Implementation of a Near-Optimal Complex Root
Clustering Algorithm

Rémi Imbach! *, Victor Y. Pan? **, and Chee Yap? ***

I TU Kaiserslautern
Email: imbach@mathematik.uni-k1.de
www.mathematik.uni-k1l.de/en/agag/members/
2 City University of New York
Email: victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/
3 Courant Institute of Mathematical Sciences

New York University, USA
Email: yap@cs.nyu.edu
www.cs.nyu.edu/yap/

Abstract. We describe Ccluster, a software for computing natural e-clusters
of complex roots in a given box of the complex plane. This algorithm from
Becker et al. (2017) is near-optimal when applied to the benchmark problem
of isolating all complex roots of an integer polynomial. It is one* of the first
implementations of a near-optimal algorithm for complex roots. We describe
some low level techniques for speeding up the algorithm. Its performance is
compared with the well-known MPSolve library and Maple.

1 Introduction

The problem of root finding for a polynomial f(z) is a classical problem from an-
tiquity, but remains the subject of active research to the present [6]. We consider a
classic version of root finding:

Local root isolation problem:

Given: a polynomial f(z) € C[z], a box By C C, € > 0.

Output: a set {Ay,...,A¢} of pairwise-disjoint discs of radius < €,
each containing a unique root of f(x) in By.

It is local because we only look for roots in a locality, as specified by By. The
local problem is useful in applications (especially in geometric computation) where

* Rémi’s work has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No. 676541.

** Victor's work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and by
PSC CUNY Award 698130048.

*** Chee's work is supported by NSF Grants # CCF-1423228 and # CCF-1564132.

4 Irina Voiculescu informed us that her student Dan-Andrei Gheorghe has independently
implemented the same algorithm in a Masters Thesis Project (May 18, 2017) at Oxford
University.

2 Imbach-Pan-Yap

we know where to look for the roots of interest. There are several variants of this
problem: in the global version, we are not given By, signifying that we wish to find
all the roots of f. The global version is easily reduced to the local one by specifying a
By that contains all roots of f. If we omit €, it amounts to setting € = oo, representing
the pure isolation problem.

Our main interest is a generalization of root isolation, to the lesser-studied prob-
lem of root clustering [10,12, 8]. It is convenient to introduce two definitions: for
any set S C C, let Z¢(S) denote the set of roots of f in S, and let #¢(S) count the
total multiplicity of the roots in Z;(S). Typically, S is a disc or a box. For boxes
and discs, we may write kS (for any k > 0) to denote the dilation of S by factor «,
keeping the same center. The following problem was introduced in [17]:

Local root clustering problem:
Given: a polynomial f(z), a box By CC, € > 0.
Output: a set of pairs {(Ay,m1),...,(Ax,my)} where

— A;’s are pairwise-disjoint discs of radius < &,
- m;= #f(A,') = #f(?)A,') for all i, and
— Zs(Bo) C U= Zf(A).

This generalization of root isolation is necessary when we consider polynomials whose
coefficients are non-algebraic (or when f(z) is an analytic function, as in [17]). The
requirement that #,(A;) = #7(34;) ensures that our output clusters are natural [1];
a polynomial of degree d has at most 2d — 1 natural clusters (see [17, Lemma 1]).
The local root clustering algorithm for analytic functions of [17] has termination
proof, but no complexity analysis. By restricting f(z) to a polymomial, Becker et
al. [2] succeeded in giving an algorithm and also its complexity analysis based on the
geometry of the roots. When applied to the benchmark problem, where f(z) is an
integer polynomial of degree d with L-bit coefficients, the algorithm can isolate all
the roots of f(z) with bit complexity O(d*(L+d)). Pan [13] calls such bounds near-
optimal (at least when L > d). The clustering algorithm studied in this paper comes
from [1], which in turn is based on [2]. Previously, the Pan-Schénhage algorithm has
achieved near-optimal bounds with divide-and-conquer methods [13], but [2, 1] was
the first subdivision algorithm to achieve the near-optimal bound for complex roots.
For real roots, Sagraloff-Mehlhorn [16] had earlier achieved near-optimal bound via
subdivision.

