Heuristics for Analyzing Download Time
in MDS Coded Storage Systems

Mehmet Fatih Aktag and Emina Soljanin
Department of Electrical and Computer Engineering, Rutgers University
Email: {mehmet.aktas, emina.soljanin} @rutgers.edu

Abstract—There has been a growing interest, in both theory
and practice, in using the available redundancy in storage systems
for mitigating stragglers in content download. This paper is
concerned with MDS coded storage systems and studies (n, k)
data access model. When k& = n, system is equivalent to a fork-
join queue, which is known to be notoriously hard to analyze,
while system with £ = 1 has been previously shown to be
equivalent to an M/ /G/1 queue. We here argue that the system
with &£ = 2 is of practical interest, and then present a method
that approximates the system as an M/ /G/1 queue. Approximated
download time is shown to be more accurate than the bounds
available in the literature. We also note that the presented method
can be used for approximating systems that employ other newly
designed and deployed storage codes.

I. INTRODUCTION

Storage systems distribute and store content with redun-
dancy over multiple nodes. Downloading distributed content
requires fetching data from multiple servers in parallel. The
probability of a slow download quickly increases with the
number of contacted servers due to the server-side variability
[1]. Recent research proposes to download by requesting
content from both the original and the redundant storage
simultaneously such that a set of fastest downloads is sufficient
to recover the desired content, while the slow downloads can
be avoided and cancelled. For instance, if files are split into &
and then encoded into n > k chunks by a Maximum Distance
Separable (MDS) code, a file can be recovered as soon as
downloading any k of its n chunks.

Load balancing, download parallelism and redundancy are
the three important design choices that affect download time in
storage systems. Splitting files into greater number of chunks
(greater parallelism) means having to fetch smaller data from
each server. However, splitting files into more chunks requires
contacting greater number of servers for download, which
performs slow with higher probability. Downloading files by
simultaneously fetching also the redundant chunks can reduce
the probability of a slow download but it introduces additional
load on the servers, which may result in higher queueing times.

There has been a growing interest to understand the in-
terplay between load balancing, parallelism and redundancy
on download times. Download with replicated redundancy is
studied and an exact analysis is given for i.i.d. exponential
server service times in [2]. The adopted system model is that
each download request is copied into a randomly or deter-
ministically chosen set of servers at arrival and the download
is completed as soon as the fastest copy completes. Authors
follow up this work in [3]] and show that exploiting redundancy
at a level beyond a threshold causes further slowdowns in

downloads or even instability due to the excessive load in-
troduced on the system by the replicated requests. A model
for downloading with MDS coded redundancy is introduced
in [4]. Authors name this data access model as (n, k) system,
where each arriving request is copied into all n servers and
the download is completed as soon as any k£ < n of them
finish. This system is a generalization of fork-join queues, i.e.,
(n,n) system. Fork-join queues are known to be notoriously
hard to analyze and its exact analysis is available only for two-
server system under exponential inter-arrival and service times.
Approximations exist for their average response time in general
[S]. Authors in [6] show that when k = 1, system is equivalent
to an M/G/1 queue and its exact analysis follows from the
standard results. For arbitrary value of k, some bounds and
approximations for the average download time are presented
in [4], [6]-[9]. Recently, new storage codes with unique
properties have been designed and deployed in real distributed
systems [[10]]. These codes gave birth to new download schemes
with redundancy and consequently new interesting queueing
problems for download time analysis [[11[]-[13].

In this paper, we firstly study the download time in a
storage system that distributes download traffic across multiple
disjoint sub-systems, where each sub-system implements an
independent (n, k) MDS coded storage. We observe that the
minimum download time is achieved by employing low levels
of parallelism. Note that, low parallelism is also desired in
practice to achieve low complexity and overhead in crucial
system operations, such as file downloads and recovery from
node failures. These motivate us to study download with
minimal parallelism & = 2. Our observations for arbitrary
k allow us to approximate the (n,2) system as an M/G/1
queue, then standard queueing results are used to derive
the download time. The presented approximate method gives
insight into the system dynamics, and is shown to perform
better than the bounds available in the literature in estimating
the simulated download time. In addition, the bounds available
in the literature cannot be extended for accurate approximation
of the systems that employ other recently deployed storage
codes (e.g., see [10]). The method given in this paper proved
to be accurate for approximating download time in emerging
storage systems, e.g., see [[13] for an approximate analysis of
a Simplex coded storage system.

