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Abstract

This paper develops a novel methodology for us-

ing symbolic knowledge in deep learning. From

first principles, we derive a semantic loss func-

tion that bridges between neural output vectors

and logical constraints. This loss function cap-

tures how close the neural network is to satis-

fying the constraints on its output. An experi-

mental evaluation shows that it effectively guides

the learner to achieve (near-)state-of-the-art re-

sults on semi-supervised multi-class classifica-

tion. Moreover, it significantly increases the abil-

ity of the neural network to predict structured ob-

jects, such as rankings and paths. These discrete

concepts are tremendously difficult to learn, and

benefit from a tight integration of deep learning

and symbolic reasoning methods.

1. Introduction

The widespread success of representation learning raises

the question of which AI tasks are amenable to deep learn-

ing, which tasks require classical model-based symbolic

reasoning, and whether we can benefit from a tighter in-

tegration of both approaches. In recent years, significant

effort has gone towards various ways of using represen-

tation learning to solve tasks that were previously tackled

by symbolic methods. Such efforts include neural com-

puters or differentiable programming (Weston et al., 2014;

Reed & De Freitas, 2015; Graves et al., 2016; Riedel et al.,

2016), relational embeddings or deep learning for graph

data (Yang et al., 2014; Lin et al., 2015; Bordes et al., 2013;

Neelakantan et al., 2015; Duvenaud et al., 2015; Niepert

et al., 2016), neural theorem proving, and learning with

constraints (Hu et al., 2016; Stewart & Ermon, 2017; Min-

ervini et al., 2017; Wang et al., 2017).
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This paper considers learning in domains where we have

symbolic knowledge connecting the different outputs of a

neural network. This knowledge takes the form of a con-

straint (or sentence) in Boolean logic. It can be as simple

as an exactly-one constraint for one-hot output encodings,

or as complex as a structured output prediction constraint

for intricate combinatorial objects such as rankings, sub-

graphs, or paths. Our goal is to augment neural networks

with the ability to learn how to make predictions subject to

these constraints, and use the symbolic knowledge to im-

prove the learning performance.

Most neuro-symbolic approaches aim to simulate or learn

symbolic reasoning in an end-to-end deep neural network,

or capture symbolic knowledge in a vector-space embed-

ding. This choice is partly motivated by the need for

smooth differentiable models; adding symbolic reasoning

code (e.g., SAT solvers) to a deep learning pipeline de-

stroys this property. Unfortunately, while making rea-

soning differentiable, the precise logical meaning of the

knowledge is often lost. In this paper, we take a distinctly

unique approach, and tackle the problem of differentiable

but sound logical reasoning from first principles. Starting

from a set of intuitive axioms, we derive the differentiable

semantic loss which captures how well the outputs of a neu-

ral network match a given constraint. This function pre-

cisely captures the meaning of the constraint, and is inde-

pendent of its syntax.

Next, we show how semantic loss gives significant practi-

cal improvements in semi-supervised classification. In this

setting, semantic loss for the exactly-one constraint per-

mits us to obtain a learning signal from vast amounts of

unlabeled data. The key idea is that semantic loss helps

us improve how confidently we are able to classify the

unlabeled data. This simple addition to the loss function

of standard deep learning architectures yields (near-)state-

of-the-art performance in semi-supervised classification on

MNIST, FASHION, and CIFAR-10 datasets.

Our final set of experiments study the benefits of se-

mantic loss for learning tasks with highly structured out-

put, such as preference learning and path prediction in a

graph (Daumé et al., 2009; Chang et al., 2013; Choi et al.,

2015; Graves et al., 2016). In these scenarios, the task is

two-fold: learn both the structure of the output space, and
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Intuitively, the semantic loss is proportional to a negative

logarithm of the probability of generating a state that sat-

isfies the constraint, when sampling values according to p.

Hence, it is the self-information (or “surprise”) of obtaining

an assignment that satisfies the constraint (Jones, 1979).

3.2. Derivation from First Principles

In this section, we begin with a theorem stating the unique-

ness of semantic loss, as fixed by a series of axioms. The

full set of axioms and the derivation of the precise semantic

loss function is described in Appendix A1.

Theorem 1 (Uniqueness). The semantic loss function in

Definition 1 satisfies all axioms in Appendix A and is the

only function that does so, up to a multiplicative constant.

In the remainder of this section, we provide a selection

of the most intuitive axioms from Appendix A, as well as

some key properties.

First, to retain logical meaning, we postulate that semantic

loss is monotone in the order of implication.

Axiom 1 (Monotonicity). If α |= β, then the semantic loss

Ls(α, p) ≥ Ls(β, p) for any vector p.

