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Grasp Pose Detection in Point Clouds

Abstract

Recently, a number of grasp detection methods have been proposed that can be used to localize robotic grasp
configurations directly from sensor data without estimating object pose. The underlying idea is to treat grasp perception
analogously to object detection in computer vision. These methods take as input a noisy and partially occluded RGBD
image or point cloud and produce as output pose estimates of viable grasps, without assuming a known CAD model
of the object. Although these methods generalize grasp knowledge to new objects well, they have not yet been
demonstrated to be reliable enough for wide use. Many grasp detection methods achieve grasp success rates (grasp
successes as a fraction of the total number of grasp attempts) between 75% and 95% for novel objects presented in
isolation or in light clutter. Not only are these success rates too low for practical grasping applications, but the light clutter
scenarios that are evaluated often do not reflect the realities of real world grasping. This paper proposes a number of
innovations that together result in a significant improvement in grasp detection performance. The specific improvement
in performance due to each of our contributions is quantitatively measured either in simulation or on robotic hardware.
Ultimately, we report a series of robotic experiments that average a 93% end-to-end grasp success rate for novel objects
presented in dense clutter.

Introduction

Traditionally, robotic grasping is understood in terms of
two related subproblems: perception and planning. The
perceptual component estimates the position and orientation
(pose) of the object to be grasped. The planning component
reasons about where/how to move the manipulator into
a grasp configuration. A typical example of this type of
approach is the ROS grasp pipeline (Chitta et al. 2012).
A CAD model of the object to be grasped is registered
to the point cloud or truncated signed distance function.
Then, the planning component calculates a feasible arm/hand
trajectory that grasps the localized object. While this type of
approach can work well in ideal scenarios, it has proven to
be surprisingly difficult to apply in real world environments.
One challenge is that it can be very difficult to localize the
pose of an object accurately given a noisy and partial point
cloud (Glover and Popovic 2013). In addition, the approach
inherently makes a closed world assumption: that an accurate
CAD model exists for every object that is to be grasped.

Figure 1. The grasp detection methods proposed in this paper
enable us to obtain high grasp success rates in dense clutter
such as that shown here.

a point cloud that can be grasped given large amounts of
grasp training data. Because these methods detect grasps
independently of object identity, they typically generalize
grasp knowledge to new objects well.

Although grasp detection methods are promising, they
have not yet been demonstrated to be reliable enough to be
used widely. Many grasp detection methods achieve grasp

More recently, researchers have proposed various grasp
detection methods that can be used to localize grasp
configurations without estimating object pose (Fischinger
and Vincze 2012; Fischinger et al. 2013; Detry et al. 2013;
Herzog et al. 2012; Kroemer et al. 2012; Kappler et al.
2015; ten Pas and Platt 2015). These methods take as input a
noisy and partially occluded RGBD image or point cloud and
produce as output pose estimates of viable grasps. For the
most part, these methods treat grasp perception analogously
to object detection in computer vision: first, they generate
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a large number of grasp candidates; then they evaluate the
probability that each candidate is a grasp. A classifier or
regression system is trained to detect parts of an image or
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success rates (grasp successes as a fraction of the total
number of grasp attempts) between 75% and 95% for novel
objects presented in isolation or in light clutter (Fischinger
and Vincze 2012; Fischinger et al. 2013; Detry et al. 2013;
Herzog et al. 2012; Kroemer et al. 2012; Kappler et al. 2015;
ten Pas and Platt 2015). Not only are these success rates too
low for practical grasping applications, but the light clutter
scenarios that are evaluated often do not reflect the realities
of real world grasping.

Contributions

This paper describes three algorithmic contributions that
make grasp detection more accurate and easier to apply in
densely cluttered environments:

1. We propose a method for generating grasp hypotheses
that, relative to prior methods (Herzog et al. 2014;
Kappler et al. 2015), does not require a precise
segmentation of the object to be grasped and can
generate hypotheses on any visible surface.

2. We propose a new grasp descriptor that incorporates
surface normals and multiple views. Relative to
previous methods, this method can improve grasp
classification accuracy by approximately 10%.

3. We propose a method of incorporating prior knowl-
edge about object category that can increase grasp
classification accuracy by roughly an additional 2%.

We also provide a systematic evaluation of the new approach
in dense clutter on real robot hardware:

4. We introduce a benchmark task that enables the
experimenter to systematically evaluate grasp success
rates in dense clutter. We use this benchmark to
evaluate multiple ablations of our algorithm on a robot
in our lab.

5. We introduce a new method of measuring grasp
detection performance in terms of recall at a specified
high precision, i.e. performance when the number of
false positives is constrained to be very small.

6. We introduce and evaluate a method of detecting
grasps on a specific object of interest by combining
object and grasp detection.

The contributions above incorporate and extend work
from two prior conference publications (ten Pas and Platt
2015; Gualtieri et al. 2016). In ten Pas and Platt (2015),
we proposed the grasp candidate sampling strategy (Item
#1 above) and used the dense clutter benchmark task (Item
#5 above) for the first time. In Gualtieri et al. (Gualtieri
et al. 2016), we proposed the grasp descriptor (Item #2),
the idea of using prior knowledge about object category to
improve classification accuracy (Item #3), and the recall at
high precision metric (Item #5).

The current paper extends the above work in several
ways. First, we describe the algorithms in more detail.
Second, we add new results that compare our algorithm with
two different ablations: the version of the algorithm where
we eliminate the selection strategy and the version where
we eliminate the classification step (Table 3). Third, we
add additional results evaluating the improvement in grasp
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classification accuracy that can result from using category
knowledge (Figure 10 (b)). Fourth, we add runtime results
that quantify how long it takes to run our algorithm in typical
circumstances. Fifth, we propose and evaluate a baseline
method of combining object and grasp detection (Item #6).

Comparison to related work

Grasp detection is distinguished from other approaches to
robot grasping because it attempts to detect local grasp
surfaces directly from sensor data rather than detecting
objects first and then using that information to plan a grasp.
This idea originated with Saxena ef al., who developed a
system for using machine learning to detect grasp points in
an image Saxena et al. (2008) given a corpus of hand-labeled
training data.

3DOF Grasp Detection: There are several grasp detection
methods that detect grasps in a three-dimensional space, e.g.
the space of z, y, # configurations in an image. For example,
Jiang et al. models a graspable geometry as an oriented
rectangle in an RGBD image (Jiang et al. 2011). In order
to perform one of these grasps, the gripper must approach
the grasp target from a direction roughly orthogonal to the
image. Several other approaches fall into this category as
well including (Lenz et al. 2015; Pinto and Gupta 2015;
Redmon and Angelova 2015; Fischinger and Vincze 2012).
In particular, Redmon and Angelova use the same dataset as
Lenz et al. above, but pose grasp detection as a regression
problem and solve it using a convolutional neural network
(CNN) (Redmon and Angelova 2015). Pinto and Gupta’s
work is notable because their training data comes from on-
line experience obtained by the robot during an automated
experience-gathering phase rather than from hand-labeled
grasps (Pinto and Gupta 2015). The work of Fischinger
and Vincze (2012) goes beyond standard 3DOF approaches
by iteratively running a 3DOF grasp detector on a set
of different planes that essentially “view” the scene from
different angles, thereby essentially enabling detection in
6DOF.

Grasp Templates: The prior work perhaps most similar to
the approach proposed here is the template-based approach
of Herzog et al. (2012, 2014). In that work, the object is
roughly segmented from the background and a convex hull
is cast around the segmented points. Grasp candidates are
generated at the center of each facet in the convex hull at
a discrete number of orientations about the approach vector.
Each grasp candidate is associated with a set of nearby points
that are projected onto a plane and labeled as either object,
background, occluded, or void. Kappler et al. (2015) adopt
this approach by using a bounding box around the object
rather than the convex hull and they allow for translations in
addition to rotations on each face (for a total of 16 possible
candidate poses per side of the bounding box). Given grasp
candidates generated this way, these methods encode each
grasp as a single multi-channel image where each pixel
denotes the depth along the approach vector and its category,
i.e. object, background, occluded, void. While our method
contains many similarities to the Herzog/Kappler approaches
as described above, there are a few key differences that
should be highlighted. First, whereas the Herzog/Kappler
method involves segmenting the object from the background
and taking a convex hull or a bounding box around the
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object (see the section on Grasp Heightmaps in Herzog
et al. (2014)), our method does not. Second, whereas those
methods only consider grasp candidates located at the center
of a facet in the bounding box or convex hull, our method
can generate grasp candidates on any visible surface of the
object. Third, whereas those methods encode the grasp using
a heightmap taken from a single perspective, our method
also incorporates surface normals and encodes multiple
viewpoints into a single descriptor. The results in this paper
quantify the relative advantages of points two and three
above.

