

2 Journal Title XX(X)

success rates (grasp successes as a fraction of the total

number of grasp attempts) between 75% and 95% for novel

objects presented in isolation or in light clutter (Fischinger

and Vincze 2012; Fischinger et al. 2013; Detry et al. 2013;

Herzog et al. 2012; Kroemer et al. 2012; Kappler et al. 2015;

ten Pas and Platt 2015). Not only are these success rates too

low for practical grasping applications, but the light clutter

scenarios that are evaluated often do not reflect the realities

of real world grasping.

Contributions

This paper describes three algorithmic contributions that

make grasp detection more accurate and easier to apply in

densely cluttered environments:

1. We propose a method for generating grasp hypotheses

that, relative to prior methods (Herzog et al. 2014;

Kappler et al. 2015), does not require a precise

segmentation of the object to be grasped and can

generate hypotheses on any visible surface.

2. We propose a new grasp descriptor that incorporates

surface normals and multiple views. Relative to

previous methods, this method can improve grasp

classification accuracy by approximately 10%.

3. We propose a method of incorporating prior knowl-

edge about object category that can increase grasp

classification accuracy by roughly an additional 2%.

We also provide a systematic evaluation of the new approach

in dense clutter on real robot hardware:

4. We introduce a benchmark task that enables the

experimenter to systematically evaluate grasp success

rates in dense clutter. We use this benchmark to

evaluate multiple ablations of our algorithm on a robot

in our lab.

5. We introduce a new method of measuring grasp

detection performance in terms of recall at a specified

high precision, i.e. performance when the number of

false positives is constrained to be very small.

6. We introduce and evaluate a method of detecting

grasps on a specific object of interest by combining

object and grasp detection.

The contributions above incorporate and extend work

from two prior conference publications (ten Pas and Platt

2015; Gualtieri et al. 2016). In ten Pas and Platt (2015),

we proposed the grasp candidate sampling strategy (Item

#1 above) and used the dense clutter benchmark task (Item

#5 above) for the first time. In Gualtieri et al. (Gualtieri

et al. 2016), we proposed the grasp descriptor (Item #2),

the idea of using prior knowledge about object category to

improve classification accuracy (Item #3), and the recall at

high precision metric (Item #5).

The current paper extends the above work in several

ways. First, we describe the algorithms in more detail.

Second, we add new results that compare our algorithm with

two different ablations: the version of the algorithm where

we eliminate the selection strategy and the version where

we eliminate the classification step (Table 3). Third, we

add additional results evaluating the improvement in grasp

classification accuracy that can result from using category

knowledge (Figure 10 (b)). Fourth, we add runtime results

that quantify how long it takes to run our algorithm in typical

circumstances. Fifth, we propose and evaluate a baseline

method of combining object and grasp detection (Item #6).

Comparison to related work

Grasp detection is distinguished from other approaches to

robot grasping because it attempts to detect local grasp

surfaces directly from sensor data rather than detecting

objects first and then using that information to plan a grasp.

This idea originated with Saxena et al., who developed a

system for using machine learning to detect grasp points in

an image Saxena et al. (2008) given a corpus of hand-labeled

training data.

3DOF Grasp Detection: There are several grasp detection

methods that detect grasps in a three-dimensional space, e.g.

the space of x, y, θ configurations in an image. For example,

Jiang et al. models a graspable geometry as an oriented

rectangle in an RGBD image (Jiang et al. 2011). In order

to perform one of these grasps, the gripper must approach

the grasp target from a direction roughly orthogonal to the

image. Several other approaches fall into this category as

well including (Lenz et al. 2015; Pinto and Gupta 2015;

Redmon and Angelova 2015; Fischinger and Vincze 2012).

In particular, Redmon and Angelova use the same dataset as

Lenz et al. above, but pose grasp detection as a regression

problem and solve it using a convolutional neural network

(CNN) (Redmon and Angelova 2015). Pinto and Gupta’s

work is notable because their training data comes from on-

line experience obtained by the robot during an automated

experience-gathering phase rather than from hand-labeled

grasps (Pinto and Gupta 2015). The work of Fischinger

and Vincze (2012) goes beyond standard 3DOF approaches

by iteratively running a 3DOF grasp detector on a set

of different planes that essentially “view” the scene from

different angles, thereby essentially enabling detection in

6DOF.

Grasp Templates: The prior work perhaps most similar to

the approach proposed here is the template-based approach

of Herzog et al. (2012, 2014). In that work, the object is

roughly segmented from the background and a convex hull

is cast around the segmented points. Grasp candidates are

generated at the center of each facet in the convex hull at

a discrete number of orientations about the approach vector.

Each grasp candidate is associated with a set of nearby points

that are projected onto a plane and labeled as either object,

background, occluded, or void. Kappler et al. (2015) adopt

this approach by using a bounding box around the object

rather than the convex hull and they allow for translations in

addition to rotations on each face (for a total of 16 possible

candidate poses per side of the bounding box). Given grasp

candidates generated this way, these methods encode each

grasp as a single multi-channel image where each pixel

denotes the depth along the approach vector and its category,

i.e. object, background, occluded, void. While our method

contains many similarities to the Herzog/Kappler approaches

as described above, there are a few key differences that

should be highlighted. First, whereas the Herzog/Kappler

method involves segmenting the object from the background

and taking a convex hull or a bounding box around the

Prepared using sagej.cls

ten Pas, Gualtieri, Saenko, and Platt 3

object (see the section on Grasp Heightmaps in Herzog

et al. (2014)), our method does not. Second, whereas those

methods only consider grasp candidates located at the center

of a facet in the bounding box or convex hull, our method

can generate grasp candidates on any visible surface of the

object. Third, whereas those methods encode the grasp using

a heightmap taken from a single perspective, our method

also incorporates surface normals and encodes multiple

viewpoints into a single descriptor. The results in this paper

quantify the relative advantages of points two and three

above.

