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Pick and Place Without Geometric Object Models

Marcus Gualtieri, Andreas ten Pas, and Robert Platt

Abstract— We propose a novel formulation of robotic pick
and place as a deep reinforcement learning (RL) problem.
Whereas most deep RL approaches to robotic manipulation
frame the problem in terms of low level states and actions,
we propose a more abstract formulation. In this formulation,
actions are target reach poses for the hand and states are a
history of such reaches. We show this approach can solve a
challenging class of pick-place and regrasping problems where
the exact geometry of the objects to be handled is unknown.
The only information our method requires is: 1) the sensor
perception available to the robot at test time; 2) prior knowledge
of the general class of objects for which the system was trained.
We evaluate our method using objects belonging to two different
categories, mugs and bottles, both in simulation and on real
hardware. Results show a major improvement relative to a
shape primitives baseline.

I. INTRODUCTION

Traditional approaches to pick-place and regrasping re-
quire precise estimates of the shape and pose of all relevant
objects [1], [2]. For example, consider the task of placing
a mug on a saucer. To solve this problem using traditional
techniques, it is necessary to plan a path in the combined
space of the mug pose, the saucer pose, and the manipulator
configuration. This requires the pose and shape of the mug
to be fully observable. Unfortunately, even when the exact
shape of the mug is known in advance, it can be hard to
estimate the mug’s pose precisely and track it during task
execution. The problem is more difficult in the more realistic
scenario where the exact shape of the mug is unknown.

Approaches based on deep RL are an alternative to the
model based approach described above [3]. Recent work
has shown that deep RL has the potential to alleviate some
of the perceptual challenges in manipulation. For example,
Levine et al. showed deep learning in conjunction with policy
gradient RL can learn a control policy expressed directly
in terms of sensed RGB images [4]. Not only does this
eliminate the need to develop a separate perceptual process
for estimating state, but it also simplifies the perceptual prob-
lem by enabling the system to focus on only the perceptual
information relevant to the specific manipulation task to be
solved. This, along with encoding actions using low level
robot commands (such as motor torque or Cartesian motion
commands [5], [4]), means the approach is quite flexible: a
variety of different manipulation behaviors can be learned
by varying only the reward function.

Unfortunately, deep RL approaches to robotics have an
important weakness. While the convolutional layers of a deep
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Fig. 1. Pick-place problem considered in this paper. The robot must grasp
and place an object in a desired pose without prior knowledge of its shape.

network facilitate generalization over horizontal and vertical
position in an image, they do not facilitate generalization
over depth or in/out of plane orientation, i.e., the full 6-
DOF pose space in which robots operate. This is a significant
problem for robotics because deep RL methods must learn
policies for many different relative poses between the robot
and the objects in the world. Not only is this inefficient,
but it detracts from the ability of the deep network to learn
other things like policies that generalize well to novel object
geometries.

We propose a new method of structuring robotic pick-place
and regrasping tasks as a deep RL problem, i.e., as a Markov
decision process (MDP). Our key idea is to formulate the
problem using reach actions where the set of target poses that
can be reached using these actions is sampled on each time
step. Each reach action is represented by a descriptor that
encodes the volumetric appearance of the scene in the local
vicinity of the sampled reach target. In order to formulate the
MDP, we note our problem is actually a partially observable
MDP (POMDP) where object shape and pose are hidden state
and the images or point clouds produced by the sensors are
the observations. In order to solve this problem as an MDP,
we encode belief state as a short history of recently taken
reach actions expressed using the volumetric descriptors used
to encode the reach action.

As a result of these innovations, our method is able to
learn policies that work for novel objects. For example, we
show that our system can learn to grasp novel mugs (for
which prior geometric models are not available) from a pile
of clutter and place them upright on a shelf as in Figure 1.
The same system can be trained to perform a similar task for
other classes of objects, such as bottles, simply by retraining.
Our system can also learn policies for performing complex
regrasping operations in order to achieve a desired object
pose. As far as we know, this is the first system described in
the literature that has been demonstrated to accomplish the
above without constructing or matching against geometric
models of the specific objects involved.



