lim et al. \(2016\)](#) study the design of a supply  
751 chain distribution network under demand uncertainty. Unlike traditional facility location models for supply chain  
752 design, they consider the supply chain's agility defined by the ability to quickly respond to unexpected fluctuations  
753 in customer demand. They use the CA approach to model customer demand such that demand points are evenly  
754 spread on a two-dimensional infinite homogeneous plane while considering first- and second-order inventory shar-  
755 ing. The first-order inventory sharing refers to physical inventory pooling at a distribution center (DC) where the  
756 firm aggregates the regional inventory at a centralized DC. The second-order inventory sharing refers to informa-  
757 tion pooling where DCs share information on inventory availability and reallocate the order in case of unavailability.  
758 In this case, having larger distribution centers which are less likely to run out of inventory can be more favorable  
759 than having smaller ones, because of (i) costly operations due to second-order inventory sharing under high trans-  
760 portation costs from secondary shipments, (ii) the inconvenience costs from administrative and communication  
761 procedures, and (iii) the cost of expedited shipments to make up for additional lead times. Their findings suggest  
762 that proximity-based facility location models are not sufficient for designing modern responsive supply chains, and  
763 a new class of models must be developed.

764 Similar to the location-allocation problem proposed by [Murat et al. \(2010\)](#) but with trade credits, [Tsao \(2013\)](#)  
765 considers a distribution center network design problem. Trade credit means that a seller gives a buyer extra time to  
766 pay or a discount for early payment as a credit. Tsao uses CA to model the problem and provides the location of DCs,

767 the allocation of retail stores to DCs and the joint replenishment cycle time at DCs. Adding the item perishability  
768 to the problem, [Tsao \(2016\)](#) uses CA to study an integrated facility location, inventory allocation and preservation  
769 effort problems by considering perishable items and trade credits. This study uses an approximation technique [Tsao](#)  
770 [et al. \(2012\)](#) to divide the network into smaller regions over which the discrete variable can be modeled using the  
771 slow varying functions.

772 Integrating pricing decision with facility location setting, [Wang et al. \(2004\)](#) consider the optimal location for  
773 a park-and-ride facility and pricing of park-and-ride facilities within a linear continuous region. As an application  
774 of CA in airline service network planning, [Saberi & Mahmassani \(2013\)](#) apply CA to the airline hub location and  
775 optimal market problem, more specifically in restricted and unrestricted single-hub systems. Unlike the airline  
776 service network planning literature, they model the optimal market for an airline in a competitive structure with  
777 multiple airlines and already located hubs. Combining routing and facility location problems, [Shen & Qi \(2007\)](#) first  
778 estimate the optimal routing (VRP) cost by using a CA submodel which provides a closed form representation, then  
779 include this cost component to their integrated discrete model. Even though this study is not considered as a facility  
780 location study, it uses the results derived from another CA routing model while solving a facility location problem.  
781 Considering time windows constraints, [Pulido et al. \(2015\)](#) study a combined location-routing problem. They use  
782 CA to determine the optimal warehouse density for the served region, assuming its customer density is known.  
783 The proposed approach is similar to [Agatz et al. \(2011\)](#), but no time slots are offered. In conclusion, applications of  
784 CA to more integrated settings have increased recently, due to the fact that the CA approach provides an easy-to-  
785 implement platform to deal with such complex problem settings.

786 **5. Concluding Remarks and Future Directions**

787 In this review, we survey the continuous approximation models that have been developed for facility location  
788 problems, distribution and transit problems, and integrated supply chains. We classify the problems and highlight  
789 the main contributions of each work along with a discussion on the use of CA in their modeling and analysis. In our  
790 concluding remarks, we provide a summary of the current status of CA and a guideline for logistics researchers by  
791 identifying the fruitful topics and introducing the gaps that need to be filled.

792 **5.1. Current Trends and Addressed Gaps**

793 Careful observation of the CA literature in the past two decades reveals two clear trends in CA applications. First,  
794 the routing related problems were in the center of CA studies in the early 80s and 90s ([Langevin et al., 1996](#)). However,  
795 this trend seems to be shifting towards facility location related studies in the last two decades. Compared to the other  
796 streams, more researchers are focusing on the CA applications on facility location problems and integrated supply  
797 chains. Second, the research on CA is used for a wider range of applications (e.g. home grocery delivery, bus routing,  
798 electric delivery trucks, routing in disaster relief, traffic sensor deployment for surveillance, airline hub location and  
799 so forth) compared to the last decade.

800 In their literature review, [Langevin et al. \(1996\)](#) discuss four main gaps in the CA literature which are investigated  
801 by various studies during the last decade: First, there were few reported applications of CA. CA approaches were used  
802 at early stages of the analysis and replaced by more detailed (discrete) models in later stages, which were reported  
803 in the literature instead of CA approaches. Along with many other application studies, the studies of [Diana et al. \(2006\)](#),  
804 [Quadrifoglio & Li \(2009\)](#), [Agatz et al. \(2011\)](#), and [You et al. \(2011\)](#) fill this gap with their reported applications  
805 on large scale real-life applications. Second, the cost structure of early studies was mostly limited in the sense  
806 that they only consider the trade-off between inventory and transportation costs. As the studies focus more on a  
807 wide range of real-life applications, various cost structures such as emission cost ([Saberi & Verbas, 2012](#); [Lin et al., 2016](#)),  
808 energy cost ([Davis & Figliozzi, 2013](#)) and repositioning cost ([Smilowitz & Daganzo, 2007](#)) are discussed. Third,  
809 the vast majority of the studies ignored time window or duration constraints which are essential components for  
810 many logistics systems. The studies of [Agatz et al. \(2011\)](#) and [Campbell \(2013\)](#) fill this gap as they incorporate time  
811 notion under various settings. Last, certain logistics systems (many-to-many distribution with transshipment and  
812 peddling) had not been studied. The integrated package distribution study by [Smilowitz & Daganzo \(2007\)](#) and the  
813 consolidation studies by [Kawamura & Lu \(2007\)](#), [Chen et al. \(2012\)](#) and [Lin et al. \(2016\)](#) are examples of many-to-many  
814 distribution with transshipment systems.

815 **5.2. Research Gaps**

816 The rest of this section discusses potential research topics and gaps in the existing literature. These gaps can be  
817 clustered under four main topics:

- 818 (i) **Using CA to support exact or heuristic solution approaches for discrete models:** In most studies, CA ap-  
819 proach is used as an alternative to hard-to-solve discrete problems. These studies chiefly discuss the difficulty  
820 of the underlying discrete model and elaborate on how to use a CA model to yield feasible solutions within  
821 reasonable time. Nonetheless, CA is not only an effective tool to generate fast solutions, it can also be used to  
822 generate upper and lower bounds for the original problem as in [Ouyang & Daganzo \(2006\)](#). Such bounds enable  
823 decision makers evaluate the quality of the solutions and have potential to improve the speed and quality of  
824 solution approaches for the discrete models. In other words, rather than being an alternative approach, CA  
825 can be integrated to exact and heuristic solution approaches.
- 826 (ii) **Using CA at the operational level:** CA approach is chiefly applied to make strategic level decisions and gain  
827 insights about the big picture. However, as seen in [Agatz et al. \(2011\)](#), CA can be used in real-time tactical and  
828 even in operational problems to increase the responsiveness in a dynamic decision making environment. Most  
829 of the dynamic decisions have to be made in an order of minutes or seconds and solely using discrete models  
830 with exact solution methods is likely to fail in these cases. Therefore, use of CA in dynamic decision making  
831 environment can be a potential future research topic.
- 832 (iii) **Designing better quality measures to evaluate CA solutions:** Apart from the performance or optimality  
833 gaps, we need better measures to quantify the solution quality of CA. Solutions of many CA models provide

834 significant improvements with simple modifications. Further improvements can be achieved by solving dis-  
835 crete models which can be extremely difficult (Daganzo, 2005). In addition to their difficulty, the solutions  
836 returned by discrete models may be difficult to interpret and implement. From this perspective, CA models  
837 have a critical benefit as they generally lead to simpler solutions that are easy to understand, explain and im-  
838 plement. In other words, easiness in the implementation stage has a value in real life. Huang et al. (2013) is  
839 an example of such studies where the authors use Tabu search on the result of CA model to reduce the perfor-  
840 mance gap of the solution. For this reason, defining measures which are capable of quantifying the trade-off  
841 between solutions from discrete modes and CA models in terms of both solution quality and ability to imple-  
842 ment is necessary for a fair evaluation of both practices.