Grasp representations based on kernel density estima-
tion: Another set of approaches related to the current work
uses kernel representations to encode the local geometry of
object surfaces. For example, Detry et al. (2013) developed
an approach to grasp detection based on searching for local
object surfaces that are similar to one or more members of
a set of grasp prototypes. Similarity is measured in terms of
the inner product between a kernel density estimator over
points on the local object surface and the same estimator
for each of the prototypes. Local object surfaces that are
similar to the grasp prototypes are deemed likely to be good
grasps. Kopicki et al. (2014) use kernel density estimators in
a similar way, but they extend the approach to multifingered
hands. Finally, Kroemer et al. (2012) propose using kernel
density estimators to predict the presence of various types of
manipulation affordances. An key drawback evident in all of
the works cited above (Detry et al. 2013; Kopicki et al. 2014;
Kroemer et al. 2012) is that the approach is computationally
expensive. In order to find a good grasp at test time, the
approach generally requires re-evaluating a similarity metric
expressed over the cross product of points in the prototype
and the candidates. For example, Detry et al. (2013) reports
that it took 18 seconds on average to match a single grasp
prototype against candidates on a single object. In general,
deep learning based methods (such as that proposed here)
that evaluate a neural network once per candidate are much
faster (see our runtime results in the experiments section of
this paper).

Problem Statement

Given a point cloud and a description of the geometry of a
robotic hand, the grasp pose detection problem is to identify
hand configurations from which a grasp would be formed
if the fingers were to close. Let W C R3 denote the robot
workspace and let C C VW denote a set of points in the
3-D point cloud perceived by one or more depth sensors
registered to the robot workspace. We assume that each point
in the cloud is paired with at least one viewpoint (camera
location) from which that point was observed, A : C — V,
where V C R? denotes the set of viewpoints. We will refer
to the triple, C = (C, V, A), as the viewpoint cloud.

In this paper, we simplify the problem by requiring a two
finger hand or a hand that functions like a two finger hand as
defined below.

Definition 1. (Two Finger Hand). A two finger hand is
one that can be modelled by two contact surfaces that move
toward and away from each other along a one-dimensional
manifold.
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A trivial example of a two finger hand is a typical parallel
jaw gripper. Here, contact surfaces on the two grippers are
mechanically constrained to move along a single degree
of freedom. However, the concept is applicable to a more
complex hand such as the Barrett hand where two fingers
close in opposition to the third. The two fingers that oppose
the third can be modeled as a single contact surface, i.e.
a virtual finger (MacKenzie and Iberall 1994). Because we
only allow two finger hands, the 6-DOF pose of the hand
relative to the object is sufficient to calculate the finger
contact locations that will result from closing the hand in a
given pose relative to an object. As a result, it will be possible
to evaluate whether a grasp exists given only the 6-DOF hand
pose.

In order to express the grasp pose detection problem, we
first need to define a grasp. We use the traditional notion
of force closure. A contact configuration is a force closure
grasp when the contact wrenches (i.e. the forces and torques
that can be exerted by the contacts) span the origin. For
a detailed discussion of force closure, see Murray et al.
(1994). It is assumed that the viewpoint cloud encodes partial
and noisy information about a set of /N underlying objects,
O = 04,...,0n. The problem of grasp pose detection is
to identify force closure grasps in a region of interest, R C
SE(3) *, of objects in O by observing only the viewpoint
cloud.

Problem 1. (Grasp pose detection). Given a viewpoint
cloud, C, a region of interest, R C SFE(3), and a two finger
hand, the problem of grasp pose detection is to find one or
more 6-DOF hand poses, h € R, such that a force closure
grasp will be formed with respect to some object, O € O,
when the hand closes.

Overview of the Grasp Pose Detection
Algorithm

Algorithm 1 Grasp Pose Detection

Input: a viewpoint cloud, C; a region of interest, R; a hand,
O; a positive integer, N

Output: a set of 6-DOF grasp candidates, H C R

C’ = PreprocessCloud(C)

R = GetROI(C')

S = Sample(C’', R, 0, N)

I = Encode(S,C', R, 0)

H = Score(I)

g = SelectGrasp(S, H)

AN > Ao

Our algorithm follows the steps shown in Algorithm 1.
Step 1 preprocesses the viewpoint cloud. Step 2 identifies
a region of interest (ROI), R, where the grasp will occur.
Step 3 samples NV (several thousand) grasp candidates from
the ROI where each candidate is a 6-DOF hand pose. Step
4 encodes each grasp candidate as a stacked multi-channel
image. Step 5 assigns each candidate a score using a four-
layer convolutional neural network that indicates how likely
the candidate is to be a grasp. Step 6 selects a grasp for

*SE(3) = R3 x SO(3) denotes the group of 3D poses.



Journal Title XX(X)

execution based on the score evaluated in Step 5 and other
considerations related to the suitability of the grasp.

In the following sections, we discuss Steps 3, 4, 5, and
6 of Algorithm 1 in detail. We do not discuss Steps 1
and 2 any further. Step 1 compresses and denoises the
point cloud by voxelizing, removing outliers, and performing
other standard steps. Anything that can be done to reduce
noise or errors in the point cloud should be performed in
Step 1. Step 2 identifies a region of interest where we
are interested in finding a grasp. It is important to note
that this does not necessarily mean segmenting the object
from the background. The ROI could include a set of
multiple objects or all objects in a scene. Or, it could be
a rough approximation of the location of the object to be
grasped found using an object detection method such as that
described at the end of this paper.

Sampling Grasp Candidates

The goal of Step 3 in Algorithm 1 is to find a large set
of grasp candidates (i.e. 6-DOF hand poses) where a grasp
might be located. We would like these grasp candidates to be
distributed over the graspable portions of the object surface
as evenly as possible. We will refer to a grasp candidate, h €
R, as simply a “hand”. Let B(h) C W denote the volume
occupied by the hand in configuration h € R, when the
fingers are fully open. Define the closing region, C(h) C
W, to be the volumetric region swept out by the fingers
when they close. We sample grasp candidates that satisfy the
following two conditions:

Condition 1. The body of the hand is not in collision with
the point cloud: B(h) NC = 0,

Condition 2. The closing region of the hand contains at least
one point from the cloud: C(h) NC # .

Assuming a noisy point cloud, neither of these conditions
is strictly necessary or sufficient. However, hands that do
not satisfy either condition are poor grasp candidates. In
particular, while it is possible that a grasp might exist that
did not satisfy Condition 2, the grasped surfaces would be
completely invisible to the sensor and it would therefore be
difficult to accurately predict whether the hand were a grasp.

Algorithm 2 Sample(C, R, 0, N)

Input: a viewpoint cloud, C; a region of interest, R; a
gripper, O; a grid, G; a positive integer, N
Output: a set of 6-DOF grasp configurations, H C R

1. H=10

2: fori=1toNdo

3:  Sample p € C N R uniformly randomly
4:  Calculate reference frame, F'(p)

s: forall (y,¢) € G do

6: x* = mingeg such that B(hy 4 4(p)) NC =0
7: if C(hg,z,y<) NC # 0 then

8: H=HUhgg

9: end if
10:  end for
11: end for
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Figure 2. Coordinate frame of F'(p) with the hand
superimposed at the origin.

Algorithm 2 describes the hand sampling process. First,
we sample N points uniformly at random from C N'R, the
portion of the cloud that intersects the region of interest
(Steps 2 and 3). Then, for each sampled point, we calculate a
local reference frame at p by evaluating the Eigenvectors of
the matrix

Mp)= Y #a@i",

q€CNB;-(p)

where 7.(p) denotes the outward pointing unit surface
normal at p, calculated using standard methods, and B,.(p)
denotes the r-ball about the point p (Step 4). Let F(p) =
[vs(p)va(p)v1(p)] denote the orthogonal reference frame
(known as a Darboux frame) at p where where v;(p)
corresponds to the largest Eigenvalue of M(p) and vz(p)
corresponds to the smallest Eigenvalue. The vector vz(p)
is a smoothed estimate of the surface normal at p, vi(p)
is a smoothed estimate of the axis of minor principal
curvature, and v (p) is a smoothed estimate of the axis of
major principal curvature. F'(p) is rotated by 180 degrees
as needed to make wv3(p) point outward from the object
surface. Figure 2 shows this coordinate frame with the
gripper superimposed at the origin.

