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Abstract
This paper addresses the problem of autonomous quadrotor navigation within indoor spaces. In particular, we focus on
the case where a visual map of the area, represented as a graph of linked images, is constructed offline (from visual
and potentially inertial data collected beforehand) and used to determine visual paths for the quadrotor to follow. In
addition, during the actual navigation, the quadrotor employs both wide- and short-baseline RANSACs to efficiently
determine its desired motion towards the next reference image and handle special motions such as rotations in place.
In particular, when the quadrotor relies only on visual observations, it uses the 5pt and 2pt algorithms in the wide- and
short-baseline RANSACs, respectively. On the other hand, when information about the gravity direction is available,
significant gains in speed are realized by using the 3pt+1 and 1pt+1 algorithms instead. Lastly, we introduce an adaptive
optical-flow algorithm that can accurately estimate the quadrotor’s horizontal velocity under adverse conditions (e.g.,
when flying over dark, textureless floors) by progressively using information from more parts of the images. The speed
and robustness of our algorithms are evaluated experimentally on a commercial-off-the-shelf quadrotor navigating in
the presence of dynamic obstacles (i.e., people walking), along lengthy corridors and through tight corners, as well as
across building floors via poorly-lit staircases.
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1 Introduction and Related Work
In order for a quadrotor to autonomously navigate within

a GPS-denied area, it must be able to determine its current
location using its onboard sensors and compute a path
towards its destination. One way to solve this problem
indoors is to create, typically offline, a dense 3D map and
use it for both localization and path planning. The high
computational cost and memory requirements of such an
approach, however, limit its applicability to small-size areas.
On the other hand, a building can be described as a visual
graph using images, and potentially inertial data, collected
beforehand. Such a representation has many advantages,
such as scalability (no metric global map needs to be
constructed) and ease of implementation (the images can
be collected by a person walking through the building
with the quadrotor). Moreover, visual paths can be easily
specified by a user by selecting the corresponding images
along which the quadrotor needs to navigate, or by simply
indicating the start and end images. The main challenge that
such an approach poses, however, is designing algorithms
for efficiently and reliably navigating the quadrotor along
the visual path despite the lack of scale in the reference
trajectory.

Controlling a robot to reach a specific destination defined
in the image space can be achieved using visual servoing
(VS) (Chaumette and Hutchinson 2006, 2007). Most VS
approaches can be classified into two categories: (i) Position-
based VS (PBVS), where the control input is computed
directly using a relative position, up to scale, and orientation
(pose) estimate; and (ii) Image-based VS (IBVS), where

the control input is determined in the image domain, while
often it is assumed that the depth to the scene is, at
least approximately, constant (Chaumette and Hutchinson
2006). Prior work on VS for quadrotors equipped with a
downward-pointing camera has addressed the problem of
landing on a known target (Lee et al. 2012; Bourquardez
et al. 2009) and hovering over an arbitrary target (Azrad et al.
2010). Furthermore, for quadrotors equipped with a forward-
facing camera, (Bills et al. 2011) classifies the environment
into corridors, stairs, or “other” in order to determine the
appropriate motion (turn, side-ways, or upward) necessary
for the robot to continue its exploration.

In the context of navigating along a visual path, VS
techniques have been recently applied to aerial vehicles
(Nguyen et al. 2014; Courbon et al. 2010). In particular,
in Nguyen et al. (2014) an extension of the “funnel”-lane
concept of Chen and Birchfield (2009) to 3D is presented
and applied to controlling a quadrotor. Specifically, the
geometric constraints based on the image coordinates of the
reference features are used for determining the funnel region
within which the robot should move in order to match the
reference image. Then, the desired motion of the quadrotor
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is computed as the convex combination of the heading and
height required for staying within the funnel region and the
one the quadrotor had followed during the training phase.
As criterion for switching to the next reference image, an
error measure is defined based on the root mean square of
the difference in the features’ pixel coordinates between the
reference and the current image.

In Courbon et al. (2010), the VS method of Courbon
et al. (2008) is extended to the case of a quadrotor following
a visual path comprising a sequence of keyframe images
selected, during the experiment, by a person. In contrast to
3-view-geometry-based approaches [e.g., Diosi et al. (2011)
and Goedemé et al. (2005)], Courbon et al. (2010) uses the
PBVS algorithm described in Chaumette and Hutchinson
(2007) for controlling the quadrotor. This method does
not require triangulating points but instead, given sufficient
baseline, it uses epipolar geometry for estimating the relative
pose between the current and the reference camera frames.