843 (iv) **Extending the use of CA in integrated problems and other fields:** Integrated models have always been of  
844 interest for supply chain and logistics researchers because of their comprehensiveness, but they are not always  
845 tractable due to their complexity in both modeling and solution approaches. However, the CA approach may  
846 potentially bridge this gap. There are several studies addressing this gap with the integration of different  
847 aspects of supply chain and logistics modeling especially with facility location decisions (Tsao & Lu, 2012; Tsao  
848 et al., 2012, 2016; Tsao, 2016; Lim et al., 2016). Furthermore, the application domains can be extended to other  
849 domains such as wireless sensor networks which satisfy most assumptions of CA (see Li & Ouyang (2011, 2012);  
850 An et al. (2017)) or logistics of drones as in the recent studies of Carlsson & Song (2017) on logistics of a truck  
851 and a drone, Campbell et al. (2017) on home delivery by drones, Hong et al. (2017) on commercial drones in  
852 urban areas and Chowdhury et al. (2017) on drones for disaster response and relief operations.

853 **Acknowledgement**

854 We would like to thank Christine Rhoades who helped with collecting and summarizing some of the references.  
855 We sincerely thank the three anonymous reviewers for their invaluable comments which enabled us to improve our  
856 work. Dr. Xiaopeng Li's work is supported by the US National Science Foundation through Grant CNS #1638355.

857 **References**

- 858 Agatz, N., Campbell, A., Fleischmann, M., & Savelsbergh, M. (2011). Time slot management in attended home delivery.  
859 *Transportation Science*, 45, 435–449.
- 860 Aikens, C. H. (1985). Facility location models for distribution planning. *European Journal of Operational Research*, 22,  
861 263–279.
- 862 Aldaihani, M. M., Quadrifoglio, L., Dessouky, M. M., & Hall, R. (2004). Network design for a grid hybrid transit service.  
863 *Transportation Research Part A: Policy and Practice*, 38, 511 – 530.
- 864 An, K., Xie, S., & Ouyang, Y. (2017). Reliable sensor location for object positioning and surveillance via trilateration.  
865 *Transportation Research Part B: Methodological*. To Appear.
- 866 Aurenhammer, F. (1991). Voronoi diagrams a survey of a fundamental geometric data structure. *ACM Computing  
867 Surveys (CSUR)*, 23, 345–405.
- 868 Bai, Y., Li, X., Peng, F., Wang, X., & Ouyang, Y. (2015). Effects of disruption risks on biorefinery location design.  
869 *Energies*, 8, 1468–1486.
- 870 Baldacci, R., Toth, P., & Vigo, D. (2007). Recent advances in vehicle routing exact algorithms. *4OR*, 5, 269–298.
- 871 Batta, R., Dolan, J., & Krishnamurthy, N. (1989). The maximal expected covering location problem - revisited. *Trans-  
872 portation Science*, 23, 277–287.
- 873 Beardwood, J., Halton, J. H., & Hammersley, J. M. (1959). The shortest path through many points. *Mathematical  
874 Proceedings of the Cambridge Philosophical Society*, 55, 299–327.
- 875 Beckmann, M. J., & Miksch, L. (1968). *Location theory*. Random House New York.
- 876 Berman, O., Krass, D., & Menezes, M. (2007). Facility reliability issues in network p-median problems: strategic  
877 centralization and co-location effects. *Operations Research*, 55, 332–350.
- 878 Blumenfeld, D. E., Burns, L. D., & Daganzo, C. F. (1991). Synchronizing production and transportation schedules.  
879 *Transportation Research Part B: Methodological*, 25, 23–37.
- 880 Blumenfeld, D. E., & Weiss, G. H. (1970). Routing in a circular city with two ring roads. *Transportation Research*, 4,  
881 235–242.
- 882 Bouchery, Y., & Fransoo, J. (2015). Cost, carbon emissions and modal shift in intermodal network design decisions.  
883 *International Journal of Production Economics*, 164, 388–399.
- 884 Bunge, W. (1966). *Theoretical geography* volume 1. Royal University of Lund, Dept. of Geography; Gleerup.
- 885 Cachon, G. P. (2014). Retail store density and the cost of greenhouse gas emissions. *Management Science*, 60, 1907–1925.

- 886 Campbell, J. F. (1990a). Designing logistics systems by analyzing transportation, inventory and terminal cost trade-  
887 offs. *Journal of Business Logistics*, 11, 159.
- 888 Campbell, J. F. (1990b). Locating transportation terminals to serve an expanding demand. *Transportation Research Part*  
889 *B: Methodological*, 24, 173–192.
- 890 Campbell, J. F. (1993). Continuous and discrete demand hub location problems. *Transportation Research Part B: Method-*  
891 *ological*, 27, 473–482.
- 892 Campbell, J. F. (2013). A continuous approximation model for time definite many-to-many transportation. *Trans-*  
893 *portation Research Part B: Methodological*, 54, 100–112.
- 894 Campbell, J. F., Sweeney II, D. C., & Zhang, J. (2017). *Strategic design for delivery with trucks and drones*. Technical Report.
- 895 Carlsson, J. G., & Jia, F. (2013). Euclidean hub-and-spoke networks. *Operations Research*, 61, 1360–1382.
- 896 Carlsson, J. G., & Jia, F. (2014). Continuous facility location with backbone network costs. *Transportation Science*, 49,  
897 433–451.
- 898 Carlsson, J. G., & Song, S. (2017). *Coordinated logistics with a truck and a drone*. Technical Report.
- 899 del Castillo, J. M. (1999). A heuristic for the traveling salesman problem based on a continuous approximation.  
900 *Transportation Research Part B: Methodological*, 33, 123–152.
- 901 Çavdar, B., & Sokol, J. (2015). A distribution-free tsp tour length estimation model for random graphs. *European*  
902 *Journal of Operational Research*, 243, 588–598.
- 903 Chandra, S., & Quadrifoglio, L. (2013). A model for estimating the optimal cycle length of demand responsive feeder  
904 transit services. *Transportation Research Part B: Methodological*, 51, 1–16.
- 905 Chen, Q., Li, X., & Ouyang, Y. (2011). Joint inventory-location problem under the risk of probabilistic facility disrup-  
906 tions. *Transportation Research Part B: Methodological*, 45, 991–1003.
- 907 Chen, Q., Lin, J., & Kawamura, K. (2012). Comparison of urban cooperative delivery and direct delivery strategies.  
908 *Transportation Research Record: Journal of the Transportation Research Board*, (pp. 28–39).
- 909 Chowdhury, S., Emeloglu, A., Marufuzzaman, M., Nurre, S. G., & Bian, L. (2017). Drones for disaster response and relief  
910 operations: a continuous approximation model. *International Journal of Production Economics*, 188, 167–184.
- 911 Christofides, N. (1975). *Graph theory: an algorithmic approach (Computer science and applied mathematics)*. Orlando, FL,  
912 USA: Academic Press, Inc.
- 913 Church, R., & ReVelle, C. (1974). The maximal covering location problem. *Papers in Regional Science*, 32, 101–118.
- 914 Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., & Vigo, D. (2007). Vehicle routing. *Handbooks in Operations Research and*  
915 *Management Science*, 14, 367–428.