Why the emphasis on “subdivision”? It is because such algorithms are imple-
mentable and quite practical (e.g., [15]). Thus the near-optimal real subdivision
algorithm of [16] was implemented shortly after its discovery, and reported in [11]
with excellent results. In contrast, all the asymptotically efficient root algorithms (not
necessarily near-optimal) based on divide-and-conquer methods of the last 30 years
have never been implemented; a proof-of-concept implementation of Schonhage's
algorithm was reported in Gourdon's thesis [9]). Computer algebra systems mainly
rely on algorithms with a priori guarantees of correctness. But in practice, algorithms
without such guarantees are widely used. For complex root isolation, one of the most
highly regarded multiprecision software is MPSolve [3]. The original algorithm in

Implementation of Complex Root Clustering 3

MPSolve was based on Erhlich-Aberth (EA) iteration; but since 2014, a “hybrid"
algorithm [4] was introduced. It is based on the secular equation, and combines
ideas from EA and eigensolve [7]. These algorithms are inherently global solvers
(they must approximate all roots of a polynomial simultaneously). Another theoret-
ical limitation is that the global convergence of these methods is not proven.

In this paper, we give a preliminary report about Ccluster, our implementation
of the root clustering algorithm from [1].

To illustrate the performance for the local versus global problem, consider the
Bernoulli polynomials Bern,(z) := Y'¢_, (‘,f)bd,kzk where b;'s are the Bernoulli num-
bers. Figure 1(Left) shows the graphical output of Ccluster for Bernjgy(z). Table 1
has four timings tx (for X = ¢,g,u,s) in seconds: T, is the time for solving the lo-
cal problem over a box By = [—1,1]?; T, is the time for the global problem over
the box By = [—150,150]> (which contains all the roots). The other two timings
from MPSolve (7, for unisolve, 7, for secsolve) will be explained later. For each
instance, we also indicate the numbers of solutions (#Sols) and clusters (#Clus).
When #Sols equals #Clus, we know the roots are isolated. Subdivision algorithms
like ours naturally solve the local problem, but MPSolve can only solve the global
problem. Table 1 shows that MPSolve remains unchallenged for the global problem.
But in applications where locality can be exploited, local methods may win, as seen
in the last two rows of the table. The corresponding time for Maple's fsolve is also
given; fsolve is not a guaranteed algorithm and may fail.

05
0 i eeesescscescrectsacncans 3 0.0 . : E . B

-0.5

15 -1.0

Fig. 1. Left: the connected components isolating all roots of the Bernoulli polynomial of
degree 100. Right: the connected components isolating all roots of the Spiral polynomial
of degree 64.

1.1 Overview of Paper

In Section 2, we describe the experimental setup for Ccluster. Sections 3-5 describe
some techniques for speeding up the basic algorithm. We conclude with Section 6.

4 Imbach-Pan-Yap

“ Ccluster local (By = [—1,1]?) “Ccluster global (By = [—150,]SO]Z)Hunisolve‘secsolve“fsolve‘
d|[(#Sols:#Clus)[(depth:size)[7 (s)|[(#Sols:#Clus)[(depth:size)[7, (s) [| @ (s) [= (s) [7 (5)]
64 @a) (9164) [012] (64:64) | (17:1948) | 2.10 0.13 0.01 01
128 (@4) (9:164) [0.34]| (128:128) | (16:3868) | 9.00 || 055 | 005 || 6.84
191 (5:5) (9:196) [0.60] (191:191) | (17:5436) | 32.5 229 | 016 || 500
256 (4:4) (9:164) |0.96 (256:256) (17:7300) 60.6 3.80 0.37 > 1000
383 (555 (9:196) [2.06|| (383:383) |(17.11188)] 181 || >1000 | 117 ||> 1000
512 (&:4) (9:164) [2.87] (512512) |(16:14972)| 456 || >1000 | 3.63 |[> 1000
767 (5:5) (9:196) [6.00]| (767:767) | (17:22332)] 1413 || > 1000 | 10.38 ||> 1000

Table 1. Bernoulli Polynomials with five timings: local (7;), global (7;), unisolve (1),
secsolve (177) and Maple's fsolve(Ty).