A key limitation of both Nguyen et al. (2014) and Courbon
et al. (2010) is that they cannot deal with rotations in place
(often required for navigating through tight spaces), or, for
the case of Courbon et al. (2010), with translations through
areas with only faraway features (e.g., featureless corridors).
Moreover, in both cases, the quadrotor followed rather short
and fairly simple, in terms of the motions required, paths
comprising a short translation and a wide turn in Nguyen
et al. (2014), or no turns in Courbon et al. (2010), where the
quadrotor was moving back and forth between two locations
connected via a direct path.

To address these limitations, we present a PBVS-based
quadrotor navigation algorithm that employs both a wide and
and a short-baseline (WB and SB respectively) RANSAC to
(i) distinguish between translational and rotational motions,
and (ii) efficiently switch between reference images. In
particular, the wide-baseline RANSAC estimates the relative
orientation Ic

Id
R and the unit vector of translation IctId

between two frames {Ic} and {Id} of the current and
desired images, respectively. The short-baseline RANSAC
estimates the relative orientation Ic

Id
R between two frames,

{Ic} and {Id}, under the assumption of very small baseline
as compared to the depth of the scene. Once an initial
relative pose estimate, from either the WB or the SB
RANSAC, is determined, a least-squares iterative process
is employed for refining it. Lastly, the desired 2.5D motion
is extracted from the 5 dof relative pose and provided to
the quadrotor’s controller. As a result of this process, the
quadrotor is able to reliably navigate over a wide range
of motions comprising rotations in place under challenging
conditions (e.g., lengthy featureless corridors, areas with
numerous specular reflections). Additionally, the proposed
method does not require recording the images by manually
controlling the robot through the reference paths as is done
in Nguyen et al. (2014); Courbon et al. (2010). Instead, one
can easily define the desired paths by simply walking through
the area of interest carrying the quadrotor. Lastly, we extend
the optical-flow algorithm of Honegger et al. (2013) to
reduce its sensitivity to lighting conditions and floor texture,
and allow navigating through not-well-lit regions and over
low-texture surfaces. The key contributions of this work are
as follows:

1. We employ a WB [5pt (Nistér 2004)] and SB (2pt)
RANSAC-based algorithm for (i) determining the
type of motion (translational and rotational versus
rotational only) that the quadrotor needs to undergo
in order to reach the next location along its path, and
(ii) switching to the next reference image.

2. When information about the gravity direction is
available (e.g., from the IMU), we employ the
3pt+1 (Naroditsky et al. 2012) and 1pt+1 algorithm
for WB and SB RANSAC, respectively, significantly
improving the efficiency∗ of the proposed autonomous
quadrotor navigation algorithm.

3. We extend the optical-flow algorithm of Honegger
et al. (2013) so as to gradually acquire and process
additional information from a larger part of the image
so as to compute a robust and accurate estimate of the
quadrotor’s horizontal velocity.

4. We demonstrate the efficiency, accuracy, and robust-
ness of the proposed algorithm under adverse light-
ing conditions onboard the Parrot Bebop quadro-
tor (Parrot-Inc) navigating through areas comprising
lengthy corridors, tight turns, and stairs.

A preliminary version of this paper was presented in Do
et al. (2015), where we introduced the concept of using both
WB and SB RANSACs and demonstrated the robustness
of this approach when navigating through tight spaces. A
limitation of Do et al. (2015), however, was that due to the
high processing requirements of the 5pt RANSAC (45 ms
per image pair) the navigation algorithm could only run at
8 Hz on the quadrotor’s processor. To address this issue
in this work, we employ the gravity direction in the 3pt+1
RANSAC to increase the navigation algorithm’s speed to
15 Hz. Furthermore, we improve the optical-flow algorithm
previously used allowing the quadrotor to fly 2.5 times faster
under a wide range of lighting conditions.

The rest of this paper is structured as follows: In Sect. 2,
we describe the offline and online phase of our approach, as
well as our extension to the PX4Flow optical-flow algorithm.
In Sect. 3, we validate our method experimentally under
challenging conditions. Finally, we provide our concluding
remarks and outline our future research directions in Sect. 4.