Next, in the reference frame of each sample, p €
CNR, we perform a local grid search for hands that
satisfy Conditions 1 and 2 (Steps 5-10). We search a
two dimensional grid, G =Y x ®, where Y and & are
discretized sets of values along the y axis and about the
z axis in the F(p) reference frame (in our experiments,
|Y| = 10 and |®| = 8). For each (y,¢) € G, we apply the
corresponding translation and rotation relative to the F(p)
coordinate frame. Then, we “push” the hand forward along
the negative x axis until one of the fingers or the hand
base makes contact with the point cloud. Let T} , 4 €
R#**4 denote the Homogeneous transform that describes a
translation of z,y in the x,y plane and a rotation of ¢
about the z axis. The reference frame of the hand at an
offset of x,y, ¢ relative to F(p) is F(p)Ty,y,¢. For each
(y,¢) € G, let F(hy4) be the hand at gridcell y, ¢ that
has been pushed forward until making contact with the
cloud: F(hy,4) = F(p)Ty~ ¢4, Where z* = min,cr such
that B(hy,y,4(p)) N C = 0 (Step 6). A hand, h,, 4, is added to
the set of grasp candidates, H, if the closing region, C'(h,,¢)
contains at least one point in the cloud (Steps 7-9). Figure 3
shows examples of grasp candidates found using this method
for a partially occluded point cloud of a soup can.
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Figure 3. lllustrations of grasp candidates found using our
algorithm. Each image shows three examples of a gripper
placed at randomly sampled grasp candidate configurations.

I -t
© (@

Figure 4. Force closure grasps sampled using our method
where @ is interpreted as an orientation about the z axis of the
F(p) coordinate frame ((a) and (b)) and a variation of our
method where @ is interpreted as an orientation about the =
axis (as in Herzog et al. (2012)) ((c) and (d)). Our method
generates a larger number of force closure grasps spread more
uniformly over the graspable parts of the object surface.

(d

(@) (b)

Comparison With Other Grasp Sampling
Methods From The Literature

Most grasp detection algorithms use some method for
generating grasp proposals. A number of methods generate
proposals exhaustively using a sliding window (Saxena
et al. 2008; Jiang et al. 2011; Fischinger and Vincze 2012;
Fischinger et al. 2013). Pinto and Gupta (2015) cluster
foreground pixels using background subtraction on the
RGBD image. The sampling method from the literature most
similar to ours method is perhaps that of Herzog et al. (2012)
(later adopted by Kappler et al. (2015)). That method works
by segmenting the object to be grasped from the rest of
the point cloud and calculating the convex hull. For each
face in the convex hull, a coordinate frame is created at
the center of each face and oriented such that the x axis
points outward (similar to F'(p) in our method as shown in
Figure 2). A one-dimensional grid search is performed over
a set of angular displacements about the x axis and the hand
is “pushed” toward the object (similar to what we do in Step
6 of Algorithm 2).

There are two main differences between the method
described above and ours. First, whereas Herzog et al.
(2012) segment the object, cast a convex hull around it, and
only sample grasps at the center of each face in the hull,
we sample grasps on all visible surfaces. This makes our
sampling method more practical in cluttered scenarios where
object segmentation can be challenging. Second, whereas
Herzog et al. (2012) and Kappler et al. (2015) perform a
one-dimensional grid search over hand orientations about
the x axis in the F'(p) coordinate frame, we perform a two-
dimensional grid search over positions along the y axis and
orientations about the z axis in F'(p).
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The discussion above begs the question whether it is better
to search over orientations about the z axis or the x axis. To
answer this question, we compared our method where we
search over a grid, G =Y x @ (|Y| = 80, |®| = 8), with @
interpreted as an orientation about the z axis with a variant of
the method where ® was interpreted as an orientation about
the x axis. We compared the methods for two objects: a box-
like object (the Cheezits from BigBird ) and a cylindrical
object (the Krylon Crystal Clear from BigBird), each viewed
from 20 different perspectives. We found that on average,
our method produced at least three times the number of
true positive grasp candidates (122 versus 22 positives for
the Cheezeits and 259 versus 77 for the Krylon). Figure 4
illustrates representative results. The true positive grasp
candidates shown in Figure 4(c,d) were found using the
method where ¢ was interpreted as an orientation about the
x axis as in Herzog et al. (2012) whereas those shown in
Figure 4(a,b) were found using our method. Notice that our
method finds more true positive grasp candidates and that
they are better distributed over the graspable object surface.

We hypothesize that this improvement in performance is
related primarily to the fact that we used a two-fingered
hand in this evaluation. Our method samples most densely
candidates where the closing region of the hand is orthogonal
to the axis of minor principal curvature of the local object
surface. For a two-fingered hand, these are the configurations
where the object is most likely to fit between the fingers. For
example, by orienting the hand orthogonal to the axis of the
cylinder in Figure 4 (a), our method is most likely to generate
candidates that fit the cylinder between the fingers. While we
expect this sampling strategy to work well for different types
of two-fingered hands, these advantages may disappear for
hands with more complex closing regions.

Classifying Grasp Candidates

We frame grasp detection as a binary classification task and
solve it using a four-layer convolutional neural network (a
CNN). For a given grasp candidate, the input to the CNN
is a representation of the observed and occluded object
surfaces as seen by a depth sensor in the neighborhood
of the candidate (Step 4 of Algorithm 1). The output is a
prediction of whether or not the candidate is a grasp (Step
5 of Algorithm 1). We use the same CNN structure used by
LeNet (LeCun et al. 1998): two convolutional/pooling layers
followed by one inner product layer with a rectified linear
unit at the output and one more inner product layer with
a softmax on the output. The outputs, kernel size, pooling
strides, efc. are all identical with those used by the LeNet
solver provided in Caffe (Jia et al. 2014) (this same structure
is used by Kappler et al. (2015)). Our network was trained
using stochastic gradient descent with a learning rate of
0.00025. This section describes the method for representing
the grasps to the CNN and our method for creating a dataset
with which to train the network.

Grasp Candidate Representation

We represent a grasp candidate to the classifier in terms of the
geometry of the observed surfaces and unobserved volumes
contained within the closing region of the gripper, C(h) C
W. This volume can be arbitrary, but it should be represented
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in the reference frame of the hand. Our representation is
illustrated in Figure 5. Figure 5(a) shows a grasp candidate
generated with respect to partial point cloud data (from the
BigBird dataset (Singh et al. 2014)). Figure 5(b) shows two
sets of points in R. One set of points, shown in magenta,
shows points in the cloud contained within R. The other set
of points, shown in blue, are sampled from the portion of R
that is unobserved, i.e., that is occluded from view by every
sensor. Currently, we ignore RGB information associated
with the points in the cloud. Notice that this representation
depends both on the geometry of the object surface and on
the perspective from which it is viewed.

Assume the closing region C'(h) is scaled to fit inside the
unit cube and the points contained within it are voxelized into
a M x M x M grid. For every triple, (z,y,2) € [1, M] X
(1, M] x [1,M], V(x,y,z) € {0,1} denotes whether the
corresponding voxel is occupied and U(z,y, z) € {0,1}
denotes whether the corresponding voxel has been observed.
We will further assume that each occupied voxel in C'(h)
is associated with a unit, outward-pointing surface normal
vector, n(z,y,2) € S? ( 5% denotes the surface of the 2-
sphere), that denotes the orientation of the object surface at
that point. All of the above information can be calculated
either from the point cloud with associated viewpoints or
from a truncated signed distance function.

We want to represent the 3D geometry of the object
surface contained within the closing region. Inspired by Su
et al. (2015), we encode this volume using a multiple view
representation. Specifially, for a hand, h € H, we project
the voxels onto planes orthogonal to the axes of the hand
reference frame, F'(h), and pass these to the CNN as input.
Figure 5(b) shows the three directions from which we view
the closing region. The red arrow points along the negative
x axis of F'(h). The blue arrow points along the negative
y axis. The green arrow points along the negative z axis.
For each of these three projections, we will calculate three
images: an averaged heightmap of the occupied points, I,,
an averaged heightmap of the unobserved region, I,,, and

(@ (b)
D m
(d) (e

Figure 5. Grasp representation. (a) A grasp candidate
generated from partial point cloud data. (b) Local voxel grid
frame. (c-e) Examples of grasp images used as input to the
classifier.