Intuitively, as we add stricter requirements to the logical

constraint, going from β to α and making it harder to sat-

isfy, the semantic loss cannot decrease. For example, when

β enforces the output of an neural network to encode a sub-

tree of a graph, and we tighten that requirement in α to be a

path, the semantic loss cannot decrease. Every path is also

a tree and any solution to α is a solution to β.

A direct consequence following the monotonicity axiom is

that logically equivalent sentences must incur an identical

semantic loss for the same probability vector p. Hence, the

semantic loss is indeed a semantic property of the logical

sentence, and does not depend on its syntax.

Proposition 2 (Semantic Equivalence). If α ≡ β, then the

semantic loss Ls(α, p) = Ls(β, p) for any vector p.

Another consequence is that semantic loss must be non-

negative if we want the loss to be 0 for a true sentence.

Next, we state axioms establishing a correspondence be-

tween logical constraints and data. A state x can be equiv-

alently represented as both a binary data vector, as well as

a logical constraint that enforces a value for every variable

in X. When both the constraint and the predicted vector

represent the same state (for example, X1 ∧ ¬X2 ∧ X3

vs. [1 0 1]), there should be no semantic loss.

Axiom 2 (Identity). For any state x, there is zero semantic

loss between its representation as a sentence, and its repre-

sentation as a deterministic vector: ∀x,Ls(x,x) = 0.

1Appendices are included in the supplementary material.

The axiom above together with the monotonicity axiom im-

ply that any vector satisfying the constraint must incur zero

loss. For example, when our constraint α requires that the

output vector encodes an arbitrary total ranking, and the

vector x correctly represents a single specific total ranking,

there is no semantic loss.

Proposition 3 (Satisfaction). If x |= α, then the semantic

loss Ls(α,x) = 0.

As a special case, logical literals (X or ¬X) constrain a sin-

gle variable to take on a value, and thus play a role similar

to the labels used in supervised learning. Such constraints

require an even tighter correspondence: the semantic loss

must act like a classical loss function (i.e., cross entropy).

Axiom 3 (Label-Literal Correspondence). The semantic

loss of a single literal is proportionate to the cross-entropy

loss for the equivalent data label: Ls(X, p) ∝ − log(p) and

Ls(¬X, p) ∝ − log(1− p).

Appendix A states additional axioms that allow us to prove

the following form of the semantic loss for a state x.

Lemma 4. For state x and vector p, we have Ls(x, p) ∝
−
∑

i:x|=Xi
log pi −

∑
i:x|=¬Xi

log(1− pi).

Lemma 4 falls short as a full definition of semantic loss for

arbitrary sentences. One can define additional axioms to

pin down Ls. For example, the following axiom is satisfied

by Definition 1, and is highly desirable for learning.

Axiom 4 (Differentiability). For any fixed α, the semantic

loss Ls(α, p) is monotone in each probability in p, contin-

uous and differentiable.

Appendix A makes the notion of semantic loss precise by

stating one additional axiom. It is based on the observation

that the state loss of Lemma 4 is proportionate to a log-

probability. In particular, it corresponds to the probability

of obtaining state x after independently sampling each Xi

with probability pi. We have now derived the semantic loss

function from first principles, and arrived at Definition 1.

Moreover, we can show that Theorem 1 holds - that it is the

only choice of such a loss function.

4. Semi-Supervised Classification

The most straightforward constraint that is ubiquitous in

classification is mutual exclusion over one-hot-encoded

outputs. That is, for a given example, exactly one class

and therefore exactly one binary indicator must be true.

The machine learning community has made great strides

on this task, due to the invention of assorted deep learning

representations and their associated regularization terms

(Krizhevsky et al., 2012; He et al., 2016). Many of these

models take large amounts of labeled data for granted, and

big data is indispensable for discovering accurate represen-

tations (Hastie et al., 2009). To sustain this progress, and
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Table 1: MNIST. Previously reported test accuracies followed by baselines and semantic loss results (± stddev)

Accuracy % with # of used labels 100 1000 ALL

AtlasRBF (Pitelis et al., 2014) 91.9 (±0.95) 96.32 (±0.12) 98.69

Deep Generative (Kingma et al., 2014) 96.67(±0.14) 97.60 (±0.02) 99.04

Virtual Adversarial (Miyato et al., 2016) 97.67 98.64 99.36

Ladder Net (Rasmus et al., 2015) 98.94 (±0.37 ) 99.16 (±0.08) 99.43 (±0.02)

Baseline: MLP, Gaussian Noise 78.46 (±1.94) 94.26 (±0.31) 99.34 (±0.08)

Baseline: Self-Training 72.55 (±4.21) 87.43 (±3.07)

Baseline: MLP with Entropy Regularizer 96.27 (±0.64) 98.32 (±0.34) 99.37 (±0.12)

MLP with Semantic Loss 98.38 (±0.51) 98.78 (±0.17) 99.36 (±0.02)

Table 2: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.