2 Technical Approach
Our approach comprises two phases. In the first (offline)

phase, a visual-graph (VG)-based representation of the
area of interest is constructed using images collected by
a person walking through it. Then, given a start and an
end pair of images, a feasible visual path is automatically
extracted from the graph along with motion information
(path segments that include significant translational motion
or only rotations in place). In the second (online) phase,
our PBVS algorithm controls the quadrotor to successively
minimize the relative rotation and baseline between the

∗In this case, the minimal solver remains the same, but we improve
robustness to outliers since the algorithm requires only one, instead of two,
point feature correspondences along with the gravity direction. Note that
as compared to the 5pt, the 3pt+1 RANSAC requires fewer (17 versus 30)
inliers for estimating the 5 dof transformation between two images, thus
allowing operation in areas with only a few features.
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Figure 2. Offline phase: The area of interest is described as a visual graph (VG) whose nodes correspond to images, while edges
link images containing a sufficient number of common features for reliably visually-servoing between them. In the VG, Is1 and Ig
denote the start and goal images, respectively, while Is2 , . . . , Is5 signify intermediate goal locations along the quadrotor’s path
specified by the user. The grayscale color of the VG codes the different map segments, while its thickness reflects the number of
neighboring images each vertex image has.

Figure 1. The Parrot Bebop quadrotor equipped with a 180 deg
wide field of view (WFOV) camera, an optical-flow sensor, and
an ARM-based processor.

images captured by its onboard, forward-facing camera
and the corresponding reference images of the visual
path. Additionally, and in order to increase robustness,
our navigation approach employs a vocabulary tree (VT)-
based (Nistér and Stewénius 2006) method for relocalizing
inside the previously constructed VG when losing track of
the reference image path.

Before presenting the details of our technical approach,
we should note that the Parrot Bebop quadrotor used in
this work (see Fig. 1) has an attitude observer/controller for
stabilization, a forward-facing camera for visual navigation,
a downward-pointing camera for estimating optical flow,
and an ultrasonic sensor for measuring its distance to the
ground. In particular, the observer processes gyroscope
and accelerometer measurements, from the onboard inertial
measurement unit (IMU), to estimate its roll and pitch
angles, yaw-rate, and thrust, while the controller uses
this information to regulate the corresponding commanded
setpoints. Lastly, we note that despite the availability of
metric information from the horizontal velocity, estimated
based on the optical flow and the distance to the scene, we

do not use it to triangulate features and create a local map as
it can be both unreliable and computationally expensive.

2.1 Offline phase
2.1.1 Map generation A person carrying the quadrotor,
walks through the area of interest collecting images at 15 Hz.
In addition, when available, we compute and save along each
image the corresponding gravitational direction allowing us
to run two different versions of RANSAC for WB (5pt or
3pt+1) and SB (2pt or 1pt+1). Subsequently, we extract
FREAK feature points (Alahi et al. 2012) from each image
and employ a VT to generate the visual map; the latter
is represented as a VG whose nodes correspond to the
recorded images (see Fig. 2). An edge between two images
signifies that these were matched by the VT and at least 30
point-correspondences (or 17 when the gravity direction is
available) passed the WB or SB RANSAC. Furthermore, we
assign weights to these edges inversely proportional to the
number of common features (inlier matches) found between
linked images. This choice is justified by the fact that the VG
will be used to determine paths that the quadrotor should be
able to reliably navigate through in the image space towards
its destination.

At this point, we should note that the VG is constructed
in a matter of minutes even for large areas containing tens
of thousands of images. Moreover, it can be easily updated
by adding or replacing subsets of images corresponding to
new/altered regions of a building.

2.1.2 Path specification The VG is used for computing
paths between the quadrotor’s start and end locations,
possibly via intermediate points. Specifically, consider the
graph shown in Fig. 2. Assume that the quadrotor knows
its current location (e.g., it is provided by the user,
automatically determined using the VT, or saved from the
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previous run) corresponding to image node Is. Then, the
user specifies a destination image Ig in the VG and the
reference path is determined automatically by employing
Dijkstra’s algorithm Cormen et al. (2001). This process
is easily extended to include intermediate locations (e.g.,
Ig1 , Ig2 , . . . , Ign ), by simply resetting as the start of the
next path segment the end image of the previous one (e.g.,
Isi+1 = Igi , i = 1, . . . , n). Note that, for the rest of the paper
and in order to improve readability, we abuse the notation
and have I` to represent both the `th image and the camera
frame {I`} from which the image was taken. For the reader’s
convenience, we describe our nomenclature in Sect. B.