(©)
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averaged surface normals, [,,. For example, to project onto
the plane constituted by the hand and major curvature axes,
i.e., the (x,y) plane, these maps are calculated as follows:

Zze[l,M] 2V(2,y,z)
Zze[l,M] V(x’ Y, Z)

Zze[l,M] ZU(Q?, Y, Z)
226[1,]\1] U(:L', Y, Z)

ZzG[l,IVI] Wz, y,2)V(z,y, 2)
Zze[l,M] V(z,y,2)

The first two images, I, and I,, are M x M images
(Figure 5 (c,d)). The last image, I,,(z,y),isa M x M x 3
image where the three dimensions of the normal vector are
interpreted as three channels in the image (Figure 5 (e)).
Constant scaling and offsets are applied to each of these
images to ensure that all pixel values lie between O and
255. In the case of I,,, we scale the three channels by the
same factor so that the [1, m] interval can encode all possible
unit normal vectors. All together, we have five channels of
information for each of the three projections, for a total of 15
channels.

Io(ac,y) =

Iu(xvy) =

In(x’ y) =

A Grasp Dataset for Training the CNN

In order to train the grasp detection CNN, a dataset is needed
that pairs grasp candidates with ground truth labels that
denote whether or not the candidate is a force closure grasp.
Since the representation discussed above depends on both the
geometry of the grasp surface and on the perspective from
which it was viewed, the dataset should span both of these
variables — it should contain examples of different graspable
geometries as seen from different viewpoints. For this paper,
we created a dataset of 1.5M exemplars with equal numbers
of positive and negative examples comprised of up to 50k
labeled grasp exemplars for each of 55 objects in the BigBird
dataset (Singh et al. 2014) (out of a total of 125 objects
in BigBird). The 55 objects included 29 box-type objects,
16 cylindrical-type objects, and 10 other objects for which:
1) a complete mesh exists for the object in the dataset; 2)
the object can be grasped by a parallel jaw gripper that can
open by at most 10cm. It should be noted that although we
have created a dataset with 1.5M exemplars, we only use
about 300k of this data (randomly sampled from the whole)
in any single training/test session. This is because it was a
computational burden to load the entire dataset in our current
setup and we simply did not need all the data to train our
four-layer CNN.

To create this dataset, it is necessary to obtain complete
mesh models of graspable objects paired with point clouds
created by viewing each object from different perspectives.
One approach is to start with object CAD models and
to simulate the point cloud that would be observed from
different perspectives. However, as we will show in the next
section, training data obtained from simulated point clouds
does not transfer to point clouds obtained using real sensors
as well as one might expect. As a result, we rely heavily upon
the BigBird dataset because it pairs reconstructed object
meshes with real point clouds produced by an Asus Xtion
Pro depth sensor taken from a large number of different



ten Pas, Gualtieri, Saenko, and Platt

Figure 6. During creation of the dataset, grasp candidates are
sampled from point clouds. Then, a mesh registered to the point
cloud is used to evaluate whether the candidate is force closure.

perspectives. For each of the 55 objects, we generated 20
registered clouds created by registering together clouds taken
from two different viewpoints 53 degrees apart. This relative
configuration of the two point clouds reflects the sensor
configuration on our robot (Figure 12(a)). See Figure 6
for an example of a point cloud registered with the mesh.
For each registered cloud, we sampled a large number of
grasp candidates and evaluated whether each was a force
closure grasp (see below). Data from all 20 views were
concatentated together, and a sufficient number of non-
grasps were discarded so that the number of positive and
negative exemplars for each object was balanced. Ultimately,
we generated up to 50k labeled grasp exemplars for each
object. While we use BigBird in this paper, any object dataset
that pairs RGBD images with mesh models of the object
geometry will work.

Labeling grasp candidates

In order to create the dataset, we need a way to label each
grasp candidate as a good grasp or not. Recall that each grasp
candidate is associated with a 6-DOF hand pose. And, recall
that we restrict ourselves to the set of all two finger hands
as described in Definition 1. As a result, it is possible to
label each candidate as a good grasp or not by evaluating
whether a force closure grasp (Murray et al. 1994) would
be formed if the fingers were to close from the given 6-
DOF hand pose. Actually, there is nothing about our method
that specifically requires us to use force closure per se. As
some have noted recently (Roa and Sudrez 2015; Kappler
et al. 2015), the force closure condition may not always be
a good predictor of whether a given grasp will succeed in
practice. Our only requirement is that some method exists
for checking whether a good grasp would be formed from
a given grasp candidate pose, given a full mesh model of
the object. Nevertheless, in the experiments reported in this
paper that use a two finger parallel jaw gripper, the standard
force closure analysis seems to work well.

Since we have constrained consideration to two finger
hands that use only two contact surfaces, we opt for a special
case of force closure known as a frictionless antipodal grasp.
A set of contacts is a frictionless antipodal grasp when the
applied frictionless contact wrenches would balance each
other out if they were each to apply unit forces (Platt et al.
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2010; Murray et al. 1994). This is a more conservative
condition than force closure in the sense that any frictionless
antipodal grasp is also a force closure grasp for any non-
zero coefficient of coulomb friction (assuming soft contacts).
In addition, it is robust to small contact perturbations. For
any positive coefficient of friction and for any object with a
Lipschitz continuous surface, there exists a neighborhood of
contact configurations around a frictionless antipodal grasp
that are also force closure.

One challenge in evaluating whether a hand configuration
is a frictionless antipodal grasp is that the available object
meshes can be noisy, e.g. the object meshes in the BigBird
dataset are noisy because they are reconstructed from actual
sensor data. We address this by assuming that each vertex
in the mesh is subject to a small amount of position error
(1mm in our experiments). We evaluate whether there exists
any perturbation of the vertices within the Imm bound for
which an equilibrium grasp would exist. We chose 1mm
for this position constant in our experiments because it was
qualitatively the smallest constant that seemed to smooth out
the unit frictionless equilibrium condition as a function of
contact positions. For the case of a parallel jaw gripper (as in
our experiments), this reduces to identifying small contact
regions in each finger where contact might be established
and evaluating whether the frictionless antipodal condition
described above holds for any pair of contacts in these
regions.

Improving Classification Accuracy

We have found that a number of design decisions can
have a significant effect on grasp detection accuracy
including: the grasp representation used, whether the CNN
is pretrained using data derived from CAD models, and
whether information about the identity of the object being
grasped is used. We preface this analysis with a discussion
of how grasp detection performance should be evaluated.

Measuring recall-at-high-precision for grasp
pose detection

We propose a new method of measuring grasp detection
performance in terms of recall at a specified high precision.
Typically, classification performance is measured in terms
of accuracy — the proportion of predictions made by
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Figure 7. Example of recalling grasps at high precision. (a)
Precision-recall curve. (b) Grasps recalled at 99% precision.
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the classifier that match ground truth. Most grasp pose
detection systems described in the literature achieve
something between 75% and 95% grasp classification
accuracy Fischinger and Vincze (2012); Fischinger et al.
(2013); Detry et al. (2013); Herzog et al. (2012); Kroemer
et al. (2012); Kappler et al. (2015); ten Pas and Platt (2015).
Unfortunately, this accuracy number alone does not give us a
good indication of whether the resulting grasp pose detection
system will have a high grasp success rate. The key question
is whether a particular grasp pose detection system can detect
grasps with high precision. Precision is the proportion of
all positives found by the classifier that are true positives.
In grasp pose detection, the cost of a false positive is high
because it can cause a grasp attempt to fail. As a result, we
want to travel along the precision-recall curve and reach a
point with very high precision (i.e. very few false positives).
This amounts to adjusting the classifier acceptance threshold.
Setting the threshold very high will result in a high precision,
but it will reduce recall — the proportion of all true positives
found by the classifier. Therefore, a key metric for grasp pose
detection is recall-at-high-precision. If the number of false
positives is constrained to be less than a desired threshold
percentage (say 1% fase discovery rate, i.e. 99% precision),
what proportion of all true grasps will be detected, i.e. what is
the recall? This is illustrated in Figure 7(a). For a particular
shampoo bottle instance, we can recall 27% of the grasps
at 99% precision. The key insight is that since grasp pose
detection systems can detect hundreds of grasps for a single
object, we do not need to recall all of the grasps in order
to have lots of choices about which grasp to execute. This
is illustrated in Figure 7(b). Although we are only detecting
27% of all true positives, there are still plenty of alternatives.

Comparison Between Different Representations

Grasp classification accuracy depends upon how the
candidates are represented to the convolutional neural
network (CNN) that does the classification. We compare the
following four representations:

Representation #1: The 15-channel representation
described in this paper (green line in Figure 8).