Accuracy % with # of used labels 100 500 1000 ALL

Ladder Net (Rasmus et al., 2015) 81.46 (±0.64 ) 85.18 (±0.27) 86.48 (±0.15) 90.46

Baseline: MLP, Gaussian Noise 69.45 (±2.03) 78.12 (±1.41) 80.94 (±0.84) 89.87

MLP with Semantic Loss 86.74 (±0.71) 89.49 (±0.24) 89.67 (±0.09) 89.81

10 times with different random seeds. Table 1 compares

semantic loss to three baselines and state-of-the-art results

from the literature. The first baseline is a purely supervised

MLP, which makes no use of unlabeled data. The second is

the classic self-training method for semi-supervised learn-

ing, which operates as follows. After every 1000 iterations,

the unlabeled examples that are predicted by the MLP to

have more than 95% probability of belonging to a single

class, are assigned a pseudo-label and become labeled data.

Additionally, we constructed a third baseline by replac-

ing the semantic loss term with the entropy regularizor de-

scribed in Grandvalet & Bengio (2005) as a direct compar-

ison for semantic loss. With the same amount of parameter

tuning, we found that using entropy achieves an accuracy

of 96.27% with 100 labeled examples, and 98.32% with

1000 labelled examples, both are slightly worse than the

accuracies reached by semantic loss. Furthermore, to our

best knowledge, there is no straightforward method to gen-

eralize entropy loss to the settings of complex constraints,

where semantic loss is clearly defined and can be easily

deployed. We will discuss this more in Section 5.

Lastly, We attempted to create a fourth baseline by con-

structing a constraint-sensitive loss term in the style of Hu

et al. (2016), using a simple extension of Probabilistic Soft

Logic (PSL) (Kimmig et al., 2012). PSL translates logic

into continuous domains by using soft truth values, and de-

fines functions in the real domain corresponding to each

Boolean function. This is normally done for Horn clauses,

but since they are not sufficiently expressive for our con-

straints, we apply fuzzy operators to arbitrary sentences in-

stead. We are forced to deal with a key difference between

semantic loss and PSL: encodings in fuzzy logic are highly

sensitive to the syntax used for the constraint (and therefore

violate Proposition 2). We selected two reasonable encod-

ings detailed in Appendix E. The first encoding results in

a constant value of 1, and thus could not be used for semi-

supervised learning. The second encoding empirically de-

viates from 1 by < 0.01, and since we add Gaussian noise

to the pixels, no amount of tuning was able to extract mean-

ingful supervision. Thus, we do not report these results.

When given 100 labeled examples (N = 100), MLP

with semantic loss gains around 20% improvement over

the purely supervised baseline. The improvement is even

larger (25%) compared to self-training. Considering the

only change is an additional loss term, this result is very

encouraging. Comparing to the state of the art, ladder nets

slightly outperform semantic loss by 0.5% accuracy. This

difference may be an artifact of the excessive tuning of

architectures, hyper-parameters and learning rates that the

MNIST dataset has been subject to. In the coming exper-

iments, we extend our work to more challenging datasets,

in order to provide a clearer comparison with ladder nets.

Before that, we want to share a few more thoughts on how

semantic loss works. A classical softmax layer interprets its

output as representing a categorical distribution. Hence, by

normalizing its outputs, softmax enforces the same mutual

exclusion constraint enforced in our semantic loss function.

However, there does not exist a natural way to extend soft-

max loss to unlabeled samples. In contrast, semantic loss

does provide a learning signal on unlabeled samples, by

forcing the underlying classifier to make an decision and

construct a confident hypothesis for all data. However, for

the fully supervised case (N = all), semantic loss does not

significantly affect accuracy. Because the MLP has enough

capacity to almost perfectly fit the training data, where the

constraint is always satisfied, semantic loss is almost al-

ways zero. This is a direct consequence of Proposition 3.
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Table 3: CIFAR. Test accuracy comparison between CNN

with Semantic Loss and ladder nets.

Accuracy % with # of used labels 4000 ALL

CNN Baseline in Ladder Net 76.67 (±0.61) 90.73

Ladder Net (Rasmus et al., 2015) 79.60 (±0.47)

Baseline: CNN, Whitening, Cropping 77.13 90.96

CNN with Semantic Loss 81.79 90.92

FASHION The FASHION (Xiao et al., 2017) dataset

consists of Zalando’s article images, aiming to serve as

a more challenging drop-in replacement for MNIST. Ar-

guably, it has not been overused and requires more ad-

vanced techniques to achieve good performance. As in

the previous experiment, we run our method for 20 epochs,

whereas ladder nets need 100 epochs to converge. Again,

experiments are repeated 10 times and Table 2 reports the

classification accuracy and its standard deviation (except

for N = all where it is close to 0 and omitted for space).