- 916 Cornnejols, G., Fisher, M., & Nemhauser, G. (1977). Location of bank accounts of optimize float: An analytic study of  
917 exact and approximate algorithm. *Management Science*, 23, 789–810.
- 918 Cui, T., Ouyang, Y., & Shen, Z.-J. M. (2010). Reliable facility location design under the risk of disruptions. *Operations*  
919 *Research*, 58, 998–1011.
- 920 Daganzo, C. (1984a). The distance traveled to visit  $N$  points with a maximum of  $C$  stops per point: a manual tour-  
921 building strategy and case study. *Transportation Science*, 18, 331–350.
- 922 Daganzo, C. (2005). *Logistics system analysis (4th Edition)*. Berlin, Germany: Springer.
- 923 Daganzo, C., & Newell, G. (1986). Configuration of physical distribution networks. *Networks*, 16, 113–132.
- 924 Daganzo, C. F. (1984b). The length of tours in zones of different shapes. *Transportation Research Part B: Methodological*,  
925 18, 135–145.
- 926 Daganzo, C. F. (1987). Increasing model precision can reduce accuracy. *Transportation Science*, 21, 100–105.
- 927 Daganzo, C. F. (1988). A comparison of in-vehicle and out-of-vehicle freight consolidation strategies. *Transportation*  
928 *Research Part B: Methodological*, 22, 173–180.
- 929 Daganzo, C. F. (2010). Structure of competitive transit networks. *Transportation Research Part B: Methodological*, 44,  
930 434–446.
- 931 Daganzo, C. F., & Erera, A. L. (1999). On planning and design of logistics systems for uncertain environments. In *New*  
932 *Trends in Distribution Logistics* (pp. 3–21). Springer.
- 933 Dasci, A., & Laporte, G. (2005a). An analytical approach to the facility location and capacity acquisition problem  
934 under demand uncertainty. *Journal of the Operational Research Society*, 56, 397–405.
- 935 Dasci, A., & Laporte, G. (2005b). A continuous model for multistore competitive location. *Operations Research*, 53, pp.  
936 263–280.
- 937 Dasci, A., & Verter, V. (2001). A continuous model for production-distribution system design. *European Journal of*  
938 *Operational Research*, 129, 287–298.
- 939 Dasci, A., & Verter, V. (2005). Evaluation of plant focus strategies: a continuous approximation framework. *Annals of*  
940 *Operations Research*, 136, 303–327.
- 941 Daskin, M. (1982). Application of an expected covering model to emergency medical service system design. *Decision*  
942 *Science*, 13, 416–439.
- 943 Daskin, M. (1983). A maximum expected covering location model: formulation, properties and heuristic solution.  
944 *Transportation Science*, 17, 48–70.

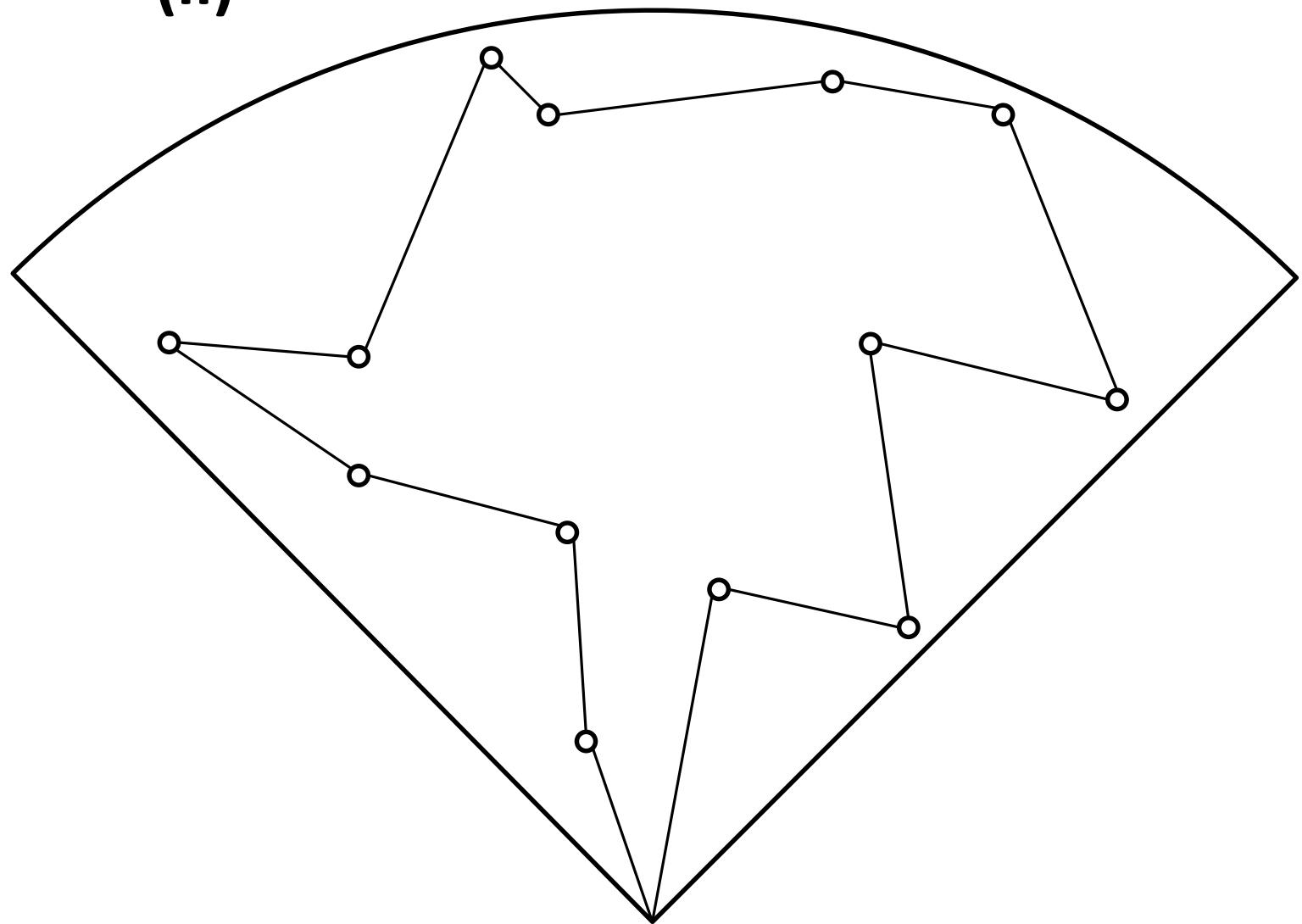
- 945 Daskin, M. (1995). *Network and discrete location: models, algorithms, and applications*. New York: John Wiley.
- 946 Davis, B. A., & Figliozzi, M. A. (2013). A methodology to evaluate the competitiveness of electric delivery trucks.  
947 *Transportation Research Part E: Logistics and Transportation Review*, 49, 8–23.
- 948 Diana, M., Dessouky, M. M., & Xia, N. (2006). A model for the fleet sizing of demand responsive transportation services  
949 with time windows. *Transportation Research Part B: Methodological*, 40, 651 – 666.
- 950 Drezner, Z. (Ed.) (1995). *Facility location: a survey of applications and methods*. New York: Springer.
- 951 Du, Q., Faber, V., & Gunzburger, M. (1999). Centroidal Voronoi tessellations: applications and algorithms. *SIAM Review*,  
952 41, 637–676.
- 953 Ellegood, W. A., Campbell, J. F., & North, J. (2015). Continuous approximation models for mixed load school bus  
954 routing. *Transportation Research Part B: Methodological*, 77, 182–198.
- 955 Erera, A. L., & Daganzo, C. F. (2003). *A dynamic scheme for stochastic vehicle routing*. Technical Report.
- 956 Erlebacher, S. J., & Meller, R. D. (2000). The interaction of location and inventory in designing distribution systems.  
957 *IIE Transactions*, 32, 155–166.
- 958 Erlenkotter, D. (1989). The general optimal market area model. *Annals of Operations Research*, 18, 43–70.
- 959 Figliozzi, M. (2008). Planning approximations to the average length of vehicle routing problems with varying cus-  
960 tomer demands and routing constraints. *Transportation Research Record: Journal of the Transportation Research Board*,  
961 (pp. 1–8).
- 962 Figliozzi, M. A. (2009). Planning approximations to the average length of vehicle routing problems with time window  
963 constraints. *Transportation Research Part B: Methodological*, 43, 438–447.
- 964 Francis, P., & Smilowitz, K. (2006). Modeling techniques for periodic vehicle routing problems. *Transportation Research  
965 Part B: Methodological*, 40, 872–884.
- 966 Francis, P., Smilowitz, K., & Tzur, M. (2006). The period vehicle routing problem with service choice. *Transportation  
967 Science*, 40, 439–454.
- 968 Galvão, L. C., Novaes, A. G., De Cursi, J. S., & Souza, J. C. (2006). A multiplicatively-weighted Voronoi diagram approach  
969 to logistics districting. *Computers & Operations Research*, 33, 93–114.
- 970 Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. *European Journal of Operational Research*, 88,  
971 3–12.
- 972 Geoffrion, A., Morris, J., & Webster, S. (1995). Distribution system design. In Z. Drezner (Ed.), *Facility location: a survey  
973 of applications and methods* (pp. 181–198). Springer-Verlag, New York.