Once the visual path P = {Is1 = Iξ, Iξ+1, . . . , Ig =
Iξ+N} is extracted from the VG, we prune images that are
very close to each other and only keep the ones that have
substantial translational and/or rotational motion between
them. To do so, we use an iterative process that starts
from the reference image Ir

1 = Iξ and moves along the
path matching FREAK features, using both the WB and SB
RANSAC algorithms, until it finds the first image, Iξ+m,
m ≥ 1, that either has more WB than SB RANSAC inliers,
or the relative yaw angle between Ir

1 and Iξ+m is greater
than 10 deg. In the first case, we declare that the quadrotor
is in translation, otherwise, in rotation and set Iξ+m, as
the next reference image Ir

2 . The resulting path Ppruned =
{Ir

1 , I
r
2 , . . . , I

r
n} is provided to the quadrotor along with

two additional pieces of information: (i) We specify which
images correspond to rotation-only motion and compute the
yaw angle between consecutive rotation-only images; (ii) We
compute the FREAK features extracted from each reference
image along with their coordinates and the direction of
gravity. The former is useful in case the quadrotor gets lost
(see Sect. 2.2.4), while the latter is used by the quadrotor
for efficiently finding and matching its next reference image
through the process described hereafter.

2.2 Online phase
2.2.1 System state determination Firstly, consider the case
of WB; we are interested in computing the desired motion
that will bring the quadrotor close to the reference image
Irk ∈ P . To do so, we seek to estimate the quadrotor’s
5 dof transformation with respect to Irk , when only
visual information is available, by extracting and matching
features between its current, It, and reference, Irk , images.
Specifically, given 5 pairs of feature matches between It
and Irk , we employ the WB 5pt RANSAC (Nistér 2004) to
compute the 5 dof transformation from It to Irk based on
the epipolar constraint for the set of feature correspondences
(j = 1, . . . , 5):

IrkbT

fjb
IrktIt ×c

Irk
It
RItbfj = 0 (1)

where Irkbfj , Itbfj are the (unit) bearing vectors to feature
fj from frames {Ir

k} and {It}, respectively; I
r
ktIt is the unit

translational vector of {It} in {Ir
k}; and I

r
k

It
R is the rotational

matrix describing the relative orientation between {It} and
{Ir

k}.
If the gravity direction is known for both the current, Itg,

and the reference image, I
r
kg, then we employ the WB 3pt+1

RANSAC (Naroditsky et al. 2012) to compute the 5 dof
motion from It to Irk based on the relation between the

gravitational directions of the two images

Irkg =
Irk
It
RItg (2)

and only 3 pairs of feature matches satisfying (1). Note
that since the minimal solver of Naroditsky et al. (2012)
employs a 4th-order polynomial equation whose solution
is known in closed-form, it is significantly faster than that
of Nistér (2004) which is based on the analytical solution of
a 10th-order polynomial equation. Furthermore, by requiring
3, instead of 5, feature pair matches, the 3pt+1-RANSAC
requires a significantly lower number of hypotheses as
compared to the 5pt RANSAC.

At this point, we should note that the motion estimate
from (1), and potentially (2), is not reliable when the
baseline between It and Irk is short. In particular, when
the distance between 2 images is significantly smaller than
the distance to the feature from either image (i.e., I

r
kdIt �

Itdfi ,
Irkdfi) the 5 dof degenerates into a 3 dof rotation-

only transformation [see Do et al. (2015) for more details]
between It and Irk . This 3 dof transformation can be
computed (see Appendix A.1) by either (2pt RANSAC)
employing two pairs of feature correspondences satisfying

Irkbfi =
Irk
It
RItbfi (3)

or (1pt+1 RANSAC) only a single pair of such feature
matches and the direction of gravity [see (2)].

Another issue of concern is that the appearance-based
feature matching between It and Irk (i.e., WB RANSAC’s
input) is not always reliable (e.g., due to adverse lighting
conditions and/or image blur). To address these challenges,
we model our system as a hybrid automatonH as follows:

Definition 1:H = (L,x, E), where:

• L is the set of discrete states including:

– `0: wide baseline (nominal condition)
– `1: short baseline (rotation in place is necessary

or reference-image switching)
– `2: lost mode due to, e.g., failure in the

appearance-based feature matching.

• x(t, k) = [It, I
r
k , r(t, k)] where r(t, k) is the desired

motion for minimizing the relative pose between It
and Irk .
• E is the set of relations governing transitions between

the states in L = {`0, `1, `2}.