Experiments show that utilizing semantic loss results in a

very large 17% improvement over the baseline when only

100 labels are provided. Moreover, our method compares

favorably to ladder nets, except when the setting degrades

to be fully supervised. Note that our method already nearly

reaches its maximum accuracy with 500 labeled examples,

which is only 1% of the training dataset.

CIFAR-10 To show the general applicability of seman-

tic loss, we evaluate it on CIFAR-10. This dataset con-

sisting of 32-by-32 RGB images in 10 classes. A simple

MLP would not have enough representation power to cap-

ture the huge variance across objects within the same class.

To cope with this spike in difficulty, we switch our underly-

ing model to a 10-layer CNN as described earlier. We use

a batch size of 100 samples of which half are unlabeled.

Experiments are run for 100 epochs. However, due to our

limited computational resources, we report on a single trial.

Note that we make slight modifications to the underlying

model used in ladder nets to reproduce similar baseline per-

formance. Please refer to Appendix B for further details.

As shown in Table 3, our method compares favorably to

ladder nets. However, due to the slight difference in perfor-

mance between the supervised base models, a direct com-

parison would be methodologically flawed. Instead, we

compare the net improvements over baselines. In terms of

this measure, our method scores a gain of 4.66% whereas

ladder nets gain 2.93%.

4.3. Discussion

The experiments so far have demonstrated the competitive-

ness and general applicability of our proposed method on

semi-supervised learning tasks. It surpassed the previous

state of the art (ladder nets) on FASHION and CIFAR-10,

while being close on MNIST. Considering the simplicity

of our method, such results are encouraging. Indeed, a key

advantage of semantic loss is that it only requires a sim-

ple additional loss term, and thus incurs almost no com-

putational overhead. Conversely, this property makes our

method sensitive to the underlying model’s performance.

Without the underlying predictive power of a strong super-

vised learning model, we do not expect to see the same

benefits we observe here. Recently, we became aware that

Miyato et al. (2016) extended their work to CIFAR-10 and

achieved state-of-the-art results (Miyato et al., 2017), sur-

passing our performance by 5%. In future work, we plan to

investigate whether applying semantic loss on their archi-

tecture would yield an even stronger performance.

Figure 5 in the appendix illustrates the effect of semantic

loss on FASHION pictures whose correct label was hidden

from the learner. Pictures 5a and 5b are correctly classi-

fied by the supervised base model, and on the first set it is

confident about this prediction (pi > 0.8). Semantic loss

rarely diverts the model from these initially correct labels.

However, it bootstraps these unlabeled examples to achieve

higher confidence in the learned concepts. With this addi-

tional learning signal, the model changes its beliefs about

Pictures 5c, which it was previously uncertain about. Fi-

nally, even on confidently misclassified Pictures 5d, seman-

tic loss is able to remedy the mistakes of the base model.

5. Learning with Complex Constraints

While much of current machine learning research is fo-

cused on problems such as multi-class classification, there

remain a multitude of difficult problems involving highly

constrained output domains. As mentioned in the previ-

ous section, semantic loss has little effect on the fully-

supervised exactly-one classification problem. This leads

us to seek out more difficult problems to illustrate that se-

mantic loss can also be highly informative in the supervised

case, provided the output domain is a sufficiently complex

space. Because semantic loss is defined by a Boolean for-

mula, it can be used on any output domain that can be fully

described in this manner. Here, we develop a framework

for making semantic loss tractable on highly complex con-

straints, and evaluate it on some difficult examples.

5.1. Tractability of Semantic Loss

Our goal here is to develop a general method for comput-

ing both semantic loss and its gradient in a tractable man-

ner. Examining Definition 1 of semantic loss, we see that

the right-hand side is a well-known automated reasoning

task called weighted model counting (WMC) (Chavira &

Darwiche, 2008; Sang et al., 2005).
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x1 ¬x2 ¬x3 ¬x1 x2 x3

Figure 3: A compiled decomposable and deterministic cir-

cuit for the exactly-one constraint with 3 variables.

Pr(x1) Pr(¬x2) Pr(¬x3) Pr(¬x1) Pr(x2) Pr(x3)

× × ×

+

Figure 4: The corresponding arithmetic circuit for the

exactly-one constraint with 3 variables.