II. RELATED WORK

One early approach to manipulation of unknown objects
is based on shape primitives. Miller et al. explored this in
the context of grasp synthesis [6]. Others have extended
these ideas to segmentation and manipulation problems [7],
[8], [9]. These methods have difficulty when the objects
are not approximately cylindrical or cuboid and when the
objects cannot be easily segmented. Our method performs
much better than a cylinder-based shape primitives method,
even when the objects involved (bottles and mugs) are nearly
cylindrical.

Another approach to manipulating unknown objects is to
estimate the object shape from a recent history of sensor
feedback. For example, Dragiev and Toussaint explore an
approach that models the implicit shape of an object as a
Gaussian process [10]. Mahler et al. do something similar
for the purposes of grasping while incorporating tactile
feedback [11]. These methods can run into trouble when
there is not enough data to fit the implicit shape with high
confidence. Both of the above approaches can be viewed as
ways of estimating object shape and pose in order to facilitate
traditional configuration space planning. The problem of
object pose and shape estimation given various amounts of
prior data remains an active area of research [12], [13], [14].

Recently, there has been much advancement in grasping
novel objects. Bohg et al. provide a survey [15]. Most of
these methods are trained in a supervised fashion to predict
whether a grasp is stable or not. The present paper can be
viewed as extending our prior work in grasp detection [16],
[17] to pick-and-place and regrasping.

The approach nearest to ours is by Jiang et al. who propose
a method for placing new objects in new place areas without
explicitly estimating the object’s pose [18]. Their placements
are sampled instead of, as in our case, fixed. However, they
do not jointly reason about the grasp and the place — the grasp
is predefined. This is an important drawback because the
type of placement that is desired often has implications on
how the grasp should be performed. Their learning method
also relies on segmenting the object, segmenting the place
area, hand-picked features, and human annotation for place
appropriateness.

RL has long been studied for use in robot control. Kober
et al. survey robotics applications that use RL [19]. Since
this survey, deep RL has become prominent in robotic
manipulation [4], [5], [20]. These methods operate on the
motor torque or Cartesian motion command level of the robot
controller whereas ours operates at a higher level.

III. PROBLEM STATEMENT

We consider the problem of grasping, regrasping, and
placing a novel object in a desired pose using a robotic arm
equipped with a simple gripper. We assume this is a first-
order kinematic system such that state is fully described by
the geometry of the environment. Also, we assume the agent
can act only by executing parameterized reach actions.

The problem can be expressed as an MDP as follows.
Let I' C R3 denote the portion of work space that is free

of obstacles. For simplicity of exposition, suppose that it
is known that the free space contains a finite set of NV
rigid body objects, O. Let A denote a parameter space
that describes the space of all possible object shapes. Let
&(o) € A x SE(3) denote the shape and pose of object
o € O. Let H € SE(3) denote the current pose of the
robot hand. The state of the system is fully described by the
pose of the hand and the shape and pose of all N objects:
s=(H,£(0Y),...,&(0N)) € S=SE(3) x {A x SE(3)}V.

We will assume the robot can act only by execut-
ing the following parameterized, pre-programmed actions:
REACH-GRASP(T') where T' € SE(3) and REACH-PLACE(t)
where ¢ € PLACE C N belongs to a discrete set of pre-
programmed reach poses expressed relative to the robot
base frame. The total set of available actions is then A =
SE(3) UPLACE.

Given a goal set G C S, we define a reward function
to be 1 when a goal state is reached and O otherwise. The
episode terminates either when a goal state is reached or
after a maximum number of actions. Finally, we assume
access to a simulator that models the effects of an action
a € A taken from state s € S. For stochastic systems, we
assume the simulator draws a sample from the distribution
of possible outcomes of an action. Given this formalization
of the manipulation problem, we might express it as an MDP
M = (S, A, T,r) with state-action space S x A, unknown
but stationary transition dynamics 7, and reward function
r(s,a) =11if s € G and r(s,a) = 0 otherwise.