II. DOWNLOAD FROM MDS CODED STORAGE

System Model: Download time is governed by two factors:
1) Queueing time for the download requests, 2) Service time
that takes to fetch the data from disk or memory, and stream

it to the user. As real storage systems do, suppose files are
split into equal size chunks, e.g., chunks are 64MB in GFS
[14], 128MB in HDFS [[15]. As commonly adopted in the
literature [4], [7], we assume that each file consists of the same
number of chunks. This is mainly for tractable analysis and
may not hold in practice. We model the service time variability
at all servers using the same distribution and assume service
times are independent across the servers. All these assumptions
together imply that the service time V’s are i.i.d. across the
chunks and the servers.

We use two canonical service time models: 1) Shifted-
Exponential S-Exp(D,) where D models the minimum
download time due to data size and p is the decaying rate
of its exponential tail modeling the service time variability,
2) Pareto(s,) with positive minimum value s and a power
law tail index «. Pareto is a heavy tailed distribution that is
observed to fit service time variability in real systems [1], [16].

We study a fairly tractable and modular storage system
model, which we denote as (N, n, k) system. System consists
of N servers in total and is divided into N/n (suppose
n|N) disjoint groups of n servers. Each sub-system stores a
different set of files and implements an independent (n, k)
coded storage. Within each, files are split into k systematic
equal size chunks and expanded with n — k£ coded chunks,
then all of which are distributed across all n servers.

For the sake of tractable analysis, we assume download
requests arrive as a Poisson process of rate A. Requested files
are assumed to be found uniformly at random in one of the
(n, k) sub-systems, hence each arriving request is forwarded
to one of the sub-systems uniformly at random. Thus, the
arrivals to each sub-system follow an independent Poisson of
rate An/N. Download time for an arbitrary request arriving
to (IV,n, k) system is then equivalent to the response time of
an (n, k) storage system. In each of the (n, k) sub-systems,
requests are copied into all n servers and the download
is completed as soon as the fastest £ of them completes.
Remaining n — k redundant copies of a request are removed
from the system as soon as its download is completed.

Parallelism, redundancy and load balancing: Important
system design choices are determined by k& and n as follows: 1)
Parallelism-k: chunk sizes decrease linearly with the number
of chunks k that constitute the files, and fetching smaller
chunks from the servers is expected to take shorter. However,
a file download requires fetching all its k£ chunks and higher &k
quickly increases the chances of a slow download due to the
service time variability [1]]. 2) Redundancy-(n — k): Files are
downloaded by requesting both the %k original and the n — k
coded chunks simultaneously, so that the fastest k& downloads
is sufficient for file recovery. 3) Load balancing-N /n: Request
arrivals are distributed across N/n sub-systems, so expanding
the size n of the sub-systems causes higher load per server,
which is known to cause increasingly larger queueing delays.

In the following, we study the combined effect of all the
above factors on the average download time. Response time
analysis of (n, k) system is formidable for general k. Two main
reasons are that system state space explodes exponentially in
k and multiple requests can be in service simultaneously. An
upper bound on the response time is derived in [4] by treating

N=10,k=1,V~Pareto(s=1,a=2) N=10,n=5, V~Pareto(s=1/k,a=2)

A~ A=0.05 - -A-- Simulation, A =0.20 b

5 -@ A=0.25 3 - Splitmerge, A=0.20 3
A=0.45 E --4- Simulation, A =0.82

-+ A=0.65 Split-merge, A = 0.82

¢ A=085 64 -¥- Simulation, A =1.44

’ E -¢- Split-merge, A=1.44

[

>
id

Fig. 1. Left: Average download time vs. level of replication n in (N =
10, n, k = 1) system under different arrival rates A. Right: Average download
time vs. level of parallelism &k in (N = 10,n = 5, k) system. Values from
the simulations and the split-merge approximation are plotted for varying .

the system as if it implements split-merge service model.
Under split-merge, each arriving request is again copied into
all n servers, however servers that go idle cannot continue with
serving the request copies in their queues. In other words, only
the copies of the request at the head of the line in the system
are allowed to be in service simultaneously. Then, service time
of each request becomes i.i.d. and the system works as an
M/G/1 queue with request service times distributed as the
kth order statistics of n i.i.d. server service time V'’s; V,,.i.
When k = 1, remaining n — 1 copies of a request get canceled
as soon as the fastest copy completes, hence the (n, 1) system
and the split-merge model become the same.

