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Adapting control policies from simulation to
reality using a pairwise loss

Ulrich Viereck, Kate Saenko, and Robert Platt

Abstract This paper proposes an approach to domain transfer based on a pairwise
loss function that helps transfer control policies learned in simulation onto a real
robot. We explore the idea in the context of a “category level” manipulation task
where a control policy is learned that enables a robot to perform a mating task in-
volving novel objects. We explore the case where depth images are used as the main
form of sensor input. Our experimental results demonstrate that proposed method
consistently outperforms baseline methods that train only in simulation or that com-
bine real and simulated data in a naive way.

1 Motivation, Problem Statement, Related work

Recently, there has been a lot of in-
terest in using deep neural networks
to learn “pixels-to-torques” visuomotor
controllers: robotic controllers that take
sequential image data as input and pro-
duce low level motor commands as out-
put. Ideally, we would learn these con-
trollers with training data collected us-
ing real robotic hardware [3]. However,
this approach is rarely feasible because Fig. 1. Our goal is to learn a controller that uses
of the large amounts of training expe- depth image feedback to mate the cap to the bot-
K 2 . € tle in the presence of clutter. Experimental setup
rience typically required to train deep on URS5 robot with a Intel RealSense depth sensor
neural networks. Instead, it is conve- mounted as shown.
nient to learn pixels-to-torques control
policies using simulated data. Unfortunately, this exposes us to the dataset shift
problem [4]. When the simulation is not sufficiently accurate, then the control pol-
icy learned in simulation may not work well in reality. There are two types of sim-
ulation errors that typically can cause domain shift problems: 1) errors simulating
images that the robot would observe, and 2) errors simulating real world contact
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and frictional dynamics. This paper limits consideration to non-contact tasks and
therefore the focus is on domain shift errors caused by image simulation and depth
image simulation in particular.

In this paper, we propose an approach to transferring visuomotor control poli-
cies learned on simulated depth data to real world observations. The key idea is to
reduce the gap between simulation and reality by augmenting the simulated data
used to train the system with a small amount of real robot data. Each piece of real
robot data is paired with a piece of simulated data that corresponds to the same
robot state. We train the neural network using a loss function that has two terms:
a task loss that encodes the desired robotic behavior and a pairwise loss that pe-
nalizes networks that do not represent real and simulated data the same way. This
paper makes two contributions relative to prior work: 1) we propose a neural net-
work architecture that combines the pairwise loss approach to domain transfer with
a pixels-to-torques controller; 2) we characterize the method for depth image data
rather than for RGB data. Unlike [6] which uses the pairwise loss function as part
of the state estimator and only explores single task instances, our approach learns
controllers that can solve “category level” manipulation tasks where object shape
and size varies from one instance of the task to the next. We find that the approach
can work well even when the real data is produced in a simplified version of the
actual robotic scenario that is experienced at test time. This paper complements a
variety of recent literature on the subject including work that uses “domain random-
ization” of simulated images to affect better transfer to reality [5] and work using
GAN:Ss to affect the transfer [1]. In contrast to that work, the approach followed here
is simpler than GAN-based approaches and more relevant to depth data than domain
randomization methods.

2 Technical Approach

We learn a pixels-to-torques controller that takes depth images as input and outputs
manipulator displacements. The controller is based on a method proposed in our
prior work [7] where we estimate a distance function with respect to a goal state us-
ing a neural network. Given an image and a candidate manipulator displacement, the
distance function predicts expected distance-to-goal on the following time step. We
select a manipulator displacement by sampling a set of candidate displacements and
selecting the one that is predicted to move closest to a goal. Essentially, this method
learns a value function over the cross product of observation and action (depth image
and manipulator displacement). However, instead of using reinforcement learning,
we train the neural network directly by using supervised learning with distance tar-
gets produced by our simulator. Specifically, we create a dataset by sampling from
a space of possible task scenarios and initial conditions. For each sample, we sim-
ulate the depth image that would be observed and calculate distance-to-goal after
performing the associated displacement.

This paper characterizes a domain transfer technique based on the following loss
function (similar to what was originally proposed in [6]):
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uated over a training dataset comprised
of two parts: the data from source do- Fig. 2 Neural network architecture. The pairwise
main and the data from the target do- 1oss at pool3 favors networks that give real and
main. The source domain consists of simulated images similar representations.
simulated images and actions (I,a) €
X and the associated labels y(I,a) (these are the distance-to-goal that would re-
sult from taking action a from the state that produced image 7). The target domain
Xr consists of real images and actions paired with the associated labels. The set
X7 consists of triples (Is,Ir,a) where Iy and Iy are the simulated-real image pair
and a is the action that was taken. We assume that the cardinality of Xy is much
larger than either X7 or Xg7, i.e. that we have many more simulated images than
real images. The first two terms of Equation 1 are called fask losses. The third is
the pairwise loss. The first and second task losses are minimized when the neural
network fits the simulated and real data well, respectively. The third is minimized
when the network assigns both simulated and real depth images the same high-level
encoding. The pairwise loss is critical: by “preferring” networks that encode real
and simulated data similarly, this term facilitates good transfer from simulation to
reality. The approach is implemented by the neural network architecture illustrated
in Figure 2. It takes as input a pair of depth images, /| and I, (matching paired im-
ages from simulation and reality), and an action a = (x,y) € R2. It learns a function,
d(I,a) € Ry, that describes the distance between the object in the hand and the
target after displacing the manipulator by a.

