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Resilience and efficiency in transportation networks
Alexander A. Ganin,1,2 Maksim Kitsak,3 Dayton Marchese,2 Jeffrey M. Keisler,4

Thomas Seager,5 Igor Linkov2*

Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly
delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the ef-
ficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery
from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by
mapping intersections to nodes and road segments between the intersections to links. We built road networks for
40 of the urban areas defined by the U.S. Census Bureau. We developed and calibrated a model to evaluate traffic
delays using link loads. The loads may be regarded as traffic-based centrality measures, estimating the number of
individuals using corresponding road segments. Efficiency was estimated as the average annual delay per peak-
period auto commuter, and modeled results were found to be close to observed data, with the notable exception
of New York City. Resilience was estimated as the change in efficiency resulting from roadway disruptions and was
found to vary between cities, with increased delays due to a 5% random loss of road linkages ranging from 9.5% in
Los Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems that operate inef-
ficiently under normal conditions are nevertheless resilient to disruption, whereas some more efficient cities are
more fragile. The implication is that resilience, not just efficiency, should be considered explicitly in roadway project
selection and justify investment opportunities related to disaster and other disruptions.
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INTRODUCTION
Existing roadway design standards emphasize the efficient move-
ment of vehicles through a transportation network (1–4). Efficiency
in this context may include identification of the shortest or fastest
route (1, 5–7), or the route that minimizes congestion (8). It is the pri-
mary criterion on which road networks are modeled and design alter-
natives are considered (6, 7, 9, 10). The Texas A&M Transportation
Institute defines and reports traffic delay in urban areas as the annual
delay per auto commuter (11). Other studies define efficiency as delay
for the individual driver in terms of time spent moving or stopped (7),
or mean travel time between all origin-destination pairs in the net-
work (9). However, as the experience of any motorist in large American
cities can attest, conditions beyond the scope of the roadway design,
including congestion, accidents, bad weather, construction, and special
events (for example, a marathon race), can cause costly delays and
frustrating inefficiencies that result in fuel waste, infrastructure dete-
rioration, and increased pollution (12, 13). Evaluating road networks
based only on efficiency under normal operating conditions results in
little to no information about how the system performs under subop-
timal or disrupted conditions.

Infrastructure systems that exhibit adaptive response to stress are
typically characterized as resilient (14–21). Given the essential role of
transportation in emergency response, provision of essential services,
and economic well-being, the resilience of roadway networks has re-
ceived increasing policy attention. Nonetheless, scholars have yet to
converge on a shared understanding of resilience suitable to guide de-
sign, operation, and reconstruction of roadway networks. Although
resilience in infrastructure systems is characterized as a multidimen-
sional concept (22, 23), in many engineering and civil infrastructure
implementations, resilience is defined as the ability of a system to pre-
pare for, absorb, recover from, and adapt to disturbances (16). Specific
to transportation, resilience has been defined as “the ability of the sys-
tem to maintain its demonstrated level of service or to restore itself to
that level of service in a specified timeframe” (24). Others describe
transportation resilience as simply the ability of a system to minimize
operational loss (25) or use the term synonymously with robustness,
redundancy, reliability, or vulnerability (26–28).

Current efforts in transportation resilience research have focused
on framework development and quantification methods. These efforts
include the specification of resilience indicators, such as total traffic
delay (24), economic loss (29), post-disaster maximum flow (30), and
autonomous system components (31). Practical concerns with this type
of resilience evaluation are that it relies on uncertain performance data
and often omits indicators that are unquantifiable (19). Other resilience
approaches apply traffic network modeling to identify locations for crit-
ical buildings (for example, hospitals and fire stations) (32), minimize
trip distance for individual passengers (33), and minimize travel time
across the system (12). One drawback of existing network resilience
methods is that they are data-intensive, often requiring limited infor-
mation about resources for unusual road system repair (26, 28) or
network behavior following a disruptive event (34). Moreover, existing
resilience quantification approaches lack calibration and testing across
a range of transportation systems. Because many disruptive events,
and their associated consequences, are difficult to predict, resilient
road systems must be characterized and evaluated by the capacity
to adapt to a variety of different stress scenarios. Partly because of
these obstacles, joint consideration of efficiency and resilience has yet
to be implemented for transportation networks.

Here, we study the interconnections between resilience and effi-
ciency (20) among road transportation networks in 40 major U.S. cities.
We develop an urban roadway efficiency model, calibrate it on the
basis of the observed data (11) of annual delay per peak-period auto
commuter, and apply the model to calculate efficiency in 40 cities.
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Then, we model traffic response to random roadway disruptions and
recalculate expected delays to determine the sensitivity of each city to
loss of roadway linkages. The results may reveal important considera-
tions for assessing proposals for improvement of roadway infra-
structure that maintain efficiency under stress conditions.
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METHODS
TheMethods section appears here to help clarify the subsequent sections.
To develop the urban roadway efficiency model, we defined the urban
area boundaries, constructed the road networks, and evaluated the pop-
ulation density within cities using the Census Bureau data sets (35, 36)
and OpenStreetMap (OSM) data sets (37). We relied on these data to
assess commuter patterns, which we used to measure efficiency and
resilience of road networks.