When k£ = 1 (no parallelism), download time for an arbi-
trary request in (IV,n, 1) system is equivalent to the response
time of an (n, 1) replicated storage under Poisson arrivals at
rate ' = An/N. Each (n,1) sub-system is equivalent to an
M/G/1 queue with request service times distributed as V;,.1.
Then, the PK formula gives the average download time as
NE[V2]

n:l

A= NJEVoa])

Fig. [T (Left) plots the average download time for increasing
values of n and under different arrival regimes A. Recall
that higher n increases the level of download redundancy
but also incurs higher load on the servers. As illustrated in
Fig. at higher arrival rate regimes, increasing n quickly
overburdens the system with redundant requests and causes
further slowdown in download times. Under all arrival regimes,
relative reduction in download time by redundancy is highest
at the first incremental step, namely going from n = 1 (no
redundancy) to n = 2 (one replica for each file). Underlying
reason is the order statistics; adding more samples into the
population gives diminishing return in reducing the value of the
minimum. Effect of the greater server load due to redundant
requests cannot be compensated by the reduction in service
time variability at higher values of n.

When k£ > 1, files are split into k chunks of equal size.
It is not clear how service times scale with parallelism & in
practice. We adopt a model in which service times are linearly
related to the data size, e.g., if service time for the whole
file is £V, then with parallelism k, service time for one of
its chunks is V. Approximating each (n, k) sub-system with
split-merge service model, the PK formula gives the following
upper bound on the average download time for an arbitrary

request arriving to the (N, n, k) system.

NEV,z]

E[T] = E[Vy4] + 2(1— N /E[Vy])

Fig. [T] (Right) plots the simulated average download time
and its split-merge upper bound for fixed n and varying
k. Although split-merge becomes a looser approximation for
larger k£ and A, it is able to capture the change in download
time with respect to k. At all arrival rates, reduction in average
download time with higher parallelism is most significant as
we go from k = 1 (replicated storage) to k = 2 ((n,2)
coded storage), which is especially the case for small files.
Increasing k beyond a value hurts performance since the level
of redundancy n—k decreases and the slowdown due to service
time variability starts to exceed the gain of parallelism.

Low parallelism is also preferred in practice to reduce the
operational complexity and overhead e.g., fewer chunks help
to reduce the number of control actions and the contacted
servers while executing chunk query, chunk read/write etc [[14].
Another practical reason for low parallelism is that new storage
codes are desired to have low locality; the number of nodes
accessed while recovering from a single node failure [[10]. Both
parallelism and locality of (n,k) MDS codes are equal to k,
which is desired to be low in practice. Note that, lower k for
fixed n reduces the storage efficiency of MDS codes, which is
another important (may be the most important of all in some
cases) concern while deploying storage codes.

III. APPROXIMATING DOWNLOAD TIME

Fork-join queues and their generalization (n, k) systems are
very challenging to analyze because their state space explodes
exponentially with k. Also multiple download requests can be
in service simultaneously and different copies of a request may
start service at different times. Next, we state two important
observations that give insight for approximating the system.

Observation 1 (Request departure order): Requests
depart an (n, k) system in the order they arrive.

At all times, at least n — k + 1 of the servers serve the
copies of the same request in the system, which we refer to as
the HoL (head of the line) request. Note that HoL request is
the oldest request in the system. This is because, at most k — 1
copies of a request can finish before it departs. This means, at
most k£ — 1 copies of a waiting request can start service before
it becomes the HoL request, and thus, no waiting request can
depart before the HoL request. The next observation follows
naturally.

Observation 2 (Request service start): We define the ser-
vice start time of a request as the epoch at which each of its
copies either has departed or is in service, i.e., as soon as it
becomes the HoL request. Some copies of a request may start
service or even depart before the request moves to HoL. At
least n — k 4+ 1 and at most all n copies of a request can be
simultaneously in service when it is at the HoL.

