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Abstract

Probabilistic data is motivated by the need to model uncertainty in

large databases. Over the last twenty years or so, both the Database

community and the AI community have studied various aspects

of probabilistic relational data. This survey presents the main ap-

proaches developed in the literature, reconciling concepts developed

in parallel by the two research communities. The survey starts with an

extensive discussion of the main probabilistic data models and their

relationships, followed by a brief overview of model counting and

its relationship to probabilistic data. After that, the survey discusses

lifted probabilistic inference, which are a suite of techniques devel-

oped in parallel by the Database and AI communities for probabilis-

tic query evaluation. Then, it gives a short summary of query compi-

lation, presenting some theoretical results highlighting limitations of

various query evaluation techniques on probabilistic data. The survey

ends with a very brief discussion of some popular probabilistic data

sets, systems, and applications that build on this technology.
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Foundations and Trends R© in Databases, vol. 7, no. 3-4, pp. 197–341, 2015.
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Introduction

The goal of probabilistic databases is to manage large volumes of data

that is uncertain, and where the uncertainty is defined by a probabil-

ity space. The idea of adding probabilities to relational databases goes

back to the early days of relational databases [Gelenbe and Hébrail,

1986, Cavallo and Pittarelli, 1987, Barbará et al., 1992], motivated by

the need to represent NULL or unknown values for certain data items,

data entry mistakes, measurement errors in data, “don’t care” values,

or summary information [Gelenbe and Hébrail, 1986]. Today, the need

to manage uncertainty in large databases is even more pressing, as

structured data is often acquired automatically by extraction, integra-

tion, or inference from other large data sources. The best known exam-

ples of large-scale probabilistic datasets are probabilistic knowledge

bases such as Yago [Hoffart et al., 2013], Nell [Carlson et al., 2010],

DeepDive [Shin et al., 2015], Reverb [Fader et al., 2011], Microsoft’s

Probase [Wu et al., 2012] or Google’s Knowledge Vault [Dong et al.,

2014], which have millions to billions of uncertain tuples.

Query processing in databases systems is a mature field. Tech-

niques, tradeoffs, and complexities for query evaluation on all pos-

sible hardware architectures have been studied intensively [Graefe,
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1993, Chaudhuri, 1998, Kossmann, 2000, Abadi et al., 2013, Ngo et al.,

2013], and many commercial or open-source query engines exists to-

day that implement these algorithms. However, query processing on

probabilistic data is quite a different problem, since now, in addition to

traditional data processing we also need to do probabilistic inference.

A typical query consists of joins, projections with duplicate removal,

grouping and aggregation, and/or negation. When the input data is

probabilistic, each tuple in the query answer must be annotated with

a probability: computing this output probability is called probabilistic

inference, and is, in general, a challenging problem. For some simple

queries, probabilistic inference is very easy: for example, when we join

two input relations, we can simply multiply the probabilities of the tu-

ples from the two inputs, assuming they are independent events. This

straightforward approach was already used by Barbará et al. [1992].

But for more complex queries probabilistic inference is challenging.

The query evaluation problem over probabilistic databases has

been studied over the last twenty years [Fuhr and Rölleke, 1997, Lak-

shmanan et al., 1997, Dalvi and Suciu, 2004, Benjelloun et al., 2006a,

Antova et al., 2007, Olteanu et al., 2009]. In general, query evalua-

tion, or, better, the probabilistic inference sub-problem of query evalu-

ation, is equivalent to weighted model counting on a Boolean formula,

a problem well studied in the theory community, as well as the AI

and automated reasoning communities. While weighted model count-

ing is known to be #P-hard in general, it has been shown that, for

certain queries, probabilistic inference can be done efficiently. Even

better, such a query can be rewritten into a (more complex) query,

which computes probabilities directly using simple operations (sum,

product, and difference). Therefore, query evaluation, including prob-

abilistic inference, can be done entirely in one of today’s relational

database engines. Such a query can benefit immediately from decades

of advances in query processing, including indexes, query optimiza-

tion, parallel processing, etc. However, for other queries, computing

their output probability is #P-hard. In this case the probabilistic in-

ference task far dominates the query evaluation cost, and these hard

queries are typically evaluated using some approximate methods for
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weighted model counting. Dalvi and Suciu [2004] proved that, for a

simple class of queries, either the query can be computed in poly-

nomial time in the size of the database, by pushing the probabilistic

inference in the engine, or the query’s output probability is provably

#P-hard to compute. Thus, we have a dichotomy: every query is ei-

ther efficiently computable, or provably hard, and the distinction can

be made using static analysis on the query.

Probabilistic graphical models preceded probabilistic databases,

and were popularized in a very influential book by Pearl [1988]. In

that setting, the knowledge base is described by a graph, such as

a Bayesian or Markov network. Probabilistic inference on graphical

models is also #P-hard in the size of the graph. Soon the AI commu-

nity noticed that this graph often results from a concise relational rep-

resentation [Horsch and Poole, 1990, Poole, 1993, Jaeger, 1997, Ngo

and Haddawy, 1997, Getoor and Taskar, 2007]. Usually the relational

representation is much more compact than the resulting graph, raising

the natural question whether probabilistic inference can be performed

more efficiently by reasoning on the relational representation instead

of the grounded graphical model. This lead to the notion of lifted in-

ference [Poole, 2003], whose goal is to perform inference on the high-

level relational representation without having to ground the model.

Lifted inference techniques in AI and query processing on proba-

bilistic databases were developed independently, and their connection

was established only recently [Gribkoff et al., 2014b].

This is a survey on probabilistic databases and query evaluation.

The goals of this survey are the following.

1. Introduce the general independence-based data model of prob-

abilistic databases that has been foundational to this field, and

the tuple-independence formulation in particular.

2. Nevertheless, show that richer representations of probabilis-

tic data, including soft constraints and other dependencies be-

tween the data can be reduced to the simpler tuple-independent

data model. Indeed, many more knowledge representation for-

malisms are supported by probabilistic query evaluation algo-

rithms, including representations from statistical relational ma-

chine learning and probabilistic programming.
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3. Discuss how the semantics based on tuple independence is a

convenience for building highly efficient query processing al-

gorithms. The problem reduces to a basic reasoning task called

weighted model counting. We illustrate how probabilistic query

processing can benefit from the relational structure of the query,

even when the data is probabilistic.

4. Discuss theoretical properties of query evaluation under this

data model, identifying and delineating both tractable queries

and hard queries that are unlikely to support efficient evalua-

tion on probabilistic data.

5. Finally, provide a brief overview of practical applications and

systems built on top of this technology.

The survey is organized as follows. Chapter 2 defines the proba-

bilistic data model and presents the connection to statistical relational

models. Chapter 3 discusses weighted model counting and the con-

nection to query evaluation on probabilistic databases. Chapters 4 and

5 cover lifted inference, and query compilation respectively, showing

the limitations of weighted model counting algorithms for query eval-

uation on probabilistic databases. Chapter 6 discusses some systems

and applications of probabilistic databases.

The survey is designed to extend and complement the book

on probabilistic databases by Suciu et al. [2011]. It includes mate-

rial that has been developed since the publication of the book, and

covers deeper the connection between probabilistic databases and

weighted model counting. The discussion in Chapter 2 relating soft

constraints and complex correlations to tuple-independent probabilis-

tic databases is entirely new, as is most of the background on weighted

model counting in Chapter 3. The material on lifted inference in Chap-

ter 4 has been updated with several recent results: on non-repeating

relational algebra expressions, on negation and resolution, and on

symmetric databases. Chapter 5 on query compilation also includes

new results on the impossiblity of computing the probability of some

queries using DPLL-based algorithms, even though the queries are

tractable. This survey does not cover other uncertain data models,
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some of which model more complex data types, continuous variables,

or even probabilistic computation. However, several of these alterna-

tives and extensions will be reviewed in §2.7.

Notation Used Throughout the Survey

• A domain: D.

• A relational schema: R

• A single tuple: t

• All ground tuples (Herbrand base): Tup(R, D) or Tup

• Classical deterministic database; a set of tuples: ω or T

• A probabilistic database: D

• A single possible world: ω or T.

• A set of possible worlds: Ω.

• Marginal probability of an individual tuple: p(.)

• Joint probability distributions: P(.)

• Weight of an individual tuple: w(.)

• Weight of a world: W(.)

• A specific tuple/atom: Researcher(Bob, Vision, x)

• An attribute: Name, Expertise

• A constraint, first-order sentence or formula: ∆

• A constrained probabilistic database: C



2

Probabilistic Data Model

Probabilistic databases model uncertain data. For example, the value

of an attribute may be uncertain; or the presence/absence of an en-

tire tuple may be known only with some probability. These are called

attribute-level, and tuple-level uncertainty. For example, if we build

a large database of researchers obtained by extracting author names

from a large repository of journal articles, then we may obtain con-

flicting affiliations for a particular author; or we may not know with

certainty if a particular researcher should exist in the database or not.

A probabilistic database models these uncertainties using the possi-

ble worlds semantics: the state of the entire database is not known

with certainty, instead we have a probability distribution on all pos-

sible instances. This chapter describes the possible world and query

semantics that underlie the probabilistic data model, and explain how

they can capture both attribute-level and tuple-level uncertainties. We

discuss various dependence and independence assumptions, and re-

ductions between probabilistic database models.

203
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2.1 Possible Worlds Semantics

We fix a database schema R = (R1,R2, . . . ,R`) where each relation name

Rj has fixed arity rj ≥ 0. Fix a domain D of constants. A ground

tuple for relation Rj is an expression of the form Rj(a1, . . . , arj ), where

a1, . . . , arj are constants in the domain. We write Tup(R, D) for the set

of all ground tuples over the relations in R and domain D. A database

instance is a subset of tuples T ⊆ Tup(R, D). We drop R or D from

Tup(R, D) when they are clear from context.

A (traditional) database instance T completely specifies the state

of our knowledge about the world: for every grounded tuple we

know precisely whether the tuple belongs or does not belong to the

database, an assumption that is called the Closed World Assumption.

In contrast, an incomplete database models a scenario in which the state

of the database is not completely known. Instead, we talk about a set

of possible worlds Ω = {ω1, . . . , ωN } ⊆ 2Tup(R,D), where each possible

world ωi corresponds to a single database instance Ti (i.e., a subset

of tuples). The state of the world may be one of several possible in-

stances Ω. A probabilistic database further associates a probability with

each world: we do not know which one is the actual instance, we only

know the probability of each instance being the true state of the world.

Definition 2.1. A probabilistic database, D, is a probability space (Ω,P).

The space of outcomes is a set of possible worlds, Ω = {ω1, . . . , ωN },

where each ωi is a database instance, and P : Ω → [0, 1] is a probability

function, i.e.,
∑

i P(ωi) = 1.

This is a very general and flexible definition. Each of the instances

ω1, . . . , ωN is possible, and we have the freedom to set their probabil-

ities arbitrarily, as long as they sum to one. For example, Figure 2.1

depicts four possible worlds, ω1, . . . , ω4, for a relation denoting re-

searcher affiliation, and three different probability functions, each of

which sums to one. Probability function Pa defines a probabilistic

database over these four possible worlds: Pa(ω1) + · · · + Pa(ω4) = 1.

Similarly, Pb or Pc induce different probabilistic databases over the

same four possible worlds.
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ω1

Researcher

Alice Pixar

Carol UPenn

Pa(ω1) = 0.10
Pb(ω1) = 0.14
Pc(ω1) = 0.20

ω2

Researcher

Alice Pixar

Carol INRIA

Pa(ω2) = 0.10
Pb(ω2) = 0.06
Pc(ω2) = 0.30

ω3

Researcher

Alice Brown

Carol UPenn

Pa(ω3) = 0.60
Pb(ω3) = 0.56
Pc(ω3) = 0.40

ω4

Researcher

Alice Brown

Carol INRIA

Pa(ω4) = 0.20
Pb(ω4) = 0.24
Pc(ω4) = 0.10

Figure 2.1: Four possible worlds ω1, . . . , ω4 of a schema with one relation (Researcher)
denoting research affiliations. Worlds are labeled with three different valid probabil-
ity functions, Pa, Pb and Pc. Worlds not shown have probability 0.

Readers familiar with incomplete databases will note that the col-

lection of possible worlds is precisely an incomplete database [Imielinski

and Lipski, 1984]. In other words, a probabilistic database is an incom-

plete databases plus a probability distribution.

2.2 Independence Assumptions

In practice, it is impossible to enumerate and assign a probability to

all possible worlds, as is done in Figure 2.1. The set of possible worlds

consists of all subsets of tuples, ω ⊆ Tup. The number of tuples in Tup

can easily be millions to billions, and the number of possible worlds

is exponentially larger. Therefore, we need a specification formalism

that allows us to describe the probabilistic database concisely. A com-

mon solution to this problem is to fix a probability distribution by

stating simple properties of P that are believed to hold and that al-

low for a concise specification of P. Next, we will describe two such

assumptions that are commonly used. They naturally model the two

types of uncertainty most often found in large datasets: tuple-level

and attribute-level uncertainty.

A first type of assumption is to state the marginal probability that

a single tuple is contained in the database. For example, we may be-

lieve that Alice works for Pixar with probability 0.2. Formally, this

event is Researcher(Alice, Pixar) ∈ ω, and abusing notation, we write

its marginal probability assumption as p(Researcher(Alice, Pixar)) =

0.2. Here, p(t) refers to the marginal probability of a single tuple t in
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the larger joint distribution P. Similarly, we may want to state that

p(Researcher(Carol, UPenn)) = 0.7. These assumptions do not hold for

Pc in Figure 2.1, because pc(Researcher(Alice, Pixar)) = 0.2 + 0.3 =

0.5. This eliminates probability function Pc from consideration en-

tirely. However, the stated assumptions do hold for both Pa and Pb.

Hence, while intuitive and useful, marginal probability assumptions

are insufficient to uniquely specify a probabilistic database.

A second type of assumption states that (subsets of) tuples are

marginally independent. Suppose that the set of all possible tuples Tup

is partitioned into k disjoint subsets T1,T2, . . . ,Tk. Intuitively, the in-

dependence assumption says that knowing a tuple from Ti is in the

possible world does not give us any information on whether a tuple

from Tj , j 6= i, is in the possible world. Formally, it means that the

probability of a possible world factorizes as

P(ω) = P(ω1 ∪ ω2 ∪ · · · ∪ ωk) =
k
∏

i=1

PTi(ωi). (2.1)

Each ωi is the subset of partition Ti found in world ω (i.e, ωi = ω∩Ti),

and PTi denotes a joint distribution over the tuples in partition Ti, af-

ter all other tuples have been marginalized out. We will drop subscript

Ti when it is clear from context and write P(ω) =
∏k

i=1 P(ωi).

This type of marginal independence assumption further narrows

down the set of distributions under consideration. For example, if we

assume that Researcher(Alice, Pixar) and Researcher(Carol, UPenn)

are independent in Figure 2.1, we can eliminate Pa, where this as-

sumption is false, and retain Pb as the intended probability function

for this probabilistic database.

Next, we will discuss two more specific independence assump-

tions that, together with marginal probabilities of the first type, com-

pactly and uniquely specify a probabilistic database. These assump-

tions are most popular in the literature, since they correspond to

common types of uncertainty in data: block-independent disjoint and

tuple-independent probabilistic databases.
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2.2.1 Block-Independent Disjoint Databases

The most common type of uncertainty is when the value of an at-

tribute is not known precisely. This is also called attribute-level uncer-

tainty. The SQL standard uses NULL to record the fact that a value is

missing. When the value is unknown, but some information is known

about it, SQL offers no mechanism for representing the partial infor-

mation about that value. Quite often, we can describe a probability

distribution on the possible missing values; a probabilistic database

allows us to store that probability distribution.

Consider for example the database instance in Figure 2.2. The ta-

ble stores three researchers whose areas of expertise are known, but

whose affiliations are not known with precision. Instead, for each re-

searcher there is a probability distribution on the possible affiliations

where she/he might be. For Alice there are two possible affiliations,

for Bob there are three, and for Carol there are two. There are twelve

possible combinations, and each combination gives rise to a possible

world. Therefore, our probabilistic database is a probability distribu-

tion over twelve possible worlds.

Researcher

Name Expertise Affiliation

Alice Graphics Pixar 0.3

Brown 0.7

Bob Vision UPenn 0.3

PSU 0.3

Brown 0.4

Carol Databases UPenn 0.5

INRIA 0.5

Figure 2.2: Attribute-Level Uncertainty

In practice, a reasonable assumption is that the affiliations of these

three people are independent probabilistic events. In that case, the

probability of a possible world is the product of three probabilities,

one for each of the selected values. Figure 2.3 shows this distribution,

where we drop the Expertise attribute to reduce clutter.
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ω1

Alice Pixar

Bob UPenn

Carol UPenn

P(ω1) = 0.045
(0.3 · 0.3 · 0.5)

ω2

Alice Pixar

Bob UPenn

Carol INRIA

P(ω2) = 0.045
(0.3 · 0.3 · 0.5)

ω3

Alice Brown

Bob UPenn

Carol UPenn

P(ω3) = 0.105
(0.7 · 0.3 · 0.5)

ω4

Alice Brown

Bob UPenn

Carol INRIA

P(ω4) = 0.105
(0.7 · 0.3 · 0.5)

ω5

Alice Pixar

Bob PSU

Carol UPenn

P(ω5) = 0.045
(0.3 · 0.3 · 0.5)

ω6

Alice Pixar

Bob PSU

Carol INRIA

P(ω6) = 0.045
(0.3 · 0.3 · 0.5)

ω7

Alice Brown

Bob PSU

Carol UPenn

P(ω7) = 0.105
(0.7 · 0.3 · 0.5)

ω8

Alice Brown

Bob PSU

Carol INRIA

P(ω8) = 0.105
(0.7 · 0.3 · 0.5)

ω9

Alice Pixar

Bob Brown

Carol UPenn

P(ω9) = 0.06
(0.3 · 0.4 · 0.5)

ω10

Alice Pixar

Bob Brown

Carol INRIA

P(ω10) = 0.06
(0.3 · 0.4 · 0.5)

ω11

Alice Brown

Bob Brown

Carol UPenn

P(ω11) = 0.14
(0.7 · 0.4 · 0.5)

ω12

Alice Brown

Bob Brown

Carol INRIA

P(ω12) = 0.14
(0.7 · 0.4 · 0.5)

Figure 2.3: Possible worlds for the Probabilistic Database in Figure 2.2.

Attribute-level uncertainty occurs often in practice, and was used

in the earliest references to probabilistic databases. For example, Bar-

bará et al. [1992] allow attribute values to be associated with prob-

abilities, and also allow the attribute value be completely unspeci-

fied (NULL), with a given probability. Orion [Singh et al., 2008] goes

a step further and allows the value of an attribute to be a continuous

distribution, by storing the parameters of a probability density func-

tion from a predefined library (e.g., Binomial, Poisson, etc.).

Trio [Benjelloun et al., 2006a] defines an X-tuple to be a set of

tuples together with a probability distribution over the elements of

the set. For example, the set of tuples Researcher(Bob, Vision, UPenn),

Researcher(Bob, Vision, PSU), and Researcher(Bob, Vision, Brown) with

probabilities 0.3, 0.3, 0.4 respectively forms an X-tuple. In the marginal

independence assumption of Equation 2.1, the distribution P(ωi) be-

comes an X-tuple when we further assume that each possible world

contains at most one tuple from each Ti, or exactly one when the sum
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Researcher

Name Expertise Affiliation p
Alice Graphics Pixar 0.3
Alice Graphics Brown 0.7
Bob Vision UPenn 0.3
Bob Vision PSU 0.3
Bob Vision Brown 0.4
Carol Databases UPenn 0.5
Carol Databases INRIA 0.5

Figure 2.4: Block-Independent Disjoint (BID) table for the relation in Figure 2.2.

of all probabilities in each Ti is = 1. Thus, the semantics is that one

alternative is included independently for all X-tuples in the relation.

Together, a set of X-tuples for the same relation form an X-relation.

The relation in Figure 2.2 can be seen as an X-relation consisting of

three X-tuples. X-relations generalize attribute-level uncertainty, be-

cause they can define distributions on two or more attributes. In an

X-relation, the grouping of tuples into X-tuples needs to be specified

using lineage.

Ré and Suciu [2007] introduce Block-Independent Disjoint Tables or

BID tables, which are X-relations where the grouping of tuples is de-

fined by a set of attributes, called a key, and the probability is stored

explicitly as a separate, distinguished attribute p. For example, the re-

lation in Figure 2.2 can be represented by the BID table in Figure 2.4.

The key consists of the attributes Name and Expertise, which are un-

derlined in the table. They partition the tuples into blocks Ti: within

each block the tuples are disjoint, while across blocks the tuples are

independent, hence the name BID. Within each block the sum of all

probabilities must be ≤ 1. In any possible world, the pair of attributes

(Name,Expertise) forms a key in the traditional database sense.

2.2.2 Tuple-Independent Databases

A second kind of database uncertainty is tuple-level uncertainty,

where the existence of an entire tuple is unknown. For example, an

information extraction system crawls a large text corpus (e.g. a Web

crawl) and extracts entities or relationships between entities [Etzioni
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et al., 2008, Mitchell et al., 2015]. The extractions are performed using

statistical machine learning, and therefore inherently uncertain. Every

extracted tuple has a degree of confidence associated with it.

A tuple-independent relation is represented by a standard

database instance where each relation has a distinguished attribute

storing the marginal probability of that tuple. Formally, a tuple-

independent probabilistic database is a pair D = (T, p), where T is

a standard database (a set of tuples) and p : T → [0, 1] associates a

probability to each tuple in T. Any subset of tuples forms a possible

world, obtained by including randomly and independently each tuple

t ∈ T, with the probability specified in the database, p(t). Worlds that

contain tuples not found in T have probability zero. We denote by PD

the probability induced by the tuple-independent database D:

PD(ω) =











∏

t ∈ ω

p(t)
∏

t ∈ T−ω

(1 − p(t)) if ω ⊆ T

0 otherwise

(2.2)

This data model captures the marginal independence assumption of

Equation 2.1 where each partition Ti consists of a single tuple t ∈ T.

We drop the subscript and simply write P(ω) when the probabilistic

database is clear from the context. In practice, we represent D by sim-

ply extending the schema of T to include the probability p as an extra

attribute.

For example, Figure 2.5a shows a hypothetical table extracted

from the Web, consisting of (CEO,Company) pairs. The extrac-

tor is not fully confident in its extractions, so that the tuple

Manager(David, PestBye) has a confidence level of only 60%, while the

tuple Manager(Elga, KwikEMart) has a confidence level of 90%. Any

subset of the uncertain tuples is a possible world, hence there are eight

possible worlds (not shown). Here, too, the simplest way to uniquely

define the probability function is to assume independence. In that case

the probability of any possible world is the product of the probabili-

ties of the tuples in the world, times the product of one minus the

probabilities of the tuples not in the world. For example, the probabil-

ity of the world {Manager(David, PestBye),Manager(Fred, Vulgari)}

is 0.6 · (1 − 0.9) · 0.8 = 0.048.
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Manager

CEO Company p

David PestBye 0.6

Elga KwikEMart 0.9

Fred Vulgari 0.8

(a) Probabilities

Manager

CEO Company w

David PestBye 1.5

Elga KwikEMart 9.0

Fred Vulgari 4.0

(b) Weights

Figure 2.5: A tuple-independent Manager relation. For each tuple we can specify the
probability p as shown in (a), or the weight w as shown in (b).

2.2.3 Weights vs. Probabilities

An alternative, yet equivalent way to specify a tuple-independent re-

lation is to assign a weight w(t) to each tuple t. We refer to such

databases as tuple-independent weighted databases. Then, each possible

world has a weight WD defined as the product of the weights of all

tuples in that world:

WD(ω) =











∏

t ∈ ω

w(t) if ω ⊆ T

0 otherwise

(2.3)

Figure 2.5b illustrates a probabilistic database represented with

weights w instead of probabilities p.

To obtain the probability of a possible world from its weight, we

divide by a normalization factor Z:

PD(ω) =
WD(ω)

Z
where Z =

∑

ω⊆T

WD(ω). (2.4)

We leave it to the reader as an exercise to check that Z is a simple

product, Z =
∏

t∈T(1 + w(t)), by virtue of tuple-independence.

A probabilistic database represented in terms of tuple probabili-

ties is equivalent to a probabilistic database represented in terms of

weights, in the following sense. Define the weight of each tuple t as

its odds, that is, w(t) = p(t)/(1 − p(t)). Then, it is easy to check that

Equations 2.2 and 2.4 are equivalent. Conversely, by setting probabil-

ities p(t) = w(t)/(1 + w(t)) we can turn weights into probabilities.
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The probabilistic databases in Figures 2.5a and 2.5b are indeed equiv-

alent.

Probabilities are a more natural and intuitive representation than

weights for tuple-independent probabilistic relations. We will explain

the rationale for considering weights in §2.5, when we introduce soft

constraints and Markov Logic Networks.

2.3 Query Semantics

Building on the possible world semantics, this section studies the se-

mantics of a query over probabilistic databases: given a query Q in

some query language, such as SQL, datalog, or relational calculus,

what should Q return on a probabilistic database? Query semantics

on a traditional database is defined by some sort of induction on the

structure of the query expression; for example, the value of a relational

algebra expression is defined bottom up. Our semantics over proba-

bilistic databases is different, in the sense that it ignores the query ex-

pression, and instead assumes only that the query already has a well-

defined semantics over deterministic databases. Our task will be to ex-

tend this semantics to probabilistic databases. In other words, assum-

ing we know exactly how to compute Q on a traditional database T,

we want to define the meaning of Q on a probabilistic database D.

It is convenient to assume that the semantics of a query Q over

traditional databases is a mapping from database instances (2Tup)

into d-dimensional vectors (Rd). Then, its semantics over probabilis-

tic databases is simply its expectation, which is a vector as well.

Definition 2.2. A query Q over a traditional database is a function

Q : 2Tup → R
d. The semantics of Q over a probabilistic database D =

(Ω,P) is the expectation ED[Q] =
∑

ω∈Ω PD(ω) ·Q(ω).

Note that this definition is query-language agnostic: it supports

relational calculus, algebra, or datalog. It only requires that the query

language is defined on traditional databases, and that query answers

are vectors. However, it is important to realize that this is only a def-

inition, and says nothing about how to actually compute the query
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efficiently over a probabilistic database. We will address the query eval-

uation problem in Chapters 3, 4, and 5, and see that there are important

algorithmic differences, depending on which query language is used.

We end this discussion with a brief review of standard query

expressions. A Conjunctive Query (CQ) is an existentially quantified

conjunction of positive relational atoms: the free (unquantified) vari-

ables x are sometimes called head variables. A Union of Conjunctive

Queries (UCQ) is a disjunction of conjunctive queries with the same

head variables. Formally,

CQ(x) = ∃y1 · · · ∃yk, R1(τ1) ∧ · · · ∧ R`(τ`)

UCQ(x) = CQ1(x) ∨ · · · ∨ CQm(x),

where each τj is a sequence of terms (logical variables or constants).

Example Query Semantics

Next, we illustrate with several examples how this broad definition of

query semantics applies to different types of queries.

Boolean Queries A Boolean query is a function Q : 2Tup → {0, 1}.

Hence, d = 1, and E[Q] is the probability that Q is true on a ran-

dom database instance. We will use the notations E[Q] and P(Q) inter-

changeably. Consider for example the following Boolean query, writ-

ten as a datalog rule.

Q1 : - Researcher(x, y, Brown).

The query asks: Is there any researcher affiliated with Brown? Given a

traditional (deterministic) database T, the answer to the query is true

or false, that is, 1 or 0. Given a probabilistic database, its answer is the

sum of probabilities of all possible worlds where the query is true. For

a simple example, the reader may verify that the query’s answer on

the BID database in Figure 2.2 is P(Q1 ) = 1− (1−0.7)(1−0.4) = 0.82.

Recall that we assume Alice’s affiliation to be independent of Bob’s.

Set-Valued Queries Typical relational queries return a set of tuples.

We will call these set-valued queries, to distinguish from Boolean or
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aggregate queries. Each query has an arity r, which is the number of

head variables involved in the answer. Assuming a finite domain D,

there are at most d = |D|r possible tuples in the answer. A set-valued

query can be seen as a function Q : 2Tup → {0, 1}d. For example, the

following query returns all expertises at Brown.