Grasp representations based on kernel density estima-

tion: Another set of approaches related to the current work

uses kernel representations to encode the local geometry of

object surfaces. For example, Detry et al. (2013) developed

an approach to grasp detection based on searching for local

object surfaces that are similar to one or more members of

a set of grasp prototypes. Similarity is measured in terms of

the inner product between a kernel density estimator over

points on the local object surface and the same estimator

for each of the prototypes. Local object surfaces that are

similar to the grasp prototypes are deemed likely to be good

grasps. Kopicki et al. (2014) use kernel density estimators in

a similar way, but they extend the approach to multifingered

hands. Finally, Kroemer et al. (2012) propose using kernel

density estimators to predict the presence of various types of

manipulation affordances. An key drawback evident in all of

the works cited above (Detry et al. 2013; Kopicki et al. 2014;

Kroemer et al. 2012) is that the approach is computationally

expensive. In order to find a good grasp at test time, the

approach generally requires re-evaluating a similarity metric

expressed over the cross product of points in the prototype

and the candidates. For example, Detry et al. (2013) reports

that it took 18 seconds on average to match a single grasp

prototype against candidates on a single object. In general,

deep learning based methods (such as that proposed here)

that evaluate a neural network once per candidate are much

faster (see our runtime results in the experiments section of

this paper).

Problem Statement

Given a point cloud and a description of the geometry of a

robotic hand, the grasp pose detection problem is to identify

hand configurations from which a grasp would be formed

if the fingers were to close. Let W ⊆ R
3 denote the robot

workspace and let C ⊂ W denote a set of points in the

3-D point cloud perceived by one or more depth sensors

registered to the robot workspace. We assume that each point

in the cloud is paired with at least one viewpoint (camera

location) from which that point was observed, Λ : C → V ,

where V ⊂ R
3 denotes the set of viewpoints. We will refer

to the triple, C = (C,V,Λ), as the viewpoint cloud.

In this paper, we simplify the problem by requiring a two

finger hand or a hand that functions like a two finger hand as

defined below.

Definition 1. (Two Finger Hand). A two finger hand is

one that can be modelled by two contact surfaces that move

toward and away from each other along a one-dimensional

manifold.

A trivial example of a two finger hand is a typical parallel

jaw gripper. Here, contact surfaces on the two grippers are

mechanically constrained to move along a single degree

of freedom. However, the concept is applicable to a more

complex hand such as the Barrett hand where two fingers

close in opposition to the third. The two fingers that oppose

the third can be modeled as a single contact surface, i.e.

a virtual finger (MacKenzie and Iberall 1994). Because we

only allow two finger hands, the 6-DOF pose of the hand

relative to the object is sufficient to calculate the finger

contact locations that will result from closing the hand in a

given pose relative to an object. As a result, it will be possible

to evaluate whether a grasp exists given only the 6-DOF hand

pose.

In order to express the grasp pose detection problem, we

first need to define a grasp. We use the traditional notion

of force closure. A contact configuration is a force closure

grasp when the contact wrenches (i.e. the forces and torques

that can be exerted by the contacts) span the origin. For

a detailed discussion of force closure, see Murray et al.

(1994). It is assumed that the viewpoint cloud encodes partial

and noisy information about a set of N underlying objects,

O = O1, . . . , ON . The problem of grasp pose detection is

to identify force closure grasps in a region of interest, R ⊂
SE(3) ∗, of objects in O by observing only the viewpoint

cloud.

Problem 1. (Grasp pose detection). Given a viewpoint

cloud, C, a region of interest, R ⊂ SE(3), and a two finger

hand, the problem of grasp pose detection is to find one or

more 6-DOF hand poses, h ∈ R, such that a force closure

grasp will be formed with respect to some object, O ∈ O,

when the hand closes.

Overview of the Grasp Pose Detection

Algorithm

Algorithm 1 Grasp Pose Detection

Input: a viewpoint cloud, C; a region of interest, R; a hand,

Θ; a positive integer, N

Output: a set of 6-DOF grasp candidates, H ⊂ R

1: C
′ = PreprocessCloud(C)

2: R = GetROI(C′)
3: S = Sample(C′,R,Θ, N)
4: I = Encode(S,C′,R,Θ)
5: H = Score(I)
6: g = SelectGrasp(S,H)

Our algorithm follows the steps shown in Algorithm 1.

Step 1 preprocesses the viewpoint cloud. Step 2 identifies

a region of interest (ROI), R, where the grasp will occur.

Step 3 samples N (several thousand) grasp candidates from

the ROI where each candidate is a 6-DOF hand pose. Step

4 encodes each grasp candidate as a stacked multi-channel

image. Step 5 assigns each candidate a score using a four-

layer convolutional neural network that indicates how likely

the candidate is to be a grasp. Step 6 selects a grasp for

∗SE(3) = R3
× SO(3) denotes the group of 3D poses.

Prepared using sagej.cls

6 Journal Title XX(X)

in the reference frame of the hand. Our representation is

illustrated in Figure 5. Figure 5(a) shows a grasp candidate

generated with respect to partial point cloud data (from the

BigBird dataset (Singh et al. 2014)). Figure 5(b) shows two

sets of points in R. One set of points, shown in magenta,

shows points in the cloud contained within R. The other set

of points, shown in blue, are sampled from the portion of R

that is unobserved, i.e., that is occluded from view by every

sensor. Currently, we ignore RGB information associated

with the points in the cloud. Notice that this representation

depends both on the geometry of the object surface and on

the perspective from which it is viewed.