Representation #2: A 12-channel ablation of the 15-channel
representation where we delete the three unobserved region
channels, i.e. delete one I, channel for each of the three
views (blue line in Figure 8).

Representation #3: The 3-channel representation used in
our prior work (ten Pas and Platt 2015) (red line in Figure 8).
This representation consists only of I,, projected onto the
plane orthogonal to the negative z axis of F'(h) (the plane
orthogonal to the green arrow in Figure 5 (b)). Whereas ten
Pas and Platt (2015) encodes this 3-channel image using
HOG features, we supply the image directly to a similar
CNN (convolutional neural network) as that used with the
15-channel representation.

Representation #4: The 3-channel representation used in
both Kappler et al. (2015) and Herzog et al. (2012) (cyan
line in Figure 8). That representation is comprised of three
channels of information projected along the hand approach
axis. One channel is I,. The second channel is I,. The
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third channel describes the unoccupied voxels in the space:
Ip=1,U1,.
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Figure 8. Classification accuracy obtained using different grasp
candidate representations. Green: combined 15-channel
representation. Blue: same as green but without the occlusion
channels. Red: the representation used in our prior work ten
Pas and Platt (2015). Cyan: the representation used in both
Kappler et al. Kappler et al. (2015) and Herzog et al. Herzog

et al. (2012). The legend shows the recall-at-high-precision
(RAHP) metric for each of these representations for 99%
precision.

To do the comparison, we created a dataset of grasp
candidates equally balanced between positives and negatives
by randomly sampling approximately 4k grasp candidates
from each of 55 BigBird objects. This resulted in a total of
216k candidates with a 185k/31k train/test split over views
(for each object, the test set does not contain any exemplars
derived from a view that is present in the training set). For
each of the four representations, we re-train the convolutional
neural network starting with random weights and compare
classification accuracy on the 31k test set.

The accuracy of our full 15-channel representation
(Representation #1) as a function of training iteration (in
100s) is shown in green in Figure 8. Since this train/test split
is over views, this result describes the accuracy that would
be achieved if we knew we would be given one of the 55
BigBird objects, but did not know in advance which one we
would get.

The accuracy of the 12-channel representation (Repre-
sentation #2) is shown in blue in Figure 8. Notice that
we gain approximately an additional 2% accuracy by using
the occlusion information. The recall-at-high-precision (99%
precision) for the 15-channel and the 12-channel representa-
tion is 89% and 82%, respectively. This comparison is impor-
tant because the occlusion information is computationally
expensive to calculate — it can double the amount of time
taken to encode candidates for classification. This additional
computation time must be balanced against the 2% additional
accuracy that it yields.

The accuracy of the 3-channel representation used in our
prior work ten Pas and Platt (2015) (Representation #3)
is shown in red in Figure 8. This representation contains
only the surface normals image, I, for the projection onto
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the plane orthogonal to the negative z axis of F'(h) (the
plane orthogonal to the green arrow in Figure 5 (b)). Notice
that this representation performs just about as well as the
12-channel, even though it only contains three channels of
information. Compared with the 15-channel representation,
this representation is much less expensive to compute — four
times faster (see the comparison in Table 2). This suggests
that it could be appropriate for time-sensitive applications
where it is important to do grasp detection quickly.

Finally, the cyan line in Figure 8 (Representation
#4) shows the accuracy obtained using the 3-channel
representation used in both Kappler et al. (2015) andHerzog
et al. (2012). Although we are using the Herzog
representation, we are evaluating on grasp candidates
generated using our own method (the same set of candidates
used to evaluate the other representations described above).
Notice that, on average, this representation obtains at least
10% lower accuracy than the other representations and only
a 19% recall-at-high-precision. This loss in performance
could be caused by the fact that this representation projects
onto the plane orthogonal to the surface normal (the plane
orthogonal to the red arrow in Figure 5 (b)) rather than the
projection from representation #3. It could also be caused
by the fact that this representation does not encode object
surface normals.

We draw a few conclusions from the results described
above. First, if the primary objective is to maximize
grasp detection accuracy, then the 15-channel representation
(Representation #1) should be used. While it can take
longer to calculate the 15-channel descriptor relative to
the other representations, this one gets the best accuracy.
Second, for time-sensitive applications where it is important
to detect grasps quickly, the 3-channel representation
(Representation #3) should be used. This one does almost
as well as the 12-channel representation and it can be
computed approximately four times faster than the 15
channel representation (see the results on algorithm runtime
in the dense clutter experiments section of this paper).
Finally, this method should be preferred relative to the
3-channel representation from Kappler et al. (2015) and
Herzog et al. (2012) because it obtains much better grasp
classification accuracy.

Pretraining on simulated data

One way to improve classifier accuracy and precision is to
create training data using point clouds or truncated signed
distance functions created by simulating what a sensor
would observe looking at a CAD model. Compared with
the amount of real sensor data that is available, there is a
huge number of CAD models available online (e.g., 3DNET
makes available thousands of CAD models from 200 object
categories (Wohlkinger et al. (2012)). Ideally, we would train
using this simulated data. Unfortunately, there are subtle
differences between depth images obtained from real sensors
and those obtained in simulation that hurt performance.
For example, recall the 31K test set derived from BigBird
data described in the last section. Our best representation
obtained approximately 90% accuracy over all 55 objects in
the BigBird dataset. However, when we train our system for
30000 iterations on 207K exemplars created using 400 object
CAD models taken from 16 categories in 3DNET, we obtain
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Figure 9. Accuracy with (red) and without (blue) 3DNET
pretraining.

only 83% accuracy on the same test set. While it is possible
that different methods of simulating depth images could
improve performance, it is likely that a small difference will
persist.

One approach to this problem is to pretrain the CNN
learning system using simulated data, but to “finetune” it
on real data more representative of the problem domain at
hand. We evaluated this approach by testing on the 216K
BigBird dataset described in the last section. We compare the
learning curve obtained using the 15-channel representation
starting with random network weights with the learning
curve obtained using the 3DNET weights as a prior. Figure 9
shows the results. The pretrained weights have a strong
effect initially: the pretrained network obtains the same
accuracy at 4000 iterations as the non-pretrained network
obtains after 20000 iterations. However, the importance of
the contribution diminishes over time.

Using prior knowledge about the object

Another way to improve grasp detection accuracy is to
incorporate prior knowledge of the object to be grasped. One
way to do this is to adjust the contents of the training dataset.
If we have no prior knowledge of the object to be grasped,
then the training dataset might include data from a large and
diverse set of objects. If we know the category of the object
to be grasped (for example, if we know the object is box-
like), then we might train the grasp detector using training
data from only box-like objects. Finally, if we know the exact
object geometry, then we might use training data derived
only from that particular object. In general, one would expect
that the more prior knowledge that is encoded into the
network this way, the better our classification accuracy will
be. We envision obtaining information about the object by
using standard object detection methods as proposed later in
this paper. Object detection is quickly becoming a reliable
technology. Even though it is difficult to detect the precise
pose of an object to be grasped, a variety of methods exist
for locating an object by instance or category label within an
image Jia et al. (2014); Girshick et al. (2014).

To evaluate the effect of prior information as described
above, we performed experiments with two classes of objects
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Figure 10. Grasp detection accuracy given no prior knowledge
of the objects (red); given a category knowledge (blue); given
the precise geometry of the object (green). (a) shows the
comparison for a set of 16 cylindrical objects. (b) shows the
same comparison for a set of 29 box-like objects. The legend
shows the recall-at-99%-precision (RA99P) metric for each of
these representations.

included in BigBird: 16 cylindrical-like objects and 29 box-
like objects. For each of these two classes, we compared
classification accuracy in these three different scenarios. In
all cases, we started with a network that was pretrained
on 3DNET data. First, we trained a network using training
data derived only from the single object in question using a
train/test split (45K training and 5K test) on view angle (no
one view shared between test and training). Averaged over
the 16 cylindrical-like objects, we obtained roughly 97%
classification accuracy and 83% recall-at-99%-precision.
Averaged over the 29 box-like objects, we obtained 95%
classification accuracy and 65% recall-at-99%-precision (the
green lines in Figures 10(a) and (b)). Second, for each of the
16 cylindrical-like objects, we trained the network using data
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derived from the other 15 objects (leave-one-object-out).
This gave us 150K exemplars for training and 10K for test for
each cylindrical-like object. Here we obtained approximately
93.5% accuracy and 35% recall-at-99%-precision. Doing
the same experiment for the 29 box-like objects (280k
training, 10k test for box-like objects), we obtained roughly
93% accuracy and 60% recall-at-99%-precision (the blue
lines in Figures 10(a) and (b)). Finally, for each object, we
trained the network using all other objects in the dataset.
This gave us 285K training examples and 5K test for each
object. For cylinder-like objects, we obtained approximately
92% accuracy and 27% recall-at-99%-precision. For box-
like objects, we obtained approximately 90% accuracy and
56% recall-at-99%-precision (the red lines in Figures 10(a)
and (b)). The fact that we achieve such high detection
accuracy in the case where we have prior knowledge of the
object instance to be grasped is important because this case
has been studied extensively in the literature. The standard
approach is to fit a CAD model of the object instance to
the point cloud and to register planned grasp from the CAD
model to the cloud. However, it is well known that it can be
hard to get the standard approach to work reliably in cluttered
grasp environments. In comparison, instance-level grasping
is extremely accurate (the green lines in Figures 10(a) and
(b)). With 83% recall-at-99%-precision, we will detect most
good grasps that get sampled. Moreover, a variety of object
detection methods are available to locate specific object
instances of interest.