Alternative approaches to transportation have been offered and in-
clude those based on percolation theory and cascading failures (38–40),
human mobility pattern studies (41–43), queueing (44, 45), and the
use of historical data to predict traffic. We review these approaches
in the Supplementary Materials and note that the main benefit of
our model is that it relies solely on readily available public data,
rather than on particular data sets that may or may not be practical
to obtain for any particular region. The model’s algorithmic simplicity
allows us to consider spatial topologies of cities in high resolution in-
cluding tens of thousands of nodes and links. We did not create a more
accurate transportation model than the existing ones, but we were able
to obtain measurable characteristics of transportation systems (average
delays) using our model.
Ganin et al., Sci. Adv. 2017;3 : e1701079 20 December 2017
Geospatial boundaries and population density
To define geospatial boundaries for the transportation infrastructure
networks, we used the U.S. Census Bureau geospatial data set (35) for
urban areas—densely developed residential, commercial, and other
nonresidential areas (46). We approximated the exact urban area poly-
gon with a simplified manually drawn one (Fig. 1A) and included all
roadways within 40 km (25 miles) of it in the network. For each of the
links, we calculated its length on the basis of the polyline defining the
link and assigned a number of lanes m and the FFSs (see the Supple-
mentary Materials).

We next estimated population in vicinity of each intersection i using
the Census Tract data (36). To this end, we split the map into Voronoi
cells centered at intersections and then evaluated the population of each
cell Ni as

Ni ¼ ∑
t
Nt

AreaðPt ∩ PiÞ
AreaðPtÞ ð1Þ

Above, Nt is the population of Census Tract t, and Pi and Pt are
the polygons of the cell and the tract, respectively (Fig. 1B and
table S2).

Transportation model
We built on the gravity model to generate commuting patterns. The
gravity model (47) is a classical model for trip distribution assignment
and is extensively adopted in most metropolitan planning and state-
wide travel demand models in the United States (48–51). Other trip
 on August 26, 2018
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Fig. 1. Definition of urban areas and assignment of nodes’ population. (A) Boston, MA-NH-RI urban area as defined by the U.S. Census Bureau shapefiles (gray
background). To simplify the model and the algorithms calculating the distance from network nodes to the city boundary, we approximate each of the urban areas
shapefiles with a coarse manually drawn polygon (pink outline). (B) Assignment of the number of people departing from each of the network nodes. Population
distribution (color polygons; red corresponds to higher population density), Voronoi polygons (black outline), and network nodes (dots) in Downtown Boston.
2 of 8

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on August 26, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

distribution models include, for example, destination choice models
(52, 53). However, these models are not as widely used in large scale,
because the detailed data required by these models are frequently un-
available (48).

We assumed that (i) the flow of commuters from origin region o
to destination region d is proportional to the population at the des-
tination Nd and that (ii) the flow of commuters depends on the dis-
tance xod between the origin and destination and is given by a distance
factor, P(xod). Using these assumptions, we assessed the fraction of
individuals commuting from region o to destination region d, fod, as

fod ¼ NdPðxodÞ
∑kNkPðxokÞ

ð2Þ

Then, the commuter flow from origin region o to destination re-
gion d is

Fod ¼ Nofod ð3Þ

Although individual driving habits may vary (54), we assumed that
all drivers tended to optimize their commute paths such that their travel
time was minimized. This assumption allowed us to calculate commute
paths for every origin-destination pair using inferred FFSs. To calculate
commuter flows between all pairs of intersections, we estimated dis-
tances xod as the distance of the shortest time path from o to d.
Furthermore, in place of the distance factor P(xod), we used the dis-
tribution of trip lengths from the U.S. Federal Highway Administration
National Household Travel Survey (55, 56), which we approximated
with the exponential function (Fig. 2A and table S3).

Next, we defined the commuter load on each road segment as

Lij ¼ ∑
o;d
FodqodðijÞ ð4Þ

where qod(ij) is a binary variable equal to 0 when the link ij is not
on the shortest path connecting nodes o and d, and 1 otherwise.
Note that in Eq. 4, we only considered origins that were not farther
than 30 km from the urban area boundary polygon. The nodes far-
ther than 30 km from the boundary were only used as destinations
to evaluate the fraction of commuters not going toward the urban
area (Eq. 2).
Ganin et al., Sci. Adv. 2017;3 : e1701079 20 December 2017
Because most commuters travel during peak periods, commuter
loads Lij can be regarded as traffic-based centrality measures estimat-
ing the number of individuals using corresponding road segments.
Then, the cumulative time lost by all commuters is

DT ¼ b∑
ij∈E

Lij
ðlij þ l0Þ

vij
� ðlij þ l0Þ

Vij

� �
ð5Þ

where Vij and vij are, respectively, the FFS and the actual traffic speed
along the ij road segment, lij is its length, l0 is the length correction due
to traffic signals, and b is the proportionality coefficient same for all
urban areas. The summation in Eq. 5 includes only links, whose
origins and destinations are within the boundary polygon. A similar
equation was obtained for the moving delay in the study of Jiang and
Adeli (45), where the authors looked at the delay induced from road
repairs.