Assume the closing region C(h) is scaled to fit inside the

unit cube and the points contained within it are voxelized into

a M ×M ×M grid. For every triple, (x, y, z) ∈ [1,M]×
[1,M]× [1,M], V (x, y, z) ∈ {0, 1} denotes whether the

corresponding voxel is occupied and U(x, y, z) ∈ {0, 1}
denotes whether the corresponding voxel has been observed.

We will further assume that each occupied voxel in C(h)
is associated with a unit, outward-pointing surface normal

vector, n̂(x, y, z) ∈ S2 (S2 denotes the surface of the 2-

sphere), that denotes the orientation of the object surface at

that point. All of the above information can be calculated

either from the point cloud with associated viewpoints or

from a truncated signed distance function.

We want to represent the 3D geometry of the object

surface contained within the closing region. Inspired by Su

et al. (2015), we encode this volume using a multiple view

representation. Specifially, for a hand, h ∈ H , we project

the voxels onto planes orthogonal to the axes of the hand

reference frame, F (h), and pass these to the CNN as input.

Figure 5(b) shows the three directions from which we view

the closing region. The red arrow points along the negative

x axis of F (h). The blue arrow points along the negative

y axis. The green arrow points along the negative z axis.

For each of these three projections, we will calculate three

images: an averaged heightmap of the occupied points, Io,

an averaged heightmap of the unobserved region, Iu, and

(a) (b)

(c) (d) (e)

Figure 5. Grasp representation. (a) A grasp candidate

generated from partial point cloud data. (b) Local voxel grid

frame. (c-e) Examples of grasp images used as input to the

classifier.

averaged surface normals, In. For example, to project onto

the plane constituted by the hand and major curvature axes,

i.e., the (x,y) plane, these maps are calculated as follows:

Io(x, y) =

∑

z∈[1,M] zV (x, y, z)
∑

z∈[1,M] V (x, y, z)

Iu(x, y) =

∑

z∈[1,M] zU(x, y, z)
∑

z∈[1,M] U(x, y, z)

In(x, y) =

∑

z∈[1,M] n̂(x, y, z)V (x, y, z)
∑

z∈[1,M] V (x, y, z)

The first two images, Io and Iu, are M ×M images

(Figure 5 (c,d)). The last image, In(x, y), is a M ×M × 3
image where the three dimensions of the normal vector are

interpreted as three channels in the image (Figure 5 (e)).

Constant scaling and offsets are applied to each of these

images to ensure that all pixel values lie between 0 and

255. In the case of In, we scale the three channels by the

same factor so that the [1,m] interval can encode all possible

unit normal vectors. All together, we have five channels of

information for each of the three projections, for a total of 15

channels.

A Grasp Dataset for Training the CNN

In order to train the grasp detection CNN, a dataset is needed

that pairs grasp candidates with ground truth labels that

denote whether or not the candidate is a force closure grasp.

Since the representation discussed above depends on both the

geometry of the grasp surface and on the perspective from

which it was viewed, the dataset should span both of these

variables – it should contain examples of different graspable

geometries as seen from different viewpoints. For this paper,

we created a dataset of 1.5M exemplars with equal numbers

of positive and negative examples comprised of up to 50k

labeled grasp exemplars for each of 55 objects in the BigBird

dataset (Singh et al. 2014) (out of a total of 125 objects

in BigBird). The 55 objects included 29 box-type objects,

16 cylindrical-type objects, and 10 other objects for which:

1) a complete mesh exists for the object in the dataset; 2)

the object can be grasped by a parallel jaw gripper that can

open by at most 10cm. It should be noted that although we

have created a dataset with 1.5M exemplars, we only use

about 300k of this data (randomly sampled from the whole)

in any single training/test session. This is because it was a

computational burden to load the entire dataset in our current

setup and we simply did not need all the data to train our

four-layer CNN.

To create this dataset, it is necessary to obtain complete

mesh models of graspable objects paired with point clouds

created by viewing each object from different perspectives.

One approach is to start with object CAD models and

to simulate the point cloud that would be observed from

different perspectives. However, as we will show in the next

section, training data obtained from simulated point clouds

does not transfer to point clouds obtained using real sensors

as well as one might expect. As a result, we rely heavily upon

the BigBird dataset because it pairs reconstructed object

meshes with real point clouds produced by an Asus Xtion

Pro depth sensor taken from a large number of different

Prepared using sagej.cls

ten Pas, Gualtieri, Saenko, and Platt 7

Figure 6. During creation of the dataset, grasp candidates are

sampled from point clouds. Then, a mesh registered to the point

cloud is used to evaluate whether the candidate is force closure.

perspectives. For each of the 55 objects, we generated 20

registered clouds created by registering together clouds taken

from two different viewpoints 53 degrees apart. This relative

configuration of the two point clouds reflects the sensor

configuration on our robot (Figure 12(a)). See Figure 6

for an example of a point cloud registered with the mesh.

For each registered cloud, we sampled a large number of

grasp candidates and evaluated whether each was a force

closure grasp (see below). Data from all 20 views were

concatentated together, and a sufficient number of non-

grasps were discarded so that the number of positive and

negative exemplars for each object was balanced. Ultimately,

we generated up to 50k labeled grasp exemplars for each

object. While we use BigBird in this paper, any object dataset

that pairs RGBD images with mesh models of the object

geometry will work.