When server service times are exponential, Obv. @] can be
updated by using the memoryless property as follows.

Claim 1 (Request service time distributions):
When server service time V'’s are i.i.d. exponential, service

Request Arrival Request Arrival

Queued: Queued:

In service: In service: * ' 1

Departed: Departed: + 1 !
Fig. 2. Two possible request service times in (4, 2) system. (a) All copies

of request 1 are in service and any two is sufficient for its completion. (b)
One copy of request 2 departs earlier, the remaining three copies move into
service as soon as request 1 departs, and any two of its remaining copies is
sufficient for completing request 2.

time of an arbitrary request in (n, k) system is distributed as
Vi—j:k—; where j can be any integer in [0,k — 1].

Note that this observation does not hold for general V' since
some of the copies may start service earlier and remain in
service until the request moves to HoL. In the absence of
memoryless property, residual lifetime of this early starting
copies would be different from those that move in service
together with all the rest once the request moves to HoL.

Service time distribution of a request in (n,k) system
is completely determined by the system state at the time
epoch at which the request moves to HoL. Since the system
state is dependent over the course of multiple request service
starts, request service times are not independent. The following
observation is good news for treating the request service times
“approximately” independent.

Observation 3 (Chain of dependence breaks): When
server service time V’s are exponential, time epochs at which
a request starts service and has all its n copies in service,
break the dependence between the requests that start service
before and those that start service after. For general V, these
time epochs only loosen the dependence.

This observation is essential for the approximate method
that is presented in the remaining of this Section.

A. Analysis of (n,2) system

We firstly assume that server service times are exponen-
tially distributed; V' ~ Exp(u). Then, only two request service
time distributions are possible in (n,2) system: 1) Complete
start: all copies of a request start service simultaneously, so its
service time is V..o, 2) Partial start: one of its copies departs
before the request moves to HoL, so its service time is V;,_1.1.
Fig. [2| illustrates these two possibilities for the (4,2) system.

Obv. [3| can be expanded for (n,2) system. There can be
at most one leading server with a shorter queue than the rest
of the other servers. This is because given a leading server, as
soon as a request copy is completed at one of the other servers,
the request at the HoL departs and the difference between the
queue lengths of the leading and non-leading servers diminish
by one. In fact, the leading server has to compete to keep
leading and need to execute the request copies faster than the
fastest one of the n — 1 non-leading servers. This can happen

with low probability since the service time at the leading server
is stochastically greater than the minimum of n — 1 samples
from the non-leading servers, which suggests that the queue
lengths will frequently level up. Thereby, the time epochs that
decouple request service times will be frequent (see Obv. [3).
Note that, this observation does not generalize for general k.
In general, there can be at most k — 1 leading servers and
it is hard to derive a stochastic ordering between the service
completion at the leading and the non-leading servers.

Proposition 1 (Approximate method): When server ser-
vice times V' are exponentially distributed, (n,2) system can
be approximated as an M/G/1 queue with request service
time B distributed as

Pr{B > v} = Pr{V,.o > v}Pr{S =c}

+ Pr{V,_1.1 > v}Pr{S = p}. @

where S denotes the complete (c¢) or partial (p) request service
starts.

Observations we have made so far allow us to develop an
approximate method for the analysis of (n, 2) system. Requests
depart in the order they arrive (Obv. [I) hence the system
acts as a first-in first-out queue with possible request service
times given in Claim [T} Although request service times are
not independent, they exhibit loose coupling (Obv. [3)). Relying
on this and assuming i.i.d. request service times gives us an
M /G/1 approximation to the actual system. Then, one needs
to know the distribution B of request service times. We know
there are two possible distributions: V,,.o when service start
type S is complete and V,,_1.; when S is partial. In the
following, we discuss a method to estimate the distribution
of S.