Furthermore, we know of circuit languages that compute

WMCs, and that are amenable to backpropagation (Dar-

wiche, 2003). We use the circuit compilation techniques

in Darwiche (2011) to build a Boolean circuit representing

semantic loss. We refer to the literature for details of this

compilation approach. Due to certain properties of this cir-

cuit form, we can use it to compute both the values and

the gradients of semantic loss in time linear in the size of

the circuit (Darwiche & Marquis, 2002). Once constructed,

we can add it to our standard loss function as described in

Section 4.1.

Figure 3 shows an example Boolean circuit for the exactly-

one constraint with 3 variables. We begin with the standard

logical encoding for the exactly-one constraint (x1 ∨ x2 ∨
x3)∧ (¬x1∨¬x2)∧ (¬x1∧¬x3)∧ (¬x2∧¬x3), and then

compile it into a circuit that can perform WMC efficiently

(Chavira & Darwiche, 2008). The cost of this step de-

pends on the type of the constraint: for bounded-treewidth

constraints it can be done efficiently, and for some con-

straints exact compilation is theoretically hard. In that case,

we have to rely on advanced knowledge compilation al-

gorithms to still perform this step efficiently in practice.

Our semantic loss framework can be applied regardless of

how the circuit gets compiled. On our example, following

the circuit bottom up, the logical function can be read as

(x1∧¬x2∧¬x3)∨ (¬x1∧x2∧¬x3)∨ (¬x1∧¬x2∧x3).
Once this Boolean circuit is built, we can convert it to an

arithmetic circuit, by simply changing AND gates into ∗,

and OR gates into +, as shown in Figure 4. Now, by push-

ing the probabilities up through the arithmetic circuit, eval-

uating the root gives the probability of the logical formula

described by the Boolean circuit – this is precisely the ex-

ponentiated semantic loss. Notice that this computation

was not possible with the Boolean formula we began with:

it is a direct result of our circuit having two key properties

called determinism and decomposability. Finally, we can

similarly do another pass down on the circuit to compute

partial derivatives (Darwiche & Marquis, 2002).

5.2. Experimental Evaluation

Our ambition when evaluating semantic loss’ performance

on complex constraints is not to achieve state-of-the-art

performance on any particular problem, but rather to high-

light its effect. To this end, we evaluate our method on

problems with a difficult output space, where the model

could no longer be fit directly from data, and purposefully

use simple MLPs for evaluation. We want to emphasize

that the constraints used in this evaluation are intentionally

designed to be very difficult; much more so than the simple

implications that are usually studied (e.g., Hu et al. (2016)).

Hyper-parameter tuning details are again in Appendix C.

Grids We begin with a classic algorithmic problem: find-

ing the shortest path in a graph. Specifically, we use a 4-

by-4 grid G = (V,E) with uniform edge weights. We

randomly remove edges for each example to increase dif-

ficulty. Formally, our input is a binary vector of length

|V |+|E|, with the first |V | variables indicating sources and

destinations, and the next |E| which edges are removed.

Similarly, each label is a binary vector of length |E| in-

dicating which edges are in the shortest path. Finally, we

require through our constraint α that the output form a valid

simple path between the desired source and destination. To

compile this constraint, we use the method of Nishino et al.

(2017) to encode pairwise simple paths, and enforce the

correct source and destination. For more details on the con-

straint and data generation process, see Appendix D.

To evaluate, we use a dataset of 1600 examples, with a

60/20/20 train/validation/test split. Table 4 compares test

accuracy between a 5-layer MLP baseline, and the same

model augmented with semantic loss. We report three dif-

ferent accuracies that illustrate the effect of semantic loss:

“Coherent” indicates the percentage of examples for which

the classifier gets the entire configuration right, while “In-

coherent” measures the percentage of individually correct

binary labels, which as a whole may not constitute a valid

path at all. Finally, “Constraint” describes the percentage

of predictions given by the model that satisfy the constraint

associated with the problem. In the case of incoherent ac-

curacy, semantic loss has little effect, and in fact slightly

reduces the accuracy as it combats the standard sigmoid

cross entropy. In regard to coherent accuracy however, se-

mantic loss has a very large effect in guiding the network to

jointly learn true paths, rather than optimizing each binary

output individually. We further see this by observing the

large increase in the percentage of predictions that really

are paths between the desired nodes in the graph.
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Table 4: Grid shortest path test results: coherent, incoher-

ent and constraint accuracy.

Test accuracy % Coherent Incoherent Constraint

5-layer MLP 5.62 85.91 6.99

+ Semantic loss 28.51 83.14 69.89

Table 5: Preference prediction test results: coherent, inco-

herent and constraint accuracy.