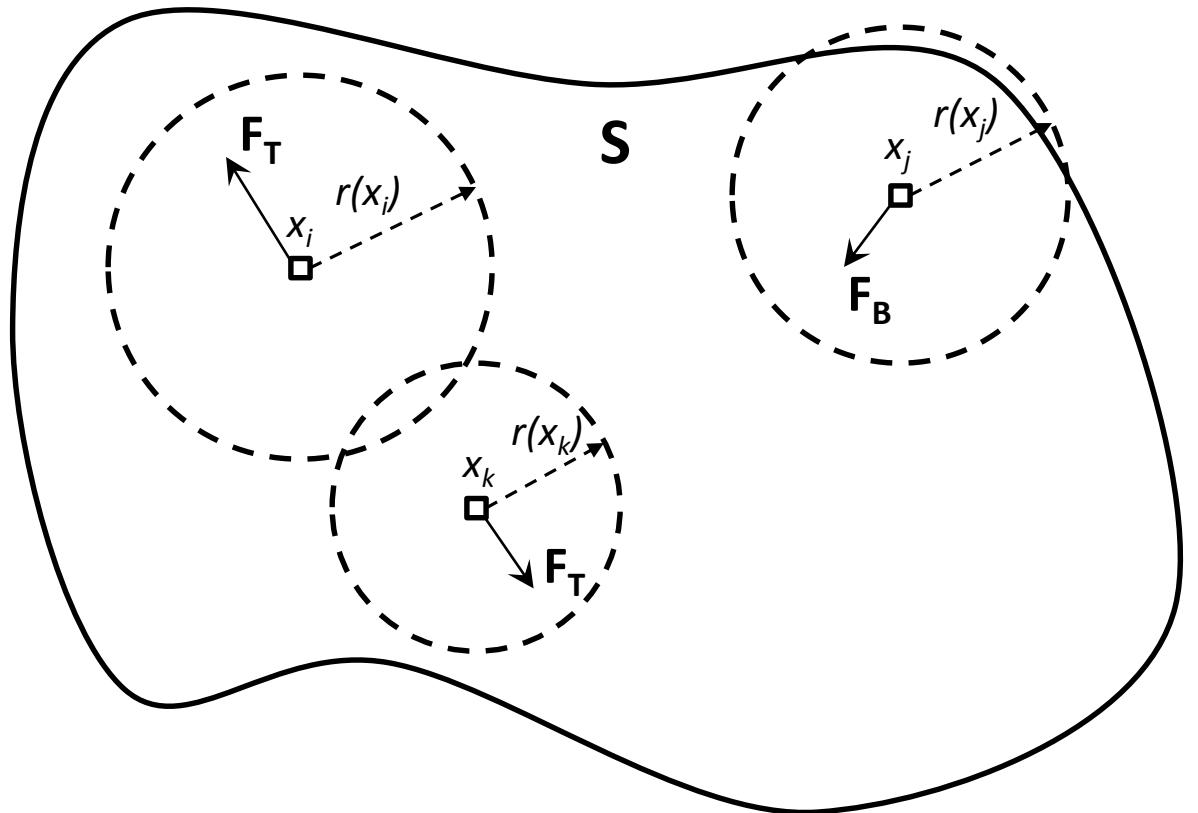
- 974 Geunes, J., Shen, Z.-J. M., & Emir, A. (2007). Planning and approximation models for delivery route based services  
975 with price-sensitive demands. *European Journal of Operational Research*, 183, 460–471.
- 976 Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph.  
977 *Operations Research*, 12, 450–459.
- 978 Harris, F. W. (1990). How many parts to make at once. *Operations Research*, 38, 947–950.
- 979 Hindle, A., & Worthington, D. (2004). Models to estimate average route lengths in different geographical environ-  
980 ments. *Journal of the Operational Research Society*, 55, 662–666.
- 981 Hong, I., Kuby, M., & Murray, A. (2017). A deviation flow refueling location model for continuous space: a commercial  
982 drone delivery system for urban areas. In *Advances in Geocomputation* (pp. 125–132). Springer.
- 983 Hong, J.-D., Xie, Y., & Jeong, K.-Y. (2012). Development and evaluation of an integrated emergency response facility  
984 location model. *Journal of Industrial Engineering and Management*, 5, 4.
- 985 Huang, M., Smilowitz, K. R., & Balcik, B. (2013). A continuous approximation approach for assessment routing in  
986 disaster relief. *Transportation Research Part B: Methodological*, 50, 20–41.
- 987 Jaillet, P. (1988). A priori solution of a traveling salesman problem in which a random subset of the customers are  
988 visited. *Operations Research*, 36, 929–936.
- 989 Jiang, Y., Wong, S., Ho, H., Zhang, P., Liu, R., & Sumalee, A. (2011). A dynamic traffic assignment model for a continuum  
990 transportation system. *Transportation Research Part B: Methodological*, 45, 343–363.
- 991 Kawamura, K., & Lu, Y. (2007). Evaluation of delivery consolidation in us urban areas with logistics cost analysis.  
992 *Transportation Research Record: Journal of the Transportation Research Board*, (pp. 34–42).
- 993 Klincepicz, J. G., Luss, H., & Pilcher, M. G. (1990). Fleet size planning when outside carrier services are available.  
994 *Transportation Science*, 24, 169–182.
- 995 Klose, A., & Drexl, A. (2005). Facility location models for distribution system design. *European Journal of Operational  
996 Research*, 162, 4–29.
- 997 Lam, T. N., & Newell, G. (1967). Flow dependent traffic assignment on a circular city. *Transportation Science*, 1, 318–361.
- 998 Langevin, A., Mbaraga, P., & Campbell, J. (1996). Continuous approximation models in freight distribution: an  
999 overview. *Transportation Research Part B: Methodological*, 30, 163–188.
- 1000 Laporte, G. (2009). Fifty years of vehicle routing. *Transportation Science*, 43, 408–416.
- 1001 Larson, R. C., & Odoni, A. R. (1981). *Urban operations research*. Monograph.
- 1002 Larson, R. C., & Stevenson, K. A. (1972). On insensitivities in urban redistricting and facility location. *Operations  
1003 Research*, 20, 595–612.

- 1004 Lei, C., Zhang, Q., & Ouyang, Y. (2017). Optimal patrol planning for urban parking enforcement considering drivers'  
1005 payment behavior. *Transportation Research Part B: Methodological*. To Appear.
- 1006 Li, X., Ma, J., Cui, J., Ghiasi, A., & Zhou, F. (2016). Design framework of large-scale one-way electric vehicle sharing  
1007 systems: a continuum approximation model. *Transportation Research Part B: Methodological*, 88, 21–45.
- 1008 Li, X., & Ouyang, Y. (2011). Reliable sensor deployment for network traffic surveillance. *Transportation Research Part  
1009 B: Methodological*, 45, 218–231.
- 1010 Li, X., & Ouyang, Y. (2012). Reliable traffic sensor deployment under probabilistic disruptions and generalized surveil-  
1011 lance effectiveness measures. *Operations Research*, 60, 1183–1198.
- 1012 Li, X., & Quadrifoglio, L. (2011). 2-vehicle zone optimal design for feeder transit services. *Public Transport*, 3, 89–104.
- 1013 Lim, M., Daskin, M. S., Bassamboo, A., & Chopra, S. (2010). A facility reliability problem: formulation, properties, and  
1014 algorithm. *Naval Research Logistics (NRL)*, 57, 58–70.
- 1015 Lim, M. K., Bassamboo, A., Chopra, S., & Daskin, M. S. (2013). Facility location decisions with random disruptions and  
1016 imperfect estimation. *Manufacturing & Service Operations Management*, 15, 239–249.
- 1017 Lim, M. K., Mak, H.-Y., & Shen, Z.-J. M. (2016). Agility and proximity considerations in supply chain design. *Manage-  
1018 ment Science*, 63, 1026–1041.
- 1019 Lin, J., Chen, Q., & Kawamura, K. (2016). Sustainability si: logistics cost and environmental impact analyses of urban  
1020 delivery consolidation strategies. *Networks and Spatial Economics*, 16, 227–253.
- 1021 Love, R. F. (1972). A computational procedure for optimally locating a facility with respect to several rectangular  
1022 regions. *Journal of Regional Science*, 12, 233–242.
- 1023 Mak, H.-Y., & Shen, Z.-J. (2012). Risk diversification and risk pooling in supply chain design. *IIE transactions*, 44,  
1024 603–621.
- 1025 Melo, M. T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply chain management—a review.  
1026 *European Journal of Operational Research*, 196, 401–412.
- 1027 Mirzain, A. (1985). Lagrangian relaxation for the star-star concentrator location problem: approximation algorithm  
1028 and bounds. *Networks*, 15, 1 – 20.
- 1029 Munoz, J. C. (2002). *Driver-shift design for single-hub transit systems under uncertainty*. Ph.D. thesis University of California  
1030 Transportation Center.
- 1031 Murat, A., Verter, V., & Laporte, G. (2010). A continuous analysis framework for the solution of location-allocation  
1032 problems with dense demand. *Computers & Operations Research*, 37, 123–136.