Given H, and in order to complete the reference visual
path P , the system must ideally iterate between two steps
until the last element of P is reached: (i) When in `0, we
compute the motion r and control the quadrotor so as to bring
the system to state `1 (see Sect. 2.2.2); (ii) When in `1, and if
there is no significant rotation between It and Irk , we switch
Irk to the next reference image in P (see Sect. 2.2.3), and
the system, by design, returns to state `0. In the event of an
external disturbance, however, the system may reach state `2.
In this case, a recovery procedure is executed to attempt to
bring the system back to `0 or `1 (see Sect. 2.2.4).

In order to accurately classify the state of the system
as `0, `1, or `2 based on It and Irk , we use the process
summarized in Fig. 3, and define the relations in E =
{e0, e1, e2} in the following 3 steps.
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Figure 3. Online phase: Schematic diagram of the steps and
transitions between the different states of the automaton H.

Step 1: We first extract and match FREAK features in
It and Irk , and define as Sf (It, I

r
k) the set of all feature

correspondences. Note that if the condition for sufficient
feature matches e0 : |Sf | ≥ ξ (where ξ = 30 or 17 for the
5pt and 3pt+1 RANSACs, respectively, and |Sf | is the
cardinality of the set Sf ) is satisfied then the system proceeds
to Step 2 of the current state, else it transitions to state `2 (see
Fig. 3).

Step 2: Given the bearing vectors, Itbf and Irkbf , from
both camera frames, It and Irk , to each feature f , we employ
the WB (5pt or 3pt+1) RANSAC to compute the geometric
relation (I

r
k

It
R, I

r
ktIt ) between It and Irk , as well as the set

of features whose reprojection error (Hartley and Zisserman
2004) is within a threshold ε1 [the error tolerance for outlier
rejection (Fischler and Bolles 1981)]. At this point, we
require that the condition e1 : |SWB | ≥ ξ, where ξ = 30 or
17 for the 5pt and 3pt+1 RANSACs, respectively, (i.e., the
number of WB RANSAC inliers), is satisfied in order to
proceed to Step 3; else the system transitions to state `2 (see
Fig. 3).

In Step 3, we distinguish between the states `0 and `1.
Specifically, as previously mentioned, when the baseline
is short, the 5 dof degenerates into a 3 dof, rotation-
only constraint that is satisfied by all the WB inliers. Our
algorithm uses this observation to determine if there is
sufficient baseline between the current, It, and reference,
Irk , images. In particular, we employ the SB (2pt or 1pt+1)

RANSAC on the features f ∈ SWB to compute the rotation
Irk
It
R between the two images and determine SSB = {f ∈

SWB | 1− IrkbT

f
Irk
It
R Itbf < ε2}, which is the subset of

WB inliers that are also SB inliers. Lastly, and in order
to compensate for the noise in the measurements and the
randomness of RANSAC, instead of requiring |SSB | =
|SWB |, we employ the condition e2 : |SSB |

|SWB | > 0.94 to
declare small baseline (i.e., state `1).

Depending on the state of our system (`0, `1, or `2), in
what follows, we describe the process for controlling the
quadrotor.

2.2.2 Wide baseline (`0)

Improving the motion estimate In practice, when the
quadrotor navigates through long corridors or open spaces,
Sf may contain features at various depths, some of which
(typically the faraway ones) may negatively affect the motion
estimate’s accuracy. Note that such features satisfy the SB
RANSAC. To remove them, we define as S′WB = SWB \
SSB , run again the WB RANSAC on the features f ∈
S′WB , and use the winning hypothesis to initialize an
efficient iterative least-squares algorithm (see Appendix A.2)
to improve the accuracy of the estimated 5 dof motion
between It and Irk .

Extracting the desired 2.5D motion At this point, we note
that although the estimated relative pose between It and Irk
may comprise 5 dof (3 for the relative roll, pitch, yaw, and
2 for the unit vector, t, of translation), given the kinematic
and actuation constraints of the quadrotor (e.g., it cannot
achieve non-zero roll or pitch angle while staying in place),
our controller seeks to match the desired motion only along
3 dof: The tx, ty projection of the desired unit vector, t, of
translation on the horizontal plane,† and the desired (relative)
yaw angle Irk ψ̂It . Moreover, and in order to maintain an
almost constant-velocity flight, we scale tx and ty by v0
(the maximum velocity that the optical-flow algorithm can
measure) and obtain the desired motion vector:

r =

vd
x

vd
y

ψd

 =

tx v0ty v0
Irk ψ̂It

 (4)

Note also that when information (e.g., from ultrasound
sensors) about closeby obstacles is available, we can modify
r so that the quadrotor can smoothly avoid obtacles while
maintaining its course [see Do et al. (2015) for more details].
After finalizing the desired motion r, we provide it to the PID
controller to compute the control actions.