Q2 (y) : - Researcher(x, y, Brown).

The query has arity r = 1. Since there are only three distinct expertises

in the domain of the database in Figure 2.2, we can assume d = 3, and

the expected value vector E[Q2 ] is

Graphics 0.7

Vision 0.4

Databases 0.0

Aggregate Queries SQL queries with group-by and aggregates can

also be captured by Definition 2.2. For example, consider the aggre-

gate query: Count the number of researchers for each affiliation. In datalog,

this query is written as

Q3 (z, count(∗)) : - Researcher(x, y, z).

The answer vector has dimension d = 5, because there are five possi-

ble affiliations in Figure 2.2. The expected value vector E[Q3 ] is

Pixar 0.3

Brown 1.1

UPenn 0.8

PSU 0.3

INRIA 0.5

The second expected count, of 1.1 researchers at Brown, is easily

verified from Figure 2.3. The probability of all possible worlds where

Brown has exactly one researcher is 0.105 · 4 + 0.06 · 2 = 0.54. The

probability it has exactly two researchers is 2 · 0.14 = 0.28. This gives

an expected number of 0.54 · 1 + 0.28 · 2 = 1.1 researchers.
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2.4 Beyond Independence: Hard Constraints

In standard, deterministic databases, a hard constraint is an assertion

that must hold on any database instance. In probabilistic databases,

hard constraints are a convenient instrument to encode dependencies

between probabilistic tuples, by restricting possible worlds.

2.4.1 Types of Constraints

Typical constraints expressed in SQL are key constraints, foreign key

constraints, or conditions on attribute values. A general class of con-

straints studied in databases consists of sentences ∆ of the form

∀xϕ(x) ⇒ ∃yψ(x,y),

where each of ϕ and ψ is a conjunction of positive atoms, that

is, a conjunction of relational atoms R(x1, x2, . . .) or equality pred-

icates x = y. Such a constraint is called a Generalized Dependency

(GD), or a Generalized Constraint. Two examples used in the lit-

erature are Local-As-View and Global-As-View. The GD is a Local-

As-View (LAV) if ϕ consists of a single relational atom and every

variable in x occurs in some relational atom in ψ. When the con-

straint has no existential quantifiers and ψ consists of a single rela-

tional atom, it is called a Global-As-View (GAV) constraint. Other two

standard examples used in the literature are equality-generating con-

straints and tuple-generating constraints. In an equality-generating

constraint, ψ consists only of equality predicates; in a tuple generat-

ing constraint, ψ consists only of relational atoms. We illustrate one

of each, over relations Researcher(Name,Expertise,Affiliation)

and University(UName,City):

∀x, y1, z1, y2, z2, Researcher(x, y1, z1) ∧ Researcher(x, y2, z2)

⇒ y1 = y2 ∧ z1 = z2

∀x, y, z, Researcher(x, y, z) ⇒ ∃c University(z, c).

The first constraint is a key constraint, stating that Name is a key in

Researcher. The second constraint is an inclusion constraint, specifying

that every affiliation must be a university.
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2.4.2 Constrained Probabilistic Databases

To enforce constraints over all possible worlds, a constrained proba-

bilistic database sets the probability of worlds that violate ∆ to zero.

Definition 2.3. A constrained probabilistic database C = (D,∆) consists

of a probabilistic database D and a constraint ∆. It represents the prob-

ability distribution:

PC(ω) = PD(ω) · ∆(ω)/PD(∆). (2.5)

Here, ∆(ω) evaluates ∆ as a Boolean query on database ω, returning

either true (1) or false (0).

In other words, the probability of each world is its conditional

probability PD(ω|∆) in the unconstrained probabilistic database.

Query semantics are defined identically to the unconstrained case, as

the expectation of Q, now over the constrained distribution:

EC[Q] =
∑

ω∈Ω

PC(ω) ·Q(ω) = ED[Q · ∆]/PD(∆).

For Boolean queries specifically, we have that PC(Q) = PD(Q ∧

∆)/PD(∆) = PD(Q|∆).

A BID table satisfies its key constraint ∆ by definition. However,

it is not equivalent to a tuple-independent probabilistic table con-

strained by that same ∆. To see the difference, consider a BID ta-

ble Researcher1(Name,Affiliation) and a tuple-independent table

for the same relation Researcher2(Name,Affiliation), with identi-

cal probabilities, but without Name being a key.

Researcher1

Name Affiliation p

Alice Pixar 0.5

Alice Brown 0.5

Researcher2

Name Affiliation p

Alice Pixar 0.5

Alice Brown 0.5

The BID table Researcher1 represents two possible worlds with

non-zero probability, each with probability 0.5. The independent ta-

ble Researcher2 represents four possible worlds (one for each sub-

set), each with probability 0.25. Conditioned on the key constraint

∆ = (∀x, y1, y2,Researcher2(x, y1) ∧ Researcher2(x, y2) ⇒ y1 = y2) on

Name, the tuple-independent probabilistic database has three possible

worlds (including the empty world) with probability 1/3 each.
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2.4.3 Queries on Constraints

We identify two types of queries that become natural when a proba-

bilistic database is subject to constraints.

Consistency Degree Each constraint ∆ is also a Boolean query, be-

ing true or false in every traditional database, and having a probability

in every probabilistic database. Constraints play a simple role in prob-

abilistic databases as a metric of quality. Consistent possible worlds

satisfy the constraint, and inconsistent worlds violate it. Our seman-

tics for Boolean queries supports asking for the probability P(∆) on

a probabilistic database. It represents the degree to which a random

world is consistent. If the probabilistic database is tuple-independent,

or BID, then this probability is astronomically small, since a constraint

is a universally quantified sentence and its probability in a random

world is very small. For example, consider a key constraint ∆ over a

tuple-independent relation. Suppose that the key attribute has n val-

ues, K1, K2, . . . , Kn, and for each value Ki there are two conflicting tu-

ples with that key, both with probability p. Since these tuples are in-

dependent, the probability that a random world satisfies the key con-

straint is P(∆) = (1 − p2)n. For typical values p = 0.5 and n = 106,

we have that P(∆) = 10−125000. Nevertheless, consistency queries

can be useful to estimate the relative degree of consistency between

databases and constraints.

Most-Probable Database Given a belief in the correctness of each

tuple, in the form of a probabilistic database D, and given key or de-

pendency constraints ∆, a natural task in database repair is to recover

the true database where all constraints are satisfied. The most-probable

database (MPD) query solves this task [Gribkoff et al., 2014c]. It finds

the most-probable world ω, according to PD, where the constraints

are satisfied, or equivalently, in PC for C = (D,∆). Formally,

MPDD(∆) = arg max
ω∈Ω

PD(ω) · ∆(ω) = arg max
ω∈Ω

PC(ω). (2.6)

The MPD query can be used to answer most-probable explanation (MPE)

or maximum a posteriori probability (MAP) queries in more expressive

relational data models.
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Next, we discuss an application of constrained probabilistic

databases: to encode soft constraints and Markov Logic Networks.

2.5 Beyond Independence: Soft Constraints

Most probabilistic models used in probabilistic databases are limited

to independent tuples, or disjoint and independent tuples. This sim-

plifies the study of probabilistic inference, since query evaluation is

simply weighted model counting, as we explain in the next chapter.

However, most applications require a richer probability model where

the random variables corresponding to the tuples in the database are

correlated in complex ways. It turns out that such correlations can be

captured in probabilistic databases through soft constraints, using the

semantics of Markov Logic Networks (MLN). We describe MLNs here,

and show how they can be used as soft constraints over probabilis-

tic databases. Then, in the next section we show how soft constraints

can be rephrased as conditional probabilities over tuple-independent

databases, allowing us to both model complex correlations, and still

have a simple definition of the query’s semantics in terms of weighted

model counting. The takeaway of this section is that query evaluation

on complex probabilistic dependencies is equivalent to computing

the conditional probability over a tuple-independent database, whose

conditional is given by a constraint (to be formally defined in §2.6.2).

2.5.1 Markov Logic Networks

Markov Logic Networks (MLNs), introduced by Richardson and

Domingos [2006], are the simplest of a class of statistical relational

models [Getoor and Taskar, 2007, De Raedt et al., 2016], which aim to

represent a probability distribution over relational databases. We give

here a brief overview and refer the reader to Domingos and Lowd

[2009] for more details on MLNs. Our definitions are a slight depar-

ture from those in Richardson and Domingos [2006] or Domingos and

Lowd [2009], as we will explain in §2.5.3.

An MLN is a collection of soft constraints, consisting of a first-

order formula, and a weight. Before giving the formal definition, we
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illustrate MLNs with an example. Consider the following two soft

constraints.

3.5 Smoker(x) ∧ Friend(x, y) ⇒ Smoker(y)

1.3 Smoker(x) ⇒ Cancer(x)

The first constraint says that, typically, friends of smokers are also

smokers, while the second constraint says that smokers are at risk

of developing cancer. The weight of each constraint indicates how

strongly that constraint should hold in a possible world: the higher

the weight, the more confident we are in the constraint.

Formally, an MLN, M , is a set of pairs

M = {(w1,∆1(x1)), (w2,∆2(x2)), . . .}

where each ∆i(xi) is a first-order formula whose free (unquantified)

variables are xi. We refer to each ∆i(xi) as a constraint and to each

pair (wi,∆i(xi)) as a soft constraint.

Semantics

A first-order sentence is a first-order formula without free variables,

that is, one where each logical variable is associated with a univer-

sal or existential quantifier. For a given finite domain D, a first-order

formula ∆(x) can be seen as representing a set of first-order sen-

tences {δ1, . . . , δd}, obtained by substituting the free variables x with

constants from the domain D. We will refer to these sentences as the

groundings of ∆(x). For example, a grounding of the first constraint

above is δ = Smoker(Alice) ∧ Friend(Alice, Bob) ⇒ Smoker(Bob). We

use the term grounding with some abuse, since, in general, δ may be

a sentence with quantified variables. For example, if ∆(x) = (R(x) ⇒

∃y S(x, y)), then one of its groundings is the sentence δ = (R(5) ⇒

∃yS(5, y)). The grounding of an MLN M over domain D is defined as

follows.

ground(M ) = {(wi, δ) | (wi,∆i(x)) ∈ M and δ is a grounding of ∆i(x)}

Next, consider a single possible world ω ⊆ Tup. Recall that the

notation ω |= δ means that the sentence δ is true in ω.
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The MLN semantics define the weight of the world ω as

WM (ω) =
∏

(w,δ)∈ground(M): ω|=δ

w. (2.7)

In other words, the weight of a world ω is the product of weights of

all grounded constraints that are true in ω.

The MLN defines the following probability distribution over the

set of possible worlds:

PM (ω) = WM (ω)/Z where Z =
∑

ω⊆Tup

WM (ω) (2.8)

To get some intuition behind soft constraints and their associated

weights, we state the following simple facts, and invite the reader to

verify them:

• A soft constraint with weight w = 1 means don’t care. More pre-

cisely, if (1,∆(x)) is a soft constraint in the MLN, then the prob-

ability distribution remains unchanged if we remove this soft

constraint from the MLN.

• A soft constraint (0,∆(x)) enforces the hard constraint ¬∃x∆(x).

• Increasing the weight makes a constraint more likely. Formally,

fix one grounded constraint (w, δ). Suppose we increase the

weight of δ from w to w′ > w, while keeping all other weights

unchanged. Then, for any world ω that satisfies δ, its probability

will increase, and for any ω that does not satisfy δ, its probability

will decrease.

• Constraints (w,∆(x)) and (1/w,¬∆(x)) are equivalent. For-

mally, if we replace one soft constraint (w,∆(x)) in the MLN by

(1/w,¬∆(x)), the new MLN defines a different weight function

WM , yet exactly the same probability distribution PM .

• However, comparing weights of different soft constraints does

not tell us anything about their probabilities. More precisely, if

(w, δ) and (w′, δ′) are two grounded constraints and w < w′,

this does not imply, in general, that P(δ) ≤ P(δ′). (We invite
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the reader to find an example where P(δ) > P(δ′).) MLNs give

great flexibility in expressing dependencies, yet also a risk of be-

ing uninterpretable, because weighted constraints can partially

undo each other.

2.5.2 Weighted Databases with Soft Constraints

MLNs can be used as, and are equivalent to soft constraints in prob-

abilistic databases. Given a probabilistic database, the addition of an

MLN affects the probabilities of the possible worlds, by favoring those

that satisfy the soft constraints. The formal semantics of a probabilis-

tic database with soft constraints can be obtained by viewing the

database itself as a set of soft constraints, and then applying the MLN

semantics of Equation 2.8.

Tuple-Indep.
Probabilistic

Database

Constrained
Tuple-Indep.
Probabilistic

Database

Tuple-Indep.
Weighted
Database

Constrained
Tuple-Indep.

Weighted
Database

MLN

§2.6

§2.2.3

§2.2.3

§2.4.2§2.4.2

§2.5.2

Figure 2.6: Reductions between MLNs and various probabilistic database models.

This reduction is illustrated in the upper half of Figure 2.6 (the

lower half will be explained in §2.6). Take a tuple-independent prob-

abilistic database Dp = (T, p). As discussed in §2.2.3, this database

is easily transformed into a tuple-independent weighted database

Dw = (T, w), by setting the weight of each tuple to its odds (see Fig-

ure 2.5 for an example). Next, Dw is transformed into the MLN

{(w(t), t) | t ∈ T} ∪ {(0, t) | t ∈ Tup −T}. (2.9)

In other words, we create one soft constraint for every tuple in the

database, and one soft constraint with weight 0 for every tuple not in

the database. The probability distribution on possible worlds defined
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by the tuple-independent database (Equation 2.4) is the same as the

probability distribution defined by the associated MLN (Equation 2.8).

Definition 2.4. A weighted database with soft constraints is a pair

(D,M ) where D is a weighted tuple-independent database and M is a

Markov Logic Network. It represents the probability distribution de-

fined by the union of two MLNs: (1) the soft constraints encoded in D

(Equation 2.9), and (2) the soft constraints in M .

Manager

CEO Company w
David PestBye u11

David KwikEMart u12

Elga KwikEMart u22

Smoker

Person w
David r1

Elga r2

Fred r3

M = {(v,Manager(x, y) ⇒ Smoker(x))}

Figure 2.7: A weighted database with one soft constraint.

For example, consider the weighted tuple-independent proba-

bilistic database in Figure 2.7, over domain D = {David, Elga,

Fred, PestBye, KwikEMart}. Ignore the MLN in the figure for the

moment. The tuple-independent database has 230 possible worlds

(since there are 30 grounded tuples: 25 for Manager and 5 for

Smoker), but only 26 possible worlds have a non-zero weight. Re-

call that the weight of each world is the product of the weights

of its tuples. For example, the empty world has weight 1, the

world consisting of all six tuples has weight u11u12u22r1r2r3, and the

world ω1 = {Manager(David, KwikEMart),Manager(Elga, KwikEMart),

Smoker(Fred)} has weight W(ω1) = u12u22r3. The normalization fac-

tor of the database is

Z =
∑

ω

W(ω) = (1 + u11)(1 + u12)(1 + u22)(1 + r1)(1 + r2)(1 + r3).

Let us now add the soft constraint (v,Manager(x, y) ⇒ Smoker(x))

to our distribution. It is a soft inclusion constraint saying typically, val-

ues for CEO that occur in Manager also occur in Smoker. To see how the

constraint changes the weights of the possible worlds, we first need
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to ground the MLN over the domain D. We obtain 25 grounded con-

straints in ground(M ):

{(v,Manager(David, David) ⇒ Smoker(David)),

(v,Manager(David, Elga) ⇒ Smoker(David)),

. . . ,

(v,Manager(PestBye, KwikEMart) ⇒ Smoker(PestBye)),

(v,Manager(KwikEMart, KwikEMart) ⇒ Smoker(KwikEMart))}.

The weight of each world is now computed by first multiplying the

weights of all its tuples (as before), and next multiplying the weights

of all grounded constraints that are true in that world. For example,

the possible world ω1 defined above satisfies 23 grounded constraints.

These are all groundings, except for Manager(David, KwikEMart) ⇒

Smoker(David) and Manager(Elga, KwikEMart) ⇒ Smoker(Elga),

which are both violated in world ω1. Therefore the weight of ω1 is

W(ω1) = u12u22r3v
23. We invite the reader to check that the normal-

ization factor Z =
∑

ω W(ω) no longer has a simple closed form (for

non-trivial constraints), and this makes it much harder to compute the

probability of a world.

Finally, note that in this probability distribution, the tuples are

no longer independent. For example, the presence of the tuple

Manager(David, PestBye) in a possible world increases the proba-

bility of Smoker(David), which in turn increases the probability of

Manager(David, KwikEMart).

2.5.3 Discussion

The soft constraints in MLNs create complex correlations between the

tuples in a probabilistic database. In MLNs we can also define hard

constraints, by giving them a weight of w = 0 or w = ∞. In the first

case we simply assert that the constraint is false, since all worlds satis-

fying that constraint have weight 0. In the second case, the weight of a

world that satisfies the constraint becomes ∞, and then its probability

is no longer well defined, since both numerator and denominator of

Equation 2.8 are ∞. There are two workarounds that lead to the same
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result: the first is to set w to be a finite quantity, then let w → ∞ in

Equation 2.8; the second is to restrict the set of possible worlds to only

those that satisfy all hard constraints, and remove the weights ∞ from

the product in Equation 2.7. We invite the reader to check that the two

definitions are equivalent.

Our semantics of MLNs differ slightly from the original defi-

nition in Richardson and Domingos [2006]. In that definition, an

MLN is a set of pairs of weights and sentences, (w,∆), where ∆

is a sentence (closed formula). The grounding of the formula is ob-

tained by essentially treating all universally quantified variables as

free variables. For example, the constraint in Figure 2.7 is written as

(w,∀x∀y,Manager(x, y) ⇒ Smoker(x)), then the constraint is grounded

in n2 possible ways over a domain of size n, by essentially treating x

and y as free variables. There are two problems with the original defi-

nition. The first is that existential quantifiers are not handled. Second,

sentences that are semantically equivalent may lead to different in-

terpretations. For example, ∆1 = ∀x∀yResearcher(x) ∧ Smoker(y) and

∆2 = ∀xResearcher(x) ∧ Smoker(x) are logically equivalent sentences,

yet the first has n2 groundings while the second has n groundings,

leading to rather different probability distributions. We corrected this

inconsistency by requiring the formula to be given with explicit free

variables. The soft constraints now become ∆1(x, y) = Researcher(x) ∧

Smoker(y) and ∆2(x) = Researcher(x)∧Smoker(x), which are no longer

equivalent.

The reader may wonder why MLNs use weights instead of

probabilities. We have argued earlier that weights and probabilities

are interchangeable for the purpose of defining tuple-independent

databases; however, they are no longer interchangeable for soft con-

straints. Given a choice, we would prefer to specify probabilities:

weights have no intuitive semantics, except for the simple fact that,

if we increase the weight of one soft constraint while keeping all other

weights fixed, then we also increase its marginal probability. One may

wonder what happens if we defined soft constraints using marginal

probabilities instead of weights. For example, consider a collection of

soft constraints defined as pairs (p,∆), where p is interpreted as the
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marginal probability of ∆. Then it is difficult to define a probability

distribution over all possible worlds that is consistent with all these

marginal probabilities (i.e., the probability of ∆ is indeed p, as speci-

fied). Such a distribution may not be unique, or may not exist at all if

the probabilities are inconsistent. For example, the two soft constraints

(p1,Smoker(x)) and (p2,Smoker(x) ∧ Researcher(x)) are inconsistent

when p1 < p2 because in any probability distribution, P(Smoker(x)) ≥

P(Smoker(x) ∧ Researcher(x)). In contrast, a collection of soft con-

straints with non-zero finite weights is always consistent. For exam-

ple the MLN {(w1,Smoker(x)), (w2,Smoker(x)∧Researcher(x))} is con-

sistent: the world {Smoker(David)} has weight w1, while the world

{Smoker(David),Researcher(David)} has weight w1w2.

MLNs have been applied to several machine learning tasks. Ap-

plications of MLNs described in the literature typically require only

a dozen constraints or less (see references in Domingos and Lowd

[2009]). WebKB webpage classification models consist of a dozen or

so templates [Lowd and Domingos, 2007, Mihalkova and Mooney,

2007], which during learning are instantiated to around a thousand

constraints: a template is instantiated by substituting some of its vari-

ables with constants, and by associating a different weight with each

instantiation. Large knowledge bases [Shin et al., 2015] require sig-

nificantly more constraints. At the other extreme, the Sherlock sys-

tem [Schoenmackers et al., 2010] learns over 30,000 soft Horn clause

constraints using Web extractions (also see Chen and Wang [2014]).

2.6 From Soft Constraints to Independence

As outlined in §2.4.2, any query on a constrained probabilistic

database C can be converted into a pair of queries on an uncon-

strained probabilistic database D, because EC[Q] = ED[Q·∆]/PD(∆).

Moreover, we will show that any Markov Logic Network, or, more

generally, any weighted database with soft constraints, can be con-

verted into a constrained tuple-independent database. Together, these

conversions form a reduction from MLNs and soft constraints, into the

basic tuple-independent model. This process is depicted in Figure 2.6.
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Briefly, probabilities defined by the MLN are equal to the conditional

probability over a tuple-independent database. We first illustrate this

reduction on a simple example, and then give the formal translation.

2.6.1 Example Reduction

Consider the database with a soft constraint in Figure 2.7. Recall that

it has a single soft constraint (v,Φ(x, y)), where:

Φ(x, y) = (Manager(x, y) ⇒ Smoker(x))

We write WM and PM for the weight and probability distribution de-

fined by this probabilistic database with the soft MLN constraint.

We extend the two probabilistic relations in Figure 2.7 with a third

weighted relation, A(x, y), where all 25 ground tuples have weight v.

The three relations Manager,Smoker,A, without any constraints, define

a tuple-independent weighted database D. We write WD and PD for

the associated weight and probability. Thus, WD(ω) is the product of

the weights of all tuples in ω.

Consider the following hard constraint:

∆ = ∀x∀y(A(x, y) ⇔ Φ(x, y))

= ∀x∀y(A(x, y) ⇔ (¬Manager(x, y) ∨ Smoker(x))) (2.10)

Intuitively, ∆ asserts that A is the set of pairs (i, j) for which the

grounding Φ(i, j) holds. Let ω be any world of the MLN, and ω′ be its

extension with A
def
= {(i, j) | ¬Managerω(i, j) ∨ Smokerω(i)}. In other

words, ω′ is the unique extension of ω for which ∆ holds. Then, the

following is easy to check:

WM (ω) =WD(ω′)

Indeed, the weight factors in WM (ω) that correspond to grounded

MLN constraints become weight factors in WD(ω′) that correspond

to tuples in A. Moreover, the constrained probabilistic database C =

(D,∆) assigns zero probability to all worlds ω′ of the larger schema

that are not the extensions of a world ω in the MLN. This implies that,

for any Boolean query Q,

PM (Q) = PC(Q) = PD(Q|∆). (2.11)
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In other words, the probability defined by the MLN coincides with

the conditional probability in a tuple-independent database. To sum-

marize, we compute PM (Q) by first constructing a new probabilistic

relation A(x, y), populating it with all grounded tuples A(i, j) over the

given domain, setting their weights to v, then computing the condi-

tional probability P(Q|∆) in the tuple-independent database. The lat-

ter, of course, can be expressed as a ratio P(Q ∧ ∆)/P(∆).

This simple technique was discussed in Van den Broeck et al.

[2011]; however it has the disadvantage that the hard constraint ∆

is an equivalence statement, which is difficult to handle by the lifted

inference techniques that we discuss in Chapter 4. A more efficient

conversion from MLNs to probabilistic database was first introduced

by Jha and Suciu [2012], and simplifies the hard constraint ∆. We illus-

trate it on our example. As before, add a new relational symbol A(x, y),

and set the weights of all grounded tuples A(i, j) to v−1. Then, define

the hard constraint:

∆ =∀x∀y(¬A(x, y) ∨ ¬Manager(x, y) ∨ Smoker(x)) (2.12)

Then Equation 2.11 continues to hold. In other words we have re-

placed the double implication A(x, y) ⇔ (¬Manager(x, y)∨Smoker(x))

with a one-sided implication A(x, y) ⇒ (¬Manager(x, y) ∨ Smoker(x)).

To see why Equation 2.11 still holds, consider a world ω for the MLN,

and consider one grounding of our constraint: δ = (¬Manager(i, j) ∨

Smoker(i)). There are two cases. First, if ω satisfies δ, then δ contributes

a factor v to WM (ω). On the other hand, ∆ imposes no constraint on

whether A contains or does not contain (i, j), thus, there are two exten-

sions of ω that satisfy ∆: one that does not include (i, j), and the other

that does include (i, j): the sum of their weights is 1 + (v− 1) = v. Sec-

ond, if ω does not satisfy δ, then δ contributes the factor 1 to WM (ω);

on the other hand, ∆ implies (i, j) 6∈ A, so the only possible extension

is to not include (i, j), which means that, in the probabilistic database,

the tuple (i, j) also contributes a factor of 1.
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2.6.2 General Reduction

We now describe the general translation of a weighted database D

with soft constraints M to a tuple-independent weighted database.

First, create a new relations Ai(xi) for each soft constraint (wi,Φ(xi))

in M ; populate Ai with all grounded tuples in the given domain, and

assign to each of them the weight wi − 1. Finally, define:

∆ =
∧

i

∀xi(¬Ai(xi) ∨ Φi(xi)) (2.13)

Then, for any query Q, we have PM (Q) = P(Q|∆), where the latter

probability is in a tuple-independent probabilistic database.

Discussion

We end our treatment of soft constraints with two observations. Recall

that a clause is a disjunction of literals, L1 ∨L2 ∨ . . ., where each literal

is either a positive relational atom R(x1, x2, . . .) or a negated relational

atom ¬R(x1, x2, . . .). Our first observation is that, if the soft constraint

Φ(x) is a clause, then its corresponding sentence in the hard constraint

∆ is also a clause ¬A(x)∨Φ(x). In many applications of MLNs, the soft

constraint are Horn clauses, B1 ∧ B2 ∧ . . . ⇒ C, and in that case the

hard constraint ∆ is a Horn clause as well: A ∧ B1 ∧ B2 ∧ . . . ⇒ C. In

other words, the formula for the hard constraint is no more complex

than the original MLN constraint.

Second, the weight of the ground tuples in each new relation Ai is

wi − 1. When wi < 1, then the tuples in Ai have a negative weight,

which, in turn, corresponds to a probability that is either < 0 or > 1.

This is inconsistent with the traditional definition of a probability, and

requires a discussion. One simple way to try to avoid this is to replace

every soft constraint (wi,Φi) where wi < 1 with (1/wi,¬Φi), but the

new constraint ¬Φi is in general more complex than Φi; for example

if Φi is a clause, then ¬Φi is a conjunctive term. However, in many

applications we do not need to avoid negative weights. The marginal

probability of any event Q over the tuple-independent probabilistic

database is still well defined, even if some tuple probabilities are < 0

or > 1. All exact probabilistic inference methods work unchanged
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in this case. Approximate methods, however, are affected, for exam-

ple, we can no longer sample tuples from the relation Ai. However,

collapsed sampling continues to work as long as we avoid sampling

from the relations with negative weights. Finally, we notice that, cer-

tain lifted inference methods (discussed in Chapter 4) work best on

formulas without negations. If all soft constraints in the MLN are pos-

itive formulas, then we can ensure that the hard constraint ∆ is also a

positive statement by replacing ¬Ai with Ai and setting the weight of

Ai to 1/(wi − 1) instead of wi − 1.

2.7 Related Data Models

Numerous models have been proposed to represent relational uncer-

tainty. We give a brief overview of several such models, in databases,

probabilistic graphical models, as well as alternative query types.

2.7.1 Database Models

We review incomplete databases, models of other distributions and

semi-structured data, and open-world probabilistic databases.