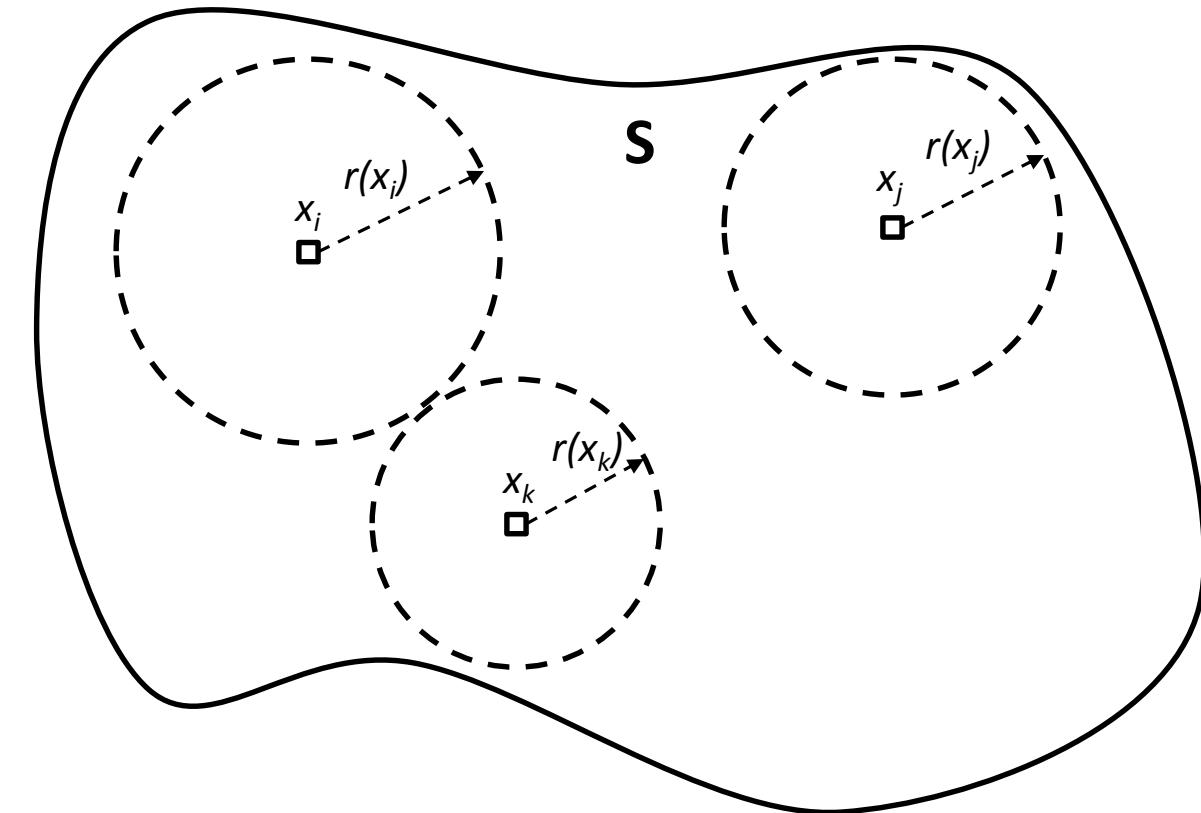

- 1033 Naseraldin, H., & Herer, Y. T. (2008). Integrating the number and location of retail outlets on a line with replenishment  
1034 decisions. *Management Science*, 54, 1666–1683.
- 1035 Naseraldin, H., & Herer, Y. T. (2011). A location-inventory model with lateral transshipments. *Naval Research Logistics*  
1036 (NRL), 58, 437–456.
- 1037 Newell, G. (1971). Dispatching policies for a transportation route. *Transportation Science*, 5, 91–105.
- 1038 Newell, G. (1973). Scheduling, location, transportation and continuum mechanics: some simple approximations to  
1039 optimization problems. *SIAM Journal on Applied Mathematics*, 25, 346–360.
- 1040 Newell, G. F. (1980). *Traffic flow on transportation networks*. Monograph.
- 1041 Newell, G. F., & Daganzo, C. F. (1986). Design of multiple-vehicle delivery tours—I A ring-radial network. *Transportation  
1042 Research Part B: Methodological*, 20, 345–363.
- 1043 Nourbakhsh, S. M., & Ouyang, Y. (2012). A structured flexible transit system for low demand areas. *Transportation  
1044 Research Part B: Methodological*, 46, 204–216.
- 1045 Novaes, A. G. N., Souza de Cursi, J. E., da Silva, A. C. L., & Souza, J. a. C. (2009). Solving continuous location-districting  
1046 problems with Voronoi diagrams. *Computers & Operations Research*, 36, 40–59.
- 1047 Novaes, A. G. N., Frazzon, E. M., Scholdz-Reiter, B., & Lima Jr, O. F. (2010). A continuous districting model applied to  
1048 logistics distribution problems. In *XVI International Conference on Industrial Engineering and Operations Management*.
- 1049 Okabe, A., Boots, B., & Sugihara, K. (1992). *Spatial tessellations: concepts and applications of Voronoi diagrams*. Chich-  
1050 ester, UK: Wiley.
- 1051 Okabe, A., & Suzuki, A. (1997). Locational optimization problems solved through Voronoi diagrams. *European Journal  
1052 of Operational Research*, 98, 445–456.
- 1053 Ong, H., & Huang, H. (1989). Asymptotic expected performance of some tsp heuristics: an empirical evaluation.  
1054 *European Journal of Operational Research*, 43, 231–238.
- 1055 Ouyang, Y. (2007). Design of vehicle routing zones for large-scale distribution systems. *Transportation Research Part B:  
1056 Methodological*, 41, 1079–1093.
- 1057 Ouyang, Y., & Daganzo, C. (2006). Discretization and validation of the continuum approximation scheme for terminal  
1058 system design. *Transportation Science*, 40, 89–98.
- 1059 Ouyang, Y., Nourbakhsh, S. M., & Cassidy, M. J. (2014). Continuum approximation approach to bus network design  
1060 under spatially heterogeneous demand. *Transportation Research Part B: Methodological*, 68, 333–344.
- 1061 Ouyang, Y., Wang, Z., & Yang, H. (2015). Facility location design under continuous traffic equilibrium. *Transportation  
1062 Research Part B: Methodological*, 81, 18–33.