2

Implementation and Experiments

The main implementation of Ccluster is in C language. We have an interface for
Julia®. We based our big number computation on the arb® library. The arb library
implements ball arithmetic for real numbers, complex numbers and polynomials with
complex coefficients. Each arithmetic operation is carried out with error bounds.

Test Suite We consider 7 families of polynomials, classic ones as well as some new
ones constructed to have interesting clustering or multiple root structure.

(F1)
(F2)
(F3)
(F4)
(F5)

(F6)

The Bernoulli polynomial Bern,(z) of degree d was described earlier in the
introduction.

The Mignotte polynomial Mign,(z;a) :=z¢ —2(2%z—1)? for a positive integer
a, has two roots whose separation is near the theoretical minimum separation
bound.

The Wilkinson polynomials Wilky(z) :=T[T¢_,(z—k) .

The Spiral Polynomial Spir,(z) := ngl (z— §e4ki”/”). See Figure 1(Right)
for Spire,(2).

Wilkinson Multiple: WilkMul p)(z):=TIT¢;(z—k)* . WilkMul p)(z) has degree
d =D(D+1)/2 where the root z =k has multiplicity k (for k=1,...,D).
Mignotte Cluster: MignClu,(z;a,k) :=x? —2(2%z — 1)¥(29z+ 1)*. This polyno-
mial has degree d (assuming d > 2k) and has a cluster of k roots near 27¢ and
a cluster of k roots near —27¢.

Nested Cluster: NestClup)(z) has degree d = 3P and is defined by induc-
tion on D: NestCluy)(z) := 72 —1 with roots ®, 0%, ®> =1 where © = /3,
Inductively, if the roots of NestClu(p(z) are {rJ j=1,. 3D}, then we de-

2
fine NestClu(p,)(2) := H3=1 (z— rj— 1(77) (z— rj— 16—1)) (z— ri— 16D) See
Figure 2 for the natural e-clusters of NestClus(z).

5 https://julialang.org/. Download our code in https://github.com/rimbach/Ccluster.
6 http://arblib.org/. Download our code in https://github.con/rimbach/Ccluster. j1.

Implementation of Complex Root Clustering 5

|

THH
i

BT
il

Fig. 2. Left: 3 clusters of NestClu(3) found with € = 1. Right: Zoomed view of 9 clusters
of NestClu3) found with &€ = %. Note: The initial box is in thick lines; the thin lines show

the subdivisions tree.

Timing Running times are sequential times on a Intel(R) Core(TM) i3 CPU 530 @
2.93GHz machine with linux. Ccluster implements the algorithm described in [1]
with differences coming from the improvements described in Sections 3-5 below. Un-
less explicitly specified, the value of € for Ccluster is set to 2723; roughly speaking,
it falls back to asking for 15 guaranteed decimal digits.

MPSolve For external comparison, we use MPSolve. It was shown (circa 2000) to
be superior to major software such as Maple or Mathematica [3]. There are two
root solvers in MPSolve: the original unisolve [3] which is based on the Ehrlich-
Aberth iteration and the new hybrid algorithm called secsolve [4]. These are called
with the commands mpsolve -au -Gi -oy -jl1 and mpsolve -as -Gi -oy -j1
(respectively). -Gi means that MPSolve tries to find for each root a unique complex
disc containing it, such that Newton iteration is guaranteed to converge quadratically
toward the root starting from the center of the disc. —oy means that 1077 is used
as an escape bound, i.e., the algorithm stops when the complex disc containing the
root has radius less that 1077, regardless of whether it is isolating or not. Unless
explicitly specified, we set ¥ = 16. -j1 means that the process is not parallelized.
Although MPSolve does not do general local search, it has an option to search only
within the unit disc. This option does not seem to lead to much improvement.