Dense Clutter Grasping Experiments

While it is clear that grasp pose detection can detect grasps
accurately, it is important to evaluate the level of grasp
performance that can be achieved on an physical robot. Our
main evaluation mechanism is the dense clutter benchmark,
described below. As is shown in the next section, the
version of the system that uses the 3-channel descriptor
(Representation #3 from the section entitled Comparison
Between Different Representations) runs significantly faster
than the one using 15-channel descriptor with only a small
resulting deficit in accuracy. As a result, we standardized all
the following hardware tests on the 3-channel version.

Dense Clutter Benchmark Task

Table 1. Dense clutter benchmark task.

Randomly select 10 objects from the object set.

Place objects into a box.

Shake box until sufficiently mixed.

Pour box contents into tray in front of robot.

Run grasp algorithm.

Terminate once any of these events occur:

i) No objects remain in tray.

if) No grasp hypotheses were found after 3 attempts.
iii) The same failure occurs on the same object 3 times.

IR R R B

The dense clutter benchmark task is illustrated in
Figure 11 and the steps are outlined in Table 1. First, ten
objects are selected uniformly at random from the set of 27
shown in Figure 11(a) (Step 1 in Table 1). The 27 objects
are common household items that are different from the 55
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BigBird objects used for training. Next, the ten objects are
placed in a box and the box is shaken to mix the objects
(Steps 2 and 3 in Table 1). Then, the contents of the box
are poured into a tray placed in front of the robot on a
table (Figure 11(b), Step 4 in Table 1). Then, the robot
grasps as many objects one at a time as it can. The robotic
grasping continues until either there are no objects remaining
in the tray, the algorithm has run three times and no grasp
hypotheses were found, or until the same failure occurs on
the same object three times in a row. (The latter case only
occurred once in our experiments, where the front of the
vacuum attachment was not grasped in a stable way.)

(a) ()

Figure 11. Dense clutter benchmark task. (a) 10 objects are
selected at random from a set of 27 total. (b) Pouring the box
contents into the tray. (c) Tray contents immediately after
pouring.

Hardware setup

We use the right 7-DOF arm of the Baxter Research Robot
in the experiments (see Figure 12). Our robot hand is the
stock Baxter parallel-jaw gripper with the stock, short fingers
and square pads. The square pads were modified with a
black rubber covering, and rubber-covered pieces of metal
were added to the ends (Figure 13). The ends bend slightly
outward to initially widen the bite which helped with minor,
sub-centimeter kinematic or point cloud registration errors.
This gripper is restricted to a 3 to 7cm width. Each object in
the test set was selected given this restriction. We mounted
two Asus Xtion Pro depth sensors to Baxter’s waist and an
Occipital Structure IO sensor to the robot’s wrist.

We used two computer systems in the experiments.
Each system consisted of a 3.5 GHz Intel Corei7-4770K
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Figure 12. (a) Baxter in a typical dense clutter test scenario. (b)
We mounted a depth sensor (Structure 10) to the robot hand to
enable us to obtain more complete point clouds using SLAM
software. (¢) Dense clutter benchmark task scenario
superimposed with an illustration of three configurations along
the trajectory taken by the arm during active sensing.

CPU (four physical cores), 32 GB of system memory,
and an Nvidia GeForce GTX 660 graphics card. One
system was used to run our GPD algorithm, and we used
InfiniTAM (Kahler et al. 2015) on the other system to
obtain a truncated signed distance function volume from
the wrist-mounted sensor while moving the robot arm.
Communication between the robot and the two PCs was
handled by the robot operating system (ROS).

Point Cloud Acquisition

We explored two different strategies for acquiring a point
cloud of the objects to be grasped: a passive strategy and an
active strategy. The passive strategy used the two Asus Xtion
Pro depth sensors mounted to the body of the robot as shown
in Figure 12(a). We measured the precise pose of each sensor



12

Journal Title XX(X)

Table 2. Run time averaged over 10 different scenes. Alg
Version denotes the representation number: 1 denotes the
15-channel representation; 3 denotes the 3-channel
representation (see section entitled Comparison Between
Different Representations). Avg Num Pts denotes the average
number of points in the point cloud.

Alg Version 1 1 3 3
Avg Num Pts 39k | 66k | 39k | 66k

Avg time to sample

1k candidates 08s | 1.7s | 0.8s | 1.7s
Avg time to classify
1k candidates 43s | 6.2s | 0.3s | 0.4s

in the base frame of the robot and used this information to
register the two point clouds together. The active strategy
creates a point cloud using off-the-shelf SLAM software
(InfiniTAM (Kabhler et al. 2015)). A depth sensor (Structure
10) is mounted near the end effector (Figure 12(b)). Then,
during point cloud acquisition, the arm moves through a
collision-free trajectory on a hemisphere centered on the
object pile while tracking using InfiniTAM. The trajectory
is a 46cm geodesic between a fixed via point on one side
of the pile and a fixed via point on the other. The radius of
the hemisphere is 40cm (the minimum range of the Structure
10 sensor is approximately 35cm). TrajOpt (Schulman et al.
2013) is used to generate the trajectory. At all times, the
sensor is constrained to point directly towards a fixed point
above the cluttered tray.

Grasp Detection Runtime

Since algorithm runtime is critical for real world applica-
tions, we have implemented our algorithm in C++ as a ROS
package (ten Pas and Platt 2016). Both grasp candidate gen-
eration and classification are parallelized in our implemen-
tation. We implemented our neural network using Caffe (Jia
et al. 2014). We measured the runtime of the two key steps
in our algorithm — sampling and classification (lines 3 and
4-5 in Algorithm 1) for both the 15-channel representation
and the 3-channel representation. These runtime evaluations
were run on an Intel Core i7-4770K Haswell Quad-Core
3.5GHz with 32GB of RAM and one NVIDIA GTX 970
GPU. We report the time required by the algorithm to do
sampling and classification for 1k grasp candidates. Out
of these 1k candidates, we typically find that the classifier
is able to identify a few high-confidence grasps. However,
times scale approximately linearly with candidates, so it is
possible to detect additional grasps by increasing the time
spent.

Table 2 shows results averaged over point clouds derived
from ten different cluttered scenes similar to that shown
in Figure 11. There are four different contingencies. In the
first column of Table 2, we evaluate the runtime for the
full 15-channel representation when run against point clouds
produced by a single depth sensor containing on average
39k points. In the second column, we measure runtime for
the 15-channel representation when run against point clouds
produced by two registered depth sensors containing on
average 66k points. In the third column, we measure runtime
for the 3-channel representation when run against the same
39k point clouds as column 1. In the fourth column, we
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measure runtime for the 3-channel representation when run
against the same 66k point clouds as column 2.

These results suggest two main conclusions. First, our
proposed algorithm is practical for real world applications.
In typical grasping scenarios, our algorithm can be expected
to require between one and eight seconds of runtime,
depending upon which version of the algorithm runs
(columns two and three of Table 2). Second, the 3-channel
version of the algorithm runs much faster than the 15-
channel version: the 3-channel version can handle the 66k
point cloud in 2.1 seconds whereas the 15-channel version
requires 8 seconds. As shown in Figure 8, going from the
15-channel representation to the 3-channel representation
“costs” between 2 and 2.5 percentage points in accuracy.
However, as shown above, the 3-channel version is four times
faster. For this reason, we used the three-channel version of
the algorithm in the robotic grasping experiments reported
in the remainder of this section. We compensate for the
lower accuracy by raising the grasp acceptance threshold
(and thereby decreasing recall).