- 1063 Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: a review. *European Journal of Operational Research*, 111,  
1064 423–447.
- 1065 Pang, G., & Muyldermans, L. (2013). Vehicle routing and the value of postponement. *Journal of the Operational Research  
1066 Society*, 64, 1429–1440.
- 1067 Pujari, N. A., Hale, T. S., & Huq, F. (2008). A continuous approximation procedure for determining inventory distri-  
1068 bution schemas within supply chains. *European Journal of Operational Research*, 186, 405 – 422.
- 1069 Pulido, R., Muñoz, J. C., & Gazmuri, P. (2015). A continuous approximation model for locating warehouses and de-  
1070 signing physical and timely distribution strategies for home delivery. *EURO Journal on Transportation and Logistics*,  
1071 4, 399–419.
- 1072 Qi, L., & Shen, Z.-J. M. (2007). A supply chain design model with unreliable supply. *Naval Research Logistics*, 54, 829 –  
1073 844.
- 1074 Qi, L., Shen, Z.-J. M., & Snyder, L. V. (2009). A continuous-review inventory model with disruptions at both supplier  
1075 and retailer. *Production and Operations Management*, 18, 516–532.
- 1076 Quadrifoglio, L., Hall, R. W., & Dessouky, M. M. (2006). Performance and design of mobility allowance shuttle transit  
1077 services: bounds on the maximum longitudinal velocity. *Transportation Science*, 40, 351–363.
- 1078 Quadrifoglio, L., & Li, X. (2009). A methodology to derive the critical demand density for designing and operating  
1079 feeder transit services. *Transportation Research Part B: Methodological*, 43, 922 – 935.
- 1080 Rosenfield, D. B., Engelstein, I., & Feigenbaum, D. (1992). An application of sizing service territories. *European Journal  
1081 of Operational Research*, 63, 164–172.
- 1082 Saberi, M., & Mahmassani, H. S. (2013). Modeling the airline hub location and optimal market problems with con-  
1083 tinuous approximation techniques. *Journal of Transport Geography*, 30, 68–76.
- 1084 Saberi, M., & Verbas, İ. Ö. (2012). Continuous approximation model for the vehicle routing problem for emissions  
1085 minimization at the strategic level. *Journal of Transportation Engineering*, 138, 1368–1376.
- 1086 Sankaran, J. K., & Wood, L. (2007). The relative impact of consignee behaviour and road traffic congestion on distri-  
1087 bution costs. *Transportation Research Part B: Methodological*, 41, 1033–1049.
- 1088 Shen, Z.-J. M., & Qi, L. (2007). Incorporating inventory and routing costs in strategic location models. *European Journal  
1089 of Operational Research*, 179, 372 – 389.
- 1090 Simchi-Levi, D., Simchi-Levi, E., & Kaminsky, P. (1999). *Designing and managing the supply chain: concepts, strategies, and  
1091 cases*. McGraw-Hill New York.
- 1092 Smilowitz, K. R., & Daganzo, C. F. (2007). Continuum approximation techniques for the design of integrated package  
1093 distribution systems. *Networks*, 50, 183–196.

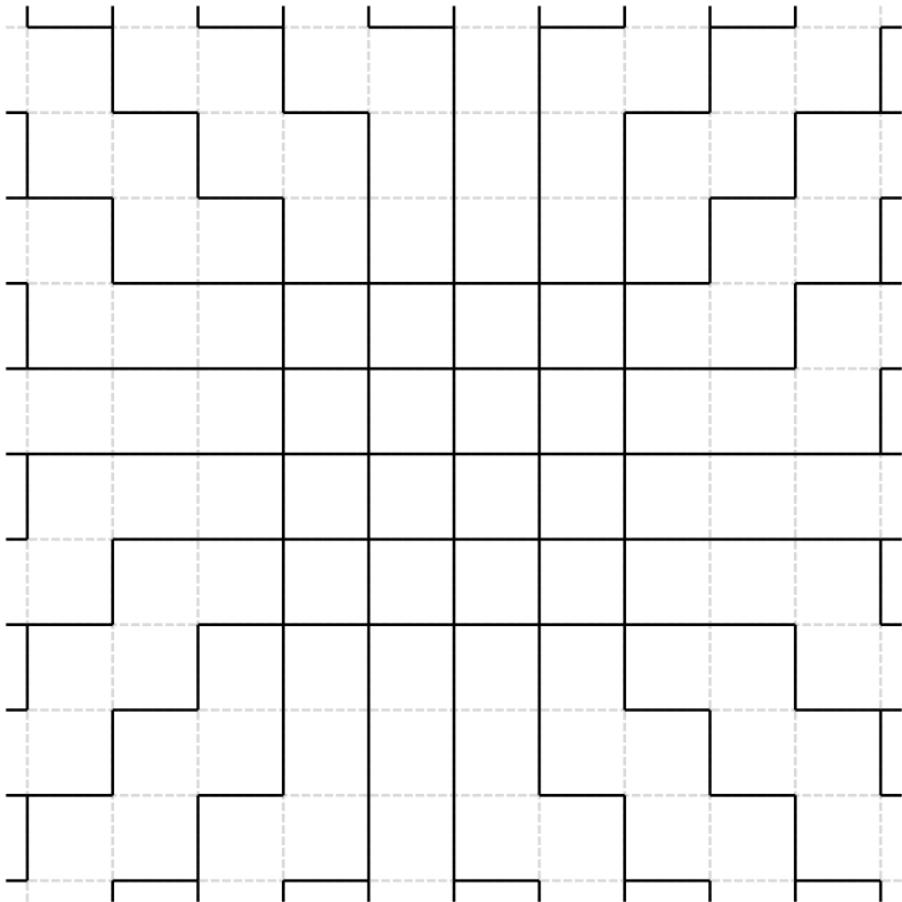

- 1094 Snyder, L., & Daskin, M. (2005). Reliability models for facility location: the expected failure cost case. *Transportation  
1095 Science*, 39, 400 – 416.
- 1096 Snyder, L. V. (2006). Facility location under uncertainty: a review. *IIE Transactions*, 38, 547–564.
- 1097 Steele, J. M. (1990). Probabilistic and worst case analyses of classical problems of combinatorial optimization in  
1098 euclidean space. *Mathematics of Operations Research*, 15, 749–770.
- 1099 Stein, D. M. (1978). Scheduling dial-a-ride transportation systems. *Transportation Science*, 12, 232–249.
- 1100 Torres, O., & Anton, F. (1999). A continuous approximation model for vehicle routing in solid waste management  
1101 systems. *Investigacion Operativa*, 8, 109–153.
- 1102 Toth, P., & Vigo, D. (2002). *Vehicle routing problem*. SIAM, Philadelphia, PA. SIAM Monographs on Discrete Mathematics  
1103 and Applications, Vol. 9.
- 1104 Tsao, Y.-C. (2013). Distribution center network design under trade credits. *Applied Mathematics and Computation*, 222,  
1105 356–364.
- 1106 Tsao, Y.-C. (2016). Designing a supply chain network for deteriorating inventory under preservation effort and trade  
1107 credits. *International Journal of Production Research*, 54, 3837–3851.
- 1108 Tsao, Y.-C., & Lu, J.-C. (2012). A supply chain network design considering transportation cost discounts. *Transportation  
1109 Research Part E: Logistics and Transportation Review*, 48, 401–414.
- 1110 Tsao, Y.-C., Mangotra, D., Lu, J.-C., & Dong, M. (2012). A continuous approximation approach for the integrated  
1111 facility-inventory allocation problem. *European Journal of Operational Research*, 222, 216–228.
- 1112 Tsao, Y.-C., Zhang, Q., & Chen, T.-H. (2016). Multi-item distribution network design problems under volume discount  
1113 on transportation cost. *International Journal of Production Research*, 54, 426–443.
- 1114 Turkensteen, M., & Klose, A. (2012). Demand dispersion and logistics costs in one-to-many distribution systems.  
1115 *European Journal of Operational Research*, 223, 499–507.
- 1116 Wang, J. Y., Yang, H., & Lindsey, R. (2004). Locating and pricing park-and-ride facilities in a linear monocentric city  
1117 with deterministic mode choice. *Transportation Research Part B: Methodological*, 38, 709–731.
- 1118 Wang, X., Lim, M., & Ouyang, Y. (2017). Food, energy, and environment trilemma: sustainable farmland use and  
1119 biofuel industry development. *Energy Economics*. To Appear.
- 1120 Wang, X., Lim, M. K., & Ouyang, Y. (2014). A continuum approximation approach to the dynamic facility location  
1121 problem. In *Transportation Research Board 93rd Annual Meeting* 14-0276.
- 1122 Wang, X., Lim, M. K., & Ouyang, Y. (2015). Infrastructure deployment under uncertainties and competition: the  
1123 biofuel industry case. *Transportation Research Part B: Methodological*, 78, 1–15.