A key assumption in this paper is object shape and
pose are not observed directly and therefore the MDP
defined above is not fully observed. Instead, it is only
possible to observe a volumetric occupancy grid, C(z) €
{OCCUPIED, FREE, UNKNOWN} where * € ' C T is a
volumetric grid over I'. We assume that C' is populated based
on depth sensor data obtained during a single time step. (As
such, there may be a large number of UNKNOWN cells.)
Given the above assumptions, the manipulation problem can
be expressed as a POMDP P = (S, A,T,r,C,O), where
O : Sx AxC — R is the observation probabilities, assumed
to be unknown. The goal of this paper is to find policies that
maximize the expected sum of discounted rewards over the
episode, i.e., reach the goal state in a minimum number of
actions.

IV. APPROACH

Solving the POMDP P using general purpose belief space
solvers (e.g. [21]) is infeasible because the underlying MDP
M is far too large to solve even if it were fully observed.
Instead we propose what we call the descriptor-based MDP
that encodes REACH-GRASP actions using a special type
of descriptor and encodes belief state implicitly as a short
history of states and actions.

A. The REACH-GRASP Descriptor

The REACH-GRASP descriptor is a key element of our
state and action representation, based on the grasp descriptor
developed in our prior work [16], [17]. It encodes the



Fig. 2. Examples of the grasp descriptor for the three grasps shown on
the left. The right column shows the cuboid associated with each grasp.
The middle column shows the descriptor — the visible and occluded points
contained within the cuboid.

relative pose between a robot hand and an object in terms
of the portion of the volumetric occupancy grid in the
vicinity of a prospective grasp. Let C = {x € ['|C(z) =
OCCUPIED} denote the voxelized point cloud correspond-
ing to the occupancy grid C. Then, the REACH-GRASP
descriptor at pose T' € SE(3) is D(C,T) = trunc,(TC),
where TC is the point cloud in the grasp reference frame,
and where trunc,(X) denotes the elements of X that lie
within a cuboid centered at the origin with dimensions
v = (YusVy»7V2)- This is illustrated in Figure 2. The middle
column shows the REACH-GRASP descriptors corresponding
to the three grasps of the object shown on the left. A
REACH-GRASP descriptor is encoded to the deep network
as an image where the points are projected onto planes
orthogonal to three different viewing directions and compiled
into a single stacked image, I(D), as described in [16], [17].

B. The Descriptor-Based MDP

Our key idea is to find goal-reaching solutions to the
POMDP P by reformulating it as an MDP with descriptor-
based states and actions. Specifically, we: 1) reparameterize
the REACH-GRASP action using REACH-GRASP descriptors
rather than 6-DOF poses; 2) redefine state as a history of the
last two actions visited.

Action representation: Recall that the underlying MDP
defines two types of actions: REACH-GRASP(T') where T
denotes the pose of the grasp and REACH-PLACE(t) where
t € PLACE and PLACE denotes a finite set of place poses.
Since RL in a continuous action space can be challenging,
we approximate the parameter space of REACH-GRASP by
sampling. That is, we sample a set of m candidate poses for
REACH-GRASP: T4,...,T,, € SE(3). In principle, we can
use any sampling method. However, since REACH-GRASP is
intended to reach toward grasp configurations, we use grasp
pose detection (GPD) [16], [17] to generate the samples.
Each of the candidate poses generated by GPD is predicted

to be a pose from which closing the robot hand is expected to
result in a grasp (although the grasp could be of any object).

Since we are sampling candidate parameters for
REACH-GRASP, we need a way to encode these choices
to the action-value function. Normally, in RL, the agent
has access to a fixed set of action choices where each
choice always results in the same distribution of outcomes.
However, since we are now sampling actions, this is no
longer the case, and we need to encode actions to the
action-value function differently. In this paper, we encode
each target pose candidate for REACH-GRASP by the cor-
responding REACH-GRASP descriptor, D; = D(C,T;),i €
[1,m]. Essentially, the descriptor encodes each target pose
candidate by the image describing what the point cloud
nearby the target pose looks like. The total action set
consists of the set of descriptors corresponding to sampled
reach-grasps, REACH-GRASP(D(C,T;)),i € [1,m], and the
discrete set of reach-places adopted from the underlying
POMDP, REACH-PLACE(%),i € PLACE: A = [1,m]UPLACE.
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Fig. 3. The descriptor-based MDP. States on the right are those where an
object is grasped. All other states are on the left.