Grasp Selection Strategy

In most grasp environments, grasp pose detection finds
hundreds of grasps. Of these, we need to select one to
execute. First, we prune the grasps that are infeasible. Since
the Baxter gripper can only grasp surfaces that are between
3cm and 7cm thick (the Baxter gripper has a 4cm stroke), we
prune grasps that are outside of the 3-7cm range. Second,
we prune grasps that do not have collision-free inverse
kinematics (IK) solutions. We use IKFast to generate the IK
solutions and OpenRAVE for collision checking (Diankov
2010) with obstacles created by centering 2cm cubes at
points in the voxelized point cloud.

After pruning infeasible grasps as described above, several
feasible grasps will typically still remain. Even though all of
these are presumably all force closure grasps, they are not
necessarily all equally good. In particular, task and object-
related criteria will make some grasps more desirable than
others. We handle this by creating heuristics based on our
qualitative experience with the dense clutter domain. First,
in the context of the dense clutter benchmark, there is a
clear advantage to grasping objects at the top of the pile.
Second, we have found top grasps to be more successful than
side grasps. We encode both of these criteria by defining
a cost function over the grasps. Third, since hand pose
estimates based on forward kinematics for the Baxter arm
are inaccurate, we penalize grasps that would require the
arm to travel long distances in configuration space from
a nominal configuration. This enables us to calibrate the
arm for a smaller region of configuration space about the
nominal configuration. These three criteria are expressed in
the following cost function. Let z(h) denote the height of
hand h along the gravity axis above the table. Let a(h) denote
a unit vector pointing in the approach direction of the hand
(i.e. along the negative x axis of F'(h) as shown in Figure 2).
Let Vg(h) denote the L2 (i.e. the Euclidean) distance in
configuration space between the arm configuration at h and
some nominal starting configuration. The cost function we
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use for the dense clutter benchmark is:

J(h) =1(0.5(a(h) "5 + 1)1 (vq(h)) ! (Z’" - Z(h)) :

Vam 10z,

where [(z) = max(l —z,0) denotes a hinge loss, z,
denotes the maximum height of a grasp above the table, g
denotes a unit vector pointing in the direction of gravity,
and Vg, the diameter. The grasp that scores the highest on
this cost function is selected. The practical effect of these
heuristics as implemented by Equation 1 is measured in the
results presented in the next section (Table 3). Without these
heuristics (i.e. selecting grasps randomly instead), we get
18% more grasp failures than otherwise. As discussed in the
next section, these failures are caused primarily because of
attempts at objects that are hard to reach or lift. Anecdotally,
we have found that these heuristics are useful in any tabletop
grasping scenario. They are easily adjusted to single-object
grasping rather than clutter grasping simply by constraining
the set of grasp candidates to lie only on an object of interest.

Figure 13. Gripper closing on the first object in the clutter.

Results

We evaluated performance against the dense clutter
benchmark under four different contingencies (Table 3):
active point cloud, passive point cloud, no selection strategy,
and no classification. In all cases, we used a CNN network
trained on all 55 BigBird objects in our dataset. Grasp
candidates were encoded using the 3-channel representation
used in (ten Pas and Platt 2015) (the red line in Figure 8).
Out of the 27 objects shown in Figure 11(a), there were two
objects that could not be grasped by the Baxter gripper in our
configuration because of the 3cm min aperture when they
fell into an upsidedown configuration: the green sandcastle
and the red lobster. If either of these objects fell into this
configuration during “pouring” of the objects into the tray
(Step 4 of the dense clutter benchmark task as shown in
Table 1), then we manually removed the object, turned it
right side up, and placed it back on the pile.

In the active point cloud contingency, we obtained point
clouds using the active sensing strategy where we run
InfiniTAM while moving the wrist-mounted sensor above
the tray. A point cloud with associated surface normals
is obtained from the resulting truncated signed distance
function. We used the grasp selection heuristics described
above to select grasps. We ran 30 rounds of the dense clutter
benchmark task where 10 objects were presented to the robot
on each round. We observed a 93% grasp success rate (20
grasp failures out of 288 grasp attempts; the “Active Point
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Cloud” column of Table 3)). Out of the 20 failures, 5 were
due to point cloud registration errors or innaccuracies in the
kinematic calibration of the robot, 9 were due to a failure of
the algorithm to select what appeared to be a good grasp, 4
were due to a collision of the fingers with the object before
the grasp, and 2 were due to the object dropping out after an
initially successful grasp. In this scenario, 89% of the objects
were cleared from the tray.

In the passive point cloud evaluation contingency, we ran
15 rounds of the dense clutter benchmark task where the
point cloud was obtained using the passive strategy (two
Asus Xtion Pro sensors fixed to the body of the robot).
Otherwise, the algorithm was the same as in the active
point cloud contingency. We observed an 84% grasp success
rate (22 grasp failures out of 138 grasp attempts). Of the
22 failures, 5 were due to point cloud registration errors
or innaccuracies in the kinematic calibration of the robot,
13 were due to a failure of the algorithm to select what
appeared to be a good grasp, 2 were due to a collision of
the fingers with the object before the grasp, and 2 were due
to the object dropping out after an initially successful grasp.
In this scenario, 77% of the objects placed in front of the
robot were cleared. The others were either knocked out of
the tray, pushed too far forward to be seen by the sensors,
or grouped too close together for a finger-clear grasp to be
found. We attribute the lower success rate (84%) obtained
here relative to that obtained using the active strategy (93%)
to two factors: 1) the point cloud created using the active
strategy appears to better cover the objects in the box; 2) the
point cloud created using the passive strategy does not see
some objects near the very front of the box very well.

In the no selection strategy evaluation contingency, we ran
15 rounds of the dense clutter benchmark task where we
omitted the grasp selection strategy (Step 6 of Algorithm 1).
Otherwise, the algorithm was the same as in the active
point cloud contingency. We still pruned grasps that had
no IK solutions, were in collision, or did not fit the Baxter
gripper aperture constraints. However, instead of ranking the
remaining grasps, we just selected grasps randomly. The
second to last column of Table 3 shows the results. We
observed a 75% grasp success rate (38 grasp failures out
of 155 grasp attempts). Out of the 38 failures, 9 were due
to a failure of the algorithm to select what appeared to be
a good grasp, 8 were due to collision of the fingers with
the object prior to forming a grasp, 10 were due to point
cloud registration errors or innaccuracies in the kinematic
calibration of the robot, and 11 were due to the object
dropping out after an initially successful grasp. Notice that,
compared with the active point cloud contingency, there are
a large number of grasps where the robot dropped the object
after pickup, where there were errors caused by inaccurate
kinematic calibration during the reach, or where there was a
collision just prior to the grasp. This makes sense: since the
heuristics help the algorithm avoid grasps at the bottom of
the pile, they reduce these sorts of errors.

In the no classification contingency, we ran 15 rounds
of the dense clutter benchmark task while omitting the
grasp classification step (Step 5 of Algorithm 1). Instead of
ranking and pruning low scoring grasps, we used the grasp
selection strategy to select from among all sampled grasp
candidates. This contingency implicitly assumes all sampled
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Table 3. Results of the clutter-removal experiments.

Active Point Cloud | Passive Point Cloud | No Selection Strategy | No Classification
Num objects 300 150 150 150
Num grasp attempts 288 138 155 142
Num grasp successes 268 116 117 75
% grasps successful 93% 84% 75% 53%
% objects removed 89% 77% 78% 50%

grasp candidates to be force closure grasps. Otherwise,
the algorithm was the same as in the active point cloud
contingency. The last column of Table 3 shows the results.
We observed a 53% grasp success rate (67 grasp failures out
of 142 grasp attempts). Out of the 67 failures, 46 were due
to a failure of the algorithm to select what appeared to be a
good grasp, 6 were due to collision of the fingers with the
object before the grasp, 14 were due to the object dropping
out after an initially successful grasp, and 1 was caused by a
point cloud registration error. These results reflect what one
might expect. If we do not prune the grasp candidates that are
not force closure grasps, then the algorithm suffers a large
number of grasp failures caused by attempting to grasp poor
candidates. In addition, this method produces many poor
grasps that drop out of the hands during lifting.

Combined Grasp and Object Detection

In a traditional grasp pipeline, e.g. where a CAD model of
an object is registed to point cloud in 6DOF pose space,
determining the identity of an object to be grasped is an
integral part of the grasp perception process. However, grasp
detection dispenses with this requirement. But, this does not
mean that object identity is irrelevant. The opposite is nearly
always true: we are almost always interested in grasping a
particular object — not just any object. This means that we
must combine grasp detection with object detection.