The actual traffic speed vij depends on many factors including the
speed limit, the number of drivers on the road, and road conditions.
Although there exist a number of approaches to estimate actual traffic
speed (57, 58), we chose to use the Daganzo model (59) to derive the
traffic speed, as shown in the Supplementary Materials

vij ¼ a
lijmij

Lij
� vveh; subject to vij ∈ ½vmin;Vij� ð6Þ

where vmin is the minimum speed in the traffic, vveh is the correction
for the finite size of the car, and a is the proportionality coefficient
(Fig. 2B).

Efficiency and resilience metrics
We measured efficiency as the average annual delay per peak-period
auto commuter. In practice, lower delay means higher efficiency.
There are multiple ways to map from delays to efficiency, such as tak-
ing the inverse values of delays, taking negative values of delays, etc.
To avoid ambiguity and facilitate the interpretation of results, we
used the delays themselves to quantify the transportation efficiency
of urban areas.

We operationalized resilience through the change in traffic delays
relative to stress, which is modeled as loss or impairment of roadway
BA
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Fig. 2. Model details. (A) Distance factor P(xod) (Eq. 2) of trips given the distance between nodes (solid line) and the statistical data (bars). (B) Dependency of speed on
density for V = 100 km/hour.
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linkages. Looking at resilience from the network science perspective,
we focused on topological features of cities, rather than on recovery
resources available. Sterbenz et al. (60) evaluated a network’s resilience
as a range of operational conditions for which it stays in the acceptable
service region and highlighted that remediation mechanisms drive
the operational state toward improvement. We are studying how
availability of alternate routes helps remediate the consequences of
the initial disruption to the network. In the traffic context, the imme-
diate impact of a given physical disruption (and the time for it to
unfold) in terms of closing lanes or reducing speed limits on af-
fected roads will not vary much from network to network, although
the number and type of these disruptions will. Likewise, the speed
of restoring full functionality (through action in the physical do-
main) is not so much dependent on the road network as it is on
the nature of the disruption (snow versus earthquake versus flood)
and the resources that the city allocates to such repair. The level of func-
tionality that these repairs achieve ought to be the full predisruption
functionality, that is, eventually all roads can be fully cleared or re-
stored. However, the immediate loss of function for a given traffic
flow can very quickly be partially recovered after a disruption by ac-
tion in the information domain, namely, rerouting of traffic. From
the new steady state at that level of functionality, full functionality is
gradually restored. Thus, our model proxies for resilience and is cali-
brated against the data that proxy for efficiency. At the same time,
we note that to fully capture resilience characteristics of a transpor-
tation system, it is required to analyze recovery resources available and
Ganin et al., Sci. Adv. 2017;3 : e1701079 20 December 2017
the effectiveness of coordination between the relevant authorities. Lower
additional delay corresponds to higher resilience, but using the same
reasoning that we had for efficiency, we quantified resilience through
additional delays.
RESULTS
Efficiency
Together, our traffic model has three parameters (proportionality co-
efficient a, minimum speed vmin, and finite vehicle size correction
vveh) and is summarized in Eqs. 5 and 6. Given parameter values of
the model, one can estimate the total delay incurred by all commuters
in any given suburban area or, equivalently, the average delay per com-
muter. We take vveh = 9 km/hour and vmin = 5 km/hour and calibrate
the model to determine the value of a to match the real data on the an-
nual average delay per peak-period auto commuter provided by the
Urban Mobility Scorecard (11).

We divide the 40 urban areas into two equally sized groups for
model calibration and validation, respectively. We have found that
for the 20 urban areas used for calibration, the R-squared coefficient
took values in the range (−0.01 to 0.83) (Fig. 3 and Supplementary Mate-
rials). This allows us to set model parameters a and b (see Methods) as
follows: a = 4.30 × 104 hour−1 and b = 10.59. These values correspond to
the Pearson coefficient of 0.91 (P = 2.17 × 10−8).

To validate the model, we estimate travel delays in 20 different
urban areas. As seen from Fig. 3, the estimated travel delays are
 on August 26, 2018
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Fig. 3. Modeled and observed delays in 40 urban areas. Pearson correlation coefficients and P values between observed and modeled delays are (0.91, 2.17 × 10−8)
for the 20 cities used to calibrate the model and (0.63, 3.00 × 10−3) for the 20 cities used to validate the model. Observed delays were taken from the Texas A&M
Transportation Institute Urban Mobility Scorecard (11).
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significantly correlated (R = 0.63, P = 3.00 × 10−3) with actual delay
times (11), validating the transportation model. Figure 4 is a Google
Maps representation of real and modeled results for Los Angeles
and San Francisco. Road conditions under real, average traffic pat-
terns at 8 a.m. provided by Google Maps are in Fig. 4 (A and D).
Modeled conditions are given for comparison in Fig. 4 (B and E). Fi-
nally, Fig. 4 (C and F) shows the new, modeled traffic patterns that
result from redistribution of travel in response to a disruption of 5%
of the links.