3 Improved Soft Pellet Test

The key predicate in [1] is a form of Pellet test denoted 7,0 (A, k) (with implicit f£(z)).
This is modified in Figure 3 by adding an outer while-loop to control the number of
Graeffe-Dandelin iterations. We try to get a definite decision (i.e., anything other
than a unresolved) from the soft comparison for the current Graeffe iteration. This
is done by increasing the precision L for approximating the coefficients of f in the
innermost while-loop. Thus we have two versions of our algorithm: (V1) uses the
original ¢ (A,k) in [1], and (V2) uses the modified form in Figure 3. Let 7V1 and

6 Imbach-Pan-Yap

T"kG(A,k) < f(z) is implicit argument
Output: res € {—1,0...,k}
ASSERT: if res > 0, then #/(A) = res
L <53, d<+deg(f), N <4+ [logy(1+1logy(d))], i< 0
f <getApproximation(f, L)
f < TaylorShift(f, A)
While i <N
Let f be the i-th Graeffe iteration of f
res <0
While res <k
j + IntCompare(abs(res-th coeff of f), sum of abs values of other coeffs, 271)
While j = unresolved
L+ 2L
f <—getApproximation(f, L)
f < TaylorShift(f,A)
Let f be i-th Graeffe iteration of f

If j = true then Return res
res < res+ 1
i+—i+1
Return—1

j +IntCompare(abs(res-th coeff of f), sum of abs values of other coeffs, 271)

Fig. 3. Titest(P,A k)

TV2 be timings for the 2 versions. Table 2 shows the time 7V1 (in seconds) and the
ratio TV1/7V2. We see that (V2) achieves a consistent 2.3 to 3-fold speed up.

Il Vi Il V2 Il V3

[(n1,n2,n3) JeVi[[(n1, n2, n3) [zV1/7V2[| (nl, n2, n3) [1V1/7V3]
Berng: (<) (2308,686,20223) |10.6]] (2308,686,6028) | 2.84 || (2308,8,2201) | 7.06
Migng (2 14) (2060,622,18018) |17.3]| (2060,622,5326) | 3.03 |[(2060,20,2080)| 7.68
Wilkes(2) (2148,674,18053) |23.6|| (2148,674,5692) | 2.74 || (2148,0,2140) | 7.23
Spire,(2) (2512,728,22176) [22.2|| (2512,728,6596) | 2.39 ||(2512,15,2670)| 4.46
WiTkMul ;) () (724,202,6174) |0.60|| (724,202,2684) | 2.30 || (724,18,2065) | 3.37
MigaClug, (z: 14,3)]| (2092,618,18515) |20.0|| (2002,618,5600) | 3.00 ||(2092,12,2481)| 6.57
NestClug (2) (3532,1001,30061)[00.2|[(3532,1001,9654)| 3.00 ||(3532,24,4588)| 6.81

Table 2. Solving within the initial box [~50,50]> with £ = 273 with versions (V1), (V2)
and (V3) of Ccluster. nl: number of discarding tests. n2: number of discarding tests
returning -1 (inconclusive). n3: total number of Graeffe iterations. TV1 (resp. TV2, TV3):
sequential time for V1 (resp. V2, V3) in seconds.

In (V2), as in [1], we use TOG(A) to prove that a box B has no root. We propose a
new version (V3) that uses T.8(A) instead of fOG(A) to achieve this goal: instead of
just showing that B has no root, it upper bounds #¢(B). Although counter-intuitive,
this yields a substantial improvement because it led to fewer Graeffe iterations over-
all. The timing for (V3) is V3, but we display only the ratio TV1/7V3 in the last

Implementation of Complex Root Clustering 7

column of Table 2. This ratio shows that (V3) enjoys a 3.3-7.7 fold speedup. Com-
paring n3 for (V2) and (V3) explains this speedup.