State representation: We encode state as the history of
the M most recent reach actions where REACH-GRASP
actions are represented using the corresponding descriptors.
In all of our experiments, M < 2. Figure 3 illustrates the
resulting state-action space. The set of blue circles on the
right labeled “Space of all grasp descriptors” denotes the
set of states where an object has been grasped. This is a
continuous space of states equal to the set of REACH-GRASP
descriptors resulting from the most recent REACH-GRASP
action, {trunc,(C)|C C T'}. The set of blue circles on the
left labeled “Space of object placements” represents the set
of states where an object has been placed somewhere in



the environment. These states are encoded as the history of
the two most recent reach actions: the REACH-PLACE action
taken on the last time step and the descriptor that encodes the
REACH-GRASP action taken two time steps ago. All together,
a state in this new MDP is a point in S = {trunc,(C)|C C
'} x PLACE. The state labeled “Goal!” in Figure 3 denotes an
absorbing state where the object has been placed correctly,
and the state labeled “Fell over!” denotes an absorbing state
where the object has been placed incorrectly. When the agent
reaches either of these states, it obtains a final reward and
the episode ends.

Reward: Our agent obtains a reward of 41 when it reaches a
placement state that satisfies the desired problem constraints,
and otherwise, it obtains zero reward.

C. The Simulator

Deep RL requires such an enormous amount of experience
that it is difficult to learn control policies on real robotic
hardware without spending months or years in training [5],
[4]. As a result, learning in simulation is basically a re-
quirement. Fortunately, our formulation of the manipula-
tion problem in terms of pre-programmed, parameterized
actions simplifies the simulations. Instead of needing to
simulate arbitrary contact interactions, we only need a mech-
anism for simulating the grasp that results from executing
REACH-GRASP(T') and the object placement that results from
executing REACH-PLACE(¢). The former can be simulated
by evaluating standard grasp quality metrics [22]. The later
can be simulated by evaluating sufficient conditions to de-
termine whether an object will fall over given the executed
placement. Both are easy to evaluate in OpenRAVE [23], the
simulator used in this work.

D. The Action-Value Function

We approximate the action-value function using the con-
volutional neural network (CNN) shown in Figure 4. The
input is an encoding of the state and the action, and the
output is a scalar, real value representing the value of that
state-action pair. This structure is slightly different than that
used in DQN [3] where the network has a number of outputs
equal to the number of actions. Here, the fact that our
MDP uses sampled reach actions means that we must take
action as an input to the network. The action component
of the input is comprised of the REACH-GRASP descriptor
(encoded as a 60 x 60 x 12 stacked image as described
in Section IV-A) denoting the REACH-GRASP parameter
and a one-hot vector denoting the REACH-PLACE parameter.
When the agent selects REACH-GRASP, the grasp descriptor
is populated and the place vector is set to zero. When a
REACH-PLACE is selected, the grasp descriptor is set to zero
and the place vector is populated.

The state component of the input is also comprised of a
REACH-GRASP descriptor and a place vector. However, here
these two parameters encode the recent history of actions
taken (Section IV-B). After executing a grasp action, the
grasp descriptor component of state is set to a stored version
of the descriptor of the selected grasp and the place vector

is set to zero. After executing a place action, the grasp
descriptor retains the selected grasp and the place component
is set to the just-executed place command, thereby implicitly
encoding the resulting pose of the object following the place
action. Each grasp image (both in the action input and the
state input) is processed by a CNN similar to LeNet [24],
except the output has 100 hidden nodes instead of 10.
These outputs, together with the place information, are then
concatenated and passed into two 60-unit fully connected,
inner product (IP) layers, each followed by rectifier linear
units (ReLU). After this there is one more inner product to
produce the scalar output.