Incomplete Databases An elegant and powerful framework for

representing uncertainty in databases are incomplete databases, in-

troduced by Imielinski and Lipski [1984]. An incomplete database

is defined to be a set of possible worlds; this is like a probabilistic

database, but without probabilities. Thus, in an incomplete database

the database can be in one of several states, and there is no prefer-

ence given to one state over the other. One can define a probabilistic

database as an incomplete database plus a probability distribution: for

an excellent discussion of their connection we refer to Green and Tan-

nen [2006]. Three representation formalisms have been proposed for

incomplete databases: Codd-tables, v-tables, and c-tables. A v-table is

a relation where the attribute values can be either constants or vari-

ables: the incomplete database is obtained by substituting each vari-

able, independently, with a value from the domain. A Codd-table is

a v-table where all variables are distinct. A c-table is a v-table where
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each tuple is annotated with a condition, which is a Boolean combina-

tion of equalities involving variables and constants. Standard relations

with NULL values are Codd-tables where each NULL is a distinct

variable; by analogy, the variables in a v-table are sometimes called

marked nulls. It was recently shown that SQL’s semantics interprets

NULLs incorrectly [Libkin, 2015].

Other Distributions and Semi-Structured Data Several applica-

tions of probabilistic databases require storing and manipulating con-

tinuous random variables. This can be achieved by allowing each at-

tribute to store the parameters of a PDF (probability density function),

from an existing library, for example single or multi-valued Gaussian

distributions [Deshpande et al., 2004, Singh et al., 2008]. For exam-

ple, Temperature may be a measured quantity and represented as a

Gaussian by specifying the mean and the standard deviation. A query

may check if the temperature is greater than or less than a certain

value, or compare temperatures from two measurements.

There is an extensive literature on probabilistic extensions of semi-

structured databases. This includes work on probabilistic XML [Nier-

man and Jagadish, 2002, Hung et al., 2003, Senellart and Abiteboul,

2007, Kimelfeld and Sagiv, 2007] and probabilistic RDF [Udrea et al.,

2006]. Fuzzy databases [Petry, 2012] capture imprecise data through

fuzzy sets instead of probability distributions.

Open-World Probabilistic Databases Our probabilistic database

semantics states that all tuples in the database are possibly true,

thereby making an open-world assumption [Reiter, 1978]. Neverthe-

less, it states that all other tuples in Tup that are missing from the

database must have zero probability (cf. Equation 2.2). They may

never occur in any possible world, which is still a closed-world as-

sumption. Ceylan et al. [2016] relax this assumption by stating that

missing tuples have an unknown (low) probability bounded above

by a known constant. This open-world assumption matches the way

information extraction systems build probabilistic knowledge bases:

only some facts have been extracted from the text corpus, and all other
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facts have an unknown probability. It also alleviates the need to store

every tuple encountered during extraction. This modified assumption

turns the probabilistic data model into a credal one [Cozman, 2000]

based on interval probabilities [Halpern, 2003].

2.7.2 Models of Probabilistic Dependencies

Most of the work on probabilistic databases is restricted to simple dis-

tributions where the tuples are independent, or disjoint-independent.

This simplifies the query semantics, because it reduces it to weighted

model counting (see Chapter 3). In contrast, statistical models consid-

ered in artificial intelligence and machine learning (e.g., MLNs) have

more expressive power and can directly represent richer distributions

that capture dependencies between the tuples. It has been suggested

that this is a limitation of probabilistic databases [Russell, 2015]. The

reduction in §2.6 showed that this is not the case for MLNs, in the

sense that tuple-independent probabilistic database queries can cap-

ture dependencies by conditioning on constraints. Thus, the simple

data model used in probabilistic databases is not a restriction at all,

but separates the specification of the uncertainties in the data from the

correlations in the data, the latter being captured through constraints.

See also the discussion in Suciu et al. [2011] on the design of proba-

bilistic databases and the connection to database normalization.

Next, we further illustrate this ability by encoding a Bayesian net-

work into a tuple-independent database. Afterwards, we briefly re-

view complex probabilistic data models that go beyond MLNs.

Bayesian Networks and Graphical Models Probabilistic graphi-

cal models, such as Bayesian networks [Pearl, 1988, Darwiche, 2009],

are the standard probabilistic model for non-relational data. Fig-

ure 2.8 depicts a simple Bayesian network over three dependent ran-

dom variables. Even though this representation appears distant from

tuple-independent probabilistic databases, any discrete Bayesian net-

works is easily reduced to a conditional probability query on a tuple-

independent database. The first step of this reduction is shown in Fig-

ure 2.9, where the distribution of interest is captured by a set of soft
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M(D, P) M(D, K)

S(D)

(a) Bayes net structure

P(M(D, P)) = 0.4

P(M(D, K)|M(D, P)) =

{

0.1 if M(D, P)
0.3 if ¬M(D, P)

P(S(D)|M(D, P), M(D, K)) =

{

0.8 if M(D, K) ∨ M(D, P)
0.5 otherwise

(b) Conditional probabilities

Figure 2.8: A simple Bayesian network for the dependencies between random vari-
ables Manager(David, PestBye), Manager(David, KwikEMart), and Smoker(David).

Manager

CEO Company w
David PestBye 0.4
David KwikEMart 1

Smoker

Person w
David 1

M = {(0.1,M(D, K) ∧ M(D, P)), (0.9,¬M(D, K) ∧ M(D, P)),

(0.3,M(D, K) ∧ ¬M(D, P)), (0.7,¬M(D, K) ∧ ¬M(D, P)),

(0.8,S(D) ∧ [M(D, K) ∨ M(D, P)]), (0.2,¬S(D) ∧ [M(D, K) ∨ M(D, P)]),

(0.5,¬[M(D, K) ∨ M(D, P)])}.

Figure 2.9: A tuple-independent weighted database with soft constraints. The repre-
sented distribution is equivalent to the Bayesian network distribution in Figure 2.8.
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constraints (i.e., an MLN) on top of a weighted tuple-independent

database. By further applying the reduction from soft constraints to

conditional queries in §2.6, we can effectively capture the depen-

dencies in the Bayesian network within the tuple-independent data

model. This type of reduction, from graphical models to a constraint

on independent variables, is known as a weighted model counting en-

coding in graphical models [Chavira and Darwiche, 2005, 2008, Sang

et al., 2004]. The computational aspects of weighted model counting

will be the topic of Chapter 3. It naturally exploits structure in the

distribution, such as equal parameters and determinism, and attains

state-of-the-art performance [Darwiche et al., 2008, Choi et al., 2013].

Statistical Relational Models and Probabilistic Programming

The machine learning and knowledge representation communi-

ties have developed models that are very related to probabilistic

databases. The goal of these statistical relational models [Getoor and

Taskar, 2007] is to have a concise high-level description of a large

graphical models with repeated structure. Given a relational database

containing the known tuples, the statistical relational model induces

a classical graphical model over the uncertain tuples. Just like prob-

abilistic databases, the possible worlds of these models are classical

relational databases. A large number of such template languages has

been proposed, including plate models [Buntine, 1994], RBNs [Jaeger,

1997], PRMs [Friedman et al., 1999, Getoor et al., 2001], BLPs [Kerst-

ing and De Raedt, 2001], parfactors [Poole, 2003], LBNs [Fierens et al.,

2005], PSL [Kimmig et al., 2012], and MLNs; collectively referred to as

the alphabet soup of statistical relational learning.

A related line of research in artificial intelligence seeks to extend

first-order logic and logic programming with probabilities. Based on

the seminal work of Nilsson [1986], Halpern [1990], and Bacchus

[1991], a rich collection of probabilistic logic programming languages was

developed, including PHA/ICL [Poole, 1993, 1997], SLPs [Muggle-

ton, 1996], PRISM [Sato and Kameya, 1997], ProbLog [De Raedt et al.,

2007], ProPPR [Wang et al., 2013], and GDatalog [Barany et al., 2016].

Most of these languages are based on the distribution semantics [Sato,
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1995]. In fact, many can be seen as executing datalog or logic program

queries on a tuple-independent probabilistic database following the

semantics of §2.3. Moreover, the LPAD/CP-Logic languages also sup-

port disjoint-independent sets of tuples [Vennekens et al., 2004, 2009].

More recently, probabilistic programming languages have taken

up the role of representing complex distributions over structured

data [Milch et al., 2007, Goodman et al., 2008, Pfeffer, 2009, McCallum

et al., 2009]. Probabilistic logic programming languages are one pop-

ular approach; others extend functional or even imperative languages

with probabilistic constructs. Several proposals aim to augment de-

scription logics with probabilities [Heinsohn, 1994, Lukasiewicz,

2008]. There has also been substantial interest in continuous-variable

extensions of probabilistic logic programs [Nitti et al., 2016].

Intricate connections exist between all these languages. For ex-

ample, MLNs can be regarded as a maximum-entropy probabilistic

logic [Kern-Isberner and Lukasiewicz, 2004] in the tradition of Nilsson

[Paskin, 2002]. Some probabilistic logic programs can reduce to sim-

pler queries on tuple-independent probabilistic databases [Van den

Broeck et al., 2014]. These are beyond the scope of this survey.

2.7.3 Alternative Query Semantics

Two classes of queries go beyond the expectation semantics of §2.3.

Meta-Queries The probabilistic database system Trio [Benjelloun

et al., 2006b] supports queries where the probability can be tested and

manipulated explicitly. For example, in Trio we could ask the follow-

ing query on the relation Researcher in Figure 2.2: retrieve all affiliations

that have expertise in both databases and vision with probability > 0.8. This

query is a departure from our definition of a query as a random vari-

able over the possible worlds, since the query has no meaning over

a single world, only over the entire probability distribution. Similar

queries are implemented in ProbLog, and called Meta-Calls [De Raedt

and Kimmig, 2015]. The formal semantics of such queries is more com-

plex than for the queries considered in this survey, we refer the reader

to Fagin et al. [1990] and also to the discussion by Moore et al. [2009].
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Other variations to the query semantics have been considered in

the literature. Li and Deshpande [2009] propose consensus answers,

which are answers that minimize the distance to all possible answers,

i.e. they are a consensus over the possible answers. Sensitivity analysis

for query answers was discussed by Kanagal et al. [2011].

Top-k Queries Recall that a set-valued query returns a set of an-

swers, and are by far the most common SQL queries in practice. If

the database is probabilistic, each of these answers is uncertain, and

it is reasonable to require that the answers be sorted in decreasing or-

der of their confidence and, moreover, restrict the answers to just the

top k, where k is, say, k ≈ 10 · · · 20. This opens up the possibility for

optimizations, since the system does not have to compute the proba-

bilities all answers that are not in the top k. Ré et al. [2007] describe

an approach to improve the query performance by focusing the prob-

abilistic inference to just the top k answers. It uses as a black box any

approximation algorithm for computing the output probability, and

runs this algorithm one step at a time on each candidate output tuple,

and drops an tuple from the list of candidates when its current confi-

dence interval is strictly dominated by current confidence intervals of

at least k other tuples.

A different top-k problem studies queries that have a particular

score attribute that the system has to use to sort the answers. For ex-

ample, the query may retrieve a list of hotels, and order them in in-

creasing order of the price; or in decreasing order of their average re-

view score; or by some other deterministic criterion. When the data

is deterministic, then it is clear how to sort the output, namely by the

score. When the data is probabilistic we need a sorting criterion that

accounts for both the score and the confidence. For example, should

a hotel with very good reviews but low confidence be listed before,

or after a hotel with average reviews but much higher confidence?

Several semantics have been discussed in the literature, we refer the

reader to Zhang and Chomicki [2008] for a survey and critique. Li

et al. [2011] proposed a solution based on learning ranking function

based on user inputs.
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Weighted Model Counting

Model counting, and its generalization to weighted model counting

(WMC), are some of the most fundamental problems in computer sci-

ence. Several open-source tools exists for these tasks. Our interest in

them stems from the fact that evaluation of Boolean queries on a prob-

abilistic databases can be reduced to WMC, and, therefore, tools and

theory for WMC can be deployed to perform and analyze query eval-

uation. In this chapter we give a brief background on WMC and de-

scribe its connection to query evaluation on probabilistic databases.

3.1 Three Variants of Model Counting

Let F be a Boolean formula over variables from the set X =

{X1, X2, . . . , Xn}. A model for F is a satisfying assignment, in other

words a function θ : X → {0, 1} s.t. F evaluates to true: θ(F ) = 1. With

some abuse, we will interchangeably use 0/1 and false/true. While

we find it convenient to write θ(F ) = 1 for satisfaction of Boolean for-

mulas, note that it is equivalent to writing θ |= F , seeing θ as a possible

world. A monotone Boolean formula is one that can be written without

using the negation symbol. It is easily satisfied by the assignment that

sets all variables to true.
236
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X1 X2 X3 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Figure 3.1: Truth table for the formula F = (X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X3).

Problem 1: Model Counting

The number of models of F is denoted #F = |{θ | θ(F ) = 1}|, and the

model counting problem is given a Boolean formula F , compute #F . For

example, if F = (X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3) then #F = 4, as is

clear from its truth table in Figure 3.1.

In general, the model counting problem is computationally hard.

An easy way to see this is to observe that any oracle for computing #F

can be used to check ifF is satisfiable, by simply testing if #F ≥ 1, and

since the satisfiability problem (SAT) is NP-hard, the counting prob-

lem must also be hard. Recall that the class NP is the class of decision

problems that can be solved by a polynomial time non-deterministic

Turing machine; SAT is NP-complete. The model counting problem is

not a decision problem, and therefore is not in NP. The model count-

ing problem belongs to the class #P, defined as the class of functions

f for which there exists a polynomial time non-deterministic Turing

Machine such that, for any input x, the number of accepting compu-

tations of the Turing Machine is f(x). Valiant [1979b,a] introduced the

class #P and proved that the model counting problem is #P-complete.

Rather surprisingly, even if one restricts the class of Boolean for-

mulas to apparently simple formulas, the model counting problem re-

mains #P-hard. A particular class that is of special interest to proba-

bilistic databases is that of Positive Partitioned 2CNF (PP2CNF) formu-

las. A PP2CNF is a Boolean formula of the form F =
∧

(i,j)∈E(Xi ∨Yj),
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where X = {X1, . . . , Xn}, Y = {Y1, . . . , Yn} are two disjoint sets of

variables, and E ⊆ [n] × [n]. The satisfiability problem for PP2CNF is

trivial, because any PP2CNF formula is trivially satisfied by setting all

variables to true. Therefore, it is quite surprising that Provan and Ball

[1983] proved that model counting is hard:

Theorem 3.1 (PP2CNF). The model counting problem for PP2CNF

formulas is #P-hard.

The dual of a Boolean formula F (X1, . . . , Xn) is defined as F ∗ =

¬F (¬X1, . . . ,¬Xn). Equivalently, it is obtained from F by replacing

∧,∨ with ∨,∧ respectively. The model counting problems for F and

F ∗ are equivalent, since #F = 2n − #F ∗ and, therefore, the result

by Provan and Ball [1983] immediately applies to PP2DNF formulas,

which are formulas of the form
∨

(i,j)∈E Xi ∧ Yj .

Problem 2: Probability Computation

In probabilistic databases we are interested in computing the proba-

bility of a Boolean formula, which turns out to be related to model

counting. Let p : X → [0, 1] be a probability function. Equivalently,

we denote it as a sequence (pi)i=1,n, where, for each i = 1, n, the num-

ber pi ∈ [0, 1] denotes p(Xi). We define a probability space whose set

of outcomes is the set of assignments θ, as follows. For each variable

Xi, set randomly θ(Xi) = 1 with probability pi, or θ(Xi) = 0 with

probability 1 − pi. Repeated this independently for each variable Xi,

i = 1, n. This defines a probability space on the set of assignments θ.

Concretely, the probability P(θ) of an assignment θ, and the marginal

probability P(F ) of a Boolean formula F are given by:

P(θ) =
∏

i:θ(Xi)=0

(1 − pi) ×
∏

i:θ(Xi)=1

pi P(F ) =
∑

θ:θ(F )=1

P(θ)

The probability computation problem is: given a Boolean formula F and

rational numbers pi ∈ [0, 1], i = 1, n, compute P(F ). In the special

case when p1 = · · · = pn = 1/2, the probability is P(F ) = #F/2n,

and therefore the probability computation problem generalizes model

counting, and is at least as hard.
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Expansion and Independence Properties

We review some simple properties of the probability of a Boolean for-

mula. Shannon’s expansion formula is:

P(F ) = (1 − p(X)) · P(F [X = 0]) + p(X) · P(F [X = 1])

where X is any variable, and F [X = v] replaces X in F by value v. By

repeatedly applying the Shannon expansion one can compute P(F ) in

time ≤ 2n. A more efficient way is to apply the independence rule.

Lemma 3.2. If F1, F2 do not share any common variables (Vars(F1)∩

Vars(F2) = ∅) then they are independent probabilistic events, and

P(F1 ∧ F2) = P(F1) · P(F2)

P(F1 ∨ F2) = 1 − (1 − P(F1)) · (1 − P(F2)).

One has to be careful when reasoning about independence: the

converse, namely that the equalities above imply the absence of a

common variable, fails in general, and only holds under certain con-

ditions. The lifted inference techniques discussed in Chapter 4 will re-

quire necessary and sufficient criteria for independence, which is why

we are interested in precisely characterizing it. In general, F1, F2 may

share some common variables, and at the same time be independent

probabilistic events for particular values of the probabilities pi. A con-

crete example1 is F1 = (X∨Y )∧(¬X∨Z) and F2 = (X∨U)∧(¬X∨W ),

where all Boolean variables have probability 1/2; then P(F1 ∧ F2) =

P(F1)P(F2) = 1/2. Thus, we have an example of two formulas F1, F2

that have a common variable X , and are also independent. Therefore,

in general, independence does not imply disjoint sets of variables.

On the other hand, if F1, F2 are independent for every choice of

probabilities pi ∈ [0, 1], i = 1, n, then F1, F2 have no common vari-

ables; this provides a weak converse to Lemma 3.2. Indeed, if they

shared at least one common variable X , then P(F1 ∧ F2) is a linear

1We invite the reader to verify the following more general statement. If F1, F2

share a single common variable X , and P(F1[X = 0]) = P(F1[X = 1]), and
P(F2[X = 0]) = P(F2[X = 1]), then P(F1 ∧ F2) = P(F1)P(F2). To check, it suf-
fices to apply Shannon expansion on X .
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polynomial in p = p(X), while P(F1)P(F2) is a polynomial of degree

2 in p, and they cannot be identical for all values of p ∈ [0, 1].

Finally, if F1, F2 are monotone Boolean formulas then the converse

of Lemma 3.2 holds in the following sense: if there exist probability

values pi ∈ (0, 1) such that P(F1 ∧ F2) = P(F1)P(F2) then F1, F2 do

not share any common variables, see Miklau and Suciu [2007].

Problem 3: Weighted Model Counting

The third problem discussed here is a variant of the probability com-

putation problem that is closer in spirit to model counting. Let w :

X → R be a function that associates a weight w(X) to each variable

X . As with probabilities, we denote wi = w(Xi) and use the sequence

(wi)
n
i=1 to present the function w. The weight of an assignment w(θ)

is the product of the weights of the variables set to true,2 and the

weighted model count of a Boolean formula, WMC(F ), is the sum of

weights of its models, formally:

w(θ) =
∏

i:θ(Xi)=1

wi WMC(F ) =
∑

θ:θ(F )=1

w(θ)

The Weighted Model Counting (WMC) Problem is the following: given

a Boolean formula F and weights wi for the Boolean variables Xi, com-

pute WMC(F ). In the special case when w1 = · · · = wn = 1 then

WMC(F ) = #F , and therefore the WMC problem is also a gen-

eralization of the model counting problem. In fact, the WMC prob-

lem is equivalent to the probability computation problem, in the fol-

lowing sense. If we set every weight wi to be the odds of the prob-

ability pi, wi
def
= pi/(1 − pi) for all i, then P(F ) = WMC(F )/Z

where Z
def
=
∏

i(1 + wi) is the normalization factor. Or, equivalently,

WMC(F ) = P(F )/
∏

i(1 − pi).

2 It is also common to associate weights w̄i with assigning false to Xi (or equiv-
alently, to associate a weight with all literals) [Chavira and Darwiche, 2008]. The
weight of a model then becomes w(θ) =

∏

i:θ(Xi)=1
wi

∏

i:θ(Xi)=0
w̄i. These defini-

tions are interchangeable by normalization as long as wi + w̄i 6= 0.
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3.2 Relationships Between the Three Problems

To summarize, we discussed three related problems on a Boolean

formula: the model counting, the probability computation, and the

weighted model counting problem. Their relationship is captured by

the following:

Proposition 3.1. (1) Model counting is a special case of weighted

model counting: if w(Xi)
def
= 1 for all i, then WMC(F ) = #F . (2)

Weighted model counting and probability computation are virtually

the same: if wi
def
= pi/(1 − pi) for all i, then P(F ) = WMC(F )/Z where

Z
def
=
∏

i(1 + wi) is the normalization factor.

For a simple illustration, consider the Boolean formula

F =(X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3)

whose truth table is shown in Figure 3.1. The following are easily

checked:

#F =4

WMC(F ) =w2w3 + w1w3 + w1w2 + w1w2w3

P(F ) =(1 − p1)p2p3 + p1(1 − p2)p3 + p1p2(1 − p3) + p1p2p3

Notice that we did not state that the probability computation prob-

lem is equivalent to weighted model counting, and this raises a nat-

ural question: is the probability computation problem harder than

model counting? We end this section by answering this question: the

short answer is both yes and no.

On the one hand, there exist classes of Boolean formulas for which

the model counting problem is in PTIME while the probability compu-

tation problem is #P-hard. A consequence of this subtle distinction is

explained in §4.6, where we show that some queries can be evaluated

in PTIME over symmetric databases, where many pi are identical, but

their complexity is #P-hard over general probabilistic databases. For

example, consider the family of formulas Fn
def
=
∧

i,j∈[n](Xi ∨Zij ∨ Yj):

thus, for every n there is a single formula with n2 + 2n Boolean vari-

ables. We show that computing #Fn is easy, yet P(Fn) is #P-hard. To
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compute #Fn, suppose we assign k variables Xi = 0 and ` variables

Yj = 0, and assign the other variablesXi, Yj to 1. Then k` variables Zij

must be set to 1, while the other n2 −k` variables Zij can be either 0 or

1; therefore #Fn =
∑

k,`

(n
k

)(n
`

)

2n2−k` and can obviously be computed

in PTIME. On the other hand, if we are allowed to set the probabilities

of the variables freely, then computing P(Fn) is #P-hard, by reduction

from a PP2CNF formula: set p(Xi) = p(Yj) = 1/2 forall i, j, and set

p(Zij) = 0 for (i, j) ∈ E, and p(Zij) = 1 for (i, j) 6∈ E.

On the other hand, for any Boolean formula F and rational num-

bers pi ∈ [0, 1], one can reduce the probability computation problem

P(F ) to the model counting problem #G of some other formula G,

which depends both on F and the numbers pi (or to the ratio of two

model counts). A consequence is that, if we have an efficient algorithm

for model counting for all formulas, then we can use it to compute

probabilities of all formulas. We briefly describe here the reduction,

adapting from Chakraborty et al. [2015]. For any m Boolean variables

Y1, . . . , Ym and number k ≤ 2m, we defineC<k the Boolean formula as-

serting that the number whose binary representation is YmYm−1 · · ·Y1

is < k: C<k
def
= ¬Ymopm(¬Ym−1opm−1 · · · (¬Y1op11) · · · ), where opj

is ∧ or ∨, depending on whether the i’th bit of k − 1 is 0 or 1 re-

spectively. For example, if k = 6 then 5 in binary is 0101 and C<6 =

¬Y4 ∧ (¬Y3 ∨ (¬Y2 ∧ (¬Y1 ∨ 1))) asserts that Y4Y3Y2Y1 < 6. Let F be

a Boolean formula over variables Xi, i = 1, n, and let 0 < pi < 1

be their probabilities given as rational numbers. Assume first that all

denominators are powers of 2, pi = ki/2
mi . Create mi fresh variables

Yi1, Yi2, . . . , Yimi , substitute in F every variable Xi with C<ki
, and de-

note G the resulting formula. If we set the probability of each Boolean

variable Yij to 1/2, then P(C<ki
) = ki/2

mi = pi, and one can check that

P(F ) = P(G), and the latter is #G/2m where m =
∑

mi is the total

number of variables inG. If the denominators of pi are not powers of 2,

then, assuming pi = ki/ni, letmi be such that ni < 2mi . DefineG as be-

fore, obtained by substituting C<ki
for Xi in F . Let C≥2mi −ni+ki

be the

formula asserting that the string Yimi · · ·Yi1 is ≥ 2mi −ni + ki, and de-

note H =
∧

i(C<ki
∨ C≥ki

). Intuitively, H restricts the code Yimi · · ·Yi1

to be either < ki or ≥ 2mi − ni + ki, and therefore P(C<ki
|H) = pi,

P(¬C<ki
|H) = 1 − pi, implying that P(F ) = P(G|H). The latter is

equal to #(G ∧H)/#H , proving the claim.
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3.3 First-Order Model Counting

Fix a first-order sentence Q and a finite domain D. By expanding Q

over the domain D we obtain a Boolean formula, called the lineage,

or provenance, or grounding of Q. The first-order model counting prob-

lem is the model counting problem for the grounded Boolean formula;

similarly one can consider the probability computation problem, and

the weighted model counting problem, for the grounded Boolean for-

mula obtained from Q and D. In probabilistic databases, the domain

is the active domain of a probabilistic database D, the query is the

user’s query, and the probabilities are defined by D. In this section we

review the First-Order Model Counting problem, and its variations to

probability computation and weighted model counting.

Recall that Tup(D) denotes the set of grounded atoms over the

domain D. We view each grounded tuple as a Boolean variable, and

consider Boolean formulas over the variables Tup(D), for example

R(a, b) ∧ S(b, c) ∨R(a, c) ∧ ¬S(c, a).

Definition 3.1. Given first-order sentence Q and a domain D, the lin-

eage or grounding of Q over D is a Boolean formula denoted FQ,D de-

fined inductively on the structure of Q:

• If Q is a grounded atom R(a, b, . . .) then FQ,D = Q.

• If Q is a grounded equality predicate a = a then FQ,D = true.

• IfQ is a grounded equality predicate a = b, for distinct constants

a, b, then FQ,D = false.

• If Q is Q1 ∨Q2 then FQ,D = FQ1,D ∨ FQ2,D

• If Q is Q1 ∧Q2 then FQ,D = FQ1,D ∧ FQ2,D

• If Q is ¬Q1, then FQ,D is ¬FQ1,D.

• IF Q is ∃xQ1, then FQ,D =
∨

a∈D FQ1[a/x],D.

• IF Q is ∀xQ1, then FQ,D =
∧

a∈D FQ1[a/x],D.
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Described succinctly, the lineage is obtained by replacing ∃ with
∨

, replacing ∀ with
∧

, and leaving all other Boolean operations un-

changed. We abbreviate FQ,D with FQ whenD is understood from the

context.

The definition of lineage given above is purely syntactic, in other

words FQ,D is a Boolean expression, of size is O(|D|k) where k is the

number of logical variables occurring in the sentence Q. This means

that, for a fixed Q, the size of the lineage is polynomial in the size of

the domain.

Alternatively, we give an equivalent, semantic definition of the

lineage, by defining the Boolean formula FQ,D on all possible valu-

ations θ : Tup(D) → {0, 1}. Recall that a (standard) database is a fi-

nite structure ω ⊆ Tup(D); using standard terminology in first-order

logic, and in databases, we say that Q is true in ω, and write ω |= Q,

or Q(ω) = true, if the sentence holds in ω. We denote the character-

istic function associated to ω by θω : Tup(D) → {0, 1}; in other words,

θω(t)
def
= 1 if t ∈ ω, and θω(t)

def
= 0 if t 6∈ ω. The following theorem

gives a semantic definition of FQ,D, by specifying which assignments

θ make it true. We invite the reader to check that this is equivalent to

the syntactic definition given above.

Theorem 3.3. Fix a domain D and a first-order sentence Q. Then, for

any database ω ⊆ Tup(D): ω |= Q iff θω(FQ,D) = 1.

Example 3.1. For a simple illustration, consider the formula:

Q =∀d(Rain(d) ⇒ Cloudy(d))

Then the lineage over the domain D = [7] is:

FQ,[7] = (Rain(1) ⇒ Cloudy(1)) ∧ · · · ∧ (Rain(7) ⇒ Cloudy(7))

Consider the database ω = {Rain(2),Cloudy(1),Cloudy(2)}. Then ω |=

Q, and it can be easily checked that FQ,[7] is also true under the as-

signment θω defined by ω, namely θω assigns Rain(2) = Cloudy(1) =

Cloudy(2) = 1 and assigns all other Boolean variables to 0.