Labeling grasp candidates

In order to create the dataset, we need a way to label each

grasp candidate as a good grasp or not. Recall that each grasp

candidate is associated with a 6-DOF hand pose. And, recall

that we restrict ourselves to the set of all two finger hands

as described in Definition 1. As a result, it is possible to

label each candidate as a good grasp or not by evaluating

whether a force closure grasp (Murray et al. 1994) would

be formed if the fingers were to close from the given 6-

DOF hand pose. Actually, there is nothing about our method

that specifically requires us to use force closure per se. As

some have noted recently (Roa and Suárez 2015; Kappler

et al. 2015), the force closure condition may not always be

a good predictor of whether a given grasp will succeed in

practice. Our only requirement is that some method exists

for checking whether a good grasp would be formed from

a given grasp candidate pose, given a full mesh model of

the object. Nevertheless, in the experiments reported in this

paper that use a two finger parallel jaw gripper, the standard

force closure analysis seems to work well.

Since we have constrained consideration to two finger

hands that use only two contact surfaces, we opt for a special

case of force closure known as a frictionless antipodal grasp.

A set of contacts is a frictionless antipodal grasp when the

applied frictionless contact wrenches would balance each

other out if they were each to apply unit forces (Platt et al.

2010; Murray et al. 1994). This is a more conservative

condition than force closure in the sense that any frictionless

antipodal grasp is also a force closure grasp for any non-

zero coefficient of coulomb friction (assuming soft contacts).

In addition, it is robust to small contact perturbations. For

any positive coefficient of friction and for any object with a

Lipschitz continuous surface, there exists a neighborhood of

contact configurations around a frictionless antipodal grasp

that are also force closure.

One challenge in evaluating whether a hand configuration

is a frictionless antipodal grasp is that the available object

meshes can be noisy, e.g. the object meshes in the BigBird

dataset are noisy because they are reconstructed from actual

sensor data. We address this by assuming that each vertex

in the mesh is subject to a small amount of position error

(1mm in our experiments). We evaluate whether there exists

any perturbation of the vertices within the 1mm bound for

which an equilibrium grasp would exist. We chose 1mm

for this position constant in our experiments because it was

qualitatively the smallest constant that seemed to smooth out

the unit frictionless equilibrium condition as a function of

contact positions. For the case of a parallel jaw gripper (as in

our experiments), this reduces to identifying small contact

regions in each finger where contact might be established

and evaluating whether the frictionless antipodal condition

described above holds for any pair of contacts in these

regions.

Improving Classification Accuracy

We have found that a number of design decisions can

have a significant effect on grasp detection accuracy

including: the grasp representation used, whether the CNN

is pretrained using data derived from CAD models, and

whether information about the identity of the object being

grasped is used. We preface this analysis with a discussion

of how grasp detection performance should be evaluated.

Measuring recall-at-high-precision for grasp

pose detection

We propose a new method of measuring grasp detection

performance in terms of recall at a specified high precision.

Typically, classification performance is measured in terms

of accuracy – the proportion of predictions made by

(a) (b)

Figure 7. Example of recalling grasps at high precision. (a)

Precision-recall curve. (b) Grasps recalled at 99% precision.

Prepared using sagej.cls

10 Journal Title XX(X)

(a)

(b)

Figure 10. Grasp detection accuracy given no prior knowledge

of the objects (red); given a category knowledge (blue); given

the precise geometry of the object (green). (a) shows the

comparison for a set of 16 cylindrical objects. (b) shows the

same comparison for a set of 29 box-like objects. The legend

shows the recall-at-99%-precision (RA99P) metric for each of

these representations.

included in BigBird: 16 cylindrical-like objects and 29 box-

like objects. For each of these two classes, we compared

classification accuracy in these three different scenarios. In

all cases, we started with a network that was pretrained

on 3DNET data. First, we trained a network using training

data derived only from the single object in question using a

train/test split (45K training and 5K test) on view angle (no

one view shared between test and training). Averaged over

the 16 cylindrical-like objects, we obtained roughly 97%

classification accuracy and 83% recall-at-99%-precision.

Averaged over the 29 box-like objects, we obtained 95%

classification accuracy and 65% recall-at-99%-precision (the

green lines in Figures 10(a) and (b)). Second, for each of the

16 cylindrical-like objects, we trained the network using data

derived from the other 15 objects (leave-one-object-out).

This gave us 150K exemplars for training and 10K for test for

each cylindrical-like object. Here we obtained approximately

93.5% accuracy and 35% recall-at-99%-precision. Doing

the same experiment for the 29 box-like objects (280k

training, 10k test for box-like objects), we obtained roughly

93% accuracy and 60% recall-at-99%-precision (the blue

lines in Figures 10(a) and (b)). Finally, for each object, we

trained the network using all other objects in the dataset.

This gave us 285K training examples and 5K test for each

object. For cylinder-like objects, we obtained approximately

92% accuracy and 27% recall-at-99%-precision. For box-

like objects, we obtained approximately 90% accuracy and

56% recall-at-99%-precision (the red lines in Figures 10(a)

and (b)). The fact that we achieve such high detection

accuracy in the case where we have prior knowledge of the

object instance to be grasped is important because this case

has been studied extensively in the literature. The standard

approach is to fit a CAD model of the object instance to

the point cloud and to register planned grasp from the CAD

model to the cloud. However, it is well known that it can be

hard to get the standard approach to work reliably in cluttered

grasp environments. In comparison, instance-level grasping

is extremely accurate (the green lines in Figures 10(a) and

(b)). With 83% recall-at-99%-precision, we will detect most

good grasps that get sampled. Moreover, a variety of object

detection methods are available to locate specific object

instances of interest.