We propose a simple method of accomplishing this.
The standard approach to object detection is to generate
candidate object locations (i.e. object proposals) using
methods like EdgeBoxes (Zitnick and Dolldr 2014) or
selective search Uijlings et al. (2013) and then to classify
these candidates using machine learning, i.e. a convolutional
neural network. However, since we are primarily interested
in classifying objects that can be grasped, we propose using
the detected grasps themselves as object proposals. After
detecting a set of potential grasps relative to the point cloud,
we calculate a point directly between the fingers for each
detected grasp and project this point into the RGB image.
Then, we create the set of proposals by taking a fixed-size
bounding box (120 x 120 pixels in our case) around each
projected point.

Figure 14 illustrates the process. Figure 14 (a) shows
68 grasps that were detected in the scene. Notice that
grasps are only detected on three of the seven objects.
There were no detections on the other four objects because
they were beneath other objects or because they were too
far away for the robot to reach. Figure 14 (b) shows the
corresponding object proposals in the RGB image. Notice
that our use of the grasp detector as an object proposal
generation mechanism focuses the attention of the system
on graspable objects in a way that an off-the-self proposal
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strategy like EdgeBoxes or selective search would not.
Figure 14 (c) shows the top scoring object proposals in
each object category that achieved a minimum threshold
score. In this case, we obtained high confidence labels for
the flashlight in the middle (the “lamp”) and the white and
red box on the left (“neutrogena”). Figure 14 (d) shows the
grasps corresponding to these object detections. Since we
now have predictions of the object identity of all objects that
can be grasped by the system, we can select an object to grasp
as desired.

We performed experiments to evaluate the accuracy with
which we can detect objects using this method. We trained
the BVLC Reference Network (four convolutional layers and
three fully connected layers) Jia et al. (2014) to detect object
instances for the set of 11 objects shown in Figure 15. In
order to train the network, we automatically collected images
for each of the 11 objects as follows. For each object, we
first placed it alone on a table in front of the robot. Then,
we collected a sequence of depth images from different
perspectives by using a depth camera mounted to the end
of our robotic arm. We repeated this process three times for
each object, each time placing the object on the table in a
different orientation. Altogether, we obtained approximately
2k images per object. We augmented this by rotating and
scaling, resulting in a dataset of approximately 10k images
per object — approximately 116k images total. We created a
train/test set with a 75%/25% split. Starting with a version
of the BVLC Reference Network pretrained on ImageNet,
we finetuned the network on our 11 objects by running 20k
iterations of stochastic gradient descent where we used a
learning rate of 0.000001, momentum of 0.9, weight decay
of 0.0005, and where each minibatch contained 128 images.
After training, we obtained more than 99% accuracy on the
test set. This 99% accuracy can be interpreted as the expected
performance of the object classifier in a single-object grasp
setting.

We wanted to evaluate the performance of our approach
in cluttered scenarios. To accomplish this, we created a
set of 9 cluttered scenes involving 9 of the 11 objects
(similar to that shown in Figure 14) — we excluded the
screwdriver because it was hard to grasp using the Baxter
hand and the rocket because it was nearly indistinguishable
from the link roller handle for the 120 x 120 window size
used in this work. We took 3 point clouds of each of the
9 cluttered scenes, for a total of 27 point clouds. For each
point cloud, we used grasp detection to create a set of
object proposals, for a total of 1197 object proposals. We
manually labeled each proposal with the identity of the object
that would get picked up if the robot were to execute the
corresponding grasp. Then, we evaluated the accuracy of the
object classifier over this set of object proposals. Out of the
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Figure 14. lllustration of combined grasp and object detection. (a) a set of grasps detected in a scene; (b) the corresponding object
proposals; (c) high-confidence object detections; (d) grasps corresponding to detected objects. For either of the two detected
objects, the robot has the option to execute one of two detected grasps.

Figure 15. The 11 objects used to test combined object and
grasp detection.
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1197 total grasps, our system correctly predicted the correct
object in 1023 of these (85.4% accuracy). Table 4 shows the
corresponding confusion matrix. The primary reason why
object classification accuracy drops in clutterrelative to the
single object scenario is that the object proposals sometimes
contain adjacent objects in addition to the objects that would
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be grasped. By using segmentation to remove these adjacent
objects from the proposals, we expect that it should be
possible to improve on the results above. Nevertheless, the
fact that we get 85% average object detection accuracy in
relatively cluttered settings suggests that the approach above
should be practical in some application settings as is.

An important application of object detection is to detect
object class in order to improve grasp detection accuracy.
Recall that we showed earlier that it is possible to improve
grasp detection accuracy by training a neural network using
only grasps from the specific object instance or object
category of a target object. In this context, the object
detection method described in this setion could be used to
predict object instance or category as part of this process.
Given a novel scene, we might generate grasp candidates for
all visible objects and then predict object instance or category
for each grasp. Then, given this prior, we would invoke the
appropriate classifier to detect grasps on the object. This
approach would be particularly useful in scenarios where it
is desired to grasp an object based on its category label. One
would eliminate grasp candidates that were not predicted to
have the desired class label and focus classification on just
the remainder.

Discussion

This paper makes a case for grasp detection as an alternative
to attempting to estimate the exact pose of objects to grasp.
This is exactly what many approaches to grasp perception
try to do. For example, the ROS grasp pipeline registers
a geometric model of the object to be grasped to a point
cloud (Chitta et al. 2012). Unfortunately, registering a CAD
model to a noisy or incomplete point cloud can be very
challenging. Moreover, the assumption that a CAD model
will always be available for every object that a robot might
need to grasp is incompatible with our desire to operate
in open world environments. Instead, grasp detection finds
grasp poses directly in a point cloud or truncated signed
distance function. In contrast to the object-pose-estimation-
approach, grasp detection: 1) does not require any object
segmentation; 2) does not need to know the identity, class,
or shape of the object to be grasped; 3) does not try to
register a CAD model of the object to the point cloud.
This is a significant advantage: object segmentation and 3D
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Figure 16. One grasp detection failure mode: two objects are
grasped as if they were a single object.

registration are both difficult problems, and a failure in either
will cause traditional grasp perception to fail. We attribute
the high grasp success rate that we achieve on the dense
clutter benchmark to these advantages. The fact that these
grasp success rates are averages over a large number of
grasp trials (all together, our grasp results are averages over
723 dense clutter grasp experiments with 288 of these grasp
attempts performed in our best-case contingency) suggest
that these success rates are repeatable (at least for the objects
we used in our experiments, shown in Figure 11 (a)).

We performed several experiments in simulation and on
the hardware to quantify the performance contributions of
various parts of the system. The results suggest that several
different pieces are needed in order for grasp detection
to work well. Representation of the grasp candidate is
important: our results (Figure 8) show that the “right”
representation can improve classification accuracy by as
much as 10%. In addition, pretraining on simulated point
clouds and using prior knowledge about the object to be
grasped can help. Our experiments with the robotic hardware
(Table 3) show that improving the quality of the point cloud
can also make a big difference. Grasp success rates where the
point cloud was created using “active sensing” (i.e. using off-
the-shelf metric SLAM software) are 9% higher than when
grasping using a point cloud obtained from sensors fixed
to the robot body. In addition, grasp selection strategy is
extremely important. As the third column of Table 3 shows,
applying simple heuristics to choose which grasp to try first
(i.e. grasp object at the top of the pile first) can improve grasp
success rates by nearly 20%. Finally, as the last column of
Table 3 shows, grasp classification and ranking itself is very
important. Without a mechanism for predicting which grasps
are force closure, grasp success rates can drop by as much as
40%.

Limitations

There are at least two drawbacks to grasp detection relative
to more standard approaches. The first is illustrated in
Figure 16. Since our algorithm does not segment the objects,
it can detect “grasps” that treat multiple objects as a single
atomic object. This type of error is unusual with small-
aperture hands, but one would expect it to become a more
significant problem when the hand is physically capable
of grasping larger objects. One approach to solving this
problem would be to use object segmentation.
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Another concern is whether grasp detection methods can
be used to grasp specific objects of interest reliably. As
we have shown in the last section, grasp detection can be
combined with object detection, resulting in a system that
can grasp specific objects of interest. However, it is not
yet clear how accurately this can be done in general. Our
experiments showed that this approach can work with 85%
object classification accuracy in a laboratory setting. It may
be possible to improve this by incorporating segmentation
methods. Regardless, improving upon this 85% object
classification accuracy result will be critical for deploying
this type of system in real world settings.
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