Resilience
Our approach to model stress is inspired by percolation theory. For
every independent simulation of stress, we select a finite fraction of
affected road segments r at random, with the probability of failure
proportional to segment length. We collect statistics for 20 realizations
of the percolation. On failed segments, free-flow speeds (FFSs) are re-
duced to 1 km/hour (representing near-total loss), and loads L and
traffic delays are then recalculated using the updated FFSs. Low-stress
scenarios (r < 0.1) might be caused by accidents or construction. Larger
disruptions might occur during power failures that disrupt traffic sig-
nals or severe flooding that makes many roadways nearly impassable.
Finally, widespread stress might be caused by snow, ice, or dust storms
that affect nearly the entire roadway system. Figure 5 displays the anal-
ysis of delay times in six representative urban areas for the full spec-
trum of adverse event severities, r ⋲ [0; 1]. In addition, fig. S5 shows
the results for all urban areas. Some routes within a single urban
area experience longer delays than others. The inset of Fig. 5 shows
the delay distribution for both Los Angeles, which is narrowly clus-
tered, and Boston, where greater variability between roadways is evident.
Ganin et al., Sci. Adv. 2017;3 : e1701079 20 December 2017
Traffic delay times grow rapidly as r increases and reach saturation
(all routes moving at 1 km/hour) as r approaches 1. We determine the
most resilient urban transportation network to be Salt Lake City, UT,
whereas the least resilient among the 40 metropolitans is shown to
be Washington, DC.

Figure 6 shows both the efficiency (in blue) and resilience response
(additional delays due to 5% link disruption, in orange) for the 40
urban areas modeled. Some cities with high efficiency under normal
operating conditions (that is, low delays) nevertheless exhibit low
resilience (that is, a sharp increase in traffic delays) under stress. Vir-
ginia Beach, VA; Providence, RI; and Jacksonville, FL all fall into this
category of urban areas in which traffic operates well under or-
dinary circumstances but rapidly become snarled under mild stress.
On the other hand, Los Angeles is notorious for traffic delays under
all conditions—yet minor stress levels result in little degradation
of efficiency. By contrast, normal traffic delays in San Francisco are
comparable to Los Angeles, but mild stress in San Francisco results in
large increases in additional delays. These examples indicate that
resilience (that is, additional delay response to stress) is independent
of normal operating efficiency.
DISCUSSION
The disturbances affecting the road infrastructure are often complex,
and their impact on the structure and function of roadway systems
may be unknown (28, 31). These disturbances might be natural and
irregular, such as distributed road closures caused by an earthquake or
homogeneous vehicle slowing down because of a snowstorm. The dis-
turbances might also be anthropogenic and intentional, such as a
 on August 26, 2018
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Fig. 4. Traffic distributions. Typical congestion at 8 a.m. for Los Angeles (top) and San Francisco (bottom) as given by Google Maps (A and D), modeled with no
disruptions (B and E), and modeled with a 5% link disruption (C and F). Notably, in Los Angeles, the disruption results in traffic redistribution to smaller roads, whereas
in San Francisco, it results in increased congestion along the major highways.
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street fair or marathon race. Whatever the disturbance, the results of
this analysis allow several meaningful inferences to be made that may
have important implications for highway transportation policy. The
first is that resilience and efficiency represent different aspects related
to the nature of transportation systems; they are not correlated and
Ganin et al., Sci. Adv. 2017;3 : e1701079 20 December 2017
should be considered jointly as complementary characteristics of
roadway networks.

Second, there are characteristic differences in the resilience of dif-
ferent urban areas, and these differences are persistent at mild, medi-
um, or widespread levels of stress (Fig. 5). Except for San Francisco,
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CA, which is the most fragile of all cities represented in Fig. 5 at stress
levels r < 20% but then surpassed by Boston, MA and Washington,
DC, the rank ordering of urban area resilience is insensitive to
stress levels. That is, cities that exhibit relatively low resilience un-
der mild stress are the same cities that exhibit low levels of re-
silience (relative to peers) under widespread roadway impairment.
This suggests that the characteristics that impart resilience (such
as availability or alternate routes through redundancy of links) are
protective against both the intermittent outages caused by occasional
car crashes and those caused by snow and ice storms. For cities with-
out resilience, a widespread hazard such as snow may lead to a cas-
cade of conditions (for example, crashes) that rapidly deteriorate into
gridlock. This was exactly the case for Washington, DC 20 January
2016 under only 2.5 × 10−2 m or 2.5 cm of snow (61), and for At-
lanta, GA 2 years earlier, which experienced 5.1 × 10−2 m or 5.1 cm
of snow in the middle of the day that resulted in traffic jams that
took days to disentangle (62). Whereas popular explanations of these
traffic catastrophes focus on the failure of roadway managers to pre-
pare plows and emergency response equipment, Fig. 5 suggests that
cities with similar climates (Memphis, TN and Richmond, VA) are
less likely to be affected, regardless of the availability of plow or
sand trucks.