B. Markov process for (n,2)

Think of a join queue at the tail of the system where the
departed request copies wait for their siblings to finish service
(see the departed region in Fig. [2). We define the state of the
system at time ¢ by (N'(¢), D(t)) where N/ (t) is the length of
the longest queue in the system and D(t) is the the difference
between the longest and the shortest. Only the request copies
that departed from the same server can be in the join queue
simultaneously. For instance in Fig. 2] system state is (N =
2,D = 0) on the left and (M = 1,D = 1) on the right side.
Markov process for the system state is illustrated in Fig. [3]
(Left), which is infinite in two dimensions so its analysis is
hard.

C. High-traffic approximation

Suppose that the arrival rate \ is very close to its critical
value for stability and the system never goes idle. This is
a rather crude assumption and holds only when the system
is unstable. Under this assumption, state of the join queue
D(t) itself is a simple birth-death chain as shown in Fig.
(Right). We refer to this set of working conditions as high-
traffic approximation. Service completions at the leading server
correspond to the state transitions towards right, while the
completions at the non-leading servers represent request de-
partures and correspond to the transitions towards left. Service
cancellations at the servers due to request departures are

n o

u
OBOBOWOX
w (n—=1)p

n
m—=1p (n—1

Fig. 3. Markov process for the (n,2) system (Left) and its high-traffic
approximation (Right) assuming rate-p, exponential server service times.

not registered as a service completion. Steady state balance
equations for the birth-death process are
1> 0.

nppo = (n — Dupr, ppi = (0 — 1)upip,

where lim;_,o Pr{D(t) = i} = p;. Solving the balance
equations gives

po=[1+n/(n—2)]"" and p; = n(n—1)""po fori > 1. (2)

We will use the Markov Chain embedded in the ap-
proximate birth-death process to estimate the distribution of
request service start type .S as required in (I)) for the M/G/1
approximation. Since the total transition rate (nu) out of
each state is the same, steady state probabilities 7;’s for the
embedded chain are equal to p;’s.

Under high traffic assumption, system is always busy and
a complete request service start occurs for every transition into
state-0, while a partial request service start occurs for every
transition into any other state. Define f; as the fraction of
state transitions that represent request departures and f_,. as
the fraction of state transitions that define a complete request
service start. Then we find them as

“n—1 n—1
fd:Z T = (1 — o),

X n n
i=1
n—1

T =
n n n—1

n—1 n

fﬁc:

Then the limiting fraction of the requests that make partial (f,)
or complete (f.) start are found as

Ty = TQ-

foe Mmoo
e T

fp=1—fc=1/(n—-1).

It is worth to notice that, the fraction of the requests that make
complete start increases with n, hence the system behaves
more like the split-merge model when n is large. This is natural
since the leading servers have to compete with more servers
when n is larger, and the probability and consequently the
fraction of partial request service starts decline.

We use the limiting fractions f. and f, to estimate the
probabilities Pr{S = c} and Pr{S = p}. Substituting them
in () gives the service time distribution required for the
M/G/1 approximation. Fig. E] gives a comparison of the

n=3,k=2,V~Exp(u=1) n=5k=2,V~Exp(u=1)

5
10 4 -"A- Split-merge upper bound [2] --A- Split-merge upper bound [2] ‘
-4~ Simulation -4~ Simulation H
s -4-- M/G/1 approximation 44 -4- MI/G/1 approximation
Lower bound of [2] Lower bound of [2]
E*® P8
@ P
4 A7
i A
2 » '.»-'
@;;;g:::ﬁif%ﬂ”\r“')

0.00 0.25 0.50 0.75 1.00 125

Fig. 4. Comparison of the upper and the lower bounds of [4]], and the average
download time from the simulations and the M /G /1 approximation for (n, 2)
system with n = 3,5 and exponential service times.

simulated average download time with its approximated values.
Approximation performs overall better than the split-merge
upper bound and the lower-bound derived in [4]], however
it performs slightly worse for low arrival rates. Split-merge
is a very good approximation for low arrival rates since the
system cannot feed the idle servers to go ahead with the
copies of the waiting requests, hence the system cannot deviate
much from the split-merge behavior under low arrival rate.
As expected, high traffic approximation is more accurate for
increasing values of .

D. General service times

Claim [Tl is not valid when server service time V’s are not
exponential. The reason is that a copy of a request may start
service early and remain in service until the request moves
to HoL. Residual service time of these early starters is not
the same as the service time of the fresh starters, unless
V' is memoryless. However, one can modify the system and
restart the early starters once a request moves to HoL. This
modification increases or reduces download time depending
on whether V has increasing or decreasing hazard rate.