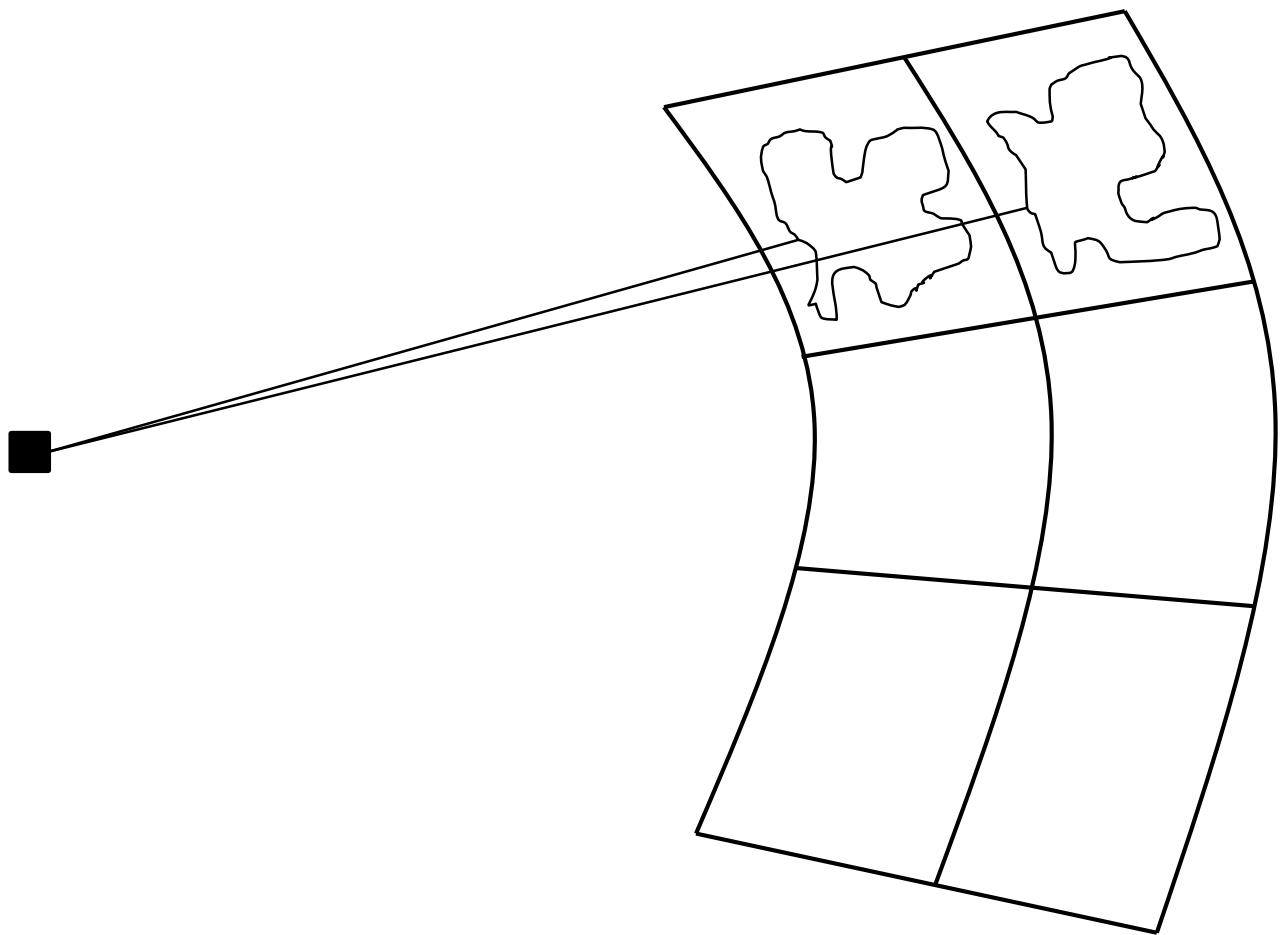

- 1124 Wang, X., & Ouyang, Y. (2013). A continuum approximation approach to competitive facility location design under  
1125 facility disruption risks. *Transportation Research Part B: Methodological*, 50, 90–103.
- 1126 Weber, A., & Friedrich, C. J. (1929). *Theory of the location of industries*. Chicago: The University of Chicago Press.
- 1127 Wiles, P. G., & van Brunt, B. (2001). Optimal location of transshipment depots. *Transportation Research Part A: Policy  
1128 and Practice*, 35, 745–771.
- 1129 Xie, W., & Ouyang, Y. (2015). Optimal layout of transshipment facility locations on an infinite homogeneous plane.  
1130 *Transportation Research Part B: Methodological*, 75, 74–88.
- 1131 You, F., Pinto, J. M., Capón, E., Grossmann, I. E., Arora, N., & Megan, L. (2011). Optimal distribution-inventory planning  
1132 of industrial gases. I. fast computational strategies for large-scale problems. *Industrial & Engineering Chemistry  
1133 Research*, 50, 2910–2927.
- 1134 Yukich, J. E. (2006). *Probability theory of classical Euclidean optimization problems*. Springer.
- 1135 Yun, L., Qin, Y., Fan, H., Ji, C., Li, X., & Jia, L. (2015). A reliability model for facility location design under imperfect  
1136 information. *Transportation Research Part B: Methodological*, 81, 596–615.

(i)

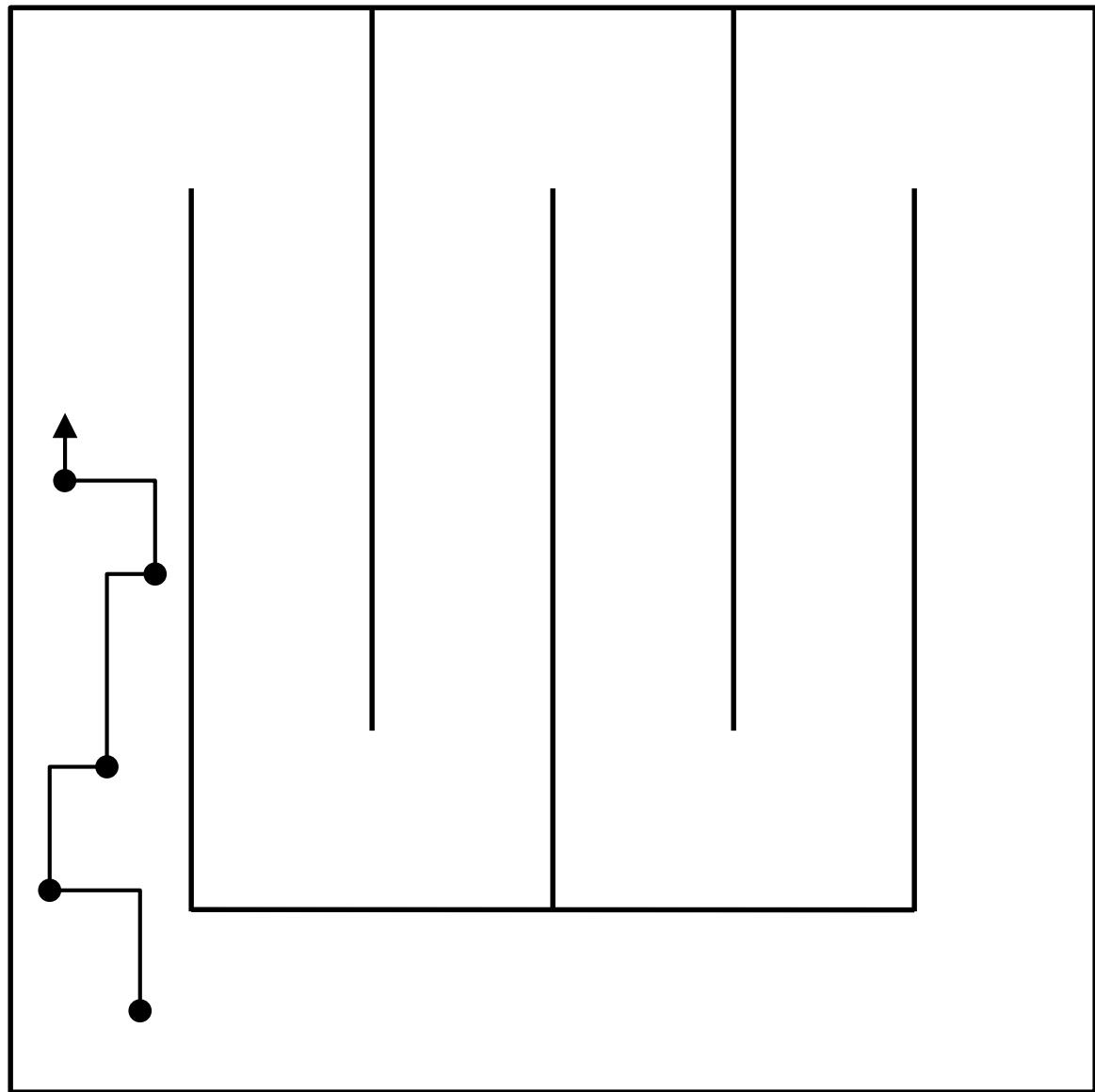



(ii)