State Action

grasp image place vector grasp image place vector

LeNet LeNet

I IP+RelLU |

]

| IP+RelLU |
| e |

Q(s,a)

Fig. 4. Convolutional neural network architecture used to encode the action-
value function, i.e., the Q-function.

E. Learning Algorithm

Our learning algorithm is shown in Algorithm 1. This
is similar to standard DQN [3] with a couple of differ-
ences. First, we use a variant of Sarsa [25] rather than Q-
learning because the large action branching factor makes
the maxqea Q(s, a) in Q-learning expensive to evaluate and
because Sarsa is known to perform slightly better on non-
Markov problems. Second, we do not run a single stochastic
gradient descent (SGD) step after each experience. Instead,
we collect nEpisodes of experience before labeling the expe-
rience replay database using the most recent neural network
weights. Every nEpisodes additional experiences, we run
nlterations of SGD using Caffe [26]. For the experiments in
this paper, the learning algorithm is run only in simulation;
although it could be used to fine-tune the network weights
on the actual hardware.

V. EXPERIMENTS IN SIMULATION

We performed experiments in simulation to evaluate how
well our approach performs on pick-place and regrasping
problems with novel objects. To do so, we obtained objects
belonging to two different categories for experimentation: a
set of 73 bottles and a set of 75 mugs — both in the form
of mesh models from 3DNet [27]. Both object sets were
partitioned into a 75%/25% train/test split.



Algorithm 1: Sarsa implementation for pick and place

for i < 1 : nTrainingRounds do

for j < 1: nEpisodes do

Choose random object(s) from training set

Place object(s) in a random configuration

Sense point cloud C and detect grasps G

s < initial state

a < Pick(.) (e-greedy)

for ¢ <+ 1 : maxTime do

(r,s') < T(s,a)

if a = Pick(.) then
| o/ < Place(.) (e-greedy)

else if a = Place(p)|p € Pewp then

Sense point cloud C and detect grasps G

L a' < Pick(.) (e-greedy)

else if « = Place(p)|p € Pju then
L a < null

Add (s,a,r,s’,a’) to database

if s’ is terminal then break

a+a'; s+ s

Prune database if it is larger than maxExperiences
Label each database entry (s,a) with r +~vQ(s’, a’)
Run Caffe for nlterations on database

A. Experimental Scenarios

There were three different experimental scenarios, two-
step-isolation, two-step-clutter, and multi-step-isolation. In
two-step-isolation, an object was selected at random from
the training set and placed in a random pose in isolation on a
tabletop. The goal condition was a right-side-up placement in
a particular position on a table. In this scenario, the agent was
only allowed to execute one grasp action followed by one
place action (hence the “two-step” label). Two-step-clutter
was the same as two-step-isolation except a set of seven
objects was selected at random from the same object category
and placed in random poses on a tabletop as if they had been
physically dumped onto the table.

The multi-step-isolation scenario was like two-step-
isolation except multiple picks/places were allowed for up to
10 actions (i.e., maxTime=10). Also, the goal condition was
more restricted: the object needed to be placed upright, inside
of a box rather than on a tabletop. Because the target pose
was in a box, it became impossible to successfully reach it
without grasping the object from the top before performing
the final place (see Figure 7, bottom). Because the object
could not always be grasped in the desired way initially, this
additional constraint on the goal state sometimes forced the
system to perform a regrasp in order to achieve the desired
pose.

In all scenarios, point clouds were registered composites of
two clouds taken from views above the object and 90° apart:
a single point cloud performs worse, presumably because
features relevant for determining object pose are unobserved.
In simulation, we assumed picks always succeed, because the

grasp detector was already trained to recognize stable grasps
with high probability [16], [17] !. A place was considered
successful only if the object was placed within 3 cm of the
table and 20 degrees of the vertical in the desired pose.

B. Algorithm Variations

The algorithm was parameterized as follows. We used 70
training rounds (nTrainingRounds = 70 in Algorithm 1) for
the two-step scenarios and 150 for the multi-step scenario.
We used 1,000 episodes per training round (nEpisodes
= 1,000). For each training round we updated the CNN
with 5,000 iterations of SGD with a batch size of 32.
maxExperiences was 25,000 for the two-step scenarios and
50, 000 for the multi-step scenario. For each episode, bottles
were randomly scaled in height between 10 and 20 cm. Mugs
were randomly scaled in height between 6 and 12 cm. We
linearly decreased the exploration factor € from 100% down
to 10% over the first 18 training rounds.