4 Filtering

A technique for speeding up the evaluation of predicates is the idea of filters (e.g.,
[5]). The various Pellet tests can be viewed as a box predicate C that maps a box
B C C to a value’ in {true,false}. If C~ is another box predicate with property
that C~(B) = false implies C(B) = false, we call C~ a falsehood filter. If C™ is
efficient relatively to C, and “efficacious” (informally, C(B) = false is likely to yield
C~(B) = false), then it is useful to first compute C~(B). If C~(B) = false, we do
not need to compute C(B). Ccluster uses the predicate Cy to prove that box B
contains no root of f. It is defined as follows: Cy(B) is true if TS (Ap) returns 0
(then B contains no root of f) and is false if T.C(f,Ag) returns —1 or k > 0 (then
B may contain some roots of f). We next present a falsehood filter C; (B) for C.
Let f4 denote the Taylor shift of f in A, fAM its i-th Graeffe iterate, (X])j the
Jj-th coefficient of f[i], and \fX]\j the absolute value of the j-th coefficient. Let d be
the degree of f. The assertions below are direct consequences of the classical test
of Pellet (see eq. 2 in App. 6) and justify the correctness of our filter:
(A1) if |fN lo < |f[N]| then TC(f,A) returns —1 or k >0,
(A2) if |fA lo <|f [N]| +|f£N]\d then T.C(f,A) returns —1 or k > 0.
[NV]

Our Gy filter computes]|d and makes the comparisons (A1) or

(A2) using SoftCompare. \ngl|o and |fA[N]|d are respectively computed as (|fA\0)2N

and (|fA|d)2N. |f£‘N]|1 can be computed with the following well known formula:
(fXH])k:(_l) +2Z i [l])2k j (1)

Obtaining |f£N]|1 with eq. (1) requires to know 2V~! 41 coefficients of fg], V241
coefficients of ff], ..., and finally 3 =2! 41 coefficients of ngﬁl]. In particular,
it requires to compute entirely the iterations fX] such that 2= < d, and it is possible
to do it more efficiently that with eq. (1) (for instance with the formula given in
definition 2 of [2]). In summary, the C; filter computes first f, then |f£N]\o and
|f£N]|d and returns false if the hypothesis of (A1) is verified. Then it computes fgl
for i satisfying 2V~ < 4 before the approach described above and |fﬁ[\N] |1 is obtained.
Finally, false is returned if the hypothesis of (A2) is verified, and true otherwise.
In practice, C; is performed within TC(f,Ap). Incorporating this into Version
(V3), we obtain (V4) and the speed up can be seen in Table 3. We note filtering with

C, becomes more effective as degree grows and this is because one has V- < %
for smaller i (recall that N =4+ [log, (1 +1log,(d))]).

7 We treat two-valued predicates for simplicity; the discussion could be extended to pred-
icates (like T.¥) which returns a finite set of values.

8 Imbach-Pan-Yap V3 V4 I
I [[n3 T7V3][n3 [tV3/7V4]|

T=64 5201 [2.61] 2084 | 1.08
Berna() d—128 4496 |14.5(| 3083 | 1.13
2 d=1256 8847 |04.5|| 7714| 1.19
d=512 15083 620 ||11664| 1.42

@.a) = (64,19) 5080 [2.41|| 1808 | 1.22

g, (z:0) (d,a)=(128,14) || 3809 |12.1|| 3257 | 1.21
gna\% (d,a) = (256,14) 7605 [88.3|| 6339 | 1.33
(dia)=(512,14) ||15227| 674 ||10405| 1.57

I=63 5140 [3.27|| 1058 | 1.05

S d—128 2240 |10.0|[1042 | 1.00
' d=1256 2414 |36.6|[2108 | 121
d=512 2557 | 120 || 1841 | 1.43

=63 5670 |4.43|| 2364 | 1.08

s d=128 5000 | 28.8 | 4405 | 1.07
pir,(2) d =256 9746 | 182 || 8529 | 1.10
d=512 10150(1340||14786| 1.19