In the first-order model counting problem (FOMC) we are given

Q,D, and the problem is to compute the number of models #FQ,D.
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Equivalently, this is the number of databases (or first order structures)

ω ⊆ Tup(D) for which ω |= Q. In the Weighted FOMC problem, we

are given, in addition, a function w : Tup(D) → R, and the problem

is to compute WMC(FQ,D). Finally, in the first-order probability compu-

tation problem we are given a function p : Tup(D) → [0, 1] and ask

for P(FQ,D).

Consider now a probabilistic database D. Recall that D can be seen

as a deterministic database T and a function p : T → [0, 1]. Extend p

to all tuples, p : Tup(D) → [0, 1], by setting p(t) = 0 forall t 6∈ T.

Theorem 3.3 immediately implies the following.

Proposition 3.2. The probability of the lineage of a query Q is identi-

cal to the probabilistic database query probability: P(FQ,D) = PD(Q).

Thus, the query evaluation problem in probabilistic databases can

be reduced to computing the probability of a Boolean formula, namely

the lineage of the query over the active domain of the database. We

call this the grounded query evaluation approach; it is also called inten-

sional query evaluation [Suciu et al., 2011]. An alternative approach is

lifted inference (or extensional query evaluation), which we will discuss in

Chapter 4. Lifted inference is much more efficient, but, as we shall see,

works only for a subset of queries. All probabilistic database systems

use lineage-based query evaluation, at least as a backup when lifted

inference fails.

We end this section with a discussion on how to compute the lin-

eage expression FQ,D.

Specializing the Lineage to a Database The fundamental property

of the lineage expression FQ,D is given by Theorem 3.3: a set of tuples

ω satisfies the sentenceQ iff the valuation θω satisfies FQ,D. In practice,

we are always given a a concrete database T, and the set of tuples are

always a subset, ω ⊆ T. In that case it is redundant to use Boolean

variables for tuples that are not in the database T. Instead, we simplify

FQ,D by substituting with false all Boolean variables corresponding

to tuples that are not in T, and denote FQ,T the resulting expression.

This is called the lineage of Q over the database T. By specializing the

lineage to only the tuples in T we can significantly reduce its size.
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For a simple example, consider the relational database schema

Researcher(Name,Expertise,Affiliation)

University(UName,City)

The following conjunctive query checks if there exists any researcher

with expertise in Vision affiliated with some university in Seattle:

Q =∃x∃y Researcher(x, Vision, y) ∧ University(y, Seattle)

If the database T has an active domain D of size n, then there are

n3 +n2 Boolean variables, one for each ground tuple Researcher(a, b, c)

and one for each ground tuple University(c, d), and the lineage FQ,D is

a DNF formula with O(n3) terms. However, if Name, UName are keys

and Affiliation is a foreign key, then the database T contains only

2n tuples, and therefore the lineage over the database FQ,T is much

smaller. For example, it may be the following Boolean expression:

Researcher(Alice, Vision, UPenn) ∧ University(UPenn, Philadelphia)

∨ Researcher(Bob, Vision, Brown) ∧ University(Brown, Providence)

∨ Researcher(Carol, Vision, UCLA) ∧ University(UCLA, LosAngeles)

Lineage of a Set-Valued Query So far we have defined the lineage

only for a sentence Q, or, equivalently, for a Boolean query. We now

extend the definition to a set-valued query. In this case the lineage is

defined as a set of lineages, one for each possible output tuple. For

example, consider the following query, returning all expertises of re-

searchers affiliated with some university in Seattle:

Q(z) : - Researcher(x, z, y),University(y, Seattle).

Then we have to compute the lineage separately for each value z

in the active domain of the Expertise attribute. When z = Vision

then the lineage is given above; when z = Graphics, or Databases, or

some other expertise, then the lineage is a similar Boolean formula.

Computing Lineage in the Database Engine The provenance

computation system Perm by Glavic and Alonso [2009] developed a

practical method for pushing the provenance (lineage) computation
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inside the database engine, using query rewriting. We describe here

the main idea, for conjunctive queries. In this case, the conjunctive

query has the from select distinct attributes in SQL, and

it is rewritten into a query of the of the form select * order by

attributes; each group with the same values of attributes rep-

resents one DNF expression, where each minterm is given by one row

in the answer, and consists of the conjunction of the tuples in that row.

For example, the query Q above written in SQL is:

select distinct r.expertise

from Researcher r, University u

where r.affiliation = u.uname

and u.city = "Seattle"

The lineage is a DNF formula whose terms are given by the rows

returned by the following query:

select *

from Researcher r, University u

where r.affiliation = u.uname

and u.city = "Seattle"

order by r.expertise

The only change is replacing the select distinct clause with

select * and adding an order by clause, so that we can eas-

ily read the provenance expressions associated to each output tu-

ple r.expertise. Namely, for each fixed expertise e, the set of an-

swers with r.expertise = e define one DNF expression, and

each row n,e,u,c in the answer represents a prime implicant

Researcher(n, e, u) ∧ University(u, c).

The Lineage of a Constraint When the sentence Q is a constraint

rather than a Boolean query, then it has universal quantifiers and

negations, which require a more careful construction of the SQL query

computing the lineage. We illustrate the main idea on the following

constraint, asserting that all Vision experts are affiliated with some

university in Seattle:

∀x∀y (Researcher(x, Vision, y) ⇒ University(y, Seattle))
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We first write it in CNF clausal form:

∀x∀y (¬Researcher(x, Vision, y) ∨ University(y, Seattle))

The lineage is a CNF expression, and we wish to design a SQL

query that computes the clauses of this expression. We need to

be careful, however, since the expression ¬Researcher(x, Vision, y) ∨

University(y, Seattle) is domain dependent, hence we can no longer

simply write it as a select * query. For any name n and university

u, denote the following ground tuples:

Rnu
def
=Researcher(n, Vision, u)

Uu
def
=University(u, Seattle)

The lineage over the entire active domain is
∧

n,u∈D(¬Rnu ∨ Uu). To

specialize it to a particular database T we need to consider three cases:

• Rnu 6∈ T, Uu ∈ T, then (¬Rnu ∨ Uu) ≡ true, and the clause gets

removed.

• Rnu ∈ T, Uu 6∈ T, then (¬Rnu ∨ Uu) ≡ ¬Rnu, and the clause

becomes a unit clause.

• Rnu ∈ T, Uu ∈ T, then the clause remains unchanged, ¬Rnu∨Uu.

Therefore, we need to compute two SQL queries, corresponding to

cases 2 and 3 above:

select distinct r.Name, r.affiliation

from Researcher r

where r.expertise = ’Vision’

and not exists (select * from University u

where u.city = ’Seattle’

and r.affiliation = u.uname);

select * from Researcher r, University u

where u.city = ’Seattle’

and r.expertise = ’Vision’

and r.affiliation = u.uname
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The answers to the first SQL query are interpreted as unit clauses

¬Rnu, and the answers to the second SQL query are interpreted as

clauses with two literals ¬Rnu ∨ Uu. These query rewritings do not

assume any key or foreign key constraints in the database. If UName

is a key in University and Affiliation is a foreign key, then the first

SQL query above simplifies: it suffices to lookup the unique city of the

researcher’s affiliation, and check that it is not Seattle:

select distinct r.Name, r.affiliation

from Researcher r, University u

where u.city != ’Seattle’

and r.expertise = ’Vision’

and r.affiliation = u.uname

3.4 Algorithms and Complexity for Exact Model Counting

Consider the model counting problem: given a Boolean formula F ,

compute #F . In this section we study the exact model counting prob-

lem; we discuss approximations in the next section. Valiant has estab-

lished that model counting is #P-hard, even for 2CNF or 2DNF for-

mulas. In this paper we are concerned with formulas that can arise

as groundings of a fixed first-order (FO) sentence, in other words we

are interested in first-order model counting. In that case, if we fix the

FO sentence Q, the complexity can be either #P-hard or in PTIME, de-

pending on Q.

We start by showing that weighted model counting is #P-hard

even if we fix the FO sentence Q. In other words, in general, first-

order model counting for a fixedQ does not become easier than model

counting, even for relatively simple sentences Q.

Theorem 3.4. Consider the conjunctive query H0

H0 = ∃x∃y R(x) ∧ S(x, y) ∧ T (y).

Then, computing P(H0) over a tuple-independent probabilistic

database is #P-hard in the size of the input database.

Proof. We show hardness of H0 by reduction from PP2DNF. Given

a PP2DNF instance F =
∨

(i,j)∈E Xi ∧ Yj where E ⊆ [n] × [n],
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define a database T where R = T = [n], S = E, and set the

probabilities as follows: p(R(i)) = p(T (i)) = 1/2 forall i ∈ [n],

p(S(i, j)) = 1 forall (i, j) ∈ E. Then the lineage of H0 on T is

FH0,T =
∨

(i,j)∈E R(i) ∧ S(i, j) ∧ T (j), and its probability is equal to

the probability of
∨

(i,j)∈E R(i) ∧ T (j), which is F up to variable re-

naming, proving that P(H0) = P(FH0,T) = P(F ).

This result generalizes to constraints instead of queries. Consider

the constraint

∆ = ∀x∀y(R(x) ∧ S(x, y) ⇒ T (y)).

From Theorem 3.4, one can easily show that computing the probability

P(∆) is #P-hard in the size of the input database, even if the input

database is tuple-independent.

The DPLL Family of Algorithms Exact model counting algo-

rithms are based on extensions of the DPLL family of algorithms intro-

duced by Davis and Putnam [1960] and Davis et al. [1962] that were

originally designed for satisfiability search. We review them briefly

here, and refer to Gomes et al. [2009] for a survey.

A DPLL algorithm chooses a Boolean variableX , uses the Shannon

expansion formula #F = #F [X = 0]+#F [X = 1], and computes the

number of models of the two residual formulas #F [X = 0], #F [X =

1]. The DPLL algorithm was initially developed for the Satisfiability

Problem. In that case, it suffices to check if one of the two residual

formulas #F [X = 0] or #F [X = 1] is satisfiable: if the first one is

satisfiable, then there is no need to check the second one. When we

adapt it to model counting, the DPLL algorithm must perform a full

traversal of the search space.

In addition to the basic Shannon expansion step, modern DPLL-

based algorithms implement two extensions. The first consists of

caching intermediate results, to avoid repeated computations of equiva-

lent residual formulas. Before computing #F the algorithm checks if

F is in the cache; if it is in the cache then the algorithm returns #F

immediately; otherwise, it computes #F using a Shannon expansion,

then stores the result in the cache.
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The second optimization consists of checking if the clauses of the

CNF formula F can be partitioned into two sets F1, F2 with no com-

mon variables, F = F1∧F2, in which case they return #F = #F1 ·#F2.

The search space for both F1 and F2 is significantly smaller, since each

has only a subset of the variables. This leads to the following algo-

rithm template, which call a DPLL-based algorithm:

Base case If F is truereturn 1; if F is false, return 0.

Cache Read Lookup the pair (F,#F ) in the cache: if found, re-

turn #F .

Components If it is possible to write F = F1 ∧ F2 where F1, F2 do

not share any common Boolean variables, then compute #F =

#F1 · #F2.

Shannon expansion Otherwise, choose a variable X and compute

#F = #F [X = 0] + #F [X = 1].

Cache Write Store the pair (F,#F ) in the cache, and return #F .

We leave it as a simple exercise to adapt this algorithm from model

counting to weighted model counting and probability computation.

Concrete implementations differ in their choice of variable order,

and the way they trade off the cost and benefit of the cache and com-

ponents optimizations. We discuss briefly each of these three choices.

First, for the variable order, while different heuristics have various

tradeoffs, one simple heuristics that always improves the runtime is

the unit clause rule: if there is a clause consisting of a single literal,

i.e. the clause is X (or ¬X), then choose X as the next variable to ex-

pand, because in that case we do not need to compute #F [X = 0] (or

#F [X = 1]). For example, if F = (¬X) ∧ F1, then #F = #F [X = 0].

Second, the design and implementation of the cache is non-trivial.

Theoretically, checking if a formula F is in the cache is an co-NP-

hard problem, since we need to check, for every formula F ′ in the

cache, whether F is equivalent to F ′. In practice, this test is replaced

with testing whether the representations of F and F ′ are syntactically

identical. Finally, checking for components also involves a trade-off



252 Weighted Model Counting

between the cost of the test (which amounts to computing connected

components) and its potential benefit. To alleviate this cost, and guide

the choice of which variable to expand, one can compute a decompo-

sition tree before running the DPLL algorithm [Darwiche, 2000].

3.5 Algorithms for Approximate Model Counting

Let F be a Boolean formula, and ε, δ be two numbers. We say

that a randomized algorithm returning a quantity C̃ is an (δ, ε)-

approximation of #F if

P(|C̃ − #F | > δ · #F ) < ε

where the probability is taken over the random choices of the algo-

rithm. The meaning of C̃ is that of an estimated value of the exact

count C = #F . We say that the algorithm is an approximation algorithm

for model counting, and define its complexity in terms of the size of

the input formula F , and the quantities 1/ε, 1/δ. When the algorithm

runs in polynomial time in all three parameters, then call it a Poly-

nomial Time Approximation Scheme (FPTRAS). These definitions for

model counting carry over naturally to the probability computation

problem, or to the weighted model counting problem, and we omit

the straightforward definition.

We will describe below an approximation algorithm based on

Monte Carlo simulations. In general, this algorithm is not an FP-

TRAS. Karp and Luby [1983] have shown that DNF formulas ad-

mit an FPTRAS consisting of a modified Monte Carlo simulation.

Roth [1996] and Vadhan [2001] proved essentially that no FPTRAS

can exists for CNF formulas. More precisely, they proved the follow-

ing result (building on previous results by Jerrum, Valiant, Vazirani

and later by Sinclair): for any fixed ε > 0, given a bipartite graph

E ⊆ [n] × [n], it is NP-hard to approximate #F within a factor nε,

where F =
∧

(i,j)∈E(Xi ∨Xj).

These results directly apply to probabilistic databases.

Theorem 3.5. The following statements hold for tuple-independent

probabilistic databases:
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• For any Union of Conjunctive Queries Q, the problem given a

tuple-independent probabilistic database D, compute PD(Q) admits

an FPTRAS.

• Consider the constraint ∆ = ∀x∀y(R(x)∧S(x, y) ⇒ R(y)). Then,

for any ε > 0, the problem given a tuple-independent probabilis-

tic database D, approximate PD(∆) within a relative factor nε is

NP-hard. Here n is the size of the domain of the probabilistic

database. In particular, PD(∆) does not admit an FPTRAS.

Proof. For any UCQ Q, the lineage FQ,T is a DNF, hence the first part

follows from Karp and Luby [1983]. By setting P(S(i, j)) = 0 when

(i, j) ∈ E and P(S(i, j)) = 1 when (i, j) 6∈ E, the lineage of ∆ is,

essentially,
∧

(i,j)∈E(R(i) ∨ R(j)), hence the second part follows from

Vadhan [2001].

The Monte Carlo Algorithm

We will describe the basic Monte Carlo algorithm for approximate

probability computation. The input consists of a Boolean formula F ,

and a probability function p : X → [0, 1]. The algorithm repeatedly

chooses a random assignment θ, with probability p(θ), then returns

the fraction of trials where θ(F ) = true:

Repeat for i = 1, N : Compute a random assignment θ by setting ran-

domly and independently for each variable X , θ(X) = 0 with

probability 1 − p(X), or θ(X) = 1 with probabilities p(X). De-

note Yi = θ(F ) ∈ {0, 1}.

Return: p̃ =
∑

i Yi/N .

The question that remains is how many stepsN do we need to run

the algorithm in order to achieve a desired precision, with a desired

confidence. To answer this we need the Chernoff/Hoeffding bound:

Theorem 3.6 (Chernoff/Hoeffding [1963]). Let Y1, Y2, . . . , YN be i.i.d.

random variables with values in {0, 1} and with mean y. Let ỹ =
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∑

i Yi/N . Then:

∀γ, 1 > γ > y : P(ỹ ≥ γ) ≤exp (−N ·D(γ||y)) (3.1)

∀γ, 0 < γ < y : P(ỹ ≤ γ) ≤exp (−N ·D(γ||y)) (3.2)

where, forall 0 < γ < 1, 0 < y < 1, the function

D(γ||y)
def
=γ · ln(

γ

y
) + (1 − γ) · ln(

1 − γ

1 − y
)

is the binary relative entropy.

Equation 3.2) follows immediately from Equation 3.1) by replacing

Yi, y, γ with 1−Yi, 1−y, 1−γ, and the fact thatD(1−γ||1−y) = D(γ||y).

The original proof of Equation 3.1) by Hoeffding [1963] uses the mo-

ment generating function; an alternative, elementary proof is given by

Impagliazzo and Kabanets [2010]. Before applying these inequalities

to the Monte Carlo algorithm, we simplify the relative entropy func-

tion by using two lower bounds. First, ∀δ, if 0 < (1 + δ)y < 1 then

D((1 + δ)y||y) ≥ y · h(δ), where h(δ)
def
= (1 + δ) ln(1 + δ) − δ. Second,

when δ is small enough, we have3 h(δ) ≥ δ2/3 forall 0 ≤ δ ≤ 1/2 and

h(δ) ≥ δ2/2 forall δ ≤ 0.

Denoting the true probability of a Boolean formula p
def
= P(F ), the

estimate p̂ after N steps of the Monte Carlo algorithm satisfies:

0 < δ ≤ 1/2 : P(p̃ ≥ (1 + δ) · p) ≤ exp (−N ·D((1 + δ)p||p))

≤ exp

(

−
Npδ2

3

)

0 ≤ δ < 1 : P(p̃ ≤ (1 − δ) · p) ≤ exp (−N ·D((1 − δ)p||p))

≤ exp

(

−
Npδ2

2

)

3The first inequality follows by expanding D(y(1 + δ)||y) = y(1 + δ) ln(1 + δ) +
[1 − y(1 − δ)] ln[(1 − y(1 − δ))/(1 − y)], then writing the second term as −[1 − y(1 −
δ)] ln[(1 − y)/(1 − y(1 − δ))] = −[1 − y(1 − δ)] ln[1 + (yδ/(1 − y(1 − δ)))] ≥ −yδ,
because ln(1 + z) ≤ z forall z. The second inequality follows from Taylor expansion

up to the second term: denote f(δ)
def
= h(δ) − δ2/3, then f(0) = f ′(0) = 0, f ′′(δ) =

1/(1 + δ) − 2/3 which is ≥ 0 for δ ≤ 1/2, proving f(δ) ≥ 0.
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where the probability is over the random choices of the algorithm.

Notice that the probability of being off by more than a relative factor δ

decreases exponentially in N , but only at a rate permitted by the fac-

tor δ2 · p/3. Thus, we need to run the algorithm for N = Θ( 1
δ2p

) steps

to ensure this probability is low enough. This works well if p is not too

small. When we evaluate a Union of Conjunctive Queries (UCQ) over

a probabilistic databases, then p is the probability of some output tu-

ple to a query, and is usually reasonably large, because the lineage is a

DNF formula where every minterm has a small number of variables;

for example, if the query joins three tables, then every minterm in the

DNF formula is the conjunction of three Boolean variables, and this

implies that p = Θ(1), i.e. is independent of the size of the probabilis-

tic database. In this case the naive Monte Carlo simulation algorithm

requires only N = Θ( 1
δ2 ) steps, and works quite well in practice.

Sampling Beyond UCQ For a general DNF formula, pmay be expo-

nentially small, for example if F = X1 ∧X2 ∧ · · · ∧Xn, then p = 1/2n,

and one needs to replace the naive Monte Carlo algorithm with the

FPTRAS described by Karp and Luby [1983], but UCQ queries do not

have such lineage expressions. When approximating the model count

of an arbitrary constraint, Theorem 3.5 suggests that no relative ap-

proximation guarantees can be obtained. However, given access to an

NP-oracle, Ermon et al. [2013] and Chakraborty et al. [2014] compute

(δ, ε)-approximations. The desired guarantees can be attained in prac-

tice using efficient SAT or optimization solvers. Another approach is

to perform Markov Chain Monte Carlo sampling for inference, which

can be sped up significantly when the weighted model counting prob-

lem is constructed from a relational data model [Jampani et al., 2008,

Wick et al., 2010, Van den Broeck and Niepert, 2015].

Dissociation

Gatterbauer and Suciu [2014] describe an approximation method

called dissociation, which gives guaranteed upper and lower bounds

on the probability of a Boolean formula. Fix a formulaF with variables

X. A dissociation, F ′, is obtained, intuitively, by choosing a variableX
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that occurs only positively in F , then replacing different occurrences

of X with fresh variables X1, X2, . . . Formally, denote Y = X − {X},

X′ = Y ∪ {X1, X2, . . .}, and let θ : X′ → X be the substitution

θ(Xi) = X forall i, and θ(Y ) = Y for Y ∈ Y. A Boolean formula

F ′ with the property F ′[θ] = F is called a dissociation of F . Given a

probability function p : X → [0, 1], we write p′ : X′ → [0, 1] for some

extension to the variables X1, X2, . . .

Theorem 3.7. (1) Suppose the dissociation is conjunctive, meaning

that we can write F ′ =
∧

i F
′
i such that Xi occurs only in F ′

i (and in no

other F ′
j , for j 6= i). If p′(Xi) ≤ p(X), forall i, then P(F ′) ≤ P(F ); if

∏

i p
′(Xi) ≥ p(X), then P(F ′) ≥ P(F ).

(2) Suppose the dissociation is disjunctive, meaning that we can

write F ′ =
∨

i F
′
i such that Xi occurs only in F ′

i . If p′(Xi) ≥ p(X) forall

i, then P(F ′) ≥ P(F ); if
∏

i p
′(Xi) ≤ p(X), then P(F ′) ≤ P(F ).

For example, we can use the theorem to compute a lower bound

on a CNF formula F as follows. If F can be decomposed into

F1 ∧ F2 where F1, F2 do not share variables, then compute P(F ) as

P(F1)P(F2). Otherwise, choose a variable X and dissociate it, by giv-

ing two fresh names X1, X2 in F1, F2 respectively; set their proba-

bilities to p(X1) = p(X2)
def
= p(X). This dissociation is conjunctive,

since each clause had at most one copy of X . Repeat this with other

variables, until the dissociated formulas F ′
1, F

′
2 no longer share any

common variables, in which case P(F ′) = P(F ′
1)P(F ′

2): this proba-

bility is a lower bound on P(F ). For a simple illustration, consider

F = (Y ∨ X) ∧ (X ∨ Z). We dissociate it on the variable X obtaining

F ′ = (Y ∨ X1) ∧ (X2 ∨ Z). By setting p(X1) = p(X2)
def
= p(X) we ob-

tain the lower bound P(F ) ≥ P(F ′) = [1 − (1 − p(Y ))(1 − p(X))] ·

[1 − (1 − p(Z))(1 − p(X))]; by setting p(X1) = p(X2)
def
=
√

p(X) we

obtain the upper bound P(F ) ≤ P(F ′) = [1− (1−p(Y ))(1−
√

p(X))] ·

[1 − (1 − p(Z))(1 −
√

p(X))]. We invite the reader to compute the exact

probability P(F ) and check that both inequalities hold.

The notion of dissociation (or relaxation) is also commonly used

to simplify probability computation in probabilistic graphical models

[Dechter and Rish, 2003, Choi and Darwiche, 2010]. It has deep con-

nections to message-passing inference [Choi and Darwiche, 2006].
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Approximate DPLL

Olteanu et al. [2010] describe a simple heuristics that terminates the

DPLL early, and returns lower and upper bounds on the probability

rather than the exact probability. When it terminates, it approximates

the probability of the unprocessed residual formula by using these

bounds:

max
i=1

P(Fi) ≤P(
∨

i=1

Fi) ≤
∑

i=1

P(Fi)

∑

i=1

P(Fi) − (n− 1) ≤P(
∧

i=1

Fi) ≤ min
i=1

P(Fi)

During a Shannon expansion step, on a variables X , P(F ) = (1 −

p)P(F0) + pP(F1), it propagates the lower/upper bounds of F0, F1 to

lower/upper bounds of F by setting the lower bound L = (1−p)L0 +

pL1 and the upper bound U = (1−p)U0+pU1. Thus, at each step of the

DPLL search procedure, this modified algorithm can provide a lower

and upper bound on the true probability of F , and the search can be

stopped as soon as these two bounds are within a desired precision.

A related technique is used in probabilistic logic programming:

unfold the query to a finite depth, and assume that the remaining re-

cursions either all succeed, or all fail, to obtain an upper and lower

bound [Poole, 1993, De Raedt et al., 2007, Vlasselaer et al., 2015].
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Lifted Query Processing

Lifted query processing on probabilistic databases, in short lifted in-

ference, is a generic term given to a variety of techniques to com-

pute the query probability without first grounding the query on the

database. These techniques have been developed in parallel in the

AI literature, and in the database literature. The notion of comput-

ing the probability directly from the first-order sentence was intro-

duced by Poole [2003], and the actual term lifted inference was coined

by de Salvo Braz et al. [2005]. In the database literature, the idea of ex-

tensional query evaluation can be traced to early work by Barbará et al.

[1992] and Fuhr [1993]; the term extensional semantics seems to occur

first in Fuhr and Rölleke [1997], and is derived from the extensional

semantics discussed by Pearl [1988].

All lifted inference techniques described in the literature run in

polynomial time in the size of the probabilistic database and there-

fore they cannot work in general, since the query evaluation problem

is #P-hard in general. Instead, lifted inference works only for certain

classes of queries and/or databases. There is no formal definition of

the term lifted inference. Van den Broeck [2011] proposes a definition

that captures one common feature of all exact lifted inference meth-

258



259

ods: it defines lifted inference to be any method that runs in poly-

nomial time in the size of the domain (or database). However, there

is a second feature shared by all lifted inference methods, which has

eluded a formal definition, namely they all use the structure of the

first-order formula to guide the lifted inference. In other words, lifted

inference techniques start by examining the first-order formula, and

making a plan on how to proceed in the evaluation, before the data

is touched, if at all. For that reason, lifted inference is quite similar

to traditional query evaluation techniques on deterministic databases,

which also construct a relational plan first, then evaluate the query by

following the plan. In fact, most lifted inference techniques can be de-

scribed in a similar way: first construct a query plan, then evaluate the

plan on the probabilistic database; moreover the evaluation can often

be pushed inside the database engine.

The lifted inference techniques exploit some simple properties in

probability theory: independence of events, the inclusion/exclusion

formula, and de Finetti’s theorem for symmetric probability spaces.

Compare this with the DPLL family of model counting algorithms for

Boolean formulas, which exploit only the Shannon expansion and the

independence formulas; we will show in the next chapter that lifted

inference algorithms are provably more powerful than grounded in-

ference based on the DPLL family of algorithms.

In this chapter we start by describing lifted inference as query

plans, then discuss a complete set of lifted rules for Unions of Con-

junctive Queries, or, more generally, unate first-order logic with a

single type of quantifier (∀ or ∃). Readers interested in more details

about this part (Sections 4.1-4.4) are referred to the book by Suciu

et al. [2011], and to Dalvi and Suciu [2012] for the proof of the di-

chotomy theorem. Then, we discuss extensions to queries with nega-

tions, and extensions that work on a larger class of queries but restrict

the database.
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4.1 Extensional Operators and Safe Plans

In this section we consider set-valued queries (§2.3), whose answer is

a relation (set of tuples); Boolean queries are a special case. By Def-

inition 2.2, the semantics of a set-valued query over a probabilistic

database is a set of tuples annotated with probabilities. We will as-

sume that all input relations are tuple-independent, or BID tables.

A query plan is an algebraic expression where each operator is one

of: join, selection, projection, union, difference, and aggregate. Almost

all database systems today process a query by first converting it into

a query plan, then evaluating the plan over the database.

Extensional Operators

A query plan can be extended to compute probabilities. Assume that

each intermediate relation in the query plan has an attribute p rep-

resenting the probability that the tuple appears in that intermediate

relation. Then, each relational operator is extended as follows; these

operators are called extensional operators:

• For a join operator R on S, compute p assuming that every pair

of tuples that join are independent. In other words, for every

pair of joining tuples, its probability attribute p is computed as

R.p ∗ S.p.

• For a selection operator, σ(R), simply propagate the probability

attribute for all tuples that satisfy the selection criterion.