Controller In order to determine the control input, uk(t)
(roll, pitch, yaw-rate, and thrust), that we must provide to the
quadrotor’s attitude controller so as to achieve the desired
velocity, we employ the vehicle’s kinematic equations,

†Note that since all images were recorded at about the same height, the
z component of the desired motion estimate is rather small after the first
reference image and we subsequently ignore it. Instead, we use the distance
to the ground measurements to maintain a constant-altitude flight.
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Figure 4. System block diagram. The double-line blocks denote components of our algorithm described in Sections 2.2.1 (H) and
2.2.2 (Controllers).

linearized about the equilibrium (near-hover condition):[
v̇x(t)
v̇y(t)

]
= g

[
θ(t)
−φ(t)

]
(5)

z̈(t) =
1

m
τ(t)− g (6)

where g is the magnitude of gravity, m is the quadrotor’s
mass, z is the quadrotor’s altitude in the inertial frame, and
φ(t), θ(t), and τ(t) are the roll, pitch, and thrust of the
quadrotor in ego-centric coordinates, respectively.

To compute the velocity error, we use the estimates, v̂x, v̂y ,
from the optical-flow sensor, to form:[

evx(t)
evy (t)

]
=

[
vdx(t)− v̂x(t)
vdy(t)− v̂y(t)

]
(7)

Furthermore, the height error, ez , is defined as the
difference between the desired altitude and the estimated
height ẑ from the downward-pointing ultrasonic sensor:

ez(t) = zd(t)− ẑ(t) (8)

Lastly, based on (6), (7), (8) and ψ̂ in (4), we form a PID
controller that computes the desired control input to the
system as:

uk(t) =


θd(t)
φd(t)
τd(t)

ψ̇d(t)

 =


kp,vxevx(t) + ki,vx

∫
evx(t)dt

−kp,vyevy (t)− ki,vy
∫
evy (t)dt

kp,zez(t) + ki,z
∫
ez(t)dt+ kd,z ėz(t)

kp,ψψ
d


(9)

The gains kp, ki, and kd that ensure high response,
zero tracking error, and robustness were found as described
in Franklin et al. (1997). Note also that, in order to keep the
quadrotor in the near-hover condition, in practice, we bound
the magnitude of the desired controller inputs for roll and
pitch to be within 15 degree.

Fig. 4 depicts the 3-control-loop implementation of our
navigation algorithm on the Parrot Bebop quadrotor. The
outer loop takes as input It, Irk and determines the desired

2D velocity, vdx, v
d
y , and the yaw angle ψd at 12 Hz (see

Sect. 2.2.2). The velocity and altitude controller (middle
loop) takes as input z and Inadir (image from the nadir-
pointing camera at time t) and provides the roll, pitch, and
thrust setpoints at 40 Hz to the attitude controller, which in
turn, runs at 100 Hz.

2.2.3 Short baseline (`1) In case of short baseline, we
detect if there is any rotational motion necessary for
minimizing the relative yaw, I

r
kψIt

, between It, and Ir

k. To
do so, we first improve the rotation matrix estimate, I

r
k

It
R,

by employing the least-squares method of Horn (1987) on
the features f ∈ SSB using as initial estimate the one from
the minimal solver of the SB (2pt or 1pt+1) RANSAC. After
extracting the yaw component, if |IrkψIt | > τ3,‡ we send the
desired rotation-in-place motion rT = [0 0 IrkψIt

]T to the
controller to minimize the relative yaw between It, and Ir

k;
else, we switch to the next reference image along the path P .

Alternatively, we can leverage the yaw angle (computed
off-line - see Sect. 2.1.2) between the first and last rotation-
only reference images to speed up the execution of this path
segment. In this case, the precomputed relative yaw angle
is provided to the controller to perform a “blind” rotation
in place. Once this is complete, the quadrotor queries the
VT to confirm that the last rotation-only reference image of
the current path segment has been reached, or, determine the
remaining rotation between the current image and the last
rotation-only reference image.

2.2.4 Lost mode (`2) There are four possible cases that can
cause the quadrotor to get lost:

• It enters a featureless region.
• It enters a region where the result from the FREAK

feature matching between It and Ir

k is unreliable.