D.d) = (11,66) 5065 [2.87|| 1818 | L.14

. (D.d) = (12,78) 2313 (3.05|[2053 | 1.12
WilkMulp)(2) (D,d;:(13,91) 2649 [5.89(| 2336 | 1.18
(D.d) = (14.105) || 2802 |8.56 || 2537 | 1.20
(@.a,F) = (64,14,3) || 2481 |2.94|| 2145 | 1.3

. l(d.ak) = (128,14,3)|| 4166 |14.4|| 3555 | 1.16
MignClu, (k)| (/"') — (256, 14.3)|| 7658 |86.0|| 6523 | 1.27
(d.a.k) = (512,14,3)||15044| 650 ||10472| 1.63

D.d) = (&27) 1628 [0.77]| 1450 | 1.07

(D.d) = (5.81 4588 |13.2(| 4085 | 1.12

NestClu(p)(2) (D,d;:(6,24;) 13056/ 358 ||11824| 1.26

Table 3. Solving within the initial box [—50,50]% with &€ = 2733 with versions (V3), (V4) of
Ccluster. n3: number of Graeffe iterations. TV3 and 7V4: sequential time in seconds.

5 Escape Bound

The € parameter is usually understood as the precision desired for roots. But we can
also view it as an escape bound for multiple roots as follows: we do not refine a disc
that contains a simple root, even if its radius is > €. But for clusters of size greater
than one, we only stop when the radius is < €. MPSolve has a similar option. This
variant of (V4) is denoted (V4'). We see from Table 4 that (V4') gives a modest
improvement (up to 25% speedup) over (V4) when —1ge = 53. This improvement
generally grows with —loge (but WilkMul()(z) shows no difference).

(V4) (v4')
e 2—53 2—530 2—5300 2—53 2—530 2—5300
753 (s)[7530/753|75300/753|| 753 (s)|7530/753|75300/753

Berng (2) 2.42 1.26 122 199 | 004 0.94
Migng, (z; 14) 197 | 163 4.56 161 | 1.45 1.38
Wilkes (2) 3.22 1.10 2.16 291 0.96 1.01
Spirg(2) 409 | 133 5.5 3.05 | 0.95 0.95
WilkMul(”)(z) 251 1.12 2.03 2.50 1.13 1.98
MignClug,(z;14,3)|| 2.60 1.89 415 220 | 1.70 1.80
NestClu(z) 110 | 1.08 2.67 104 | 1.00 0.09

Table 4. Solving within the box [—50,50]? with versions (V4) and (V4') of Ccluster with
three values of €. 753 (resp. 7530, 75300): sequential time for (V4) and (V4') in seconds.

6

Implementation of Complex Root Clustering 9

Conclusion

Implementing subdivision algorithms is relatively easy but achieving state-of-art per-
formance requires much optimization and low-level development. This paper explores
several such techniques. We do well compared to fsolve in Maple, but the perfor-
mance of MPSolve is superior to the global version of Ccluster. But Ccluster
can still shine when looking for local roots or when & is large.

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.

R. Becker, M. Sagraloff, V. Sharma, J. Xu, and C. Yap. Complexity analysis of root
clustering for a complex polynomial. In 41st ISSAC, pp. 71-78, 2016.

R. Becker, M. Sagraloff, V. Sharma, and C. Yap. A near-optimal subdivision algorithm
for complex root isolation based on Pellet test and Newton iteration. JSC, 86:51-96,
May 2018.

D. A. Bini and G. Fiorentino. Design, analysis, and implementation of a multiprecision,
polynomial rootfinder. Numerical Algorithms, 23:127-173, 2000.

D. A. Bini and L. Robol. Solving secular and polynomial equations: A multiprecision
algorithm. J. Computational and Applied Mathematics, 272:276-292, 2014.

H. Bronnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic
filters for computational geometry. Discrete Applied Math., 109(1-2):25-47, 2001.