• For a projection ΠA(R), compute p assuming that all tuples that

are combined into a single tuple during duplicate elimination

are independent events. In other words, the probability attribute

of an output tuple is 1 − (1 − t1.p)(1 − t2.p) · · · where t1, t2, . . . ∈

R are all tuples that have a common value of the attribute(s)

A. A variant of the projection operator is to assume that these

tuples are disjoint probabilistic events, and in that case return

t1.p+ t2.p+ · · · We call the former an independent project and the

latter a disjoint project.
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• For a union R ∪ S, compute p assuming that the tuples in R and

S are independent. In other words, the output probability of a

tuple is either R.p, if it occurs only in R, or S.p if it occurs only

in S, or 1 − (1 −R.p)(1 − S.p) if it occurs in both.

• For a difference operatorR−S, compute p assuming their tuples

are independent events. In other words the output probability is

either R.p if the tuple occurs only in R, or R.p ∗ (1 − S.p) if it

occurs in both.

An extensional query plan is a standard query plan with operators

on, σ,Π,∪,−, where each operator is interpreted as an extensional op-

erator. Each projection operator Π needs to be annotated to indicate

whether it is an independent project, or a disjoint project; by default

we assume it is an independent project. When evaluated over a prob-

abilistic database D, the plan returns a probability for each query an-

swer: this is called extensional query evaluation. These output probabil-

ities may or may not be the correct output probabilities according to

Definition 2.2; when they are correct for any probabilistic database,

then we call the plan a safe plan. We discuss safe plans next.

Safe Plans

Fix a relational schema for a probabilistic database, which specifies

for each table name whether it is a tuple-independent table or a BID

table; in the latter case the schema also specifies the key(s) defining

the groups of disjoint tuples (cf. §2.2.1).

Definition 4.1. LetQ be a set-valued query. A safe plan for a queryQ is

an extensional query plan that computes correct output probabilities

(according to Definition 2.2), on any input probabilistic database.

We illustrate with an example.

Example 4.1. Assume both relationsR,S are tuple-independent, and

consider the query:

Q(z):-R(z,x) ∧ S(x,y)
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The equivalent SQL query is

select distinct R.z from R, S where R.x = S.x

Figure 4.1a shows a small tuple-independent probabilistic database.

The only possible answer to this query is {c}, since the attribute z has a

single value c in the relationR. Thus, in any possible world the answer

to the query is either {c} or ∅. Our goal is to compute the probability

that c is in the answer, and, for that, at least one of the following two

events must hold:

• The tuple (c, a1) occurs in R, and at least one of the tuples

(a1, b1), (a1, b2) occurs in S: the probability of this event is p1(1 −

(1 − q1)(1 − q2)).

• Tue tuple (c, a2) occurs in R, and at least one of the tuples

(a2, b3), (a2, b4), (a2, b5) occurs in S: the probability of this event

is p2(1 − (1 − q3)(1 − q4)(1 − q5)).

Since these two events are independent (they refer to disjoint sets

of independent tuples), the probability that c is in the answer is:

1 − [1 − p1(1 − (1 − q1)(1 − q2))] · [1 − p2(1 − (1 − q3)(1 − q4)(1 − q5))]

To compute the query on a traditional database, any modern query

engine would produce a query plan like that in Figure 4.1b: it first joins

R and S on the attribute x, then projects the result on the attribute z.

We assume that the project operator includes duplicate elimination.

If we extend each operator to manipulate explicitly the probability at-

tribute p, then we obtain the intermediate result and final result shown

in the figure (the actual tuples are dropped and only the probabilities

are shown, to reduce clutter). As we can see the final result is wrong.

The reason is that duplicate elimination incorrectly assumed that all

tuples that have z = c are independent: in fact the first two such tu-

ples depend on (c, a1) and the next three depend on (c, a2) (see the

repeated probabilities p1, p1 and p2, p2, p2 in the figure). Thus, the plan

in Figure 4.1b is not safe.

In contrast, the plan in Figure 4.1c is safe, because it computes the

output probabilities correctly; the figure shows the computation only
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on our toy database, but the plan is correct on any input database. It

starts by projecting out the redundant attribute y in S(x, y) and doing

duplicate elimination, before joining the result with R, then contin-

ues like the previous plan. The two plans (b) and (c) are equivalent

over deterministic databases, but when the join and projection opera-

tors are extended to manipulate probabilities, then they are no longer

equivalent. Notice that a SQL engine would normally not choose (c)

over (b), because the extra cost of the duplicate elimination is not jus-

tified. Over probabilistic databases, however, the two plans are dif-

ferent, and the latter returns the correct probability, as shown in the

figure. We invite the reader to verify that this plan returns the correct

output probabilities for any tuple independent probabilistic relations

R and S.

A safe query plan can be executed directly in the database engine,

which is often much more efficient than a custom implementation.

For example, the MayBMS system by Antova et al. [2007], Olteanu

et al. [2009] modified the postgres source code converting each opera-

tor into an extensional operator. A more portable, slightly less efficient

alternative, is to encode the safe plan back into SQL, with aggregate

operators for manipulating the probability attributes, and have them

executed on any standard database engine. Safe plans, when they ex-

ists, are almost as efficient as traditional query plans on deterministic

databases.

Not every query has a safe plan. For example, H0 = ∃x∃yR(x) ∧

S(x, y) ∧ T (y) has no safe plan: neither P1
def
= Π∅(Πy(R(x) onx

S(x, y)) ony T (y)) nor P2
def
= Π∅(R(x) onx Πx(S(x, y) ony T (y))) is safe.

This is to be expected, since we have shown in Theorem 3.4 that the

complexity of computing P (H0) is #P-hard.

Unsafe Plans

If we evaluate an extensional, unsafe plan, are the resulting probabili-

ties of any use? Somewhat surprisingly, Gatterbauer and Suciu [2015]

show that every extensional plan for a conjunctive query without self-

joins returns an upper bound on the true probabilities. In other words,
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even if the plan is unsafe, it always returns an upper bound on the true

probability. This follows from Theorem 3.7 (2) by observing that every

extensional plan computes the exact probability of some dissociation

of the lineage. Indeed, any projection operator treats repeated copies

of the same tuple as distinct random variables, which means that it

dissociates the random variable associated to the tuple. For example,

both plans P1 and P2 above return upper bounds on the probability of

H0, and obviously can be computed in polynomial time in the size of

the input database. In general, by considering all plans for the query,

and taking the minimum of their probabilities one obtains an even

tighter upper bound on the true probabilities than a single plan. Some

plans are redundant and can be eliminated from the enumeration of

all plans, because they are dominated by tighter plans. For example,

H0 admits a third plan, P3
def
= Π∅(R(x) on S(x, y) on T (y)), but Theo-

rem 3.7 (2) implies that eval(P1) ≤ eval(P3) and eval(P2) ≤ eval(P3),

because the lineage of P3 is a dissociation of the lineage of both P1

and P2; hence P3 is dominated by P1 and P2 and does not need to

be considered when computing the minimum of all probabilities. The

technique described in Gatterbauer and Suciu [2015] is quite effective

for conjunctive queries without self-joins, but it is open whether it can

be extended to more general queries.

To summarize, some queries admit safe plans and can be com-

puted as efficiently as queries over standard databases; others do not

admit safe plans. The practical question is: which queries admit safe

plans? And if a query admits a safe plan, how can we find it? We ad-

dress this issue in the rest of this chapter.

4.2 Lifted Inference Rules

We describe here an alternative formalism for lifted query evalua-

tion, by using rules. This formalism is equivalent to safe query plans,

but simpler to describe rigorously and prove properties about. In

this section and in the remainder of this chapter, unless otherwise

stated we will assume that the input probabilistic database is tuple-

independent, and that all queries are Boolean queries and are ex-

pressed as a first-order sentence.
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Call two Boolean formulas F1, F2 independent if, for any probability

function p : X → [0, 1], p(F1 ∧ F2) = p(F1)p(F2). We have seen in

§3.1 that F1, F2 are independent iff they depend on disjoint sets of

variables. Similarly, given two FO sentencesQ1, Q2 we say thatQ1, Q2

are independent if, for any finite domain D, the lineage expressions

FQ1,D and FQ2,D are independent. If Q is a formula with a single free

variable x, then we call x a separator variable if for any two distinct

constants a, b the two queries Q[a/x] and Q[b/x] are independent. If

Q = ∃xQ1 or Q = ∀xQ1, then, with some abuse, we say that x is a

separator variable in Q to mean that it is a separator variable in Q1.

We can now describe the lifted inference rules. Let D = (T, p)

a tuple-independent probabilistic database, where T is an ordinary

database and p : T → [0, 1]. Denote D the domain of the database.

We extend the probability function to p : Tup(D) → [0, 1] by setting

p(t) = 0 when t 6∈ T. Then for every first-order sentence Q:

Ground Tuple If Q = t (a ground tuple) then P(Q) = p(t).

Negation If Q = ¬Q1 then P(Q) = 1 − P(Q1).

Join If Q = Q1 ∧ Q2 and Q1, Q2 are independent, then P(Q) =

P(Q1)P(Q2).

Union If Q = Q1 ∨ Q2 and Q1, Q2 are independent, then P(Q) =

1 − (1 − P(Q1)) · (1 − P(Q2)).

Universal Quantifier If Q = ∀xQ1 and x is a separator variable in Q1

then P(Q) =
∏

a∈D Q1[a/x].

Existential Quantifier If Q = ∃xQ1 and x is a separator variable in

Q1 then P(Q) = 1 −
∏

a∈D(1 −Q1[a/x]).

Inclusion/Exclusion 1 If Q = Q1 ∨Q2 then P(Q) = P(Q1) + P(Q2) −

P(Q1 ∧Q2).

Inclusion/Exclusion 2 If Q = Q1 ∧Q2 then P(Q) = P(Q1) + P(Q2) −

P(Q1 ∨Q2).
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All rules are simple applications of independence, except for the

last two, which are simple applications of the inclusion/exclusion

principle. We invite the reader to check that the rules are correct

(sound) w.r.t. the standard query probability (Definition 2.2). For ex-

ample, the universal quantifier rule is correct, because the lineage of

Q = ∀xQ1 is the Boolean formula FQ,D =
∧

a∈D FQ1[a/x],D. Since x is

a separator variable, for any two constants a, b ∈ D the two formu-

las FQ1[a/x],D and FQ1[b/x],D are independent, hence they have disjoint

sets of variables. This implies that {FQ1[a/x],D | a ∈ D} is a set of inde-

pendent events, since any two have disjoint sets of Boolean variables,

and this implies P(FQ,D) =
∏

a∈D P(FQ1[a/x],D).

To convert these rules into an algorithm, we need to discuss how

to check independence of two sentences Q1, Q2 and how to check

whether x is a separator variable. These problems are hard in gen-

eral, as we explain in §4.4. In the lifted inference algorithm, we use

instead the following syntactic conditions, which are sufficient but, in

general, not necessary.

Definition 4.2. (1) Two sentences Q1, Q2 are syntactically indepen-

dent if they use disjoint sets of relational symbols. (2) Let Q be a

formula with one free variable x. We say that x is a syntactic sepa-

rator variable if for every relational symbol R there exists a number

iR ∈ [arity(R)] such that every atom in Q that refers to R contains x

on position iR; in particular every atom must contain x.

The following is easily verified.

Lemma 4.1. If Q1, Q2 are syntactically independent then they are in-

dependent. If x is a syntactic separator variable for Q, then it is a sep-

arator variable.

For example Q1 = ∃xR(x) is syntactically independent of Q2 =

∃y∃zS(y, z), and x is a syntactic separator variable for the formula

R(x) ∧ (∃yS(x, y)) ∨ T (x) ∧ (∃zS(x, z)) (every atom contains x and

both S-atoms contain x on the same position 1).

The lifted inference rules represent a non-deterministic algorithm

for computing P(Q), for any FO sentence Q. Start from Q, and repeat-

edly apply the lifted inference rules, reducing P(Q) to simpler queries
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P(Q′), until we reach ground atoms, and then return the probability

of the ground atom, which is obtained directly from the database. If

we reach a sentence Q′ where no rule applies, then we are stuck, and

lifted inference failed on our query.

We illustrate with a simple example, computing the probability of

the constraint Γ = ∀x∀y(S(x, y) ⇒ R(x)):

P(∀x∀y(S(x, y) ⇒ R(x))) =
∏

a∈D

P(∀y(S(a, y) ⇒ R(a)))

=
∏

a∈D

P(∀y(¬S(a, y) ∨R(a)))

=
∏

a∈D

P((∀y¬S(a, y)) ∨R(a))

=
∏

a∈D

1 − (1 − P((∀y¬S(a, y)))(1 − p(R(a))))

=
∏

a∈D

1 − (1 −
∏

b∈D

(1 − p(S(a, b)))(1 − p(R(a))))

In the last expression all probabilities are for ground atoms, and these

can be obtained using the function p, or, in practice, looked up in an

attribute of the relation. We invite the reader to check that in both steps

where we applied the universal quantifier rule, the variable that we

eliminated was a syntactic separator variable.

When the rules succeed, then we compute P(Q) in polynomial

time in the size of the input domain: more precisely in time O(nk)

where n is the size of the domain and k is total number of variables.

Therefore, the lifted inference rules will not work on queries whose

complexity is #P-hard. For example, the query H0 = ∃x∃yR(x) ∧

S(x, y) ∧ T (y) is #P-hard (by Theorem 3.4). It is easy to check that no

lifted inference rule applies here: the query is not the conjunction of

two sentences, so we cannot apply the join-rule, and neither x nor y

is a separator variable (because none of them occurs in all atoms). In

general, it will be the case that for some first-order sentences the lifted

inference rules will not be able to compute the query.

An important question is to characterize the class of queries whose

probability can be computed using only the lifted inference rules. We

say that such a query is liftable. A query can be computed using lifted
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inference rules iff it admits a safe query plan, and therefore we also call

such a query a safe query. When Q is liftable, then P(Q) can be com-

puted in polynomial time in the size of the database. If the converse

also holds, then the rules are complete. We describe below some frag-

ments of first-order sentences for which the rules are complete: more

precisely, if the rules fail to compute the probability of some query Q,

then P(Q) is provably #P-hard in the size of the input database.

4.3 Hierarchical Queries

Definition 4.3. Let Q be first-order formula. For each variable x de-

note at(x) the set of atoms that contain the variable x. We say that Q

is hierarchical if forall x, y one of the following holds: at(x) ⊆ at(y) or

at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅.

The definition is syntactic. It is quite possible to have two equiv-

alent FO sentences, one hierarchical the other non-hierarchical: for

example, ∃x∃y∃zR(x, y) ∧ S(x, z) is hierarchical and is equivalent to

∃x∃y∃z∃uR(x, y) ∧S(x, z) ∧S(u, z) which is non-hierarchical, because

the two sets at(x) = {R(x, y), S(x, z)} and at(z) = {S(x, z), S(u, z)}

overlap without one being contained in the other. Some queries are

not equivalent to any hierarchical sentence: for example the query

H0 = ∃x∃yR(x) ∧ S(x, y) ∧ T (y) is non-hierarchical, because at(x) =

{R(x), S(x, y)}, at(y) = {(S(x, y), T (y)}, and the reader may check

that no equivalent conjunctive query is hierarchical.

Recall the definition of a Boolean conjunctive query: it is a sentence

of the form

Q =∃x1∃x2 · · · ∃xkR1(t1) ∧R2(t2) ∧ · · · ∧R`(t`)

where each Rj(tj) is a relational atoms. Conjunctive queries corre-

spond to FO∃,∧. We say that Q is without self-joins if all relational sym-

bols R1, . . . , R` are distinct. Other terms used in the literature for con-

junctive queries without self-joins are simple conjunctive queries, or a

non-repeating conjunctive queries.
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The dual of a conjunctive query without self-joins is a positive

clause without repeated symbols:

Γ =∀x1∀x2 · · · ∀xk(R1(t1) ∨R2(t2) ∨ · · · ∨R`(t`))

where the relational symbols R1, . . . , R` are distinct.

Theorem 4.2 (Small Dichotomy Theorem). Dalvi and Suciu [2007b]

Let Q be a conjunctive query without self-joins. Then:

• If Q is hierarchical, then P(Q) is in polynomial time, and can

be computed using only the lifted inference rules for join and

existential quantifier.

• If Q is not hierarchical, then P(Q) is #P-hard in the size of the

database.

A similar statement holds for positive clauses without repeated

relational symbols.

Proof. Suppose Q is hierarchical. Let x be any variable for which at(x)

is maximal. Case 1: at(x) consists of all atoms in Q. Then we can write

Q = ∃xQ1 where x is a separator variable, and we can apply the ∃-

lifted inference rule P(Q) = 1 − (1 −
∏

a∈D Q1[a/x]); the claim follows

by induction, sinceQ[a/x] is also hierarchical, for any constant a. Case

2: there exists some atom not in at(x). Then the atoms in at(x) and

those not in at(x) do not share any logical variable: if they shared a

variable y then at(x) ∩ at(y) 6= ∅, and therefore at(y) ⊆ at(x) (by

maximality of x), which contradicts the fact y occurs in some atom

that is not in at(x). Then we can write the query as Q = Q1 ∧ Q2

where both Q1 and Q2 are existentially quantified sentences. Since the

query has no self-joins, we can apply the join rules and write P(Q) =

P(Q1) · P(Q2); the claim follows by induction since both Q1, Q2 are

hierarchical.

SupposeQ is not hierarchical. We prove that it is #P hard by reduc-

tion from H0 = ∃x∃yR(x) ∧ S(x, y) ∧ T (y), which is #P-hard by Theo-

rem 3.4. Consider a probabilistic database instance over three relations

R(x), S(x, y), T (y), where we want to compute P(H0). Consider any

non-hierarchical queryQ. By definition,Q contains two variables x′, y′
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s.t. at(x′), at(y′) are overlapping but none contains the other. Thus,

Q has three atoms R′ ∈ at(x′) − at(y′), S′ ∈ at(x′) ∩ at(y′), T ′ ∈

at(y′)−at(x′). The three atoms areR′(x′, . . .)∧S′(x′, y′, . . .)∧T ′(y′, . . .),

i.e. R′ contains the variable x′ and possibly others, but does not con-

tain the variable y′, similarly for T ′, while S′ contains both x′, y′. Given

the input probabilistic databaseR(x), S(x, y), T (y), we construct an in-

stance for R′(x′, . . .) by extending R(x) with the extra attributes and

filling them with some fixed constant; similarly, construct S′, T ′ from

S, T , where the extended attributes are filled with the same constant.

The new relations R′, S′, T ′ are therefore in 1-1 correspondence with

R,S, T : they have the same cardinalities, and corresponding tuples

have the same probabilities. For all other relations in Q, define their

instance to be the cartesian product of the domain, and set their prob-

abilities to be 1. It is easy to check that P(Q) = P(H0), proving that the

query evaluation problem for H0 can be reduced to that for Q; hence

Q is #P-hard.

The theorem establishes a dichotomy for the class of conjunctive

queries without self-joins: every query is either liftable (and thus in

polynomial time) or provably #P-hard, and the separation is given

precisely by hierarchical queries. The same holds for positive clauses

without repeated relational symbols. For example, ∀x∀y∀z(R(x, y) ∨

S(x, z)∨T (x)) is hierarchical, hence in PTIME, while ∀x∀y∀z(R(x, y)∨

S(y, z) ∨ T (z)) is non-hierarchical, hence #P-hard. In fact, the di-

chotomy result also holds immediately for any clause without re-

peated relational symbols (not necessarily positive); we chose to state

Theorem 4.2 only for positive sentences for historical reasons. Next,

we will describe a non-trivial extension of the dichotomy theorem, to

a larger class of first-order sentences.

4.4 The Dichotomy Theorem

In this section we state a more general dichotomy theorem, which ap-

plies to a larger fragment of first-order logic. Without loss of general-

ity, in this section we assume that the formulas use only the connec-

tives ¬,∃,∀,∨,∧ (for example Q1 ⇒ Q2 can be rewritten as ¬Q1 ∨Q2)
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and that all occurrences of the ¬ operator are pushed down to the

atoms, using De Morgan’s laws. We will consider various fragments

of FO. If S ⊆ {¬,∃,∀,∨,∧}, then FOS denotes the fragment of FO

restricted to the operations in S. For example, FO∃,∧ is equivalent

to Conjunctive Queries (CQ), FO∃,∨,∧ is the positive, existential frag-

ment of FO, and equivalent to Unions of Conjunctive Queries (UCQ),

while FO∀,∨,∧ is positive universal fragment of FO, and FO¬,∃,∀,∨,∧ is

the full first-order logic, which we denote FO.

Call a first-order formula unate if every relational symbol occurs

either only positively, or only negated. For example, the first sentence

below is unate, the second is not:

Γ1 =∀x∀y(¬R(x) ∨ ¬S(x, y)) ∧ (¬S(x, y) ∨ T (y)) // unate

Γ2 =∀x∀y(¬R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y)) // non unate

We denote FO¬un,∃,∀,∨,∧ the unate fragment of first-order logic;

similarly FO¬un,∃,∨,∧ and FO¬un,∃,∀,∨,∧ are the existential and univer-

sal fragment of unate first-order logic respectively.

The dichotomy theorem that we state below says that every query

in FO¬un,∃,∨,∧ is in polynomial time when the lifted inference rules in

§4.2 succeed, or is provably #P-hard when those rules fail, and simi-

larly for FO¬un,∀,∨,∧. The practical significance of this result is that the

inference rules are complete: there is no need to search for more rules,

since all queries than can be possibly computed in PTIME are already

handled by the existing rules.

The Independence Test

However, we need some preparation in order for this result to hold.

Consider the join-rule: if Q = Q1 ∧ Q2 and Q1, Q2 are indepen-

dent, then P(Q) = P(Q1)P(Q2). In the algorithm we replaced the

test “Q1, Q2 are independent” with “Q1, Q2 are syntactically indepen-

dent”, which is sufficient, but not necessary. Obviously, if Q1, Q2 are

independent but not syntactically independent then the inference rule

fails, and the dichotomy theorem cannot hold as stated: the query may

be in PTIME (assuming both P(Q1) and P(Q2) are in PTIME) but we

cannot apply the lifted inference rule because we are unable to check
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independence. To prove a dichotomy result, we need a necessary and

sufficient test for independence, and the same for a separator variable.

Checking independence is hard in general. If Q1, Q2 are two sen-

tences in FO, then checking if they are independent is undecidable in

general, by Trakhtenbrot’s undecidability theorem for finite satisfia-

bility1. Miklau and Suciu [2007] showed that, if Q1, Q2 are restricted

to Conjunctive Queries, then checking independence is Πp
2-complete.

These observations carry over to the test of whether x is a separator

variable.

It turns out that one can rewrite the query into a form in which

syntactic independence is both necessary and sufficient for indepen-

dence, and similarly for a separator variable.

Definition 4.4. (1) An FO sentence Q is shattered if it does not contain

any constants. (2) An FO sentence Q is ranked if there exists a total

order σ on its variables such that whenever xi, xj occur in the same

atom and xi occurs before xj , then xi strictly precedes xj in the order

σ; in particular, no atom contains the same variable twice.

We briefly review the notion of a minimal query, c.f. Abiteboul et al.

[1995]. A conjunctive query Q is called minimal if no equivalent query

with fewer atoms exists; for example ∃x∃yR(x) ∧R(y) is not minimal,

since it is equivalent to ∃xR(x). Every conjunctive query Q is equiv-

alent to a minimal query, which is unique up to isomorphism, and is

also called the core of Q. A Union of Conjunctive Query
∨

iQi is mini-

mal if eachQi is minimal, and whenever a logical implicationQi ⇒ Qj

holds, then i = j. Intuitively, if Qi ⇒ Qj holds then Qi is redundant

in the UCQ and can be dropped. Every UCQ query is equivalent to

a minimal UCQ query, which is unique up to isomorphism. We call

a sentence in FO¬un,∃,∨,∧ minimal if it is minimal when viewed as a

UCQ, by replacing each negated atom with a positive atom. Similarly,

we call a sentence in FO¬un,∀,∨,∧ minimal if its dual (obtained by re-

placing ∀,∧,∨ with ∃,∨,∧ respectively) is minimal.

1Trakthenbrot’s theorem says that the problem given a FO sentence φ, does φ have
a finite model? is undecidable. Consider two sentences Q1 = ∃xR(x) and Q2 =
φ ∧ ∃xR(x): they are independent iff φ is not satisfiable, and hence checking inde-
pendence is undecidable.
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We invite the reader to check the following to lemmas:

Lemma 4.3. (1) If Q1, Q2 are two shattered, ranked and minimal sen-

tences in FO¬un,∃,∨,∧ (or FO¬un,∀,∨,∧), then syntactic independence is

equivalent to independence. (2) If Q is in FO¬un,∃,∨,∧ (or FO¬un,∀,∨,∧)

is shattered, ranked, and minimal, and has a single free variable x,

then x is a syntactic separator variable iff it is a separator variable.

Lemma 4.4. For any sentence Q in FO¬un,∃,∨,∧ (or FO¬un,∀,∨,∧) the

query evaluation problem P(Q) can be reduced in polynomial time to

the query evaluation problem P(Q′) of a shattered and ranked query

Q′.

Given these facts, the lifted inference rules need to be amended

as follows. To compute a query Q we start shattering and ranking

Q. This only needs to be done once, before we apply the lifted infer-

ence rules. Next, we apply the lifted inference rules: when we check

whether Q1, Q2 are independent (or whether x is a separator variable

in Q), then we minimize the queries first, then apply the syntactic in-

dependence (or syntactic separation) test.

We illustrate the shattering and ranking in Lemma 4.4 on two ex-

amples. The reader is invited to generalize from here (and prove the

two lemmas above), or to check further details in Suciu et al. [2011].

Example 4.2. Let

Q1 =∃x∃y(R(a, y) ∧R(x, b))

where a, b are two constants in the domain. There is no separator vari-

able since none of the two variables occurs in both atoms. Writing Q1

as a conjunction of ∃yR(a, y) and ∃xR(x, b)) doesn’t help either, since

these queries are dependent (their lineages both depend on the tuple

R(a, b)). Instead, we rewrite the query into a shattered query Q′
1 as
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follows. We split the relation R into four relations:

R∗∗
def
={(x, y) | (x, y) ∈ R, x 6= a, y 6= b}

Ra∗
def
={y | (a, y) ∈ R, y 6= b}

R∗b
def
={x | (x, b) ∈ R, x 6= a}

Rab
def
={() | (a, b) ∈ R}

and rewrite the query as:

Q′
1 =(∃xR∗b(x) ∧ ∃yRa∗(y)) ∨Rab()

The new query is shattered, i.e. does not contain any constants. It is

easily verified that Q1 and Q′
1 are equivalent, hence P(Q1) = P(Q′

1).

To compute P(Q′
1) we notice that ∃xR∗b(x) ∧ ∃yRa∗(y) is syntacti-

cally independent of Rab(), and furthermore ∃xR∗b(x) and ∃yRa∗(y)

are syntactically independent, hence:

P(Q′
1) =1 − [1 − P(∃xR∗b(x))P(∃yRa∗(y))] · [1 − p(R(a, b))]

Example 4.3. Consider now the following query

Q2 =∃x∃y(S(x, y) ∧ S(y, x))

This query is not ranked, because x, y occur in opposite orders in

S(x, y) and in S(y, x). No lifted inference rule applies; for example x is

not a separator variable since it occurs on different positions in the two

atoms (and one may verify that the queries ∃y(S(a, y) ∧ S(y, a)) and

∃y(S(b, y)∧S(y, b)) are dependent, since their lineage expressions both

depend on the ground atoms S(a, b) and S(b, a)). Instead, we rewrite

the query as follows. First, we partition the relation S into three new

relations:

S<
def
={(x, y) | (x, y) ∈ S, x < y}

S=
def
={x | (x, x) ∈ S}

S>
def
={(y, x) | (x, y) ∈ S, x > y}

and rewrite the query as:

Q′
2 =∃x∃y(S<(x, y) ∧ S>(x, y)) ∨ ∃xS=(x)
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The rewritten query Q′
2 is ranked (using the variable order x, y) and is

equivalent to Q2, hence P(Q2) = P(Q′
2) and

P(Q′
2) =1 − (1 − P(∃x∃y(S<(x, y) ∧ S>(x, y))))(1 − P(∃xS=(x)))

The reader may continue the calculation by noting that x is a separator

variable in ∃y(S<(x, y) ∧ S>(x, y)).