We compared the performance of Algorithm 1 on two
different types of REACH-GRASP descriptors. In the standard
variation, we used descriptors of the standard size (10 x
10 x 20 cm). In the large-volume (LV) variation, we used
descriptors evaluated over a larger volume (20 x 20 x 40 cm)
but with the same image resolution.

We also compared with two baselines. The first was the
random baseline, where grasp and place actions were chosen
uniformly at random. The second was the shape primitives
baseline, where object pose was approximated by segmenting
the point cloud and fitting a cylinder. Although it is generally
challenging to fit a shape when the precise geometry of the
object to be grasped is unknown, we hypothesized that it
could be possible to obtain good pick-place success rates
by fitting a cylinder and using simple heuristics to decide
which end should be up. We implemented this as follows.
First, we segment the scene into k clusters, using k-means
(k = 1 for isolation and k = 7 for clutter). Then we fit a
cylinder to the most isolated cluster using MLESAC [28].
We select the grasp most closely aligned with and nearest to
the center of the fitted cylinder. The height of the placement
action is determined based on the length of the fitted cylinder.
The grasp up direction is chosen to be aligned with the
cylinder half which contains fewer points. In order to get
the shape primitive baseline to work, we had to remove
points on the table plane from the point cloud. Although
our learning methods do not require this and work nearly as
well either way, we removed the table plane in all simulation
experiments for consistency.

C. Results for the Two-Step Scenarios

Figure 5 shows learning curves for the two-step-isolation
and two-step-clutter contingencies for bottles (left) and mugs
(center) averaged over 10 runs. Table I shows place success
rates when the test objects were used.

Tt is possible to train grasping from the same reward signal, but this
would require longer simulations. Empirically, this assumption did not lead
to many grasp failures on the real robot (see Section VI).
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Left and center. Average of 10 learning curves for the two-step scenario. The “training round” on the horizontal axis denotes the number of

times Caffe had been called for a round of 5,000 SGD iterations. The left plot is for bottles and the center for mugs. Blue denotes single objects and
red denotes clutter. Curves for mean plus and minus standard deviation are shown in lighter colors. The sharp increase in performance during the last five
rounds in each graph is caused by dropping the exploration factor (e) from 10% to 0% during these rounds. Right. One multi-step realization with mugs in
isolation. Red line: number of successful pick-place trials as a function of training round. Blue line: number of successful non-goal placements executed.

Trained With / 1e€d With Bottle in Iso. | Bottles in Clut.
Isolation 1.00 0.67
Clutter 0.78 0.87
Isolation LV 0.99 0.47
Clutter LV 0.96 0.80
Shape Primitives Baseline 0.43 0.24
Random Baseline 0.02 0.02
Trained With / 105ed Witk Mug in Iso. Mugs in Clut.
Isolation 0.84 0.60
Clutter 0.74 0.75
Isolation LV 0.91 0.40
Clutter LV 0.67 0.70
Shape Primitives Baseline 0.08 0.12
Random Baseline 0.02 0.02

TABLE I
AVERAGE CORRECT PLACEMENTS OVER 300 EPISODES FOR BOTTLES
(TOP) AND MUGS (BOTTOM) USING TEST SET, AFTER TRAINING.