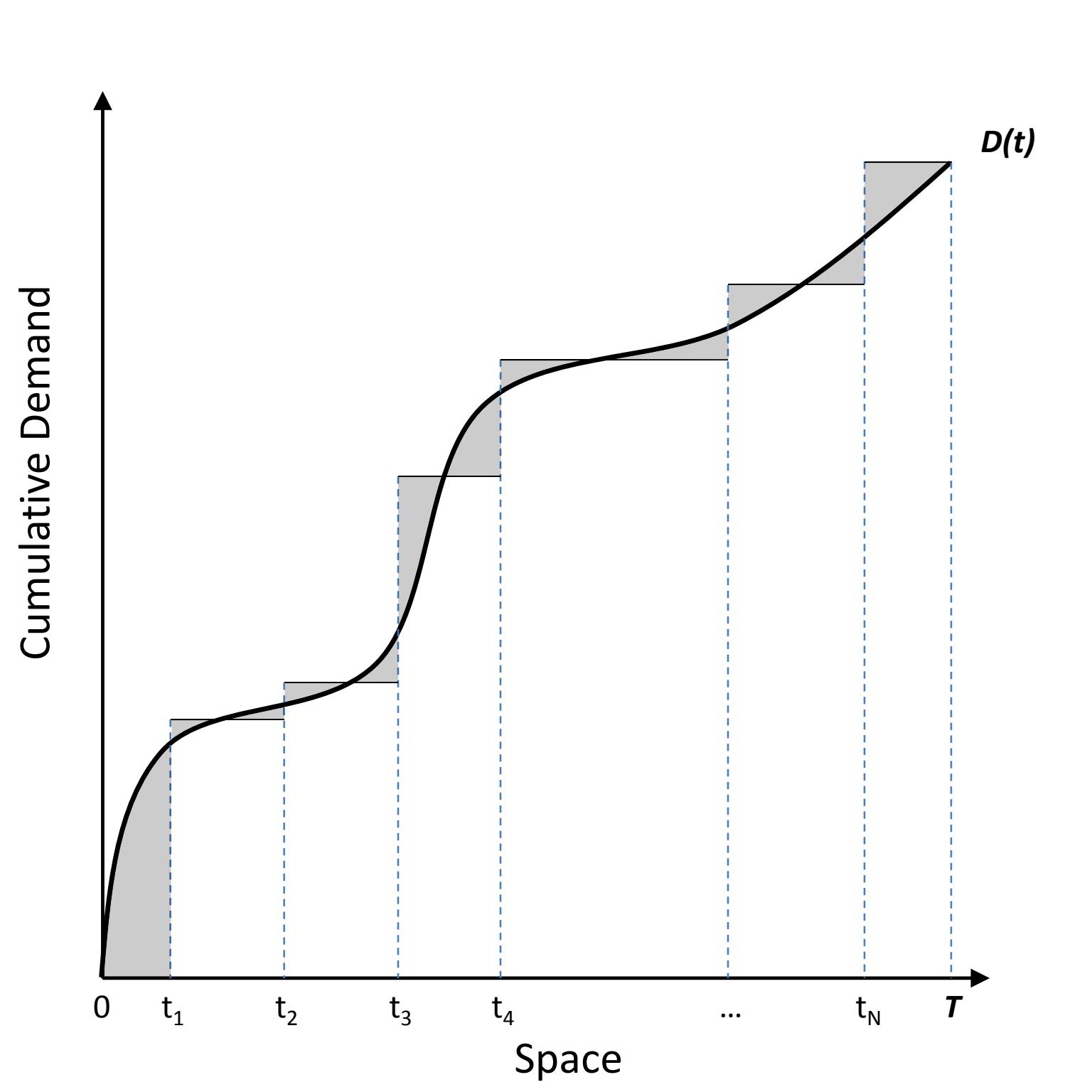


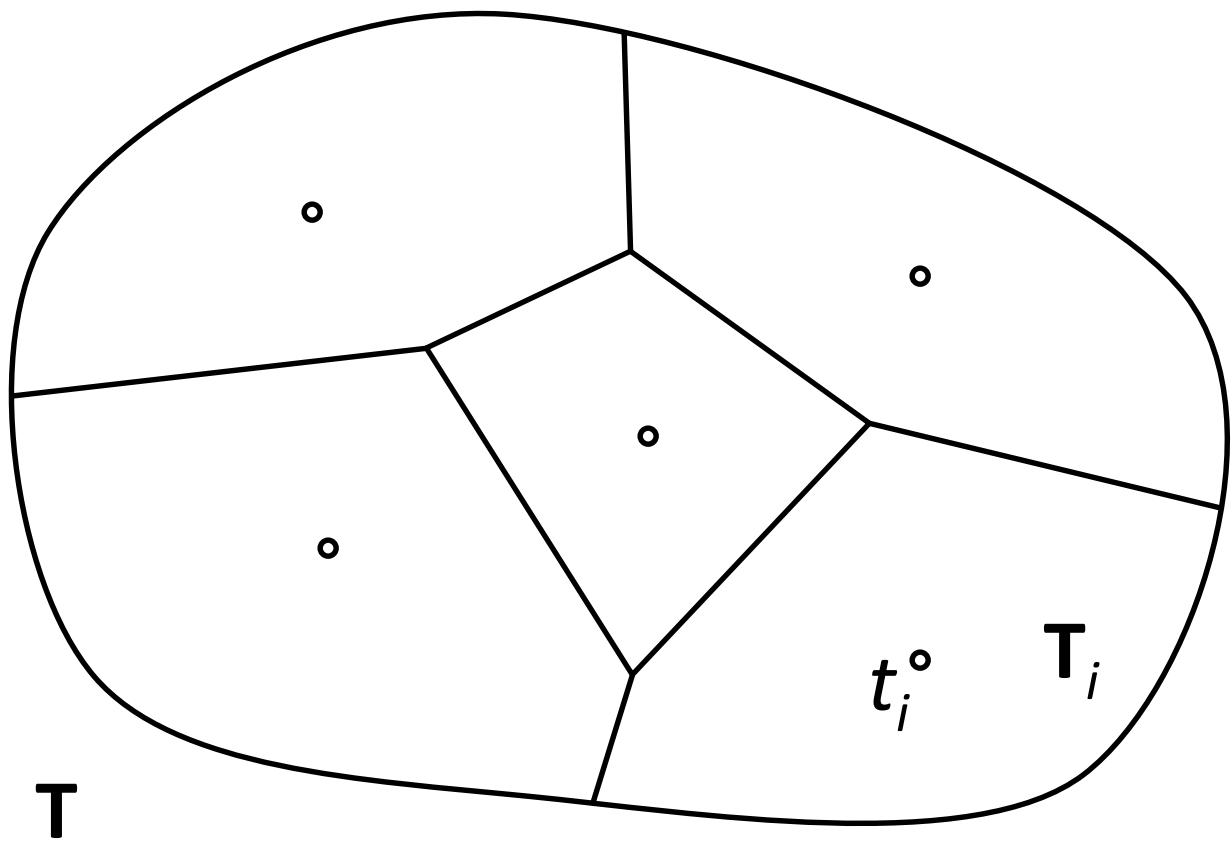




(a)




(b)




(b)



(a)