We end this section on some historical notes on checking indepen-

dence for FO formulas. For any atom A, denote ground(A) the set of

its groundings. The term “shattered” was introduced by de Salvo Braz

et al. [2005] who called a sentence shattered if for any pair of atoms

A1, A2, their sets of grounded atoms are either identical or disjoint,

ground(A1) = ground(A2) or ground(A1) ∩ ground(A2) = ∅. No-

tice that our use of the term “shattered” in Definition 4.4 is differ-

ent. If for all atoms A1 in Q1 and A2 in Q2 we have ground(A1) ∩

ground(A2) = ∅, then clearly Q1, Q2 are independent. Miklau and Su-

ciu [2007] showed that the converse fails in general: there exists sen-

tences Q1, Q2 that are independent yet have common groundings. For

example, considerQ1 = ∃x∃y∃z∃u(R(x, y, z, z, u)∧R(x, x, x, y, y)) and

Q2 = R(a, a, b, b, c), where a, b, c are three distinct constants. On one

hand the tuple t = R(a, a, b, b, c) occurs as grounding for both queries

(since t ∈ ground(R(x, y, z, z, u))). On the other hand, we claim that

Q1, Q2 are independent. Indeed, the only term in the DNF lineage

FQ1,D that contains the tuple t is t = R(a, a, b, b, c) ∧ R(a, a, a, a, a),

and it is absorbed by the term R(a, a, a, a, a) ∧R(a, a, a, a, a).

The Dichotomy Theroem

Recall that we assume all input relations to be tuple-independent.

Theorem 4.5. LetQ be any query in FO¬un,∃,∨,∧. Assume w.l.o.g. that

Q is shattered, and ranked. Then:

• If the lifted inference rules succeed on Q then computing P(Q)

is in polynomial time in the size of the input database; in this

case we say that Q is liftable.
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• If the lifted inference rules fail on Q, then computing P(Q) is

provably #P-hard in the size of the input database; in this case

we say that Q is not liftable.

The proof of the first item is straightforward. The proof of the sec-

ond item is significantly harder, and can be found in Dalvi and Suciu

[2012].

We illustrate a simple liftable query that requires the use of the in-

clusion/exclusion formula. Consider the following conjunctive query:

Q =∃x∃y∃u∃v(R(x) ∧ S(x, y) ∧ T (u) ∧ S(u, v))

The query can be written as a conjunction of two sentenceQ = Q1∧Q2

where:

Q1 =∃x∃yR(x) ∧ S(x, y) Q2 =∃u∃vT (u) ∧ S(u, v)

Notice that, although the query is hierarchical, Theorem 4.2 does not

apply, because the query has self-joins. In particular, we cannot apply

the Join rule: P(Q1 ∧ Q2) 6= P(Q1)P(Q2) because Q1, Q2 are depen-

dent, since they share the relation symbol S. Instead we apply inclu-

sion/exclusion, and write P(Q) = P(Q1) + P(Q2) − P(Q1 ∨Q2). The

probabilities of Q1 and Q2 can be computed easily since both are hi-

erarchical queries without self-joins. We discuss how to compute the

probability ofQ1 ∨Q2. We first rename uwith x inQ2, then use the fact

that the existential quantifier commutes with disjunction, therefore:

Q1 ∨Q2 =∃x[(R(x) ∧ ∃yS(x, y)) ∨ (T (x) ∧ ∃vS(x, v))]

Now x is a separator variable, because it occurs in all atoms, and it

occurs on the first position of both S-atoms. Therefore, we apply the ∃

rule, then simplify the first-order formula by applying the distributiv-

ity law

P(Q1 ∨Q2) =1 −
∏

a∈D

(1 − P((R(a) ∧ ∃yS(a, y)) ∨ (T (a) ∧ ∃vS(a, v))))

=1 −
∏

a∈D

(1 − P((R(a) ∨ T (a)) ∧ ∃yS(a, y)))

=1 −
∏

a∈D

(1 − P((R(a) ∨ T (a)))P(∃yS(a, y)))
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and from here it is easy to compute the remaining probability expres-

sions.

Which queries are not liftable? The dichotomy theorem gives us

a procedure to check liftability, namely apply the rules and see if

they fail, but this does not given any intuition of how the non-liftable

queries look like. In general, no other characterization of liftable/non-

liftable queries is known, and the query complexity for checking

whether the query is in PTIME or #P-hard is open. A good represen-

tative list (but still incomplete) of non-liftable queries are the queries

Hk below:

H0 =∃x0∃y0R(x0) ∧ S(x0, y0) ∧ T (y0)

H1 =∃x0∃y0R(x0) ∧ S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ T (y1)

H2 =∃x0∃y0R(x0) ∧ S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ S2(x1, y1)

∨ ∃x2∃y2S2(x2, y2) ∧ T (y2)

H3 =∃x0∃y0R(x0) ∧ S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ S2(x1, y1)

∨ ∃x2∃y2S2(x2, y2) ∧ S3(x2, y2) ∨ ∃x3∃y3S3(x3, y3) ∧ T (y3)

H4 = · · ·

It is easy to check (and we invite the reader to verify) that no lifted

inference rule applies to Hk, for any k ≥ 0. In fact, Dalvi and Suciu

[2012] prove that for every k ≥ 0, the probability computation prob-

lem P(Hk) is #P-hard in the size of the database. Notice that all queries

Hk for k ≥ 1 are hierarchical (H0 is, of course, non-hierarchical). We

will return to these queries in Chapter 5.

4.5 Negation

In this section we examine queries beyond FO¬un,∃,∨,∧ or FO¬un,∀,∨,∧.

One can apply the lifted inference rules to any sentence (Boolean

query) in FO, and when they succeed, then the query is computable in

polynomial time. The question is what can we say when the rules fail

on some query Q: is this because Q is hard, or because the rules are

insufficient to handle such queries? We note that checking indepen-

dence is undecidable in FO, and the same can be shown for checking
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whether a variable is a separator variable, so it only makes sense to

ask this question for fragments of FO where the independence test

is decidable. Queries in FO¬un,∃,∨,∧ and FO¬un,∀,∨,∧ admit a unique

canonical form and, hence, independence is decidable; here we exam-

ine other such languages.

Two extensions of unate queries have been considered in the liter-

ature. Fink and Olteanu [2014] studied non-repeating relational algebra

expressions. These are expressions in the relational algebra, i.e. using

the operators selection, projection, join, union, and difference, where

no relational symbol is allowed to occur more than once. Such expres-

sions are still unate (since every symbol occurs at most once), but the

unrestricted use of the difference operator results in arbitrary combi-

nations of ∃ and ∀ quantifiers. They established the following result:

Theorem 4.6. Let Q be a non-repeating relational algebra expression.

• If Q is hierarchical, then P(Q) can be computed in polynomial

time.

• If Q is non hierarchical, then P(Q) is #P-hard in the size of the

database.

The formal definition of a hierarchical query is an extension of that

for first-order sentences, but it is rather subtle because of the need

to define precisely what a variable is, and when does it “occur” in a

relation name. For example, in an expression like S−R×T , assuming

S binary and R, T are unary, the first attribute of S “occurs” in R, and

the second attribute “occurs” in T . The theorem gives a dichotomy

for non-repeating relational algebra expressions; we refer the reader

to Fink and Olteanu [2014] for details.

A second extension was to FO¬,∀,∨,∧ and FO¬,∃,∨,∧, and is dis-

cussed by Gribkoff et al. [2014a]. Unlike unate formulas, a relational

symbol may occur both positively and negatively; the only restriction

being that the query expression can use only one type of quantifier.

While a full characterization of the complexity remains open for these

two languages, the authors have shown that the rules need to be ex-

tended with resolution in order to be complete. To illustrate, consider
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the following constraint:

Γ =∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y))

None of the lifted inference rules apply to this query. In fact, if we

remove the negation operator, then we obtain a constraint that is the

dual of H1, which we have seen is #P-hard. This means that any infer-

ence rules that compute this query must use in an essential way both

atoms S(x, y) and ¬S(x, y).

Resolution is the logical inference method that takes two clauses

of the form (A1 ∨A2 ∨· · ·∨L), (¬L∨B1 ∨B2 ∨ . . .) and adds the clause

(A1∨A2∨· · ·∨B1∨B2∨· · · ). In other words, writingA = ¬(A1∧A2 · · · )

and B = (B1 ∨ B2 ∨ · · · ), resolution takes (A ⇒ L) and (L ⇒ B) and

produces (A ⇒ B).

Resolution may help the lifted inference rules get unstuck. Contin-

uing our example, after applying resolution to Γ we obtain the new

clause (R(x) ∨ T (y)):

Γ =∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y)) ∧ (R(x) ∨ T (y))

=∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y))

∧R(x)
∨

∀x∀y(R(x) ∨ S(x, y)) ∧ (¬S(x, y) ∨ T (y)) ∧ T (y)

=∀x∀y[(¬S(x, y) ∨ T (y)) ∧R(x)]
∨

∀x∀y[(R(x) ∨ S(x, y)) ∧ T (y)]

=∀x∀y(¬S(x, y) ∨ T (y)) ∧ ∀xR(x)
∨

∀x∀y(R(x) ∨ S(x, y)) ∧ ∀yT (y)

Hence,

P(Γ) = P(∀x∀y(¬S(x, y) ∨ T (y)) ∧ ∀xR(x))

+ P(∀x∀y(R(x) ∨ S(x, y)) ∧ ∀yT (y))

− P(∀x∀y(¬S(x, y) ∨ T (y)) ∧ ∀xR(x)

∧ ∀x∀y(R(x) ∨ S(x, y)) ∧ ∀yT (y))

= P(∀x∀y(¬S(x, y) ∨ T (y))) · P(∀xR(x))

+ P(∀x∀y(R(x) ∨ S(x, y))) · P(∀yT (y))

− P(∀xR(x) ∧ ∀yT (y)).
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We applied inclusion/exclusion to compute P(Γ) and used sim-

ple equivalences of first-order sentences. The remaining probabil-

ity expressions can be computed easily using a few lifted inference

rules.

We end with a remark on the complexity of applying the lifted in-

ference rules. Most rules have preconditions, e.g. the query must be of

a certain pattern, or a variable must be a separator variable, etc. To ap-

ply a lifted inference rule to a queryQwe must first find an equivalent

expression Q′ ≡ Q such that Q′ satisfies the conditions of some rule.

For Unions of Conjunctive Queries, query equivalence is decidable

and NP-complete; in fact it suffices to first compute the minimal query

Q′ equivalent to Q (which is uniquely defined up to isomorphism),

then apply the rules to the minimized query (and the same holds for

FO¬un,∃,∨,∧ and FO¬un,∀,∨,∧). Resolution is just another tool in our

toolbox for proving query equivalence, needed for queries that make

true use of negation. In general, however, it is undecidable whether

to FO queries are equivalent, by Trakhtenbrot’s theorem, see Libkin

[2004]. This means that it is unlikely to extend the lifted inference rules

to the entire FO.

4.6 Symmetric Databases

A symmetric probabilistic relation is a tuple-independent relation

where every ground tuple over the domain has the same probability.

A symmetric probabilistic database is a database where each relation

is a symmetric probabilistic relation. Notice that the probability may

differ between relations, but will be the same for all tuples belonging

to the same relation.

Symmetric databases were motivated by Markov Logic Networks,

where the weights are associated to formulas rather than data. When

an MLN is converted to a tuple-independent database, as described in

§2.6, then the newly introduced relations A are symmetric.

When the database is symmetric then we can use de Finetti’s ex-

changeability theorem in addition the rules in §4.2. Stated in our set-

ting, the theorem says the following.
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Fix a Boolean query Q, and suppose R1, R2, . . . , R` are all unary

relations occurring in Q. Suppose the domain has size n. Fix relational

instances for all ` unary relations, Ri ⊆ [n] for i ∈ [`], and, for each

subset S ⊆ [`] define:

CS =
⋂

i∈S

Ri ∩
⋂

i6∈S

R̄i

We call the 2` unary relations CS the cells defined by the relations Ri.

Consider the conditional probability P(Q|R1, . . . , R`). By de Finetti’s

exchangeability theorem, this probability depends only on the cardi-

nalities of the cells, denoted kS = |CS |, thus we obtain:

P(Q|R1, . . . , R`) =P(Q|(kS)S⊆[`]) (4.1)

We invite the reader to pause and reflect about this statement. In par-

ticular, note that the statement is false if one of the relations Ri is not

unary: for example if Ri is binary, then a particular instance of Ri rep-

resents a graph, and the probability ofQ depends not just on the num-

ber of edges ki, but also on the entire degree sequence, and on much

more [Grohe, 2017, pp.105]. Thus, de Finetti’s theorem allows us to

prove Equation 4.1 only when all relationsRi are unary. From here we

derive:

P(Q) =
∑

kS=0,n,S⊆[`]

∏

S⊆[`]

(

n

kS

)

∏

i∈[`]

p
k{i}

i (1 − pi)
n−k{i}P(Q|(kS)S⊆[`])

where pi is the probability of a tuple in Ri (the same for all tuples

in Ri). Since the number of relations is constant, so is the number of

cells, and the sum has only polynomially many terms, hence P(Q) is

reduced to the problem of computing P(Q|(kS)S⊆[`]) forall k1, k2, . . .

Sometimes the latter is computable in PTIME, even if computing P(Q)

is #P-hard over general (asymmetric) databases.

Example 4.4. Consider H0 = ∀x∀y(R(x) ∨ S(x, y) ∨ T (y)). Consider

a symmetric database over a domain of size n, where every tuple in

R has probability pR, and similarly tuples in S, T have probabilities

pS , pT respectively. Fix two relation instancesR, T ⊆ [n], denote kR, kT
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their cardinalities. Then

P (H0|kR, kT ) = pn2−kRkT
S

P (H0) =
∑

kR,kT =0,n

(

n

kR

)(

n

kT

)

pkR
R · (1 − pR)n−kR

· pkT
T (1 − pT )n−kT · pn2−kRkT

S

The first line holds because the clause (R(x)∨S(x, y)∨T (y)) is already

satisfied by the kRkT tuples x ∈ R, y ∈ T , thus S must contain all

remaining n2 − kRkT tuples. In this simple example the conditional

probability depends only on the cardinalities kR, kT , and there was no

need to consider all four cells R ∩ T,R ∩ T̄ , R̄ ∩ T, R̄ ∩ T̄ .

The language FOk consists of all FO sentences restricted to k log-

ical variables, see Libkin [2004]. For example, the query H0 above is

in FO2. For another example, ∃x∃y∃z∃u(R(x, y) ∧ S(y, z) ∧ T (z, u))

uses four variables, but is equivalent to ∃x∃yR(x, y) ∧ (∃xS(y, x) ∧

(∃yT (x, y))), hence it is in FO2. Van den Broeck et al. [2014] prove

that every query in FO2 can be computed in PTIME over symmetric

databases. For example, all queries Hk described earlier can be com-

puted in PTIME over symmetric databases. The proof uses, in essence,

de Finetti’s exchangeability theorem, Equation 4.1 above, then shows

that if all remaining relations are binary, then the conditional proba-

bility can be computed in PTIME. We refer to Niepert and Van den

Broeck [2014] for a more detailed discussion of finite exchangeability

as it applies to lifted inference.

Clearly, if a query is liftable, according to the rules in §4.2, then it

is also computable in PTIME on symmetric databases. The result by

Van den Broeck et al. [2014] shows that some #P-hard queries can be

computed in PTIME if the input database is restricted to be symmetric,

by applying de Finetti’s theorem to the unary relations. This raises

two questions. Are all queries in FO be computable in PTIME over

symmetric databases? And is de Finetti’s theorem on unary relations

the only new rule that we need over symmetric databases?

Gribkoff et al. [2014a] answer both questions negatively. First, they

prove that there exists a sentence in FO3 for which computing the
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probability on a symmetric database is #P1-complete. They also prove

that there exists a conjunctive query whose complexity over symmet-

ric databases is #P1-complete. The class #P1 consists of all problems in

#P over a unary alphabet, and is a complexity class that is difficult to

study. Only a few hard problems are known for this class, and none is

“natural”; the hard queries described in Gribkoff et al. [2014a] are not

“natural”. For many natural queries, their complexity over symmetric

databases is open, for example we do not know the complexity of the

query ∃x∃y∃z(R(x, y) ∧ S(y, z) ∧ T (z, x)) over symmetric databases.

Second, Gribkoff et al. [2014a] show that the following query can

be computed in PTIME over symmetric databases:

∀x∀y∀u∀v(S(x, y) ∨ ¬S(u, y) ∨ S(u, v) ∨ ¬S(x, v))

DeFinetti’s theorem cannot be applied since there are no unary sym-

bols. Instead, the algorithm described by Gribkoff et al. [2014a] uses

dynamic programming over the domain [n]. Kazemi et al. [2016] de-

scribe an alternative algorithm that performs recursion over the do-

main size within the query plan. The complexity of this query over

asymmetric databases is open to date.

4.7 Extensions

The positive results discussed so far are restricted to databases that

are tuple-independent. The negative results (#P-hardness) hold only if

one makes no restriction on the tuple-independent database. We sum-

marize here several extensions that have been studied in the literature.

4.7.1 Block-Independent-Disjoint Databases

Dalvi and Suciu [2007a] consider the complexity of query evaluation

on Block-Independent-Disjoint databases. They prove a dichotomy

into #P-hard and PTIME for conjunctive queries without self-joins. For

example consider the following three queries:

q1 =R(x), S(x, y), T (y), U(u, y), V (a, u)

q2 =V (x, y), T (y)

q3 =V (x, y),W (x, y)
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Every underlined attribute represents the key in a possible worlds

of that table. Thus,R(x) is a tuple-independent table, whileU(u, y) has

blocks defined by grouping on the variable u (and a possible world in-

cludes at most one tuple from each u-group). In the first query, a repre-

sents a constant. Recall that a disjoint project operator assumes that all

duplicates being eliminated are exclusive probabilistic events, hence

their probabilities can be added up. Using this operator, the probabil-

ity of q1 can be computed in PTIME, as illustrated below:

P(q) =
∑

b∈D

P(R(x), S(x, y), T (y), U(b, y), V (a, b))

=
∑

b∈D

P(R(x), S(x, y), T (y), U(b, y)) · p(V (a, b))

=
∑

b∈D

∑

c∈D

P(R(x), S(x, c), T (c), U(b, c)) · p(V (a, b))

=
∑

b∈D

∑

c∈D

P(R(x), S(x, c)) · p(T (c)) · p(U(b, c)) · p(V (a, b))

=
∑

b∈D

∑

c∈D

(1 −
∏

d∈D

(1 − p(R(d)) · p(S(d, c)))) ·

p(T (c)) · p(U(b, c)) · p(V (a, b))

The first line corresponds to a disjoint project operator that elimi-

nates the variable u: since all values of u occur with the same key value

a in V (a, v), their corresponding events are disjoint, hence the proba-

bilities can be added up. Next, in each term, the value u = b becomes

a key in the relation U(u, y), allowing us to do a disjoint projection of

the variable y. The rest of the query is treated like a hierarchical query

over a tuple-independent database.

On the other hand, both queries q2 and q3 are proven to be #P-hard

in Dalvi and Suciu [2007a].

The paper establishes a dichotomy for conjunctive queries without

self-joins over BID tables into PTIME and #P-hard. Recall that, over

tuple-independent databases, a conjunctive query without self-joins

is in PTIME iff it is hierarchical, and it is not hard to see that the prob-

lem “give a query, is it hierarchical?” is in AC0. On the other hand,

Dalvi and Suciu [2007a] proves that the problem “given a query, is it
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computable in PTIME over BID tables?” is PTIME-complete: this rules

out a test as simple as the hierarchy test.

The complexity of query evaluation over BID tables is open be-

yond conjunctive queries without self-joins.

4.7.2 Restricting the Input Database

We consider several restrictions on the database that alter the analysis

of lifted query processing.

Functional dependencies Returning to tuple-independent data-

bases, we now restrict the set of possible tuples to satisfy certain func-

tional dependencies. For example, we may declare that x is a key in

S(x, y). The relation S is still tuple-independent, but all possible tu-

ples have distinct values of x. The dichotomy theorem for conjunctive

queries without self-joins proven by Dalvi and Suciu [2007b] already

covered such functional dependencies. A much more elegant and sim-

ple technique was described by Olteanu et al. [2009]. The technique is

very simple: if x → y holds in some relation, then modify the CQ by

adding y to all relations that contain x: the complexity of the modified

query is the same as that of the original query. For example, if x is a

key in S(x, y), then the query ∃x∃yR(x), S(x, y), T (y) is modified to

∃x∃yR(x, y), S(x, y), T (y). More precisely, we iterate over the possible

tuples a ∈ R, and replace each such tuple with (a, b) ∈ R, where b is

the unique value for which (a, b) ∈ S: if no such tuple exists in S then

delete a from R. The modified query R(x, y), S(x, y), T (y) is hierarchi-

cal, hence in PTIME. Extensions beyond conjunctive queries without

self-joins are open.

Databases with mixed probabilistic and deterministic relations

In this model we assume that each relation in the database schema

is marked as being probabilistic or deterministic (in other words, all

tuples have probability = 1). For example, if R is deterministic and

S, T probabilistic, then ∃x∃yR(x), S(x, y), T (y) is in PTIME, because it

admits the safe plan Π∅(Πy(R onx S) ony T ). But if R, T are probabilis-

tic and S deterministic, then ∃x∃yR(x), S(x, y), T (y) is #P-hard. The
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result by Dalvi and Suciu [2007b] covers such cases but only for con-

junctive queries without self-joins. The case of more general queries

is open. When the database consists of both symmetric probabilistic

relations and asymmetric deterministic relations, then queries that are

liftable on symmetric databases remain liftable, as long as the Boolean

rank of the deterministic relations is bounded [Van den Broeck and

Darwiche, 2013].

Queries over databases with a bounded tree-width Amarilli et al.

[2015, 2016] prove that every query in Monadic Second Order logic

(MSO) can be evaluated in linear time over tuple-independent prob-

abilistic databases with a bounded tree-width. This result should be

contrasted with the Dichotomy in §4.4: in that case we restricted the

query and considered arbitrary input databases, while here the query

is unrestricted (any query in MSO), while the databases are restricted

to have bounded tree-width.

The result is an application of Courcelle [1990]’s theorem, which

states that every sentence in MSO can be computed in linear time in

the size of the (deterministic) database, if the database is restricted to

have a bounded tree-width. Courcelle’s theorem consists of translat-

ing the MSO query into a tree-automaton, and this translation is non-

elementary in the size of the query. Amarilli et al. [2015] shows how

to adapt Courcelle’s translation to obtain an automaton that computes

the query on any possible world, i.e. subset of the input database. The

subset is given by adding a bit to each tuple in the database, indicating

whether it is present or absent. Thus, the automaton reads tuples from

the (tree decomposition) of the database, together with the indicator

bit stating whether the tuple is present or not, and computes the query

on the possible world corresponding to the tuples where the indicator

bit is set to 1. Next, they show how to convert the automaton into

a polynomial-time, dynamic programming algorithm that computes

the probability of the query on a randomly chosen world.

A natural question is whether there exists richer classes of proba-

bilistic databases for which every FO query is computable in polyno-

mial time. Amarilli et al. [2016] answer this negatively, by showing
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that there exists a query in first-order logic that is #P-hard on any

class of tuple-independent database instances that has unbounded

tree-width.

4.7.3 Extending the Query Language

We review lifted query evaluation for extended query languages.

Queries with Interpreted Predicates Olteanu and Huang [2009]

considered CQ with inequality predicates, i.e. <. They analyzed the

complexity of queries consisting of the Cartesian product of distinct

relations and an arbitrary set of inequality predicates, as illustrated by

the following two examples:

q1 =∃x∃y∃z∃u∃v∃wR(x), S(y), T (z, u),K(v, w), x < z, y < z, y < v

q2 =∃x∃y∃z∃u∃v∃wK(z, u), S(x, y),M(v, w), z < x < u, v < y < w

The paper describes two results. The first result describes a class

of tractable queries. We say that a query is max-one if, for every atom,

at most one variable in that atom occurs in an inequality predicate.

The paper shows that, for every max-one query, its probability on

tuple-independent databases can be computed in PTIME. The proof

by Olteanu and Huang [2009] consists of showing how to construct

a polynomial-size OBDD (which we define in the next chapter). Here

we prove that a max-one query can be compute in polynomial time

using dynamic programming. For simplicity, we illustrate the proof

on the query q1 above: the general case follows immediately. Choose

any variable that is maximal under the predicates <: such a variable

must exist, otherwise the inequality predicates form a cycle, and the

query is unsatisfiable. For q1, let’s choose z. Suppose w.l.o.g. that the

values in the z-column of the relation T are 1, 2, . . . , n. Thus, n the

largest possible value of the variable z, and we may assume w.l.o.g.

that all values of x and y in the database are < n (since we can re-

move values ≥ nwithout affecting the query). On any possible world,

there are two cases: (1) ∃uT (n, u): in that case the query is true iff the

following residual query is true, q′
1 = R(x), S(y),K(v, w), y < v. (2)

¬∃uT (n, u): in that case q1 is true iff it is true on the world obtained
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by removing all tuples of the form T (n,−) from the database. Thus,

denoting Pk(−) the probability on the subset of the database where

all values of z are ≤ k, and all values of x, y are < k, we have:

Pn(q1) =P(∃uT (n, u))Pn(q′
1) + (1 − P(∃uT (n, u)))Pn−1(q1)

Each term on the right hand side is either the probability of a simpler

query (which is computed similarly), or is Pn−1(q1), which is over a

smaller domain.

Second, Olteanu and Huang [2009] consider queries that are not

max-one and describe a large class of #P-hard queries. We refer the

reader to Olteanu and Huang [2009] for the rather technical defi-

nition of this class, and instead will prove that the query q2 is #P-

hard, by reduction from the query H0 = ∃x∃yR(x), S(x, y), T (y). Con-

sider a probabilistic database instanceR,S, T , and assume w.l.o.g. that

all constants in the database are even numbers. Define the instance

K,S,M as follows: the relation S is the same, K = {(i− 1, i+ 1) |

i ∈ R}, M = {(j − 1, j + 1) | j ∈ T}. It follows that the probabilities of

h0 and q2 are equal.

Beyond these two results, the complexity of queries with inequali-

ties is open.

Queries with a HAVING Predicate Ré and Suciu [2009] studied the

complexity of conjunctive queries without selfjoins, with GROUP-BY

and HAVING predicates, with various aggregate functions. They al-

low the input to be a BID database. The exact complexity of such a

query depends on the choice of the aggregate operator (min, max, ex-

ists, count, sum, avg, or count(distinct)), and on the choice of the com-

parison predicate used for that aggregate (=, 6=,≥, >,≤, <). For vari-

ous combinations of these parameters, they proved a trichotomy re-

sult: some queries are in PTIME, others are #P-hard by admit efficient

approximations (i.e. have an FPTRAS), while others are provably hard

to approximate. For example, consider the following Boolean queries:

q1[count(distinct x) ≥ k] =R(x), S(x, y, z)

q2[count(distinct y) ≥ k] =R(x), S(x, y, z)

q3[count(distinct y) ≥ k] =R(x), S(x, y), T (y)
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The first query checks if there are at least k distinct values x satisfying

the body of the conjunctive query, the second checks of there are at

least k distinct values y, and similarly for the third.

The paper proves trichotomy results for various combinations of

aggregate functions and comparison operators. In particular, it shows

that the query q1 is in PTIME, q2 is #P-hard but admits an FPTRAS,

while q3 admits a reduction from #BIS, which is the problem: given a

bipartite graph (X,Y,E), compute the fraction of subsets of X × Y that are

independent sets. #BIS is a complete problem w.r.t. to approximation-

preserving reductions, and thus it is believed to be hard to approxi-

mate. In other words, q3 is believed to be hard to approximate.

The complexity of queries with a HAVING clause is open beyond

conjunctive queries without self-joins.