Test accuracy % Coherent Incoherent Constraint

3-layer MLP 1.01 75.78 2.72

+ Semantic loss 13.59 72.43 55.28

Preference Learning The next problem is that of pre-

dicting a complete order of preferences. That is, for a given

set of user features, we want to predict how the user ranks

their preference over a fixed set of items. We encode a

preference ordering over n items as a flattened binary ma-

trix {Xij}, where for each i, j ∈ {1, . . . , n}, Xij denotes

that item i is at position j (Choi et al., 2015). Clearly, not

all configurations of outputs correspond to a valid ordering,

so our constraint allows only for those that are.

We use preference ranking data over 10 types of sushi for

5000 individuals, taken from PREFLIB (Mattei & Walsh,

2013). We take the ordering over 6 types of sushi as input

features to predict the ordering over the remaining 4 types,

with splits identical to those in Shen et al. (2017). We again

split the data 60/20/20 into train/test/split, and employ a

3-layer MLP as our baseline. Table 5 compares the base-

line to the same MLP augmented with semantic loss for

valid total orderings. Again, we see that semantic loss has

a marginal effect on incoherent accuracy, but significantly

improves the network’s ability to predict valid, correct or-

derings. Remarkably, without semantic loss, the network is

only able to output a valid ordering on 1% of examples.

6. Related Work

Incorporating symbolic background knowledge into ma-

chine learning is a long-standing challenge (Srinivasan

et al., 1995). It has received considerable attention for

structured prediction in natural language processing, in

both supervised and semi-supervised settings. For exam-

ple, constrained conditional models extend linear models

with constraints that are enforced through integer linear

programming (Chang et al., 2008; 2013). Constraints have

also been studied in the context of probabilistic graphical

models (Mateescu & Dechter, 2008; Ganchev et al., 2010).

Kisa et al. (2014) utilize a circuit language called the prob-

abilistic sentential decision diagram to induce distributions

over arbitrary logical formulas. They learn generative mod-

els that satisfy preference and path constraints (Choi et al.,

2015; 2016), which we study in a discriminative setting.

Various deep learning techniques have been proposed

to enforce either arithmetic constraints (Pathak et al.,

2015; Márquez-Neila et al., 2017) or logical con-

straints (Rocktäschel et al., 2015; Hu et al., 2016; De-

meester et al., 2016; Stewart & Ermon, 2017; Minervini

et al., 2017; Diligenti et al., 2017; Donadello et al., 2017)

on the output of a neural network. The common approach

is to reduce logical constraints into differentiable arithmetic

objectives by replacing logical operators with their fuzzy t-

norms and logical implications with simple inequalities. A

downside of this fuzzy relaxation is that the logical sen-

tences lose their precise meaning. The learning objective

becomes a function of the syntax rather than the semantics

(see Section 4). Moreover, these relaxations are often only

applied to Horn clauses. One alternative is to encode the

logic into a factor graph and perform loopy belief propa-

gation to compute a loss function (Naradowsky & Riedel,

2017), which is known to have issues in the presence of

complex logical constraints (Smith & Gogate, 2014).

Several specialized techniques have been proposed to ex-

ploit the rich structure of real-world labels. Deng et al.

(2014) propose hierarchy and exclusion graphs that jointly

model hierarchical categories. It is a method invented

to address examples whose labels are not provided at the

most specific level. Finally, the objective of semantic

loss to increase the confidence of predictions on unlabeled

data is related to information-theoretic approaches to semi-

supervised learning (Grandvalet & Bengio, 2005; Erkan &

Altun, 2010), and approaches that increase robustness to

output perturbation (Miyato et al., 2016). A key differ-

ence between semantic loss and these information-theoretic

losses is that semantic loss generalizes to arbitrary logical

output constraints that are much more complex.

7. Conclusions & Future Work

Both reasoning and semi-supervised learning are often

identified as key challenges for deep learning going for-

ward. In this paper, we developed a principled way of com-

bining automated reasoning for propositional logic with ex-

isting deep learning architectures. Moreover, we showed

that semantic loss provides significant benefits during semi-

supervised classification, as well as deep structured predic-

tion for highly complex output spaces.

An interesting direction for future work is to come up

with effective approximations of semantic loss, for settings

where even the methods we have described are not suffi-

cient. There are several potential ways to proceed with this,

including hierarchical abstractions, relaxations of the con-

straints, or projections on random subsets of variables.
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Demeester, T., Rocktäschel, T., and Riedel, S. Lifted rule

injection for relation embeddings. In EMNLP, pp. 1389–

1399, 2016.

Deng, Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S.,

Li, Y., Neven, H., and Adam, H. Large-scale object clas-

sification using label relation graphs. In ECCV, volume

8689, 2014.

Diligenti, M., Gori, M., and Sacca, C. Semantic-based reg-

ularization for learning and inference. JAIR, 244:143–

165, 2017.