We train using a combination of real and simulated data. The simulated portion
of the dataset is generated using OpenRAVE [2] to generate 100k 64x64 pixel depth
images. Each depth image is taken for a random robot configuration with clutter ob-
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Jects selected randomly from a set of more than 250 objects and placed randomly in
the vicinity of the target bottle. For each of the 100k scenes, we sample 100 actions
(i.e. hand displacements) and estimate the distance-to-goal that would result if that
action were executed. Finally, we simulate missing pixel noise by setting the value
of each pixel to 0 with a 10% probability. We also collect 2904 labeled real train-
ing images on the robot (URS, see Figure 1) and measure the corresponding ground
truth distance-to-goal. Importantly, the real images used for training do not have
clutter. As a result, it is easier to obtain training data semi-automatically because it
is unnecessary to reproduce simulated clutter on the real system. These real images
were paired with 2904 simulated images that portray the same robotic state.

3 Experiments

We evaluate this approach using the

oda Jugs .
cap-on-bottle task, where the robot ., | > ° hotes i
must align a cap with a bottle opening. "' . ’
This is a challenging task because we LI '
® ® o o r [ ® %

are learning a “category level” manipu-
lation skill where the system must learn
to perform the task for novel object
instances in the presence of randomly
placed clutter. We use a Robotiq 85 \ |
two-fingered hand mounted on a URS
arm. The Intel RealSense SR300 is
mounted to the URS wrist as shown in  Fig. 3 Simulated and real bottles used in our ex-
Figure 1. The RealSense creates depth periments. From left to right: vitamin, pills, soda,
. . water, 1-gal, laundry, 2-gal, corn starch, peanut
images that are input to our controller butter, sport bottle. Test bottles are shown with
and used to estimate desired hand dis-  rrows.

placements. A test bottle is placed on a

table surrounded by clutter intended to make the task more challenging. The bottle
cap is manually placed into the robotic hand. The position of the bottle is unknown
to the algorithm but measured for the purposes of experimental evaluation. The grip-
per is initialized to a random offset within a 10cm box centered on the bottle at a
height of 5cm above the table. At each iteration, the controller acquires a depth
image, samples 1k manipulator displacements, moves the gripper in the direction
predicted to reduce distance-to-goal by the most, and moves toward the table by
Icm. After executing 5 iterations, we measure how close the cap is to the bottle
opening.

Our proposed approach is to train the neural network using both the task and pair-
wise loss over both simulated and real images. We compare this approach against
four different baselines: 1) training the network using only real images without clut-
ter; 2) training using only real images with clutter; 3) training using simulated im-
ages with clutter; 4) training using simulated with clutter combined with real images

EsT
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Fig. 4 Depth images generated for training. Real no clutter and Sim no clutter are paired and
augmented by Sim with clutter images.

without clutter. We will refer to the combination of the four baselines and the pro-
posed approach as the five “domain transfer methods”.

We evaluate the five domain transfer methods over a set of five different problem
scenarios. In each problem scenario, we train using data derived from a different
object category. The five object categories are: (i) small pill bottles; (ii) soda bot-
tles; (iii) jugs; (iv) bottles with large caps; (v) cornstarch and vitamin bottles. These
categories are illustrated in Figure 3. Figure 5 shows the results grouped by object
category. A separate network is trained for each object category and is evaluated on
as many as four different test objects. (We do not test on objects that happen also to

' real only no clutter
 real only with clutter

~ Testloss sim only
(on real image test sets with clutter) ® sim#real (without pairwise)
W sim+real (with pairwi:
sim+real (with pairwise) 003
0.025
0.02
@
2
@
4
Train: Category 1 Category 2 Category 3
(real image set) (small bottles) (soda) (jugs) (bottles with large caps) (cornstarch/vitamin)
Tes(:| water | 2-gal | peanut | 1-gal | 2-gal |peanut | 1-gal | water | peanut | water | 2-gal 1-gal | water 2-gal |peanut | 1-gal AVG|

 real only no clutter
s "  real only with clutter
uccess rates sim only

(final distance < 1 cm) w sim+real (without pairwise)
W sim+real (with pairwise)
0.9

08

08 X
0.7 0.7
0.6 0.6
. 0.5
0.4 0.4
0.3 0.3
0.2 0.2
> MLl G AL D ol B

. k il |l I .

Train: Category 1 Category 2 Category 3
(real image set) (small bottles) (soda) (jugs) (bumes W|th Iarge caps) (cornstarch/vitamin)

Succes rate
o
o

1-gal | water | peanut| water | 2-gal | 1-gal | water | 2-gal |peanut | 1-gal | AVG

1-gal | 2-gal ‘peanul

Test: | water | 2-gal | peanut

Fig. 5 Test losses (top) and average success rates (bottom) on real image test sets with clutter. See
text for details.
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be in the object category used for training.) For example, the “Category 1” results
shown as the far left of Figure 5 show performance for each of the five domain trans-
fer methods evaluated on four different test objects (water, 2-gal, peanut, and 1-gal).
The top of Figure 5 show L1 test loss of the learned network (lower is better). The
bottom of Figure 5 shows the success rate of the end-to-end controller (we define
“success” to occur when the cap final position is within 1cm of the position of the
bottle top). Each bar is an average of 20 trials (higher is better).

4 Main Experimental Insights

The five bars at the far right of Figure 5 labeled “AVG” summarize the compari-
son. Each bar (i.e. each domain transfer method) is an average of all experiments
for that domain transfer type. This illustrates a few key results. First, the domain
transfer method using our proposed task-pairwise loss function does best overall
(lowest loss, highest task success rate). Second, the method using only real images
does worst, probably because we do not train on enough different objects to facil-
itate generalization to novel objects. Third, training using only simulated images
does pretty well ( 54% success rate): not quite as well as we can do using our pro-
posed method ( 70% success rate), but not nearly as bad as training on only real
data. Overall, we conclude that training visuomotor policies for category-level tasks
in simulation is a promising approach, and that by collecting a small amount of la-
beled real data in simplified scenarios and using the pairwise loss, we can improve
performance on real systems.
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