‡This threshold depends on the onboard camera’s FOV and is selected so as
to ensure a significant overlap (more than 80%) between the current camera
image and the next reference image.
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• It significantly deviates from its current path, in order
to avoid an obstacle.
• Dynamic obstacles (e.g., people) obstruct its view or

path.

Our recovery method is as follows: While hovering, the
quadrotor queries the VT with It and successively evaluates
the returned images to find the one that has at least 20
features in common with It that pass the WB RANSAC. If
the above search fails for the top 10 images, the quadrotor
switches to a “blind” motion strategy following the same
type of motion as before it was lost (i.e., translation or
rotation based on the last reference image where it computed
good matches) for 0.5 sec and then attempts again to
retrieve a good reference image Ir

best. This iterative process
is repeated for 10 times before declaring that the quadrotor is
lost, in which case, it autonomously lands.

At this point, we should note that during our experiments
when flying within the same floor (see Sect. 3.3) the
quadrotor enters state `2 on average one to two times,
primarily due to external disturbances (e.g., people walking
in front of it or high-speed airflow from the air-conditioning
vents). The number of times that the quadrotor gets lost
increases to five when travelling across floors (see Sect. 3.4).
This is due to the additional challenges that navigating
through dark, featureless staircases poses. Note though that
in all cases where the 3pt+1 RANSAC was employed for
WB estimation, the quadrotor was able to relocalize and
successfully complete its path.

2.3 Optical Flow
In this section, we describe our extension of the PX4Flow

algorithm of Honegger et al. (2013). The original algorithm
first extracts a 64× 64 patch in the center of the downward-
pointing camera’s image and computes the optical flow of
each of the 25 8× 8 pixel blocks within the patch based on
the sum of absolute differences (SAD) with a search area
of half the window size (i.e., 5 pixels in the x, y directions
of the second image). Then, subpixel refinement is applied
to obtain better matching results with half-pixel accuracy.
Finally, the algorithm constructs two histograms of pixel
displacements in the x and y directions based on the flow
from the 25 blocks and picks the one with the maximum
number of votes as the optical flow for that frame.

Figure 5. The image is divided into nine 64× 64 pixel patches.
The number indicates the order in which each patch is
considered by the proposed optical-flow algorithm. Note that
in Honegger et al. (2013), only the center patch (1) is used.

In poor lighting-conditions, however, or when flying over
low-texture surfaces the patch in the center of the image may
not have sufficient texture, or the minimum SAD for the
chosen pixel blocks may be very large, leading to erroneous
optical-flow estimation. To address this issue, we propose
the following extension of the PX4Flow algorithm: First,
we split the image of size 320× 240 pixels into 9 patches
each of pixel size 64× 64 (see Fig. 5). Then, we start
by computing the histogram of optical-flow based on the
PX4Flow algorithm for the center patch of the image (i.e.,
patch 1 in Fig. 5) and count the number of valid pixel blocks.
In particular, for a chosen pixel block Pb, if the sum of
horizontal and vertical gradients of the 4×4 patch centered
in Pb (i.e., its textureness) is larger than a threshold γ1 and
the minimum SAD value in the search area is less than a
threshold γ2, Pb is considered to be a valid pixel block,
where γ1 and γ2 are determined based on the camera’s
specifications. Subsequently, if the number of valid pixel
blocks, among 25 chosen ones, is less than or equal to 20, we
proceed to compute the optical flow from additional patches,
and accumulate their histograms, following the patch order
shown in Fig. 5. This process continues until the number
of valid pixel blocks in the histogram is larger than 20. The
reason behind this order of patch-selection (i.e., starting from
the center and moving outward) is that the pixels far away
from the center have more radial distortion. Furthermore, as
evident from (10), they are affected by rotations more than
the ones closest to the center:

u̇ =
−fcvx + uvz

η
− fcωy + vωz +

uvωx − u2ωy
fc

v̇ =
−fcvy + vvz

z
+ fcωx − uωz +

v2ωx − uvωy
fc

(10)

where fc is the focal length of the camera, u and v are the
coordinates of a pixel p w.r.t the center of the image, u̇ and
v̇ are the optical-flow velocities of p, (vx, vy , vz) and (ωx,
ωy , ωz) are the linear and rotational velocities, respectively,
of the downward-pointing camera in ego-centric coordinates,
and z is the vertical coordinate of the 3D point to which p
corresponds. Since our motions are mostly 2.5D, the distance
of any 3D point in the camera’s view is almost constant,
and thus vz is negligible. By employing this assumption,
we can estimate vx, vy from the computed optical flow u̇, v̇,
the rotational velocities ωx, ωy , ωz estimated from the IMU,
and the distance to the ground z measured by the ultrasonic
sensor, as follows:

vx =
z

fc
(−u̇− fcωy + vωz +

uvωx − u2ωy
fc

)

vy =
z

fc
(−v̇ + fcωx − uωz +

v2ωx − uvωy
fc

)