Another caveat is estimating the distribution of request
service start type .S. When V' is not exponential, state space of
the system is intractable, even under high traffic assumption.
The estimates f. and f, that were previously found for
exponential V' are simple functions of n. They are the best
estimates we have, and we use them for approximating the
distribution of S for non-exponential V. Fig. [3] plots the
simulated and approximated values of the average download
time in (n, 2) system when V' ~ S-Exp or V' ~ Pareto. While
the approximation is doing better than the split-merge upper
bound, the difference is not large because the performance of
the actual system is close to that of the split-merge service
model. The reason is that the non-zero minimum value (D for
S-Exp and s for Pareto) of the service times does not allow
the leading server to go ahead far in serving the waiting request
copies and the system cannot perform much better than simply
blocking the idle servers as in split-merge. Note that the lower
bound given in [4] is not available for non-exponential V'’s.

ACKNOWLEDGMENTS

This research is supported by the National Science Foun-
dation under Grants No. CIF-1717314.

n=5k=2,V~D+Exp(u=1),D=1

8 --#- Simulation

| gereipete®”

™ Split-merge upper bound [2]

--§- M/G/1 approximation

il

i

¥ u.""‘:""

A
¢]

A

01 0.2 0.3 0.4 0.5

A

0.6

E[T]

N B O ®

14

12

n=5,k=2,V~Pareto(s=1,a=4)

-+~ Split-merge upper bound [2] ‘
- - Simulation H
-4- MJ/G/1 approximation x

§

K

&
b
S
02 0.4 0.6 0.8

A

Fig. 5. Average download time in (n, 2) system for non-exponential service
times. Simulations, split-merge upper bound given in [4] and the M/G/1
approximation are compared.

(1]

(2]

(4]

(31

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74-80, 2013.

K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” ACM SIG-
METRICS Perform. Evaluation Review, vol. 43, pp. 347-360, 2015.

K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf, “A better model
for job redundancy: Decoupling server slowdown and job size,” in Mod-
eling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2016 IEEE 24th International Symposium on.
IEEE, 2016, pp. 1-10.

G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,” in
Communication, Control, and Computing (Allerton), 2012 50th Annual
Allerton Conference on. 1EEE, 2012, pp. 326-333.

R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE transactions on computers,
vol. 37, no. 6, pp. 739-743, 1988.

G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques
for latency reduction in cloud systems,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), vol. 2,
no. 2, p. 12, 2017.

L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in Proceed. 2012 IEEE International
Symposium on Information Theory (ISIT’12), pp. 2766-2770.

G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding,” IEEE/ACM Transactions on
Networking, vol. 22, no. 6, pp. 2012-2025, 2014.

N. B. Shah, K. Lee, and K. Ramchandran, “The mds queue: Analysing
the latency performance of erasure codes,” in Proceed. 2014 IEEE
Internat. Symposium on Inform. Theory (ISIT’14), pp. 861-865.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Transactions on Information Theory, vol. 58,
no. 11, pp. 6925-6934, 2012.

S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download
time of availability codes,” in Information Theory (ISIT), 2015 IEEE
International Symposium on. 1EEE, 2015, pp. 1467-1471.

——, “When do the availability codes make the stored data more
available?” in Communication, Control, and Computing (Allerton), 2015
53rd Annual Allerton Conference on. 1EEE, 2015, pp. 956-963.

M. F. Aktas, E. Najm, and E. Soljanin, “Simplex queues for hot-data
download,” in Proceedings of the 2017 ACM SIGMETRICS/Interna-
tional Conference on Measurement and Modeling of Computer Systems.
ACM, 2017, pp. 35-36.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003.
D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Towards understanding heterogeneous clouds at scale: Google trace

analysis,” Intel Science and Technology Center for Cloud Computing,
Tech. Rep, p. 84, 2012.

	Introduction
	Download from MDS Coded Storage
	Approximating download time
	Analysis of (n, 2) system
	Markov process for (n, 2)
	High-traffic approximation
	General service times

	References