. I. Z. Emiris, V. Y. Pan, and E. P. Tsigaridas. Algebraic algorithms. In T. Gonzalez,

J. Diaz-Herrera, and A. Tucker, editors, Computing Handbook, 3rd Edition: Computer
Science and Software Engineering, pages 10: 1-30. Chapman and Hall/CRC, 2014.

S. Fortune. An iterated eigenvalue algorithm for approximating roots of univariate
polynomials. J. Symbolic Computation, 33(5):627-646, 2002.

. M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approximation

of clusters of zeros of analytic functions. Found.Comp.Math., 5(3):257-311, July 2005.
X. Gourdon. Combinatoire, Algorithmique et Géométrie des Polynémes. PhD thesis,
Ecole polytechnique, 1996.

V. Hribernig and H. J. Stetter. Detection and validation of clusters of polynomial
zeros. J. Symbolic Computation, 24(6):667-682, 1997.

A. Kobel, F. Rouillier, and M. Sagraloff. Computing real roots of real polynomials ...
and now for real! In 41st ISSAC, pages 303-310, 2016. July 19-22, Waterloo, Canada.
X.-M. Niu, T. Sakurai, and H. Sugiura. A verified method for bounding clusters of
zeros of analytic functions. J. Comput. Appl. Math., 199(2):263-270, Feb. 2007.

V. Y. Pan. Univariate polynomials: Nearly optimal algorithms for numerical factoriza-
tion and root-finding. J. Symb. Comput., 33(5):701-733, 2002.

Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. Oxford Press, 2002.
F. Rouillier and P. Zimmermann. Efficient isolation of [a] polynomial’s real roots. J.
Computational and Applied Mathematics, 162:33-50, 2004.

M. Sagraloff and K. Mehlhorn. Computing real roots of real polynomials. J. Symbolic
Computation, 73:46-86, 2016.

C. Yap, M. Sagraloff, and V. Sharma. Analytic root clustering: A complete algorithm
using soft zero tests. In P. Bonizzoni, V. Brattka, and B. Lowe, editors, Computability
in Europe (CiE2013), vol. 7921 of LNCS, pages 434—444, Heidelberg, 2013. Springer.

10 Imbach-Pan-Yap

APPENDIX A. Algorithm Overview

This Appendix is temporarily provided for the Referee’'s convenient only

We briefly review the Ccluster algorithm and its underlying theory. The main
computational paradigm is that of subdivision: given a box B C C, we subdivide
B into four congruent subboxes. We assume square boxes only. If this subdivision
process is iterated, all boxes B will eventually be small enough to make decisions
about presense/absence of roots in B. In particular, we have a box predicate, Py(B)
with the following property: if Py(B) holds, then B has no roots of f(z),; otherwise 2B
contains some root. This “Fy" is a Pellet test as explained below. In our subdivision
algorithms, we used the exclusion and inclusion predicates, Cy(B) and C;(B). If Cy(B)
(resp., C1(B)) holds, then B has no roots (resp., has some root). But the failure of
these predicates yields no information. But Py(B) yields information whether it is
true or not. It is an exclusion test (for B) if it succeeds, and an inclusion test (for
2B) when it fails.

If subdivision were the only method of decomposition, we could organize our
search in the standard subdivision tree, rooted at By. But the regularity of sub-
division is broken in our algorithm because of Newton iteration: if a Newton step
succeeds, box B is replaced by a subbox B’ that could be arbitrarily smaller than B.
To organize such irregularities, we introduce a higher level concept: components:
this is a connected set C C C obtained as the union of a set . = .%¢ of boxes; the
boxes in . are called the constituent boxes of C, and they all have the same width.
We can subdivide C by subdividing each constituent box B of C as before: apply Py
to the subdivided boxes, discarding any B if Py(B') succeeds, and reorganizing the
remaining boxes into k > 0 new connected components, denoted: C — (Cy,...,Cy).
Thus we consider a component tree T, (Bo) rooted at a component Cy and whose
nodes are components. If C is in this tree and C — (Cy, . ..,Cy) then each C; is a child
of C in Teomp(Bo). For technical reasons, Cy is not By but %Bo. For a component C,
let A(C) be a disc that contains C. A leaf C in Toomp(Bo) is said to be terminal if
the radius of A(C) is < & and our Pellet predicate verifies that #/(C) = #¢(3C). We
could then output (A(C),#7(A(C)).