The third inference follows from Fig. 6, which suggests that urban
areas that make capital investments to reduce traffic delays under
normal operating conditions may nevertheless be vulnerable to traffic
delays under mild stress conditions. Because these stressors are inev-
itable, whether from crashes, construction, special events, extreme
weather, equipment malfunctions, or even deliberate attack, invest-
ment strategies that prioritize reduction of normal operating delays
may have the unintended consequence of exacerbating tail risks—
that is, the risk of worse catastrophe under unlikely but possible
conditions.

Finally, the exceptional position of New York City in Fig. 3 calls
attention to the fact that substitutes for roadway transportation are
available in many cities and have an important role to play in relieving
traffic congestion. According to the Texas A&M Institute (63, 64),
public transit reduces delays per peak-period auto commuter in the
New York urban area by 63 hours, in Chicago by 23 hours, and
by less than 20 hours in other urban areas. Because our model con-
siders only roadway transit, and New York City contains a myriad
of nonroad-based options to avoid roadway congestion, it is unlike-
ly that our model can provide informative results for the New York
urban area.

Although interest has increased in policies that enhance roadway
resilience, few analytic tools are available to guide new investments in
achieving resilience goals. It is widely understood that roadway infra-
structure is expensive, both in acquiring land for rights-of-way and in
construction of improvements, and thus, decisions regarding align-
ment, crossing, and access made over a period of decades may have
long-lasting consequences that are observable in traffic data today.
Consequently, urban areas exhibit different unintentional traffic char-
acteristics, including delays under normal and random stress con-
ditions. Investments motivated exclusively by expected efficiencies
under normal operating conditions are unreliable safeguards against
loss of efficiency under stress conditions. Therefore, new analytic tools
are required that allow designers to assess the adaptive capacity of
roadway infrastructure and assess the potential of new investments to
provide enhanced resilience. The adaptive network-based model de-
scribed herein is one such approach.
Ganin et al., Sci. Adv. 2017;3 : e1701079 20 December 2017
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Alternative approaches to model transportation 

The extensive literature on transportation network modeling contains various alternative approaches to 
the one developed here. 

Important group of graph theoretic approaches to system robustness and resilience look at the cascading 
failures propagation in spatially-embedded interdependent networks. For example, Berezin et al. (38) 
look at the cascading failures in coupled diluted lattices and determine a critical radius of localized 
percolation, which leads to the system’s collapse. In work (39), the authors add recovery to probabilistic 
failure process in coupled spatial networks, and establish a phase space of probabilities, characterizing 
the up and down states of the two networks. Another study (40), which is particularly relevant to 
transportation, evaluates loads on nodes from their betweenness centralities. If after a localized removal 
of some nodes the betweenness of the surrounding nodes increases above a threshold proportional to 
their initial betweenness, an overload happens. This overload may then propagate across the network. 

Widespread queueing models (44) consider traffic behavior in the vicinity of a certain location or 
section where the demand exceeds the available capacity (for example, at intersections). We do not 
utilize these models in this work for a number of reasons: i) we do not have information on the 
controlled and not controlled intersections; ii) to robustly formulate a queueing model we would need to 
consider temporal distribution of arrival and departure rates; iii) computationally, such models are more 
complex to solve for large networks (we consider networks of up to 39 791 nodes and 88 797 links 
(New York)) as it is necessary to account for the finite capacity of links and spillover effects, when a 
link may cause delays at connected links and increase wait times for traffic, which will not enter that 
link. Another approach is to evaluate delays from historical data and direct measurement (e.g. Google 
Maps). This approach is very accurate but requires extensive datasets and is not easily applicable to 
hypothetical scenarios, such as disruptions. 

Gonzalez et al. (41) conducted a study on human mobility patterns and found that these patterns may be 
approximated by a random walk for which step size follows a truncated power law. Similar patterns 
were observed later by Cho et al. (42) and Calabrese et al. (43). In our work, however, we based our 
evaluation of the distance factor on the National Household Travel Survey as the scale of the mobility 
patterns reported is significantly different and covers travel of up to 104 kilometers (e.g., (42)). Mobility 
studies also have certain limitations. For example, among other characteristics, the first paper looks at 
distance distribution of travel and approximates it with a Lévy flight. We note, that in conditions of 
highly geometrically heterogeneous sources and destinations distributions, a random walk may be less 
accurate than models which account for this heterogeneity. 