4.7.4 Lifted Inference from the Graphical Models Perspective

Lifted inference in AI and probabilistic databases share a common

goal: to exploit relational structure for speeding up inference. A key

difference is that the AI community has focused on exploiting the

symmetry and exchangeability found in probabilistic graphical model

templates [Niepert and Van den Broeck, 2014], not on processing

probabilistic data as such. The symmetric weighted model count-

ing problem described in §4.6 unifies these perspectives. Lifted infer-

ence for probabilistic graphical models was proposed by Poole [2003],

spurring a large amount of research on exact inference [de Salvo Braz

et al., 2005, Milch et al., 2008, Sen et al., 2009, Choi et al., 2011, Jha

et al., 2010, Gogate and Domingos, 2011, Van den Broeck et al., 2011,

Kopp et al., 2015, Kazemi et al., 2016]. These works either develop

new inference rules, or speed up an existing set of rules [Kazemi and

Poole, 2014, 2016, Taghipour et al., 2013]. Significant attention has also

gone to approximate lifting techniques that augment sampling, varia-

tional, or message passing algorithms with the ability to exploit sym-

metry [Singla and Domingos, 2008, Kersting et al., 2009, Niepert, 2012,

Van den Broeck et al., 2012, Bui et al., 2013, Venugopal and Gogate,

2014, Jernite et al., 2015, Anand et al., 2017]. The AI community stud-

ies domain complexity as a notion separate from data and query com-

plexity. In this context, domain-lifted inference refers to PTIME com-
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plexity in the size of the domain, regardless of the graphical model or

observed data size [Van den Broeck, 2011]. This community studies

the complexity of lifted inference in Jaeger [2000], Jaeger and Van den

Broeck [2012], Van den Broeck and Davis [2012], Cozman and Mauá

[2015, 2016], as well as the work discussed in §4.6 on the complexity

of symmetric weighted model counting.



5

Query Compilation

The goal of knowledge compilation is to find a compact representation

of a Boolean formula F that can be used to efficiently solve certain

hard problems on F [Darwiche and Marquis, 2002]. In this paper, the

hard problem of interested is model counting, and therefore we define

a compilation of a Boolean formula F to be some representation such

that the (weighted) model count of F can computed in polynomial

time in the size of the representation. Usually, the compilation is some

type of circuit that represents F , designed in such a manner that we

can do weighted model counting efficiently in the size of the circuit.

Huang and Darwiche [2005] have shown that any DPLL-based model

counting algorithm can be modified to construct a compilation of the

Boolean formula, by constructing a circuit from the execution trace

of the algorithm. Many types of circuits have been proposed in the

literature, see the monograph by Wegener [2000] and the framework

by Darwiche and Marquis [2002]; we review the most popular circuits

used for weighted model counting in §5.1.

Jha and Suciu [2011, 2013] defined Query Compilation to refer to

the compilation of the lineage of a query. The fundamental question

in query compilation is: given a fixed query, what is the size of the

292
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compilation, as a function of the input database? We are interested in

this question because it gives us insights into the runtime of inference

methods based on grounding. More precisely, consider any algorithm

for weighted model counting on a Boolean formula, see §3.4. We can

use it to evaluate a queryQ on a probabilistic database as follows. First

ground the query to obtain a Boolean formula FQ,D, then use the algo-

rithm to compute the probability P(FQ,D). The question of interest to

us is: for which queries Q is this grounded method guaranteed to run

in polynomial time in the size of the database? By the Dichotomy The-

orem 4.6, whenever the grounded inference runs in PIME, the queryQ

is also liftable, hence the answer must be a set of liftable queries. In this

chapter we will show that the grounded approach cannot compute ef-

ficiently all liftable queries, by proving that some liftable queries have

exponential size compilation targets. This shows that the lifted infer-

ence methods in Chapter 4 are sometimes exponentially faster that

grounded inference.

5.1 Compilation Targets

We briefly review the main compilation targets used in query compi-

lation.

Free Binary Decision Diagrams These circuits were introduced

by Lee [1959] and later popularized by Akers Jr. [1978], under the

name Binary Decision Diagrams, or Read-Once Branching Programs.

They are referred today as Free Binary Decision Diagrams (FBDD) to

distinguish from the Orderend Binary Decision Diagrams (discussed

next).

Fix a set of Boolean variables X. An FBDD is a rooted DAG F ,

where each internal node u is labeled with a variable X ∈ X, and has

two outgoing edges, labeled 0 and 1; we call its two children the 0-

child and the 1-child respectively. Each sink node is labeled either 0 or

1. Moreover, the FBDD is required to satisfy the following condition:

for any path from the root node to a sink node, each variableX is read

at most once. Figure 5.1a illustrates a simple FBDD.
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(a) An FBDD representing Boolean
formula (¬X)Y Z ∨ XY ∨ XZ.

(b) A decision-DNNF representing Boolean for-
mula (¬X)Y ZU ∨ XY Z ∨ XZU .

Figure 5.1: Illustration of compilation targets from Beame et al. [2017].

The FBDD F represents a Boolean formula F , defined as follows.

Associate to each node u of the FBDD a Boolean formula, Fu, defined

inductively as follows: for a 0-sink node, Fu = 0, for a 1-sink node,

Fu = 1, and for any internal node u labeled with a variable X :

Fu = (¬X) ∧ Fu0 ∨X ∧ Fu1 (5.1)

where u0 and u1 are its 0-child and 1-child respectively. Then the

FBDD denotes the formula F
def
= Fr, where r is the root of the DAG.

Notice that the definition in Equation 5.1 corresponds precisely to a

Shannon expansion. In other words, an FBDD encodes a sequence of

Shannon expansions.

An equivalent way to define the Boolean F represented by the

FBDD F is as program that computes the Boolean formula, as follows.

Let θ be an assignment to the variables X. To compute θ(F ), follow a

certain path in the DAG F , as follows. Set the current node to be the

root node. If X is the variable labeling the current node, then read its

value θ(X): if θ(X) = 0 then continue with the 0-child, otherwise con-

tinue with the 1-child. When reaching a sink node, return θ(F ) as the

label of that sink node (0 or 1). We invite the reader to check that the

definitions are equivalent.
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If F is an FBDD computing a Boolean formula F , then one can

compute the probability of F using dynamic programming on the

DAG F . We start by setting P(Fu) = 0 for every 0-sink node u,

P(Fu) = 1 for every 1-sink node u, then traverse the DAG bottom-

up, and for each node u we set:

P(Fu) = (1 − p(X))P(Fu0) + p(X)P(Fu1)

where u0, u1 are its 0-child and 1-child respectively. This takes linear

time in the size of the DAG F , since each node u is visited only once.

Given a Boolean formula F with n Boolean variables, our goal is

to find a compact FBDD. Once such an FBDD has been constructed,

model counting can be performed in linear time in the size of the

FBDD. However, there are Boolean formulas F for which any FBDD

has size exponential in the number of variables n, as we will illustrate

in §5.2.

Ordered Binary Decision Diagrams Fix a variable order Π; more

precisely, Π is a permutation on the set [n], where n = |X| is the num-

ber of Boolean variables. A Π-Ordered Binary Decision Diagram (OBDD)

is an FBDD with the property that every path from the root to a sink

node reads the variables in the order given by Π: more precisely if

it reads Xi before Xj , then Π(i) < Π(j) [Wegener, 2000, pp.45]. An

OBDD is an Π-OBDD for some Π.

OBDDs where introduced by Bryant [1986]. The main motivation

for restricting the variable order was to simplify the synthesis of the

OBDD. For any Π, there exists a trivial Π-OBDD with 2n − 1 internal

nodes, which consists of a full binary tree. Each path in the tree reads

the variables in the same orderXΠ−1(1), XΠ−1(2), . . ., there are 2n paths,

one for each assignment to the Boolean variables, and the sink nodes

are labeled with the value of the Boolean formula for that assignment.

We want to reduce the size of this OBDD. Define an equivalence re-

lation on the set of nodes, where u, v are equivalent if they represent

the same Boolean formula, Fu = Fv. To reduce the size of the OBDD,

we merge all equivalent nodes into one: this operation is well defined,

because whenever two nodes u, v are equivalent, then their 0-children

are also equivalent, and so are their 1-children. The resulting OBDD is
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called the reduced OBDD, or the canonical OBDD for the given vari-

able order Π. Reducing an OBDD to obtain the reduced (canonical)

OBDD is a process similar to minimizing a deterministic automaton.

Notice that checking formula equivalence Fu = Fv is co-NP complete,

and therefore reducing an OBDD is not an effective procedure. While

for theoretical analysis we always assume that a Π-OBDD is reduced,

in practice systems use some heuristics with false negatives for the

equivalence test, resulting in an OBDD that is not fully reduced.

If every path reads all n variables (in the order Π) then we call the

OBDD complete. The OBDD can then be partitioned into layers, where

layer i reads the variable XΠ−1(i) and both its children belong to layer

i + 1. Notice that a canonical OBDD is not necessarily layered, since

edges may skip layers. Every OBDD can be converted into a complete

OBDD by introducing dummy test nodes at skipped layers, with at

most a factor n increase in the size. The width of a complete OBDD is

the largest number of nodes at each layer. The number of nodes in the

OBDD is ≤ nw, where n is the number of Boolean variables and w is

the width.

An important property of complete OBDDs, which we will use for

query compilation, is that one can synthesize an OBDD for a Boolean

formula F = F1 op F2 from OBDDs for its sub-formulas, where op

is one of ∨ or ∧. Let F1,F2 be complete Π-OBDDs computing F1, F2,

and let w1, w2 be their widths. We construct a Π-OBDD F for F =

F1 op F2, with a width at most w1w2, as follows. The nodes of F are

all pairs (u, v) where u and v are two nodes at the same layer i of F1

and F2 respectively. The 0-child and 1-child of (u, v) are (u0, v0) and

(u1, v1) respectively, where u0, u1 are the children of u in F1 and v0, v1

are the children of v in F2. Since both F1 and F2 are complete, all

nodes u0, u1, v0, v1 are at the same layer i + 1, hence the construction

is well defined. The root of F is (r1, r2), where r1, r2 are the roots of

F1,F2, and the sink nodes of F will be pairs (u, v) where u, v are sink

nodes of F1 or F2 respectively, and its label is u op v. For example,

if we want to compute F1 ∨ F2, then we obtain 4 kind of sink nodes:

(0, 0), (0, 1), (1, 0), (1, 1). The first becomes a 0-sink in F , the last three

become 1-sinks.
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Given a Boolean formula F , our goal is to find a variable order Π

for which the reduced Π-OBDD is smallest. In general, finding the op-

timal order Π is NP-complete, but, as we will show, when the formula

is the lineage of a query then an efficient order can easily be found, or

determine that none exists.

Read-Once Formulas A read-once Boolean expression is an ex-

pression where each Boolean variable occurs only once. In this paper

we restrict read-once expressions to use only the operators ∧,∨,¬; we

do not allow xor or ⇔. Like the previous compilation targets, read-

once expressions have the property that their probability can be com-

puted in linear time in the size of the formula, using two simple rules

P(F1∧F2) = P(F1)P(F2) and P(¬F ) = 1−P(F ) (we use de Morgan’s

laws to we express ∨ in terms of ¬ and ∧), and this justifies our inter-

est in read-once expressions. However, they do not strictly speaking

form a compilation target, since not every Boolean formula F can be

written as a read-once formula. When F can be written as a read-once

expression, then we call it a read-once formula.

Every read-once formula F with n variables admits an OBDD with

≤ n internal nodes. Indeed, let Π be the order in the variables are listed

on the leaves of the read-once expression for F . Then the Π-OBDD for

F can be obtained inductively on the structure of F . If F = F1 ∧ F2

then the order Π is the concatenation of the orders of the variables in

F1 and F2 (which are disjoint sets, by assumption). The OBDD for F

is obtained by re-routing the 1-sink node of F1 to the root node of F2.

Contrast this to the earlier construction for synthesizing and OBDD

for F1 ∧ F2 from two Π-OBBDD’s for F1, F2; here F1, F2 have disjoint

sets of variables, and the construction is much simpler. Similarly, the

OBDD for F1 ∨ F2 is obtained by re-routing the 0-sink node of the

OBDD for F1 to the root node of F2. Finally, an OBDD for ¬F1 is ob-

tained from an OBDD for F1 by switching the 0- and 1-sink nodes.

Thus, the OBDD for any read-once formula has linear size. This con-

struction breaks if the read-once formula uses xor or ⇔, see Wegener

[2000].



298 Query Compilation

DNNFs and Variants Darwiche [2001] introduced Deterministic De-

composable Negation Normal Forms, or d-DNNF’s. A d-DNNF is a

rooted DAG where the leaves are labeled with Boolean variables, and

the internal nodes are labeled with ∧,∨,¬. There are three restric-

tions on the circuit. First all negations are pushed down to the leaves,

hence the term negation normal form, NNF. Second, the subtrees of a

∧ node have disjoint sets of variables, in which case we say that the

node is decomposable, hence the D in DNNF. Finally, the children of a ∨

node define mutually exclusive expressions: if u, v are two such chil-

dren denoting the formulas Fu, Fv respectively, then Fu ∧ Fv ≡ false:

then the node is called deterministic, hence the d in d-DNNF. Given

a d-DNNF for a Boolean formula F , one can compute the probabil-

ity of F in linear time in the size of the d-DNNF. Notice that a d-

DNNF is not effectively checkable: checking if a ∨ node is determinis-

tic is coNP-hard. Huang and Darwiche [2005] introduced a restricted

class, called decision-DNNF, where each ∨ node must be of the form

[(¬X) ∧ F ] ∨ [X ∧G]. In effect, a ∨ nodes is similar to a decision node

of an FBDD: it checks the variableX and returns either the left child F

or the right child G. A Decision-DNNF can be checked effectively. Al-

though Decision-DNNF’s were defined as a restriction on d-DNNFs,

we prefer to define them as an extension of FBDDs.

We define a Decision-DNNF to be an FBDD extended with a new

kind of node, ∧, such that for every ∧-node with children u and v, the

subtrees rooted at u and v have disjoint sets of variables. Figure 5.1b

illustrates a simple Decision-DNNF. The probability of a Boolean for-

mula is computable in linear time in the size of the Decision-DNNF,

using simple dynamic programming. For a decision node u with chil-

dren u0, u1:

Fu =(1 − p(X)) · P(Fu0) + p(X) · P(Fu1).

For an AND node u with children v, w:

Fu =P(Fv) · P(Fw).

Finally, Darwiche [2011] introduces another restriction of d-

DNNF’s, called Sentential Decision Diagrams, SDD, which impose two

restrictions on d-DNNFs. First, every internal node is of the form:
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(G0 ∧F0) ∨ (G1 ∧F1) ∨ · · · such that all Gi are mutually exclusive and

exhaustive. That is, Gi ∧ Gj ≡ false, for all i 6= j and
∨

iGi ≡ true.

Hence, the node has 2k children, corresponding to the expressions

G0, F0, G1, F1, etc. Second, variables are traversed in a fixed order, in

the following sense. Let Π be a binary tree whose leaves are labeled

with the variables X of the Boolean expression: Π is called a v-tree.

An SDD is called a Π-SDD if, either:

1. Π is a single leaf node representing the variable X and the SDD

is a literal of X or a constant, or,

2. denoting Π1,Π2 the two subtrees of Π’s root node, the children

G0, G1, . . . of the SDD’s root node are Π1-SDDs, and the children

F0, F1, . . . are Π2-SDDs.

Any SDD is required to be a Π-SDD for some v-tree Π. SDDs naturally

generalize OBDDs: an OBDD is a special case of an SDD where each

internal node has the form (¬X) ∧ F0 ∨ X ∧ F1, and the v-tree Π is a

right-deep linear tree, corresponding to a linear order of the variables.

The trace of a DPLL Algorithm Recall from §3.4 that today’s exact

model counting algorithm are based on the DPLL family of algorithm.

Huang and Darwiche [2005] observed that the trace of any DPLL al-

gorithm is a compilation target. More precisely:

• The trace of the basic DPLL algorithm is a complete binary deci-

sion diagram (complete binary tree).

• The trace of a DPLL algorithm with caching and static variable

order is an OBDD.

• The trace of a DPLL algorithm with caching and dynamic vari-

able order is an FBDD.

• The trace of a DPLL algorithm with caching, dynamic variable

order, and components, is a Decision-DNNF.
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Indeed, a Shannon expansion step corresponds to constructing a

decision node. Caching, and reusing values from the cache, corre-

sponds to sharing nodes in a DAG. Changing dynamically the vari-

able to expand corresponds to different variable orders in the FBDD.

And, finally, the “components” extension of the DPLL algorithm cor-

responds to a decomposable ∧ in a Decision-DNNF.

5.2 Compiling UCQ

Query compilation for some query Q means first computing the lineage

FQ,n of the query on the domain [n], then compiling FQ,n into one of

the compilation targets described in the previous section. The main

problem that we study is the size of the resulting compilation, as a

function of the domain size n. If this size is large, e.g. exponential in

n, then any DPLL-based algorithm whose trace is that type of com-

pilation will also run in exponential time. If the size is small, then in

most cases it turns out that we can also design a specialized DPLL

algorithm to compute the query with that running time.

We will present several lower and upper bounds for the com-

pilation size. Most of these results were presented for Unions of

Conjunctive Queries (UCQ), but they carry over immediately to

Unate First Order Logic with a single type of quantifiers (∃ or ∀),

similarly to Chapter 4. To keep the discussion simple, we present

these results in the context of Unions of Conjunctive Queries. Recall

that we denoted FO∃,∨,∧ the positive, existential fragment of FO.

FO∃,∨,∧ is equivalent to Boolean UCQ queries, which are usually

written as a disjunction of conjunctive queries
∨

mQm. The conversion

from FO∃,∨,∧ to an expression of the form
∨

mQm may lead to an

exponential blowup in size, but this is of no concern to us, since we

only study the data complexity, and for that purpose the query is

treated as a constant. In this chapter we will use FO∃,∨,∧ and UCQ

interchangeably, with some abuse.
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5.2.1 Query Compilation to Read-Once Formulas

Recall that we defined hierarchical queries in §4.3. We give here an al-

ternative, equivalent definition [Suciu et al., 2011, pp.72]. An expres-

sion in FO∃,∨,∧ is called hierarchical if for any existentially quanti-

fied sub-expression ∃xQ, the variable x occurs in all atoms in Q. A

UCQ query is called hierarchical if it is equivalent to a hierarchical

expressions. The reader may check that, for FO∃,∨,∧, this definition

is equivalent1 to Def. 4.3. For example, we have argued in §4.3 that

∃x∃y(R(x) ∧ S(x, y)) is hierarchical: it is not a hierarchical expression

according to our new definition, but it is equivalent to the hierarchical

expression ∃x(R(x) ∧ ∃yS(x, y)). An expression in FO∃,∨,∧ is called

non-repeating if every relational symbol occurs at most once.

The following gives a complete characterization of UCQ queries

that have read-once lineages:

Theorem 5.1. Jha and Suciu [2013] Let Q be a UCQ query. Then the

following conditions are equivalent.

• Q is equivalent to an expression that is both hierarchical and

non-repeating.

• For every n ≥ 0, the lineage FQ,n is a read-once Boolean formula.

The proof in one direction is straightforward: if Q is an expression

that is both hierarchical and non-repeating, then its lineage expression

as defined in §3.3 is also read-once: we need the non-repeating prop-

erty to ensure that FQ1,n ∨ FQ2,n and FQ1,n ∧ FQ2,n are read-once, and

we use the hierarchy property to ensure that
∨

i∈[n] FQ[i/x],n is read-

once. The proof in the other direction is rather technical, see Jha and

Suciu [2013]: it shows that if the lineage FQ,n over a domain of size

n = Ω(km) is read-once, then it can be converted into a hierarchical,

non-repeating expression for Q; here m is the maximum arity of all

relational symbols, and k the number of variables plus number of re-

lational symbols in Q.

1The two definitions do not agree for FO. For example ∃x∀y(R(y) ∧ S(x, y)) is
hierarchical according to Def. 4.3, but we cannot push ∃x past ∀y.
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Recall that the class of conjunctive queries is the same as FO∃,∧.

Any conjunctive query that is hierarchical by Def. 4.3 admits a hier-

archical expression by simply pushing ∃-quantifiers down. Moreover,

a conjunctive query without self-joins is trivially non-repeating. This

implies:

Corollary 5.2. Olteanu and Huang [2008] Let Q be a conjunctive

query without self-joins. Then Q is hierarchical iff for every n ≥ 0,

the lineage FQ,n is a read-once Boolean formula.

We illustrate with several examples.

Consider the query expression Q = ∃x(R(x) ∧ ∃yS(x, y)), which is

both hierarchical and non-repeating. The lineage expression is:

R(1) ∧ (S(1, 1) ∨ S(1, 2) ∨ · · · ) ∨R(2) ∧ (S(2, 1) ∨ · · · ) ∨ · · ·

and is obviously read-once.

Next, we consider two queries that we have seen in §4.4 can be

computed in PTIME. We start with:

Q =∃x∃y(R(x) ∧ S(x, y)) ∨ ∃u∃v(T (u) ∧ S(u, v))

Its lineage is always read-once because it is equivalent to the following

expression that is both hierarchical and non-repeating:

Q =∃x[(R(x) ∨ T (x)) ∧ ∃yS(x, y)]

The second query is:

Q =∃x∃y∃u∃v(R(x) ∧ S(x, y) ∧ T (u) ∧ S(u, v))

While this query is hierarchical, it cannot be written without repeat-

ing the symbol S, hence its lineage is not always read-once: we invite

the reader to check that the lineage FQ,3 is not read-one by the char-

acterization of read-once Boolean formulas described by Golumbic

et al. [2006]. This shows that liftable queries are not restricted to those

whose lineage is read-once.

We end this section with a discussion on the subtle requirement

that the expression for Q needs to be simultaneously hierarchical and
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non-repeating to guarantee read-onceness. It is insufficient to find sep-

arately a hierarchical and a read-once expression for Q. For example,

consider the query H1:

H1 =∃x0∃y0R(x0) ∧ S(x0, y0) ∨ ∃x1∃y1S(x1, y1) ∧ T (y1)

The following two equivalent expressions are hierarchical and non-

repeating respectively, but none has both properties:

H1 ≡∃x0(R(x0) ∧ ∃y0S(x0, y0)) ∨ ∃y1(∃x1(S(x1, y1)) ∨ T (y1))

H1 ≡∃x∃y(S(x, y) ∧ (R(x) ∨ T (y)))

Computing the probability of H1 is #P-hard, so obviously its lineage

cannot be read-once. This leads to the question whether such coun-

terexamples are restricted to #P-hard queries. The answer is negative:

the following two expressions [Suciu et al., 2011, pp.112] are equiva-

lent, one is hierarchical, the other is non-repeating, the query is liftable

(hence computable in polynomial time), yet is lineage is not read-once:

Q ≡∃x1∃y1(A(x1) ∧B(x1) ∧ C(y1) ∧ F (y1))

∨ ∃x2∃y2(A(x2) ∧D(x2) ∧ E(y2) ∧ F (y2))

Q ≡∃x∃y[(A(x) ∧ ((B(x) ∧ C(y)) ∨ (D(x) ∧ E(y))) ∧ F (y2))]

We invite the reader to prove that every query over a unary vocabu-

lary is liftable using the inference rules in §4.2; this proves that Q is

liftable. To prove that its lineage is not read-once in general, it suffices

to check that the primal graph of the lineage FQ,2 has an induced P4

path (see Golumbic et al. [2006]).

5.2.2 Query Compilation to polynomial size OBDDs

UCQ Queries with a polynomial size OBDD can be fully character-

ized syntactically, using a syntactic property called inversion. Let Q

be a UCQ query expression. We assume in this section that the query

Q is shattered and ranked, see Def. 4.4; the results in this section ap-

ply immediately to arbitrary UCQ, because shattering and ranking

(Lemma 4.3) do not affect the lineage.
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Consider an FO∃,∨,∧ expression Q, and let A be an atom in Q. The

context of A is the sequence of existentially quantified variables pre-

ceding A, and we denote it with ∃x1∃x2 · · · ∃xk. The order matters, i.e.

the context consists of the order in which the existential quantifiers

were introduced. Notice that if Q is a hierarchical expression, then the

atom A must contain all variables in the context.

Definition 5.1. [Suciu et al., 2011, pp.112] A query expression Q in

FO∃,∨,∧ is called inversion-free if the following holds. For any rela-

tional symbol R of arity k there exists a permuation πR on [k] such

that, for every atom A of Q that refers to the symbol R, the context

of A consists of exactly k variables, ∃x1∃x2 · · · ∃xk, and the atom is

A = R(xπR(1), xπR(2), . . . , xπR(k)).

A query is inversion-free if it is equivalent to an inversion-free ex-

pression.

An inversion-free expression is, in particular, a hierarchical expres-

sion; moreover, it requires that atoms referring to the same relational

symbol use the variables in their context in the same order. For exam-

ple consider the following two queries:

Q = ∃x1(R(x1) ∧ ∃y1S(x1, y1)) ∨ ∃x2(∃y2S(x2, y2) ∨ T (x2))

H1 = ∃x1(R(x1) ∧ ∃y1S(x1, y1)) ∨ ∃y2(∃x2S(x2, y2) ∨ T (y2))

The first query is inversion free, because in both atoms S the variables

occur in the same order as the existential quantifiers that introduced

them: ∃x1∃y1S(x1, y1) and ∃x2∃y2S(x2, y2). The second query is not

inversion-free because the variables in the two atoms S use reverse

orders relative to the existential quantifiers, i.e. ∃x1∃y1S(x1, y1) and

∃y2∃x2S(x2, y2). We cannot swap the quantifier order ∃y2∃x2 to ∃x2∃y2

because the context for T (y2) consists only of ∃y2. For a more subtle

example, consider the query H2 (introduced in §4.4):

H2 =∃x0R(x0) ∧ ∃y0S1(x0, y0) ∨ ∃x1∃y1S1(x1, y1) ∧ S2(x1, y1)

∨ ∃y2(∃x2S2(x2, y2) ∧ T (y2))

The first occurrence of S1 requires x0 to be introduced before y0, and

therefore in the second occurrence of S1, x1 must be introduced before
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y1 (we cannot swap ∃x1∃y1 for that reason). But that conflicts with

the order required by the second S2, which needs y2 to be introduced

before x2. Hence, H2 too has an inversion. It is easy to check that all

queries Hk, k ≥ 0 in §4.4 have an inversion. On the other hand, every

hierarchical, non-repeating query expression is inversion-free.

We give an equivalent definition of inversion-free queries, perhaps

more intuitive. We will assume that Q is a hierarchical query expres-

sion. Recall from §4.3 that at(x) denotes the set of atoms that con-

tain the variable x. The unification graph of Q is defined as follows.

Its nodes consists of pairs of variables (x, y) that occur in a common

atom. And there is an undirected edge from (x, y) to (x′, y′) if there ex-

ists two atoms containing x, y and x′, y′ respectively, such that the two

atoms can be unified and their most general unifier sets x = x′ and

y = y′. Then an inversion is a path (x0, y0), (x1, y1), . . . , (xk, yk) where

at(x0) ⊃ at(y0) and at(xk) ⊂ at(yk). The length of the inversion is de-

fined as k. (We can assume w.l.o.g. that at(xi) = at(yi) for i = 1, k − 1:

otherwise, if for example at(xi) ⊃ at(yi), then we consider the shorter

inversion from (xi, yi) to (xk, yk).) One can check that the query ex-

pression Q is inversion-free (as defined earlier) iff it has no inversion

(as defined here). For example, every query Hk has an inversion of

length k, namely (x0, y0), (x1, y1), · · · , (xk, yk).

Fix a domain size n, and recall that Tup([n]) denotes the set of

ground tuples over the domain [n].

Theorem 5.3. Jha and Suciu [2013] Let Q be a shattered and ranked

UCQ. Then the following hold:

• If Q is inversion free, then for all n there exists an order Π on

Tup[n] such that the reduced Π-OBDD for the lineage FQ,n has

width ≤ 2|Q| = O(1), and size O(nk), where k is the maximum

arity of any relation in Q.

• If Q is a minimal UCQ (§4.4), and has an inversion of length k,

then for all n and for any order Π on Tup[n], the reduced OBDD

of lineage FQ,n has size Ω(k2n/2k).

The theorem thus proves a dichotomy of UCQ queries into those

whose lineage admits a polynomial size OBDD, and, in fact, linear
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in the number of Boolean variables |Tup(n)|, and those for which the

OBDD is exponential in the size of the domain.