Several results are worth highlighting. First, our algorithm
does very well with respect to the baselines. The random
baseline (last row in Table I) succeeds only 2% of the
time — suggesting that the problem is indeed challenging.
The shape primitives baseline (where we localize objects by
fitting cylinders) also does relatively poorly: it succeeds at
most only 43% of the time for bottles and only 12% of
the time for mugs. Second, place success rates are lower
when objects are presented in clutter compared to isolation:
100% success versus 87% success rates for bottles; 84%
versus 75% success for mugs. Also, if evaluation is to be
in clutter (resp. isolation), then it helps to train in clutter
(resp. isolation) as well: if trained only in isolation, then
clutter success rates for bottles drops from 87% to 67%;
clutter success rates for mugs drops from 75% to 60%.
Also, using the LV descriptor can improve success rates in
isolation (an increase of 84% to 91% for mugs), but hurts
when evaluated in clutter: a decrease from 87% to 80% for
bottles; a decrease from 75% to 70% for mugs. We suspect
that this drop in performance reflects the fact that in clutter,
the large receptive field of the LV descriptor encompasses
“distracting” information created by other objects nearby the
target object (remember we do not use segmentation) [29].

D. Results for the Multi-Step Scenario

Training for the multi-step-isolation scenario is the same
as it was in the two-step scenario except we increased the
number of training rounds because the longer policies took
longer to learn. We only performed this experiment using
mugs (not bottles) because it was difficult for our system
to grasp many of the bottles in our dataset from the top.
Figure 5 shows the number of successful non-goal and goal
placements as a function of training round 2. Initially, the
system does not make much use of its ability to perform
intermediate placements in order to achieve the desired goal
placement, i.e., to pick up the mug, put it down, and then
pick it up a second time in a different way. This is evidenced
by the low values for non-goal placements (the blue line)
prior to round 60. However, after round 60, the system learns
the value of the non-goal placement, thereby enabling it to
increase its final placement success rate to is maximum value
(around 90%). Essentially, the agent learns to perform a
non-goal placement when the mug cannot immediately be
grasped from the top or if the orientation of the mug cannot
be determined from the sensor perception. After learning is
complete, we obtain an 84% pick and place success rate
averaged over 300 test set trials.

VI. EXPERIMENTS ON A REAL ROBOT

We evaluated the same three scenarios on a real robot:
two-step-isolation, two-step-clutter, and multi-step-isolation.
As before, the two step scenarios were evaluated for both
bottles and mugs, and the multi-step scenario was evaluated
for only mugs. All training was done in simulation, and fixed
CNN weights were used on the real robot.

The experiments were performed by a URS robot with
6 DOFs, equipped with a Robotiq parallel-jaw gripper and
a wrist-mounted Structure depth sensor (Figure 7). Two
sensor views were always taken from fixed poses, 90° apart.
The object set included 7 bottles and 6 mugs, as shown in

2Non-goal placements were considered successful if the object was 3 cm
or less above the table. Any orientation was allowed. Unsuccessful non-goal
placements terminate the episode.



Fig. 6. The seven novel bottles and six novel mugs used to evaluate our
approach in the robot experiments.

Figure 6. We used only objects that fit into the gripper, would
not shatter when dropped, and had a non-reflective surface
visible to our depth sensor. Some of the lighter bottles were
partially filled so small disturbances (e.g., sticking to fingers)
would not cause a failure. Figure 7 shows several examples
of our two-step scenario for bottles presented in clutter.

Unlike in simulation, the URS requires an IK solution and
motion plan for any grasp or place pose it plans to reach to.
For grasps, GPD returns many grasp choices. We sort these
by their pick-place Q-values in descending order and select
the first reachable grasp. For places, the horizontal position
on the shelf and orientation about the vertical (gravity) axis
do not affect object uprightness or the height of the object.
Thus, these variables were chosen to suit reachability.

After testing some trials on the URS, we found we needed
to adjust a couple of training/simulation parameters. First, we
changed the conditions for a successful place in simulation
because, during our initial experiments, we found the policy
sometimes selected placements that caused the objects to fall
over. As a result, we adjusted the maximum place height
in simulation from 3 cm to 2 cm and changed the reward
function to fall off exponentially from +1 for altitudes higher
than 2 cm. Second, we raised the acceptance threshold 3 used
by our grasp detector, GPD [16], [17].