  



Mapping from OSM Foundation shapefiles to network nodes and links 

The transportation topology is represented in Open Street Map (OSM) datasets as a table with rows 
defining segments of roads. Each row contains the following fields (fields marked as optional below 
may contain no data): 

1) SHAPE – characterizes the road segment as a polyline defined by an ordered list of points 
coordinates; 

2) NAME (optional) – contains the name of a road (e.g. street or highway name); 
3) TYPE – specifies values showing the importance of a road (e.g. highway, trunk, primary, secondary, 

tertiary and others); 
4) ONEWAY – represents whether a road segment is one way as a binary value (0 or 1); 
5) MAXSPEED (optional) – provides the speed limit information for a particular road segment. 

For simplicity and computational effectiveness, we do not consider minor residential streets and service 
roads in the analysis, thus limiting it to roads of 10 types, and assign a number of lanes to each type 
(table S1). Additionally, for each of the roads we calculate its length lij (using the shape of the polyline) 
and the free-flow speed (FFS). For non-ramps roads, the FFS is determined either as the value of the 
field MAXSPEED if it is non-zero, or as the average FFS across the whole network for roads of the 
same type and non-zero MAXSPEED. For ramps the FFS is determined as one third of the average FFS 
of the respective type roads. E.g., the FFS of highway ramps equals 1/3 of the average highway FFS. We 
analyze the effects it has on the results later in Supplementary Materials. 

 

table S1. Mapping original OSM types to network link types and assignment of the number of 
lanes. 

Link Type OSM Dataset Type Number of Lanes 
High-speed (HS) highways motorway 4 
Highways trunk 4 
Primary roads primary 3 
Secondary roads secondary 2 
Tertiary roads tertiary 1 
HS highways ramps motorway_link 2 
Highways ramps trunk _link 2 
Primary ramps primary _link 2 
Secondary ramps secondary_link 1 
Tertiary ramps tertiary_link 1 

In the beginning of the network topology generation we create a map with keys corresponding to GPS 
coordinates, and values corresponding to nodes. For each of the points comprising the road polylines we 
first check if it should be included in the network based on the boundary polygon. A point is included if 
it is either inside the boundary polygon or within a certain distance from the polygon’s border. In this 
study, the said distance was taken to be 25 miles (approximately 40 000 meters). If the point is included 
then we create a node and add it to the map using its coordinates (rounded to 10–5 decimal degrees) as 
the key, unless these coordinates are already in the map. Thus, all points of all road polylines have a 
corresponding node in the map. Finally, we connect all adjacent (as defined by the road polylines) nodes 
with either one directed link (if the road is one way) or two directed links (otherwise). 



It is worth noticing that when a transportation system is represented as a network some nodes may be 
excluded. In particular, the nodes with only one neighbor, while able to serve as sources or destinations, 
do not contribute to the traffic carrying capacity of the system. For this reason, we removed all such 
nodes from the transportation network to simplify the model. 

It is also possible to exclude the nodes with exactly two neighbors from the system. Such nodes typically 
appear for two reasons: i) due to our removal of residential and service roads from the network; ii) in the 
source datasets, as a way to differentiate between different road types or allowed speeds on the roads 
connected by such a node. To investigate the validity of removing nodes of degree 2 from our resulting 
network, in fig. S1 we present an analysis of characteristics of links, which are combined due to removal 
of such nodes. We look at differences in estimated speeds (fig. S1A) and numbers of lanes (fig. S1B). In 
total, across all 40 urban areas, 842 115 link pairs are combined. More than 97% pairs had speed 
differences between links less than 10 km/h and more than 99% had no differences in the estimated 
numbers of lanes. Thus, we conclude that the effect of the removal on the results is unlikely to be 
significant. We do the removal by connecting the two neighbors of 2-degree nodes directly as follows. 
Assume that node A has two neighbors: B1 and B2. Depending on the way the three nodes (B1, A, and B2) 
are connected we either disconnect nodes B1 and B2, or connect them with 1 or 2 directed links (in 
opposite directions). The links from B1 to B2 and from B2 to B1 are built in the same way so we only 
need to describe case B1–B2. The following two subcases are possible: i) there is a link from B1 to A and 
from A to B2; ii) there is no either or both of the links mentioned in i). In the first case, we can replace 
the two directed links B1–A–B2 with a single directed link B1–B2. The road length of the resulting link 
B1–B2 is set to the sum of the lengths of links B1–A and A–B2. The type of link B1–B2 is set to the worst 
of the types of the two original links (e.g., if the type of link B1–A is HS highway and the type of link A–
B2 is primary road then the type of link B1–B2 is assigned as primary road). The capacity of link B1–B2 is 
set to the smallest of the capacities of links B1–A and A–B2 and the FFS is found from the capacity and 
the road type of link B1–B2. In the second case the link between nodes B1 and B2 is not created. We do 
not apply the above mechanism and keep nodes of degree 2 in the network when either of their two links 
is a ramp and the other one is not. 

 

 
 
fig. S1. Effects of the removal of nodes of degree 2. Distribution of differences in estimated speeds (A) 
and numbers of lanes (B) between two roads connected to these nodes. Of 842 115 such link pairs in all 
40 urban areas, 819 106 (97%) pairs had speed differences between links of 10 km/h or less, and 835 
305 (99%) pairs had no differences in the estimated numbers of lanes. 
  