Donadello, I., Serafini, L., and Garcez, A. d. Logic tensor

networks for semantic image interpretation. In IJCAI,

pp. 1596–1602, 2017.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-

barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams,

R. P. Convolutional networks on graphs for learning

molecular fingerprints. In NIPS, pp. 2224–2232, 2015.

Erkan, A. and Altun, Y. Semi-supervised learning via gen-

eralized maximum entropy. In AISTATS, volume PMLR,

pp. 209–216, 2010.

Ganchev, K., Gillenwater, J., Taskar, B., et al. Posterior reg-

ularization for structured latent variable models. JMLR,

11(Jul):2001–2049, 2010.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by

entropy minimization. In NIPS, 2005.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
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A. Axiomatization of Semantic Loss: Details

This appendix provides further details on our axiomatiza-

tion of semantic loss. We detail here a complete axiomati-

zation of semantic loss, which will involve restating some

axioms and propositions from the main paper.

The first axiom says that there is no loss when the logical

constraint α is always true (it is a logical tautology), inde-

pendent of the predicted probabilities p.

Axiom 5 (Truth). The semantic loss of a true sentence is

zero: ∀p,Ls(true, p) = 0.

Next, when enforcing two constraints on disjoint sets of

variables, we want the ability to compute semantic loss for

the two constraints separately, and sum the results for their

joint semantic loss.

Axiom 6 (Additive Independence). Let α be a sentence

over X with probabilities p. Let β be a sentence over Y

disjoint from X with probabilities q. The semantic loss

between sentence α ∧ β and the joint probability vector

[p q] decomposes additively: Ls(α∧β, [p q]) = Ls(α, p)+
Ls(β, q).

It directly follows from Axioms 5 and 6 that the probabil-

ities of variables that are not used on the constraint do not

affect the semantic loss.

Proposition 5 formalizes this intuition.

Proposition 5 (Locality). Let α be a sentence over X with

probabilities p. For any Y disjoint from X with probabili-

ties q, the semantic loss Ls(α, [p q]) = Ls(α, p).

Proof. Follows from the additive independence and truth

axioms. Set β = true in the additive independence axiom,

and observe that this sets Ls(β, q) = 0 because of the truth

axiom.

To maintain logical meaning, we postulate that semantic

loss is monotone in the order of implication.

Axiom 7 (Monotonicity). If α |= β, then the semantic loss

Ls(α, p) ≥ Ls(β, p) for any vector p.

Intuitively, as we add stricter requirements to the logical

constraint, going from β to α and making it harder to sat-

isfy, semantic loss cannot decrease. For example, when β

enforces the output of an neural network to encode a sub-

tree of a graph, and we tighten that requirement in α to be

a path, semantic loss cannot decrease. Every path is also a

tree and any solution to α is a solution to β.

A first consequence following the monotonicity axiom is

that logically equivalent sentences must incur an identical

semantic loss for the same probability vector p. Hence, the

semantic loss is indeed a semantic property of the logical

sentence, and does not depend on the syntax of the sen-

tence.

Proposition 6. If α ≡ β, then the semantic loss Ls(α, p) =
Ls(β, p) for any vector p.

A second consequence is that semantic loss must be non-

negative.

Proposition 7 (Non-Negativity). Semantic loss is non-

negative.

Proof. Because α |= true for all α, the monotonicity ax-

iom implies that ∀p,Ls(α, p) ≥ Ls(true, p). By the truth

axiom, Ls(true, p) = 0, and therefore Ls(α, p) ≥ 0 for all

choices of α and p.

A state x is equivalently represented as a data vector, as

well as a logical constraint that enforces a value for every

variable in X. When both the constraint and the predicted

vector represent the same state (for example, X1 ∧ ¬X2 ∧
X3 vs. [1 0 1]), there should be no semantic loss.

Axiom 8 (Identity). For any state x, there is zero semantic

loss between its representation as a sentence, and its repre-

sentation as a deterministic vector: ∀x,Ls(x,x) = 0.

The axioms above together imply that any vector satisfying

the constraint must incur zero loss. For example, when our

constraint α requires that the output vector encodes an ar-

bitrary total ranking, and the vector x correctly represents

a single specific total ranking, there is no semantic loss.

Proposition 8 (Satisfaction). If x |= α, then the semantic

loss Ls(α,x) = 0.

Proof of Proposition 8. The monotonicity axiom special-

izes to say that if x |= α, we have that ∀p,Ls(x, p) ≥
Ls(α, p). By choosing p to be x, this implies Ls(x,x) ≥
Ls(α,x). From the identity axiom, Ls(x,x) = 0, and

therefore 0 ≥ Ls(α,x). Proposition 7 bounds the loss from

below as Ls(α,x) ≥ 0.