Dense Clutter Grasping Experiments

While it is clear that grasp pose detection can detect grasps

accurately, it is important to evaluate the level of grasp

performance that can be achieved on an physical robot. Our

main evaluation mechanism is the dense clutter benchmark,

described below. As is shown in the next section, the

version of the system that uses the 3-channel descriptor

(Representation #3 from the section entitled Comparison

Between Different Representations) runs significantly faster

than the one using 15-channel descriptor with only a small

resulting deficit in accuracy. As a result, we standardized all

the following hardware tests on the 3-channel version.

Dense Clutter Benchmark Task

Table 1. Dense clutter benchmark task.

1. Randomly select 10 objects from the object set.

2. Place objects into a box.

3. Shake box until sufficiently mixed.

4. Pour box contents into tray in front of robot.

5. Run grasp algorithm.

6. Terminate once any of these events occur:

i) No objects remain in tray.

ii) No grasp hypotheses were found after 3 attempts.

iii) The same failure occurs on the same object 3 times.

The dense clutter benchmark task is illustrated in

Figure 11 and the steps are outlined in Table 1. First, ten

objects are selected uniformly at random from the set of 27

shown in Figure 11(a) (Step 1 in Table 1). The 27 objects

are common household items that are different from the 55

Prepared using sagej.cls

12 Journal Title XX(X)

Table 2. Run time averaged over 10 different scenes. Alg

Version denotes the representation number: 1 denotes the

15-channel representation; 3 denotes the 3-channel

representation (see section entitled Comparison Between

Different Representations). Avg Num Pts denotes the average

number of points in the point cloud.

Alg Version 1 1 3 3

Avg Num Pts 39k 66k 39k 66k

Avg time to sample

1k candidates 0.8s 1.7s 0.8s 1.7s

Avg time to classify

1k candidates 4.3s 6.2s 0.3s 0.4s

in the base frame of the robot and used this information to

register the two point clouds together. The active strategy

creates a point cloud using off-the-shelf SLAM software

(InfiniTAM (Kahler et al. 2015)). A depth sensor (Structure

IO) is mounted near the end effector (Figure 12(b)). Then,

during point cloud acquisition, the arm moves through a

collision-free trajectory on a hemisphere centered on the

object pile while tracking using InfiniTAM. The trajectory

is a 46cm geodesic between a fixed via point on one side

of the pile and a fixed via point on the other. The radius of

the hemisphere is 40cm (the minimum range of the Structure

IO sensor is approximately 35cm). TrajOpt (Schulman et al.

2013) is used to generate the trajectory. At all times, the

sensor is constrained to point directly towards a fixed point

above the cluttered tray.

Grasp Detection Runtime

Since algorithm runtime is critical for real world applica-

tions, we have implemented our algorithm in C++ as a ROS

package (ten Pas and Platt 2016). Both grasp candidate gen-

eration and classification are parallelized in our implemen-

tation. We implemented our neural network using Caffe (Jia

et al. 2014). We measured the runtime of the two key steps

in our algorithm – sampling and classification (lines 3 and

4-5 in Algorithm 1) for both the 15-channel representation

and the 3-channel representation. These runtime evaluations

were run on an Intel Core i7-4770K Haswell Quad-Core

3.5GHz with 32GB of RAM and one NVIDIA GTX 970

GPU. We report the time required by the algorithm to do

sampling and classification for 1k grasp candidates. Out

of these 1k candidates, we typically find that the classifier

is able to identify a few high-confidence grasps. However,

times scale approximately linearly with candidates, so it is

possible to detect additional grasps by increasing the time

spent.

Table 2 shows results averaged over point clouds derived

from ten different cluttered scenes similar to that shown

in Figure 11. There are four different contingencies. In the

first column of Table 2, we evaluate the runtime for the

full 15-channel representation when run against point clouds

produced by a single depth sensor containing on average

39k points. In the second column, we measure runtime for

the 15-channel representation when run against point clouds

produced by two registered depth sensors containing on

average 66k points. In the third column, we measure runtime

for the 3-channel representation when run against the same

39k point clouds as column 1. In the fourth column, we

measure runtime for the 3-channel representation when run

against the same 66k point clouds as column 2.

These results suggest two main conclusions. First, our

proposed algorithm is practical for real world applications.

In typical grasping scenarios, our algorithm can be expected

to require between one and eight seconds of runtime,

depending upon which version of the algorithm runs

(columns two and three of Table 2). Second, the 3-channel

version of the algorithm runs much faster than the 15-

channel version: the 3-channel version can handle the 66k

point cloud in 2.1 seconds whereas the 15-channel version

requires 8 seconds. As shown in Figure 8, going from the

15-channel representation to the 3-channel representation

“costs” between 2 and 2.5 percentage points in accuracy.

However, as shown above, the 3-channel version is four times

faster. For this reason, we used the three-channel version of

the algorithm in the robotic grasping experiments reported

in the remainder of this section. We compensate for the

lower accuracy by raising the grasp acceptance threshold

(and thereby decreasing recall).

Grasp Selection Strategy

In most grasp environments, grasp pose detection finds

hundreds of grasps. Of these, we need to select one to

execute. First, we prune the grasps that are infeasible. Since

the Baxter gripper can only grasp surfaces that are between

3cm and 7cm thick (the Baxter gripper has a 4cm stroke), we

prune grasps that are outside of the 3-7cm range. Second,

we prune grasps that do not have collision-free inverse

kinematics (IK) solutions. We use IKFast to generate the IK

solutions and OpenRAVE for collision checking (Diankov

2010) with obstacles created by centering 2cm cubes at

points in the voxelized point cloud.