Population assignment algorithm 

In table S2 we describe the ESRI ArcMap tools we used to evaluate the number of people served by 
each of the intersections. 

table S2. The algorithm of the node population assignment. 
 

 ArcMap Tools Description 
1 Minimum Bounding 

Geometry 
Build the minimum convex bounding polygon enclosing all 
nodes in the network. 

2 Buffer Create the buffer polygon around the nodes bounding polygon. 
The resulting buffer polygon may be defined as the union of the 
boundary polygon and all points within a certain distance from 
this polygon. In our study, the buffer distance was taken to be 1 
mile. 

3 Create Thiessen 
Polygons 

Build Voronoi polygons for all nodes. Each Voronoi polygon 
contains only a single point input feature. Any location within a 
Voronoi polygon is closer to its associated point than to any other 
point input feature. 

4 Clip Clip Voronoi polygons with the buffer polygon. 
5 Calculate Field Calculate areas and population densities for all population 

distribution polygons. 
6 Tabulate Intersection Calculate the spatial composition of each of the Voronoi 

polygons in terms of population distribution polygons and 
calculate the population density of Voronoi polygons. 

7 Calculate Field Multiply the area of Voronoi polygons by their population 
density to evaluate the number of people. Assign this number as 
the population served by a node. 

 

  



Distance factor of the likelihood of travel between nodes 

To evaluate the trip distance factor P(xod) we rely on 2009 survey data provided by the National 
Household Travel Survey (NHTS) (55, 56). Overall, the resulting dataset contains data for all 150 147 
completed households. As part of the survey, the queried households were asked to record parameters of 
their daily trips, such as distance travelled, on a certain day of the year. 

We approximated the NHTS data with a piecewise continuous function. Let x be the distance between 
the origin and destination. The first two segments (for x ϵ (0; 0.5] and for x ϵ (0.5; 2.5]) were chosen to 
be linear. The first segment was chosen to be a straight line connecting the point (0, 0) and the first bin 
point. The second segment was chosen to be a straight line connecting the last point of the first segment 
and the first point of the third segment. 

For the third segment (x ϵ (2.5; 34.5]), we considered a polynomial model (P(x) = k3x–b) and an 
exponential model (P(x) = k3e–bx). As we observed a slightly better correlation between the model and 
the data with the exponential model, we used that model. 

In table S3 we provide the precise definition of the distance factor P(xod) of the likelihood of travel 
between nodes. 

table S3. Distance factor P(xod) of the likelihood of travel between nodes. 
 

Function Parameters Argument (xod) 
values (miles) k b 

0    0 
𝑘𝑑 + 𝑏 0.21995 0 0 0.5 
𝑘𝑑 + 𝑏 0.01188 0.10404 0.5 2.5 
𝑘𝑒−𝑏𝑑 0.21128 0.18296 2.5 34.5 
0   34.5  

 
  



Estimation of the traffic speed from the density of vehicles 

We employ a simple car following model to find the relationship between vehicles density and their 
macroscopic speeds. 

Consider a network link, representing a road segment of length l with m lanes. Let D be the density of 
vehicles per unit length per one lane of the link. We assume uniform distribution of vehicles across the 
road segment. Then, on the whole link, the total number of vehicles N is 

𝑁 =
𝑙𝑚

𝐷
 (S1) 

On the other hand, the density D equals the reciprocal average length of the road occupied by a single 
vehicle l1: D = 1 / l1. We assume that l1 is composed of two parts the distance the driver needs to keep 
between their vehicle and the vehicle directly ahead and the vehicle size correction lveh. We approximate 
the distance between two vehicles according to the two-second rule. This rule recommends that under 
normal road and weather conditions drivers keep the distance they cover in 2 seconds between their 
vehicle and the one they are following. Let tr equal 2 seconds and v be the current traffic speed. Then 

𝐷 = (𝑙𝑣𝑒ℎ + 𝑣𝑡𝑟)−1 (S2) 

We assume that v is limited from the top at the free-flow speed V, which equals the speed limit set on the 
link. Then 

𝑣 = {

 𝑉, if 𝐷 ≤ 𝐷𝑐

1

𝐷𝑡𝑟
− 𝑣𝑣𝑒ℎ,  if 𝐷𝑐 < 𝐷 ≤ 𝐷𝑗𝑎𝑚

0,  otherwise

 (S3) 

Above, vveh = lveh / tr. Dc = (lveh + Vtr)–1, and Djam = 1 / lveh. The fundamental traffic relationship between 
flow q, speed v, and density D is 

𝑞 = 𝐷𝑣 (S4) 

Using the relationship, we may express the traffic flow in terms of density as follows 

𝑞 = {

𝐷𝑉,  if 0 < 𝐷 ≤  𝐷𝑐

1

𝑡𝑟
− 𝐷𝑣𝑣𝑒ℎ  if 𝐷𝑐 < 𝐷 ≤ 𝐷𝑗𝑎𝑚

0 otherwise

 (S5) 

If we set qc = 1 / tr, we obtain the dependency shown in fig. S2 which represents the Daganzo traffic 
model (59). 