1 Bottle | 7 Bottles | 1 Mug | 6 Mugs | Regrasp

Grasp 0.99 0.97 0.96 0.93 0.94

FinalPlace 0.98 0.94 0.93 0.87 1.00

TempPlace - - - - 1.00

EntireTask 0.97 0.92 0.90 0.80 0.68

[ nTrals [ 112 ] 107 T 9% [ 9% [ 72 |
UpsideDown 0 4 5 10 0
Sideways 0 0 0 2 0
FellOver 2 2 1 0 0
t> 10 - - - 12
TABLE II

(ToP) SUCCESS RATES FOR GRASP, TEMPORARY PLACE, FINAL PLACE,
AND ENTIRE TASK. (BOTTOM) PLACEMENT ERROR COUNTS BY TYPE.
RESULTS ARE AVERAGED OVER THE NUMBER OF TRIALS (MIDDLE).

Table II summarizes the results from our robot experi-
ments. We performed 483 pick and place trials over five
different scenarios. Column one of Table II shows results
for pick and place for a single bottle presented in isolation
averaged over all bottles in the seven-bottle set. Out of 112
trials, 99% of the grasps were successful and 98% of the
placements were successful, resulting in a complete task
pick/place success rate of 97%. Column two shows similar

3GPD outputs a machine-learned probability of a stable (i.e., force
closure) grasp. The threshold is the grasp stability probability above which
grasps are accepted.

results for the bottles-in-clutter scenario, and columns three
and four include results for the same experiments with mugs.
Finally, column five summarizes results from the multi-step-
isolation scenario for mugs: overall, our method succeeded
in placing the mug upright into the box 68% of the time.
The temporary place success is perfect because a temporary
placement only fails if the mug is so high it rolls away after
dropped or too low it is pushed into the table, neither of
which ever happened after 72 trials. The final placement is
perfect because it always did get the orientation right (for all
72 trials that got far enough to reach the final placement), and
it is hard for the mug to fall over in the box. The multi-step
scenario has low task success rate because 12 trials failed to
perform the final place after 10 time steps. Perhaps this is
due to lower Q-function values on the real system (due to
domain transfer issues), causing the robot to never become
confident enough with its given state information to perform
the final place.

Our experimental results are interesting for several reasons
beyond demonstrating that the method can work. First, we
noticed consistently lower place performance for the mug
category relative to the bottle category. The reason for this is
there is more perceptual ambiguity involved in determining
the orientation of a mug compared to that of a bottle. In
order to decide which end of a mug is “up”, it is necessary
for the sensor to view into at least one end of the mug.
Second, the robot had trouble completing the multi-step task
in a reasonable number of steps with the real hardware
compared with simulation. This may be because fewer grasps
are available on the real robot versus the simulated robot due
to collision modelling. Another unexpected result was our
learned policies typically prefer particular types of grasps,
e.g., to grasp bottles near the bottom (see Figure 7). We
suspect this is a result of the link between the location of
a selected grasp and the grasp descriptor used to represent
state. In order to increase the likelihood that the agent will
make high-reward decisions in the future, it selects a grasp
descriptor that enables it to easily determine the pose of the
object. In the case of bottles, descriptors near the base of the
bottle best enable it to determine which end is “up”.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a new way of structuring robotic
pick-place and regrasping tasks as a deep RL problem.
Importantly, our learned policies can place objects very
accurately without using shape primitives or attempting to
model object geometry in any way. Our key insight is to
encode a sampled set of end-to-end reaching actions using
descriptors that encode the geometry of the reach target
pose. We encode state as a history of recent actions and
observations. The resulting policies, which are learned in
simulation, simultaneously perceive relevant features in the
environment and plan the appropriate grasp and place actions
in order to achieve task goals. Our experiments show that the
method consistently outperforms a baseline method based on
shape primitives.



Fig. 7.
scenario for a mug. The mug is initially upside-down, so must be flipped around before it can be put upright into the box.

For future work, we plan to generalize the descriptor-based
MDP in two ways. First, place poses could be sampled from
a continuous, 6-DOF space, as grasps are. To do this we
would develop a special purpose place detector in the same
way GPD is a grasp detector. Second, the system should
be able to work with a more diverse set of objects, e.g.,
kitchen items. This may require a CNN with more capacity
and longer training time, motivating innovations to speed up
the learning in simulation.
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