While there are non-terminal components, the main loop of the algorithm will
keep removing some non-terminal component C for processing. Under certain con-
ditions we can try to apply a Newton step; if this step is successful, it will produce
another component C' which becomes the sole child of C in the component tree.
If it fails, we apply a bisection step on C that produces k > 0 children as above:
C—(Ch,...,Cp).

Our algorithms [2, 1] are numerical with arbitrary precision. They ultimately re-
duced to approximation by dyadic numbers (or BigFloats), i.e., elements of the ring
Z[3] = {m2" :m,n € Z}. If B is a box of width w = w(B) centered at m = m(B), we
write A(B) for the disc with center m but with radius 2w. If B is exactly represented,
i.e., m,w are given by dyadic numbers) then A(B) is also exactly represented. This
ensures that the input arguments to our computational primitives are exact, even
though their arithmetic is approximate. The algorithm explicitly specify the necessary
precision to carry out each operation, and is therefore directly implementable.

Implementation of Complex Root Clustering 11

Soft Graeffe-accelerated Pellet Test

Let us fix a polynomial f(z) € C[z] of degree d. Our critical primitive is based on the
classical test of Pellet (1881) [14]. For k=0,...,d and disc A = A(m,r) C C with
center m and radius r, the test T;(A), amounts to the truth of this inequality:

A Y |fiom)|r (2)

i>0,ik

‘fk(m)

where fi(m) = f®)(m)/i! is the i-th Taylor coefficient for If this test succeeds, it
implies #7(A) = k. But if it fails, we know nothing; this motivates [2] to introduce a
“Graeffe-accelerated variant” of T called TkG in order get some useful information
in case of failure. In particular, if T,.(A) fails then we know that #(34) >0 (i.e.,
there is a root is a slightly enlarged A). Next, we define the test T,(A) to be
successive testing of T;(A4) for k=0, ...,d until one of these tests succeed, whereupon
the successful k value is returned. If no k is successful, return —1. We can define
T.5(A) similarly for the Graeffe variants. The tests T,% and T.C so far are based on
exact comparison as in (2). We “soften” exact comparison so that we can make
a decision with only bounded precision. The IntCompare(?z,Z,r) routine in Figure
2 compares two intervals [a=+ 7] and [b+r]. It returns a truth value from the set
{true, false, trufal,unresolved}. These truth values have this meaning: If a and b
are any in these intervals, then true implies a > b, false implies a < b, and trufal
implies %a <b< %a, and unresolved makes no assertion about a,b. We regard the
first three answers as definite, and the last as indefinite.

IntCompare(d, b, r)
Output: a value in {true,false, trufal,unresolved}
Let a* « max(0,a+xr), b* — max(0,b+r)

Ifa= >bt < thena>b
Return true

If a® <b~ q thena <b
Return false

If %a+ <b <bt< %a‘ < then %11 <b< %a

Return trufal
Return unresolved

Fig. 4. Integer Comparison

The soft comparison of two real numbers, denoted a :: b is® the following pro-
cedure: for p=1,2,3,..., we compute d,,b,, the p-bit approximations of a,b, and
call IntCompare(ﬁp,Ep,Z’l’). We stop as soon as the result is determinate, i.e., not
unresolved. This process is guaranteed to terminate provided it is not the case that

8 We view a and b as oracles that can return p-bit approximations for any desired p.

12 Imbach-Pan-Yap

a=0b=0 (see [17]). If a and b are, respectively, the left and right hand sides of
(2), then this iterative process is called the soft version of T;(A), denoted T;(A).
The other soft tests are obtained by a similar process. Denote the soft versions of
7% and TC by YN"kG and T, respectively. What we called the Py(B) (Pellet) predicate

above can now be identified as 7,0(A(B)).