After pruning infeasible grasps as described above, several

feasible grasps will typically still remain. Even though all of

these are presumably all force closure grasps, they are not

necessarily all equally good. In particular, task and object-

related criteria will make some grasps more desirable than

others. We handle this by creating heuristics based on our

qualitative experience with the dense clutter domain. First,

in the context of the dense clutter benchmark, there is a

clear advantage to grasping objects at the top of the pile.

Second, we have found top grasps to be more successful than

side grasps. We encode both of these criteria by defining

a cost function over the grasps. Third, since hand pose

estimates based on forward kinematics for the Baxter arm

are inaccurate, we penalize grasps that would require the

arm to travel long distances in configuration space from

a nominal configuration. This enables us to calibrate the

arm for a smaller region of configuration space about the

nominal configuration. These three criteria are expressed in

the following cost function. Let z(h) denote the height of

hand h along the gravity axis above the table. Let â(h) denote

a unit vector pointing in the approach direction of the hand

(i.e. along the negative x axis of F (h) as shown in Figure 2).

Let ∇q(h) denote the L2 (i.e. the Euclidean) distance in

configuration space between the arm configuration at h and

some nominal starting configuration. The cost function we

Prepared using sagej.cls

ten Pas, Gualtieri, Saenko, and Platt 13

use for the dense clutter benchmark is:

J(h) = l
(

0.5(â(h)T ĝ + 1)
)

l

(

∇q(h)

∇qm

)

l

(

zm − z(h)

10zm

)

,

where l(x) = max(1− x, 0) denotes a hinge loss, zm
denotes the maximum height of a grasp above the table, ĝ

denotes a unit vector pointing in the direction of gravity,

and ∇qm the diameter. The grasp that scores the highest on

this cost function is selected. The practical effect of these

heuristics as implemented by Equation 1 is measured in the

results presented in the next section (Table 3). Without these

heuristics (i.e. selecting grasps randomly instead), we get

18% more grasp failures than otherwise. As discussed in the

next section, these failures are caused primarily because of

attempts at objects that are hard to reach or lift. Anecdotally,

we have found that these heuristics are useful in any tabletop

grasping scenario. They are easily adjusted to single-object

grasping rather than clutter grasping simply by constraining

the set of grasp candidates to lie only on an object of interest.

Figure 13. Gripper closing on the first object in the clutter.

Results

We evaluated performance against the dense clutter

benchmark under four different contingencies (Table 3):

active point cloud, passive point cloud, no selection strategy,

and no classification. In all cases, we used a CNN network

trained on all 55 BigBird objects in our dataset. Grasp

candidates were encoded using the 3-channel representation

used in (ten Pas and Platt 2015) (the red line in Figure 8).

Out of the 27 objects shown in Figure 11(a), there were two

objects that could not be grasped by the Baxter gripper in our

configuration because of the 3cm min aperture when they

fell into an upsidedown configuration: the green sandcastle

and the red lobster. If either of these objects fell into this

configuration during “pouring” of the objects into the tray

(Step 4 of the dense clutter benchmark task as shown in

Table 1), then we manually removed the object, turned it

right side up, and placed it back on the pile.

In the active point cloud contingency, we obtained point

clouds using the active sensing strategy where we run

InfiniTAM while moving the wrist-mounted sensor above

the tray. A point cloud with associated surface normals

is obtained from the resulting truncated signed distance

function. We used the grasp selection heuristics described

above to select grasps. We ran 30 rounds of the dense clutter

benchmark task where 10 objects were presented to the robot

on each round. We observed a 93% grasp success rate (20

grasp failures out of 288 grasp attempts; the “Active Point

Cloud” column of Table 3)). Out of the 20 failures, 5 were

due to point cloud registration errors or innaccuracies in the

kinematic calibration of the robot, 9 were due to a failure of

the algorithm to select what appeared to be a good grasp, 4

were due to a collision of the fingers with the object before

the grasp, and 2 were due to the object dropping out after an

initially successful grasp. In this scenario, 89% of the objects

were cleared from the tray.

In the passive point cloud evaluation contingency, we ran

15 rounds of the dense clutter benchmark task where the

point cloud was obtained using the passive strategy (two

Asus Xtion Pro sensors fixed to the body of the robot).

Otherwise, the algorithm was the same as in the active

point cloud contingency. We observed an 84% grasp success

rate (22 grasp failures out of 138 grasp attempts). Of the

22 failures, 5 were due to point cloud registration errors

or innaccuracies in the kinematic calibration of the robot,

13 were due to a failure of the algorithm to select what

appeared to be a good grasp, 2 were due to a collision of

the fingers with the object before the grasp, and 2 were due

to the object dropping out after an initially successful grasp.

In this scenario, 77% of the objects placed in front of the

robot were cleared. The others were either knocked out of

the tray, pushed too far forward to be seen by the sensors,

or grouped too close together for a finger-clear grasp to be

found. We attribute the lower success rate (84%) obtained

here relative to that obtained using the active strategy (93%)

to two factors: 1) the point cloud created using the active

strategy appears to better cover the objects in the box; 2) the

point cloud created using the passive strategy does not see

some objects near the very front of the box very well.

In the no selection strategy evaluation contingency, we ran

15 rounds of the dense clutter benchmark task where we

omitted the grasp selection strategy (Step 6 of Algorithm 1).