As a special case, logical literals (x or ¬x) constrain a sin-

gle variable to take on a single value, and thus play a role

similar to the labels used in supervised learning. Such con-

straints require an even tighter correspondence: semantic

loss must act like a classical loss function (i.e., cross en-

tropy).

Axiom 9 (Label-Literal Correspondence). The semantic

loss of a single literal is proportionate to the cross-entropy

loss for the equivalent data label: Ls(x, p) ∝ − log(p) and

Ls(¬x, p) ∝ − log(1− p).

Next, we have the symmetry axioms.

Axiom 10 (Value Symmetry). For all p and α, we have that

Ls(α, p) = Ls(ᾱ, 1−p) where ᾱ replaces every variable in

α by its negation.
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Axiom 11 (Variable Symmetry). Let α be a sentence over

X with probabilities p. Let π be a permutation of the

variables X, let π(α) be the sentence obtained by replac-

ing variables x by π(x), and let π(p) be the correspond-

ing permuted vector of probabilities. Then, Ls(α, p) =
Ls(π(α), π(p)).

The value and variable symmetry axioms together imply

the equality of the multiplicative constants in the label-

literal duality axiom for all literals.

Lemma 9. There exists a single constant K such that

Ls(X, p) = −K log(p) and Ls(¬X, p) = −K log(1 − p)
for any literal x.

Proof. Value symmetry implies that Ls(Xi, p) =
Ls(¬Xi, 1 − p). Using label-literal correspondence,

this implies K1 log(pi) = K2 log(1 − (1 − pi)) for the

multiplicative constants K1 and K2 that are left unspec-

ified by that axiom. This implies that the constants are

identical. A similar argument based on variable symmetry

proves equality between the multiplicative constants for

different i.

Finally, this allows us to prove the following form of se-

mantic loss for a state x.

Lemma 10. For state x and vector p, we have Ls(x, p) ∝
−
∑

i:x|=Xi
log pi −

∑
i:x|=¬Xi

log(1− pi).

Proof of Lemma 10. A state x is a conjunction of indepen-

dent literals, and therefore subject to the additive indepen-

dence axiom. Each literal’s loss in this sum is defined by

Lemma 9.

The following and final axiom requires that semantic loss is

proportionate to the logarithm of a function that is additive

for mutually exclusive sentences.

Axiom 12 (Exponential Additivity). Let α and β be mu-

tually exclusive sentences (i.e., α ∧ β is unsatisfiable), and

let fs(K,α, p) = K−Ls(α,p). Then, there exists a posi-

tive constant K such that fs(K,α∨β, p) = fs(K,α, p)+
fs(K,β, p).

We are now able to state and prove the main uniqueness

theorem.

Theorem 11 (Uniqueness). The semantic loss function in

Definition 1 satisfies all axioms in Appendix A and is the

only function that does so, up to a multiplicative constant.

Proof of Theorem 11. The truth axiom states that

∀p, fs(K, true, p) = 1 for all positive constants K.

This is the first Kolmogorov axiom of probability. The

second Kolmogorov axiom for fs(K, ., p) follows from

the additive independence axiom of semantic loss. The

third Kolmogorov axiom (for the finite discrete case) is

given by the exponential additivity axiom of semantic

loss. Hence, fs(K, ., p) is a probability distribution for

some choice of K, which implies the definition up to a

multiplicative constant.

B. Specification of the Convolutional Neural

Network Model

Table 6 shows the slight architectural difference between

the CNN used in ladder nets and ours. The major difference

lies in the choice of ReLu. Note we add standard padded

cropping to preprocess images and an additional fully con-

nected layer at the end of the model, neither is used in lad-

der nets. We only make those slight modification so that

the baseline performance reported by Rasmus et al. (2015)

can be reproduced.

Table 6: Specifications of CNNs in Ladder Net and our

proposed method.

CNN in Ladder Net CNN in this paper

Input 32×32 RGB image

Resizing to 36× 36

with padding; Cropping Back

Whitening

Contrast Normalization

Gaussian Noise with std. of 0.3

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

2×2 max-pooling stride 2 BN

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

2×2 max-pooling stride 2 BN

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

1×1 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

1×1 conv. 10 BN LeakyReLU 1×1 conv. 10 BN ReLU

Global meanpool BN

Fully connected BN

10-way softmax

C. Hyper-parameter Tuning Details

Validation sets are used for tuning the weight associated

with semantic loss, the only hyper-parameter that causes

noticeable difference in performance for our method. For

our semi-supervised classification experiments, we per-

form a grid search over {0.001, 0.005, 0.01, 0.05, 0.1} to

find the optimal value. Empirically, 0.005 always gives the
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