 

 



 
fig. S2. Density-flow relationship in the Daganzo traffic model. 

Using equations (S1) and (S3) we find that for Dc < D ≤ Djam 

𝑣 =
𝑙𝑚

𝑁𝑡𝑟
− 𝑣𝑣𝑒ℎ (S6) 

For a link, we approximate the number of vehicles N to be linearly proportional to the load L with the 
proportionality coefficient α 

𝑁 =
𝐿

𝛼
 (S7) 

In addition, we assume that the minimum traffic speed is limited at a certain value vmin. This leads to Eq. 
(6) from the main text 

𝑣𝑖𝑗 = 𝛼
𝑙𝑖𝑗𝑚𝑖𝑗

𝐿𝑖𝑗
− 𝑣𝑣𝑒ℎ, subject to 𝑣𝑖𝑗 ∈ [𝑣𝑚𝑖𝑛, 𝑉𝑖𝑗] (S8) 

We assume lveh to be 5 meters, giving vveh = 9 km/h, while vmin is approximated to be the walking speed 
of 5 km/h. 

  



Model calibration procedure 

We calibrate the model to determine the value of α to match the real data on the annual average delay 
per peak-hour auto commuter provided by the Urban Mobility Scorecard (11). We use the delays data 
for 2010 as our census data are for that year. We search for parameter α maximizing the correlation 
between the modeled and actual delay times in representative 20 urban areas. To this end, we vary the 
value of the parameter α in the range of [200; 200,000] with the step of 200. We first divide the value of 
total delay ∆T (Eq. (5)) over the UA number of auto commuters (Urban Mobility Scorecard (11)). Then, 
we determine the proportionality coefficient β which minimizes the R-squared coefficient for the 
predicted and observed values assuming a simple linear dependency between these values passing 
through the point (0, 0). 

We have found that for the 20 urban areas used for calibration R-squared coefficient took values in the 
range [-0.01; 0.83] (fig. S3). This allowed us to set α = 4.30∙104 hour–1, which corresponds to β of 10.59, 
and the Pearson coefficient of 0.91 (p = 2.17∙10-8). 

 

 

 
 
fig. S3. Model calibration. Optimization landscape showing dependency of R-squared correlation 
coefficient model for efficiency on the parameter α in Eqs. (6) and (S9). 
  



Sensitivity of the model to ramp speeds 

As outlined in the first subsection of Supplementary Materials, when the exact value of ramp speed is 
not available from data, we evaluate this value as a fraction of the average speed of the respective 
roadways (e.g., motorway ramp speed is a fraction of the average motorway speed). Let us further refer 
to this fraction as the ramp speed coefficient. In this subsection, we describe the study of the effect this 
coefficient has on delays and the correlation between the observed and modeled values. 

All results and calculations presented in the manuscript were created using the ramp speed coefficient of 
1/3. To validate that the model is stable for different values of the coefficient we consider 5 additional 
cases with ramp coefficient taking values from 0.3 to 0.7 with the step of 0.1. Figure S4 compares the 
observed and modeled delays for two values of the ramp speed coefficient: 1/3 and 1/2. Overall, we 
observe, that changing the coefficient may both increase and decrease the modeled delay. Yet, we note, 
that in any case the change is not significant. In addition, from the inset of fig. S4 we conclude that the 
Pearson correlation coefficient R between the observed and predicted values of delays does not change 
noticeably. We report the optimal fitting parameters α and β and the Pearson correlation coefficient for 
all values of the ramp speed coefficient in table S4. 
 

 

 
 
fig. S4. Modeled delays for ramp speed coefficients of 1/3 and 1/2. Increased estimated speed along 
ramps may both increase and decrease the predicted delays. However, in all cases the changes are 
negligible. The inset implies that the Pearson correlation coefficient R does not change significantly with 
the ramp speed coefficient. 

 



 
 
table S4. Model sensitivity to ramp speed coefficient. The coefficient of 1/3 is used in the study. 
Pearson R is provided for all 40 areas used for calibration and validation. 
 

Ramp speed coefficient Parameter α Parameter β Pearson R 
0.3 42 600 10.5639 0.8311 
1/3 43 000 10.5898 0.8322 
0.4 44 800 10.7238 0.8334 
0.5 45 800 10.7567 0.8358 
0.6 46 600 10.7701 0.8375 
0.7 47 200 10.7697 0.8382 

 

  



Additional delay as a function of the severity of link disruption 

We present the results of delay times in all 40 urban areas for the full spectrum of adverse event 
severities, r ⋲ [0; 1] in fig. S5 (compare to Fig. 5 in the main text which shows the results for only 6 
representative urban areas). 

 

 
fig. S5. Dependency of the additional delay on the severity of the link disruption for all 40 urban 
areas. Error bars show mean values ± standard deviation. Cities are ordered by the observed delays. 