Otherwise, the algorithm was the same as in the active

point cloud contingency. We still pruned grasps that had

no IK solutions, were in collision, or did not fit the Baxter

gripper aperture constraints. However, instead of ranking the

remaining grasps, we just selected grasps randomly. The

second to last column of Table 3 shows the results. We

observed a 75% grasp success rate (38 grasp failures out

of 155 grasp attempts). Out of the 38 failures, 9 were due

to a failure of the algorithm to select what appeared to be

a good grasp, 8 were due to collision of the fingers with

the object prior to forming a grasp, 10 were due to point

cloud registration errors or innaccuracies in the kinematic

calibration of the robot, and 11 were due to the object

dropping out after an initially successful grasp. Notice that,

compared with the active point cloud contingency, there are

a large number of grasps where the robot dropped the object

after pickup, where there were errors caused by inaccurate

kinematic calibration during the reach, or where there was a

collision just prior to the grasp. This makes sense: since the

heuristics help the algorithm avoid grasps at the bottom of

the pile, they reduce these sorts of errors.

In the no classification contingency, we ran 15 rounds

of the dense clutter benchmark task while omitting the

grasp classification step (Step 5 of Algorithm 1). Instead of

ranking and pruning low scoring grasps, we used the grasp

selection strategy to select from among all sampled grasp

candidates. This contingency implicitly assumes all sampled

Prepared using sagej.cls

14 Journal Title XX(X)

Table 3. Results of the clutter-removal experiments.

Active Point Cloud Passive Point Cloud No Selection Strategy No Classification

Num objects 300 150 150 150

Num grasp attempts 288 138 155 142

Num grasp successes 268 116 117 75

% grasps successful 93% 84% 75% 53%

% objects removed 89% 77% 78% 50%

grasp candidates to be force closure grasps. Otherwise,

the algorithm was the same as in the active point cloud

contingency. The last column of Table 3 shows the results.

We observed a 53% grasp success rate (67 grasp failures out

of 142 grasp attempts). Out of the 67 failures, 46 were due

to a failure of the algorithm to select what appeared to be a

good grasp, 6 were due to collision of the fingers with the

object before the grasp, 14 were due to the object dropping

out after an initially successful grasp, and 1 was caused by a

point cloud registration error. These results reflect what one

might expect. If we do not prune the grasp candidates that are

not force closure grasps, then the algorithm suffers a large

number of grasp failures caused by attempting to grasp poor

candidates. In addition, this method produces many poor

grasps that drop out of the hands during lifting.

Combined Grasp and Object Detection

In a traditional grasp pipeline, e.g. where a CAD model of

an object is registed to point cloud in 6DOF pose space,

determining the identity of an object to be grasped is an

integral part of the grasp perception process. However, grasp

detection dispenses with this requirement. But, this does not

mean that object identity is irrelevant. The opposite is nearly

always true: we are almost always interested in grasping a

particular object – not just any object. This means that we

must combine grasp detection with object detection.

We propose a simple method of accomplishing this.

The standard approach to object detection is to generate

candidate object locations (i.e. object proposals) using

methods like EdgeBoxes (Zitnick and Dollár 2014) or

selective search Uijlings et al. (2013) and then to classify

these candidates using machine learning, i.e. a convolutional

neural network. However, since we are primarily interested

in classifying objects that can be grasped, we propose using

the detected grasps themselves as object proposals. After

detecting a set of potential grasps relative to the point cloud,

we calculate a point directly between the fingers for each

detected grasp and project this point into the RGB image.

Then, we create the set of proposals by taking a fixed-size

bounding box (120× 120 pixels in our case) around each

projected point.

Figure 14 illustrates the process. Figure 14 (a) shows

68 grasps that were detected in the scene. Notice that

grasps are only detected on three of the seven objects.

There were no detections on the other four objects because

they were beneath other objects or because they were too

far away for the robot to reach. Figure 14 (b) shows the

corresponding object proposals in the RGB image. Notice

that our use of the grasp detector as an object proposal

generation mechanism focuses the attention of the system

on graspable objects in a way that an off-the-self proposal

strategy like EdgeBoxes or selective search would not.

Figure 14 (c) shows the top scoring object proposals in

each object category that achieved a minimum threshold

score. In this case, we obtained high confidence labels for

the flashlight in the middle (the “lamp”) and the white and

red box on the left (“neutrogena”). Figure 14 (d) shows the

grasps corresponding to these object detections. Since we

now have predictions of the object identity of all objects that

can be grasped by the system, we can select an object to grasp

as desired.

We performed experiments to evaluate the accuracy with

which we can detect objects using this method. We trained

the BVLC Reference Network (four convolutional layers and

three fully connected layers) Jia et al. (2014) to detect object

instances for the set of 11 objects shown in Figure 15. In

order to train the network, we automatically collected images

for each of the 11 objects as follows. For each object, we

first placed it alone on a table in front of the robot. Then,

we collected a sequence of depth images from different

perspectives by using a depth camera mounted to the end

of our robotic arm. We repeated this process three times for

each object, each time placing the object on the table in a

different orientation. Altogether, we obtained approximately

2k images per object. We augmented this by rotating and

scaling, resulting in a dataset of approximately 10k images

per object – approximately 116k images total. We created a

train/test set with a 75%/25% split. Starting with a version

of the BVLC Reference Network pretrained on ImageNet,

we finetuned the network on our 11 objects by running 20k

iterations of stochastic gradient descent where we used a

learning rate of 0.000001, momentum of 0.9, weight decay

of 0.0005, and where each minibatch contained 128 images.

After training, we obtained more than 99% accuracy on the

test set. This 99% accuracy can be interpreted as the expected

performance of the object classifier in a single-object grasp

setting.