Proof. We sketch only the proof of the first item, by showing how

to convert an inversion-free query into an OBDD. We start from an

inversion-free query Q and a domain size n. Recall that the database

schema is R = (R1,R2, . . . ,R`). Consider the set S = {R1, . . . ,R`} ∪ [n]

with the total order R1 < R2 < · · · < R` < 1 < 2 < · · · < n. By

definition, each relational symbol R ∈ R is associated with a permu-

tation πR, and define ρR def
= (πR)−1. We associate each ground tuple

t = R(i1, i2, . . . , ik) ∈ Tup([n]) with the following sequence in S∗:

(iρ(i1), iρ(i2), . . . , iρ(ik),R). Define the order Π on Tup([n]) as the lexi-

cographic order of the corresponding sequences. In other words, if A

is an atom in the query, then we order the ground tuples gr(A) by

their first existential variable, then by their second, and so on; the fact

that the query is inversion-free ensures that there is no conflict in this

ordering, i.e. we get the same order for gr(A′) where A′ is a different

atom that refers to the same relational symbol as A. We claim that the

width of the Π-OBDD for Q is w ≤ 2|Q| = O(1), which implies that the

size of the Π-OBDD isO(|Tup|) = O(nk). We prove the claim by induc-

tion on the sentence Q. If Q is a single ground atom t, then the width

of the complete Π-OBDD is 2 (all levels below t must have two nodes

to remember if twas true or false). IfQ = Q1 ∧Q2 orQ = Q1 ∨Q2 then

we first construct complete OBDDs for Q1, Q2. Since both Q1, Q2 use

the same variable order Π, we can use the OBDD synthesis described

earlier to derive a complete OBDD for Q, whose width is at most the

product of the widths of the two OBDDs. If Q = ∃xQ1, then we first

construct n OBDDs Gi for Q1[i/x], for i = 1, 2, . . . , n. Let T
def
= Tup[n].

Partition T into n sets T = T1 ∪· · ·∪Tn, where Ti consists of all ground

atoms R(i1, . . . , ik) where R ∈ R and iρR(1) = i. Then, for each i, the

lineage of Q1[i/x] uses only Boolean variables from Ti. Moreover, the

order Π places all tuples in Ti before those in Tj , forall i < j. There-

fore, we can construct an Π-OBDD for
∨

FQ1[i/x],n as follows: take the

union of all OBDDs G1, . . . , Gn, reroute the 0-sink node of Gi−1 to the

root note of Gi. The resulting Π-OBDD is not complete yet, because
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the 1-sink node of Gi−1 stops early, skipping all levels in the OBDDs

Gi, . . . , Gn. We complete the OBDD (since we need the OBDD to be

complete at each step of the induction) by introducing one new node

wi,j for each layer j of each Gi, i > 1. The 1-sink node of Gi−1, i < n

will be re-routed towi,1; both the 0-child and 1-child ofwi,j arewi,j+1 if

j is not the last layer ofGi, or both are wi+1,1 if i < n, or both are the 1-

sink node otherwise. The new nodes increase the width only by 1.

Thus, inversion-free queries prescribe a simple order on the

Boolean variables: simply order the attributes of each relation R ac-

cording to (πR)−1, then order its grounded tuples lexicographically.

For example, if the query is ∃x∃yR(x) ∧ S(x, y) then we order S in

row-major order: S(1, 1), S(1, 2), . . . , S(2, 1), S(2, 2), . . . On the other

hand, for the query ∃x∃yS(x, y)∧T (y) we order them in column-major

order, S(1, 1), S(2, 1), . . . , S(1, 2), S(2, 2), . . . If the query has an inver-

sion, then there is a conflict between the different orderings, and we

have no good choice for the order Π: an OBDD will be exponentially

large.

Beame and Liew [2015] have recently extended Theorem 5.3 from

OBDDs to SDDs. The first item of the theorem immediately applies to

SDDs, since every OBDD is also an SDD. Beame and Liew [2015] ex-

tended the second bullet to SDDs, by showing that, if a query has an

inversion, then its SDD is exponentially large. Thus, although SDDs

were designed specifically to have increased expressive power over

OBDDs, when restricted to Unions of Conjunctive Queries, they are

effectively the same. Bova [2016] has shown that SDD can be expo-

nentially more concise than OBDDs on the generalized hidden bit class

of Boolean formulas. The study of the expressive power of SDDs com-

pared to OBDDs and FBDDs is an active area of research.

5.2.3 Query Compilation to polynomial size FBDDs

There are known examples of UCQ queries whose FBDDs have size

polynomial in the input domain, and there are known examples of

queries whose FBDDs are exponential. We will illustrate both. The ex-

act separation between them is open.
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Consider the following query:

Q =∃x1∃y1(R(x1) ∧ S(x1, y1)) ∨ ∃x2∃y2(S(x2, y2) ∧ T (y2))

∨ ∃x3∃y3(R(x3) ∧ T (y3))

We invite the reader to check that P(Q) can be computed in PTIME

using the lifted inference rules in §4.2. On the other hand, the minimal

OBDD for its lineage has exponential size, by Theorem 5.3, because the

query has an inversion from (x1, y1) to (x2, y2). Intuitively, the reason

why any OBDD is exponentially large is the conflict between the need

to read the variables S(i, j) in row-major order in order to compute

∃x1∃y1(R(x1)∧S(x1, y1)), and the need to read them in column-major

order to compute ∃x2∃y2(S(x1, y1) ∧ T (y1)).

Surprisingly, the query has an FBDD whose size is polynomial in

the number of Boolean variables2. The FBDD starts by testing R(1). If

R(1) = true, then the query simplifies to:

Q|R(1)=true =∃x1∃y1(R(x1) ∧ S(x1, y1))|R(1)=true

∨ ∃x2∃y2(S(x2, y2) ∧ T (y2)) ∨ ∃y3T (y3)

=∃x1∃y1(R(x1) ∧ S(x1, y1))|R(1)=true ∨ ∃y3T (y3)

because the sentence ∃x2∃y2(S(x2, y2) ∧ T (y2)) logically implies

∃y3T (y3) and therefore is redundant. Thus, on this branch the residual

query is inversion-free, and we can compute it with an OBDD by or-

dering the atoms S in row-major order. On the branch R(1) = false,

we test R(2). If R(2) = true then the query simplifies to:

Q|R(1)=false,R(2)=true =∃x1∃y1(R(x1) ∧ S(x1, y1))|R(1)=false,R(2)=true

∨ ∃y3T (y3)

which, again, is inversion-free and can be computed by traversing S in

row-major order. Thus, the FBDD will consists of a union of nOBDDs,

one for each branch R(1) = · · · = R(i − 1) = false, R(i) = true,

where it computes an inversion-free query. We are left with the branch

R(1) = · · · = R(n) = false, and here the residual query is:

Q|R(1)=···=R(n)=false =∃x2∃y2(S(x2, y2) ∧ T (y2))

2The size can be reduced to be linear in the number of Boolean variables.
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This, too, is inversion-free, and we can compute it with an OBDD by

ordering the atoms S in column-major order. Since each of the n + 1

OBDDs used in the construction has size O(n2), the total size of the

FBDD is O(n3). Notice that the FBDD uses different orders for the

atoms S(i, j) on different branches: row-major on some branches, and

column major on other branches.

Next, we describe an interesting class of queries that have been

shown to require exponential size. Recall that Hk is the union of the

following conjunctive queries:

Hk0 =∃x0∃y0(R(x0) ∧ S1(x0, y0))

Hk1 =∃x1∃y1(S1(x1, y1) ∧ S2(x1, y1))

. . .

Hkk =∃xk∃yk(Sk(xk, yk) ∧ T (yk))

Theorem 5.4. Beame et al. [2014, 2017] (1) Any FBDD for Hk has

≥ (2n − 1)/n nodes, where n is the size of the domain. (2) Let

F (Z0, Z1, . . . , Zk) be any monotone Boolean formula that depends

on all variables Zi, i = 0, k. Then any FBDD for the query Q =

F (Hk0, Hk1, . . . ,Hkk) has size 2Ω(n).

Recall that the number of Boolean variables in the lineage of Hk

is 2n + kn2 = O(n2); part (1) of the theorem says essentially that any

FBDD for Hk has size exponential in the square root of the number of

variables.

Part (2) of the theorem is the interesting piece, because it allows us

to combine the queries Hk0, . . . ,Hkk in any ways, as long as we use

every sub-query Hki. Notice that, if we don’t use some sub-query Hki,

then F (Hk0, Hk1, . . . ,Hkk) is inversion-free, hence it has an OBDD of

linear size, so we must use every sub-query to generate queriesQwith

exponential-size FBDDs. For example, part (2) immediately implies

part (1), since Hk is a ∨-combination, Hk = Hk0 ∨ · · · ∨Hkk, but Hk is

not very interesting since we already know that computing P(Hk) is

#P-hard. An interesting query is:

QW =(H30 ∨H32) ∧ (H30 ∨H33) ∧ (H31 ∨H33) (5.2)
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The theorem implies that any FBDD for QW is exponential in the size

of the domain. However, QW can be computed in PTIME using lifted

inference, by applying the inclusion/exclusion formula:

P(QW ) =P(H30 ∨H32) + P(H30 ∨H33) + P(H31 ∨H33)

− P(H30 ∨H32 ∨H33) − P(H30 ∨H31 ∨H33)

− P(H30 ∨H31 ∨H32 ∨H33)

+ P(H30 ∨H31 ∨H32 ∨H33)

=P(H30 ∨H32) + P(H30 ∨H33) + P(H31 ∨H33)

− P(H30 ∨H32 ∨H33) − P(H30 ∨H31 ∨H33)

The two terms containing the #P-hard expression H3 = H30 ∨ H31 ∨

H32∨H33 canceled out, and we are left with five inversion-free queries.

Each can be computed in PTIME (and, in fact, each has a linear-size

OBDD).

5.2.4 Query Compilation to polynomial size Decision-DNNFs

Beame et al. [2013, 2017] have shown a general result proving that

Decision-DNNF’s are not much more powerful than FBDDs:

Theorem 5.5. Beame et al. [2013, 2017] IfG is a Decision-DNNF with

N nodes computing a Boolean formula F , then there exists an FBDD

G′ with at most N2log2 N nodes computing the same formula.

In other words, for any Decision-DNNF withN nodes we can con-

struct an equivalent FBDD with ≈ N log N nodes: this expression is

called a quasi polynomial, because it increases slightly faster than any

polynomial, but not exponentially fast.

Recall that Decision-DNNFs and FBDDs are traces of DPLL algo-

rithm with and without components. Then, the theorem implies im-

mediately a lower bounds on the runtime of any DPLL algorithm with

components:

Proposition 5.1. Any DPLL-based algorithm for model counting

takes 2Ω(n1/2) steps when applied to the lineage of the query QW in

Equation 5.2.
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Proof. Suppose the algorithm takes N steps. Then we obtain a

Decision-DNNF with N nodes. By Theorem 5.5, we also obtain an

FBDD of size ≤ 2log N+log2 N , which, by Theorem 5.4, is 2Ω(n). Thus,

log2N = Ω(n), proving the claim.

Thus, for some the query QW lifted inference is exponen-

tially faster than grounding followed by a DBPLL-based algorithm.

The query QW is not unique with this property. Beame et al.

[2013, 2017] describe an entire class of queries, namely any query

F (Hk0, Hk1, . . . ,Hkk) where F is a positive Boolean formula, whose

lattice L consisting of all its implicates and false has the property

µL(0̂, 1̂) = 0, where µL is the Möbius function µL on L, and 0̂, 1̂ are the

minimal and maximal elements of L (in particular 0̂ is Hk0 ∨ · · · ∨Hkk

and 1̂ is false); we refer the reader to Stanley [1997] for the defini-

tion of the lattice-theoretic notions, and to Beame et al. [2013, 2017]

for the details of the class of queries separating lifted inference from

grounded inference.

5.3 Compilation Beyond UCQ

We briefly review compilation approaches that go beyond UCQ

queries on tuple-independent probabilistic databases.

Probabilistic Graphical Models Knowledge compilation is an ef-

fective way of performing inference in a variety of probabilistic mod-

els. For example, weighted model counting encodings of probabilistic

graphical models are compiled into d-DNNF [Chavira and Darwiche,

2005] or SDD [Choi et al., 2013] to simplify the development of solvers,

and amortize the cost of inference for multiple online queries over a

single offline compilation step.

Probabilistic Logic Programs and Datalog The compilation ap-

proach to inference has been particularly popular within probabilistic

logic programming. De Raedt et al. [2007] and Riguzzi [2007] compile

ProbLog and LPADs into OBDDs. Fierens et al. [2015] propose to com-

pile into the more succinct d-DNNF representation instead. While this
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can yield exponentially smaller circuits, d-DNNF compilers require

CNF sentences as input, necessitating an initial expensive reduction

from logic programs to CNFs in propositional logic. To avoid this in-

termediate CNF representation, Vlasselaer et al. [2015] augment the

iterative semi-naive evaluation strategy for datalog to incrementally

compile an SDD circuit. This enables the compilation of significantly

larger probabilistic datalog programs. Finally, Renkens et al. [2012,

2014] study the approximate compilation problem: from a probabilis-

tic logic program, how to find a CNF that can easily be compiled into

an efficient circuit, and whose weighted model count provides a tight

lower bound on the query probability.

First-Order Circuits The compilation approaches discussed so far

all start from a first-order description (the query) to compile a propo-

sitional logic circuit. Van den Broeck et al. [2011] and Van den Broeck

[2013] instead define a first-order d-DNNF circuit language that per-

mits efficient first-order model counting. Statistical relational models

such as MLNs and parfactors (§2.7.2) are turned into these circuits

through a process of first-order knowledge compilation. This compila-

tion process can be thought of as a lifted query plan [Gribkoff et al.,

2014b], keeping a trace of the execution of the lifted query evalua-

tion algorithm (§4.2) with additional compilation rules for symmet-

ric databases (§4.6). By grounding a first-order d-DNNF for a given

domain, one obtains a classical d-DNNF circuit. The size of the first-

order d-DNNF is independent of the domain size, and is compact even

for some queries that have no compact classical d-DNNF [Van den

Broeck, 2015].
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Data, Systems, and Applications

To conclude, we list several probabilistic datasets, systems, and appli-

cations that embody some of the ideas presented in this survey.

6.1 Probabilistic Data

Several large datasets have been reported in the literature that are an-

notated with probabilistic values. We describe some of them below,

and summarize them in Table 6.1.

NELL The Never-Ending Language Learning (NELL) project at CMU

described by Carlson et al. [2010], is a research project that aims

to learn over time to read the web. Started in 2010, NELL extracts

facts from text found in hundreds of millions of web pages, and im-

proves its reading competence over time. The facts, called “beliefs”,

are records whose main four attributes are (entity, relation, value, con-

fidence); the records have several other attributes storing meta data

(the source webpage, the actual string that produced the extraction,

etc). Currently, NELL reports 50M tuples (beliefs).

313
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Name URL Number
of tuples

Notes

NELL http://rtw.ml.cmu.edu/rtw/ 50M
Probase https://concept.research.

microsoft.com/Home/Download

85M IsA relations

Knowledge
Vault

https://en.wikipedia.org/wiki/

Knowledge_Vault

1.6B - 3B Not publicly
available

Yago http://www.mpi-inf.mpg.de/

departments/databases-and-

information-systems/research/

yago-naga/yago/

120M Probabilities
are not pub-
licly available

ReVerb http://reverb.cs.washington.edu/ 15M only p > 0.9

Table 6.1: Some probabilistic datasets reported in the literature

Probase Microsoft’s Probase reported in Wu et al. [2012], is a uni-

versal, general-purpose, probabilistic taxonomy, automatically con-

structed from a corpus of 1.6 billion web pages. It uses an iterative

learning algorithm to extract isA pairs from web text. For example,

Probase contains the triples (apple, isA, fruit), (apple, isA, company),

(tree, isA, plant), and (steam turbine, isA, plant). The database as-

sociates two probabilities to each triple. The first is the plausibility,

which is the probability that the triple exists, quite similar to a tuple-

independent database. Then second is typicality, which corresponds to

a conditional probability. Typicality is defined in both direction: for a

given concept how typical is a given instance, and for a given instance

how typical is the concept; each corresponds to a BID table. Probase

now forms the Microsoft Concept graph; only a small subset of the

data (without probabilities) is available for download.

Knowledge Vault Dong et al. [2014] describe Google’s Knowledge

Vault project, or KV for short, which constructs automatically a Web-

scale probabilistic knowledge base using a variety of information ex-

traction sources. Like other knowledge bases, KV stores information

in triple form, (subject, predicate, object, confidence) for example the

following triple represents the statement “Barak Obama was born in

Honolulu”:

</m/02mjmr,

/people/person/place_of_birth /m/02hrh0_ 0.98>
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where /m/02mjmr is the ID for Barak Obama and /m/02hrh0_ is the

ID for Honolulu, while 0.98 is a probability representing the system’s

confidence in the triple1.

The Knowledge Vault combines noisy extractions from the Web

with prior knowledge derived from other knowledge bases. The size

of KV was reported at 1.6 billion triples by Dong et al. [2014], and

has since almost doubled in size. There are about 50M entities, and

a few thousands relation types. The data is proprietary and to our

knowledge has not been made publicly available.

Yago Yago is a project developed at MPI that consists of a large on-

tology automatically extracted from the Web, see e.g. the latest survey

by Hoffart et al. [2013]. The ontology is automatically derived from

Wikipedia WordNet and GeoNames, and currently has 10 million enti-

ties and more than 120 million facts (triples). While the publicly avail-

able data is determinstic, it is reported to us by Martin Theobald that

intermediate stages of the system has data annotated with confidence

values, expressed as probabilities.

Reverb Reverb is reported in Fader et al. [2011] and contains

15 million binary assertions from the Web. The data is available

for download from the ReVerb homepage at http://reverb.

cs.washington.edu/, and is now included in OpenIE http://

openie.allenai.org/. The available dataset in ReVerb contains

only extractions with a confidence value > 0.9.

6.2 Probabilistic Database Systems

Several probabilistic database systems have been reported in the liter-

ature. All systems faced the fundamental challenge of reconciling the

inherent computational complexity of probabilistic inference, with the

expectation on any database system to scale up to very large data sets;

perhaps for that reason, no commercial, general purpose probabilistic

database system exists to date.

1The actual confidence of this triple is not reported in Dong et al. [2014].
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Trio The Trio system described by Benjelloun et al. [2006a] manages

incomplete and probabilistic databases based on maybe-tuples, X-

tuples, and lineage expressions. For query evaluation the system com-

putes the query’s lineage then uses an internally developed DPLL-

based weighted model counter to compute the probability.

MayBMS MayBMS is a probabilistic database system described

by Antova et al. [2007] and is available for download at http:

//maybms.sourceforge.net/. MayBMS is a modified postgres

system that supports tuple-independent probabilistic relations with

a confidence attribute and computes output probabilities for SQL

queries. The probabilistic inference is done either using safe plans

(when possible) or by performing weighted model counting using a

DPLL-based algorithm.

MystiQ MystiQ is a probabilistic database system described by Ré

and Suciu [2008], which supports tuple independent and BID rela-

tions. MystiQ is a lightweight interface connecting to postgres. It ac-

cepts SQL queries and either converts them to safe plans (expressed in

SQL and run in postgres) or computes the lineage then computes (out-

side the engine) an approximate probability using Karp and Luby’s

FPTRAS.

Alchemy The first implementation of Markov Logic Network de-

scribed by Richardson and Domingos [2006] is Alchemy. Users de-

fine soft and hard constraints, and provide evidence, which are ground

tuples with probability 1. The system computes either the MAP or

marginal probabilities and uses an MCMC algorithm to perform prob-

abilistic inference. Alchemy is implemented entirely from scratch and

does not use any database technology.

Tuffy and DeepDive An implementation of Markov Logic Net-

works that uses a database engine (postgres) to perform the ground-

ing is described by Niu et al. [2011] and is called Tuffy. By using a stan-

dard query engine to perform grounding the authors report speedups
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of orders of magnitude over Alchemy. Tuffy is is available for down-

load at http://i.stanford.edu/hazy/tuffy/download/. It is

now part of the larger DeepDive system [Zhang, 2015].

ProbLog ProbLog is a well-maintained probabilistic logic program-

ming system. It supports datalog queries on probabilistic databases. A

recent overview is described in Fierens et al. [2015]. The probabilities

can also be associated to the rules rather than to the data, and ProbLog

allows recursive queries. For example, the following ProbLog rule

fires only with probability 0.3:

0.3::smoker(Y) :- smoker(X), friend(X,Y)

Query evaluation in ProbLog is based on SDDs. First, the system com-

putes the lineage of the query, then the resulting formula is converted

into an SDD; the probability is then computed on the SDD using

standard dynamic programming (see §5.1). ProbLog is available from

https://dtai.cs.kuleuven.be/problog/.

SlimShot SlimShot was introduced by Gribkoff and Suciu [2016] as

a probabilistic database system that combines lifted inference with ap-

proximate weighted model counting based on Monte Carlo simula-

tions. The system takes as input a set of soft constraints (Markov logic

networks) and a query, and evaluates the query by using the reduc-

tion described in §2.6. Then it chooses a set of relation names such

that both numerator and denominator of the conditional probabil-

ity (Equation 2.11) are liftable, and performs collapsed particle sam-

pling on only these relations. The system is available from https:

//github.com/ericgribkoff/slimshot.

ProbKB, ProbKB, described by Chen and Wang [2014], is a proba-

bilistic database system for evaluating massive numbers of soft con-

straints. The system focuses on grounding the soft constraints, by ex-

ploiting the fact that in a large Knowledge Base the number of distinct

rule templates is limited. For example, the 30,000 soft constraints au-

tomatically extracted by the ReVerb project conform to only 7 distinct

templates, which ProbKb can ground by issuing only 7 SQL queries.
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Forclift For lifted inference in symmetric probabilistic databases,

Markov logic networks, and applications to lifted machine learning,

the Forclift system implements algorithms for first-order knowledge

compilation [Van den Broeck, 2013]. The system is available from

https://github.com/UCLA-StarAI/Forclift.

6.3 Applications

Many applications include some form of probabilistic data, but only a

few require query evaluation in the sense described in this survey. We

briefly list here some of the latter.

Knowledge Base Construction (KBC) is the process of populating

a structured relational database from unstructured sources: the sys-

tem reads a large number of documents (Web pages, journal articles,

news stories) and populates a relational database with facts. Shin et al.

[2015] describe DeepDive, a system that uses a declarative mapping

in a language that combines SQL with probabilities, using a seman-

tics similar to Markov Logic Networks. DeepDive performs two ma-

jor tasks. First, grounding, evaluates a large number of SQL queries to

produce a large database called a factor graph. Second, inference, runs

a large MCMC simulation on the factor graph. DeepDive is reported

to take hours on a 1TB RAM/48-core machine to perform the proba-

bilistic inference based on MCMC.

Inferring Missing Facts Several research projects have been de-

veloped to learn rules that can be used to infer more knowledge.

Fader et al. [2011] describe SHERLOCK, a system that infers over

30,000 Horn clauses automatically from ground facts previously de-

rived from Web text, using open information extraction. Learning is

done in an un-supervised, domain-independent manner, based on

techniques developed in the Inductive Logic Programming (ILP) lit-

erature. All 30,000 rules are soft rules, in the sense that they carry a

weight representing the systems confidence in that rule. Coping with

such a large number of rules is a major challenge. For example, just
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grounding 30,000 rules requires running 30,000 SQL queries, which

is prohibitively expensive; as we mentioned earlier, ProbKB, a project

described by Chen and Wang [2014], speeds up grounding by classi-

fying the rules into a small number of templates.

Bootstrapping Approximate Query Processing (AQP) consists of a

suite of techniques to allow interactive data exploration over massive

datasets. The main goal is to trade off query evaluation speed for pre-

cision: users are willing to settle for an approximate answer, if that

answer can be computed at interactive speed. Some well know AQP

systems offering this tradeoff are described by Hellerstein et al. [1997],

Jermaine et al. [2007], Kandula et al. [2016], Agarwal et al. [2013], Ding

et al. [2016]. However, the approximate answers need to be quantified

with confidence intervals, and computing these intervals remains a

major challenge in AQP. Bootstrapping is a classic technique in statis-

tics to compute the confidence intervals, and consists of repeatedly

re-sampling from the sample, with replacement, and observing the

confidence interval of the query answer on the re-samples. However,

the number of re-samples required is rather large, which in turn de-

feats the purpose of AQP of returning answers very quickly. Zeng

et al. [2014] propose an alternative solution to bootstrapping, based

on lifted probabilistic inference. Every tuple t in the sample is asso-

ciated with a numerical random variable Xt ∈ {0, 1, 2, . . .} indicating

how many re-samples selected that tuple. Then, if the query to be com-

puted is liftable, its distribution can be obtained using adaptations of

the lifted inference techniques described in Chapter 4.

Lifted Learning The weights of the soft constraints in a Markov

logic network are typically learned from training data; moreover,

some applications even require the soft rules themselves to be learned

from data, and this is especially challenging given the huge space of

possible theories. The learning task is an iterative process to compute

the maximum likelihood of a model given the data, and the critical

piece of the loop is probabilistic inference, i.e. computing the proba-

bility of the existing data given the current model. Van Haaren et al.
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[2016] describe a system that uses lifted inference for the inner loop

of the learning task. The authors report that the lifted learning algo-

rithm results in more accurate models than several competing approx-

imate approaches. In related work, Jaimovich et al. [2007] and Ahmadi

et al. [2012] speed up Markov logic network parameter learning by

performing approximate lifted message passing inference.

Image Retrieval Zhu et al. [2015] use probabilistic databases for im-

age retrieval within the DeepDive system: given a textual query, such

as “Find photos of me sea kayaking last Halloween in my photo al-

bum”, the task is to show images that fit the description. Probabilistic

databases are particularly suited to answer queries that require joint

reasoning about several (probabilistic) image features and meta-data.

Zhu et al. [2014] learn a more specific MLN knowledge base from im-

ages, in order to reason about object affordances.



7

Conclusions and Open Problems

This survey discussed two recent developments in probabilistic infer-

ence: query evaluation in probabilistic databases, and lifted inference

in statistical relational models. In probabilistic databases the input is

large, defines a simple probabilistic space, but the query generates a

complex model, where probabilistic inference may be challenging. In

statistical relational models, the probabilistic model is usually a large

graphical model, such as a Markov network or a Bayesian network,

which is specified using a much shorter first-order relational repre-

sentation. We have explained why these two models are, essentially,

equivalent, and have discussed the complexity of the probabilistic in-

ference problem under various assumptions.

Probabilistic inference remains a major challenge in Computer Sci-

ence, and is of increasing importance because many algorithms that

process large amounts of data use probabilities to model the uncer-

tainty in that data. For example, probabilistic inference remains the

key technical bottleneck in the automated construction of large knowl-

edge bases. However, large probabilistic models are almost always

generated programatically, from some high level specification, and the

goal of lifted inference is to speedup probabilistic inference by “lift-

321
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ing” it to that high-level specification. We have seen in this survey

recent advances, as well as limitations of lifted inference.

Probabilistic data processing and lifted inference offer a rich set

of open problems, for any Databases or AI researcher interested in

probabilistic inference, or any PhD student looking for a thesis topic.

We mention here just a handful of open problems.

On the theoretical side, one is to study the complexity of approx-

imate lifted inference. We have seen that there exists a query whose

probability is NP-hard to approximate, and we have seen that ev-

ery existentially quantified query admits an FPTRAS. The problem is:

given any query, prove that it either has an FPTRAS or is NP-hard

to approximate. On the other hand, some system do not compute

marginal probabilities, but instead compute the MPD (Most Proba-

ble Database). The user specifies a set of (possibly soft) constraints in

some high level language, and the task is to find the most likely world

that satisfies the constraint. Since computing the MPD is known to

be NP-hard in general, the question is to characterize the constraints

for which the MPD can be computed efficiently. Ideally, in either case,

one wishes to have a dichotomy theorem, but perhaps the dichotomy

could be restricted to a small class of queries. Finally, we mention that

the use of symmetries is still very poorly understood. We lack a gen-

eral characterization of inference complexity over symmetric proba-

bilistic databases, and even the data complexity class for such prob-

lems, #P1, has not been the subject of sufficient study.

On the practical side, integrating the insights described here into

a scalable general-purpose system is an open problem. Such a system

should provide the user with enough modeling power and query ca-

pabilities to enable applications in information extraction, data clean-

ing, relational learning, network mining, etc. At the same time, it

should retain the ability to perform lifted inference and find effective

approximations, even for theoretically hard problems.
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