We wanted to evaluate the performance of our approach

in cluttered scenarios. To accomplish this, we created a

set of 9 cluttered scenes involving 9 of the 11 objects

(similar to that shown in Figure 14) – we excluded the

screwdriver because it was hard to grasp using the Baxter

hand and the rocket because it was nearly indistinguishable

from the link roller handle for the 120× 120 window size

used in this work. We took 3 point clouds of each of the

9 cluttered scenes, for a total of 27 point clouds. For each

point cloud, we used grasp detection to create a set of

object proposals, for a total of 1197 object proposals. We

manually labeled each proposal with the identity of the object

that would get picked up if the robot were to execute the

corresponding grasp. Then, we evaluated the accuracy of the

object classifier over this set of object proposals. Out of the

Prepared using sagej.cls

ten Pas, Gualtieri, Saenko, and Platt 17

Jiang Y, Moseson S and Saxena A (2011) Efficient grasping from

RGBD images: Learning using a new rectangle representation.

In: IEEE Int’l Conference on Robotics and Automation. pp.

3304–3311.

Kahler O, Prisacariu VA, Ren CY, Sun X, Torr PHS and Murray DW

(2015) Very high frame rate volumetric integration of depth

images on mobile device. In: IEEE Int’l Symp. on Mixed and

Augmented Reality, volume 22. pp. 1241–1250.

Kappler D, Bohg J and Schaal S (2015) Leveraging big data for

grasp planning. In: Robotics and Automation (ICRA), 2015

IEEE International Conference on. IEEE, pp. 4304–4311.

Kopicki M, Detry R, Schmidt F, Borst C, Stolkin R and Wyatt

JL (2014) Learning dextrous grasps that generalise to novel

objects by combining hand and contact models. In: IEEE

International Conference on Robotics and Automation. pp.

5358–5365.

Kroemer O, Ugur E, Oztop E and Peters J (2012) A kernel-

based approach to direct action perception. In: Robotics and

Automation (ICRA), 2012 IEEE International Conference on.

IEEE, pp. 2605–2610.

LeCun Y, Bottou L, Bengio Y and Haffner P (1998) Gradient-based

learning applied to document recognition. Proceedings of the

IEEE 86(11): 2278–2324.

Lenz I, Lee H and Saxena A (2015) Deep learning for detecting

robotic grasps. The International Journal of Robotics Research

34(4-5): 705–724.

MacKenzie C and Iberall T (1994) The Grasping Hand. North-

Holland.

Murray RM, Li Z, Sastry SS and Sastry SS (1994) A mathematical

introduction to robotic manipulation. CRC press.

Pinto L and Gupta A (2015) Supersizing self-supervision: Learning

to grasp from 50k tries and 700 robot hours. arXiv preprint

arXiv:1509.06825 .

Platt R, Fagg A and Grupen R (2010) Null space grasp control:

theory and experiments. IEEE Transactions on Robotics 26(2).

Redmon J and Angelova A (2015) Real-time grasp detection using

convolutional neural networks. In: Robotics and Automation

(ICRA), 2015 IEEE International Conference on. IEEE, pp.

1316–1322.

Roa MA and Suárez R (2015) Grasp quality measures: review and

performance. Autonomous Robots 38(1): 65–88.

Saxena A, Driemeyer J and Ng A (2008) Robotic grasping of

novel objects using vision. International Journal of Robotics

Research 27(4): 157–173.

Schulman J, Ho J, Lee A, Awwal I, Bradlow H and Abbeel P

(2013) Finding locally optimal, collision-free trajectories with

sequential convex optimization. In: Robotics: Science and

Systems. Citeseer, pp. 1–10.

Singh A, Sha J, Narayan KS, Achim T and Abbeel P (2014)

Bigbird: A large-scale 3d database of object instances. In:

Robotics and Automation (ICRA), 2014 IEEE International

Conference on. IEEE, pp. 509–516.

Su H, Maji S, Kalogerakis E and Learned-Miller E (2015) Multi-

view convolutional neural networks for 3d shape recognition.

In: Proceedings of the IEEE International Conference on

Computer Vision. pp. 945–953.

ten Pas A and Platt R (2015) Using geometry to detect grasp

poses in 3d point clouds. In: Proceedings of the International

Symposium on Robotics Research.

ten Pas A and Platt R (2016) Grasp pose detection package.

http://github.com/atenpas/gpd.

Uijlings JR, Van De Sande KE, Gevers T and Smeulders AW (2013)

Selective search for object recognition. International journal of

computer vision 104(2): 154–171.

Wohlkinger W, Aldoma A, Rusu RB and Vincze M (2012) 3DNET:

Large-scale object class recognition from cad models. In: IEEE

Int’l Conf. on Robotics and Automation. pp. 5384–5391.

Zitnick CL and Dollár P (2014) Edge boxes: Locating object

proposals from edges. In: European Conference on Computer

Vision. Springer, pp. 391–405.

Prepared using sagej.cls

	Introduction
	Contributions
	Comparison to related work

	Problem Statement
	Overview of the Grasp Pose Detection Algorithm
	Sampling Grasp Candidates
	Comparison With Other Grasp Sampling Methods From The Literature

	Classifying Grasp Candidates
	Grasp Candidate Representation

	A Grasp Dataset for Training the CNN
	Labeling grasp candidates

	Improving Classification Accuracy
	Measuring recall-at-high-precision for grasp pose detection
	Comparison Between Different Representations
	Pretraining on simulated data
	Using prior knowledge about the object

	Dense Clutter Grasping Experiments
	Dense Clutter Benchmark Task
	Hardware setup
	Point Cloud Acquisition
	Grasp Detection Runtime
	Grasp Selection Strategy
	Results

	Combined Grasp and Object Detection
	Discussion
	Limitations