3 Experimental Results
In this section, we present experimental results for

validating both our extension of the PX4FLow algorithm
and the ability of the quadrotor to autonomously fly through
image-defined paths. In the optical-flow experiment (see
Sect. 3.2), we show the difference in performance between
our proposed and the original approach using data acquired
in a dark staircase inside the Walter Library. Next, in
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Sect.s 3.3 and 3.4, respectively, we describe autonomous
navigation experiments with two Parrot Bebop quadrotors
in two scenarios: (i) A 75 m indoor area, within the same
floor, to evaluate the algorithm’s performance when moving
relatively fast [the velocity, v0 in (4), was set to 2 m/sec,
which is the maximum velocity that can be measured
by the optical-flow algorithm]; (ii) A 150 m indoor area
that requires transitioning between two floors through two
staircases. In this case, v0 was set to 1.2 m/sec.

3.1 System setup
The Bebop carries an Invensense MPU-6050 MEMS IMU,

a downward-pointing Aptina MT9V117 camera (53 deg
FOV, set to 320×240 pixels resolution) used for optical flow,
an ultrasonic sensor for measuring the distance to the ground,
and a forward-facing Aptina MT9F002 camera (180 deg
FOV, set to 300×264 pixels resolution) that we use for
visual navigation. All computations are performed in real-
time onboard Bebop’s ARM Cortex A9 800 MHz dual-core
processor.

3.2 Optical-flow experiment
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Figure 6. Comparison of different methods [Lucas-Kanade
(LK), PX4Flow, and our proposed extension] for computing and
integrating the optical flow over 2 datasets for slow (top) and
fast (bottom) motions.
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Figure 7. Histograms of the optical-flow in the x and y
directions. The blue bars depict the histograms from the
PX4Flow algorithm. The yellow bars indicate the histograms
from our proposed extension to the PX4Flow algorithm.

We implemented the proposed optical-flow algorithm
using ARM NEON and achieved an average time of 0.95 ms
for images of size 320× 240 pixels. Thus, for a frame
rate of 60 Hz, the total time (per second of flight) for
computing the optical-flow is approximately 57 ms which
is sufficient for real-time operation. To demonstrate the
robustness of our proposed extension, we collected 2 datasets
of roughly 300 images using the Parrot Bebop at the
Walter Library stairs; the first one is with a moderate
speed (0.5 m/sec) while the second one is relatively faster
(2.0 m/sec). Subsequenty, we integrated the flow estimates

Figure 8. Representative consecutive image pairs from the
Walter Library stairs. The red circle shows the same corner in
the two images with their pixel coordinates.

from consecutive image pairs, for (i) the PX4Flow algorithm,
(ii) our proposed extension, and (iii) the Lucas-Kanade (LK)
method, which is considered as groundtruth. The resulting
paths, in pixel space, are shown in Fig. 6. As evident,
our algorithm is significantly more robust than the original
PX4Flow algorithm under fast motions, while it has similar
accuracy and processing requirements when moving slowly.
In order to better understand where the gain in performance
comes from, in Fig. 7, we show the histograms of the
pixel blocks’ displacements resulting from the image pair
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shown in Fig. 8. Notice that the blue bars in Fig. 7, which
depict histograms from the PX4Flow algorithm, do not
have a distinct flow peak, suggesting inaccurate optical-flow
estimation. In contrast, the histograms from our proposed
algorithm, shown as yellow bars, have a clear peak, resulting
from the additional optical-flow information collected from
the extra image blocks used.

3.3 Experiments Set 1 (within the same floor)

Figure 9. Experiments Set 1: (Top) Blueprint of the
experimental area with the reference trajectory (1-. . . -6-1)
overlaid. (Bottom) Snapshots of the Bebop along its path
(locations 1-6).

In these experiments, which took place in the Walter
Library’s basement, the two quadrotors used had to follow
a 75 m long path comprising translational-motion segments
through open spaces, as well as rotations in place in order to
navigate through narrow passages. Fig. 9 shows the blueprint
of the experimental area with the reference visual path (red
bold line) overlaid, as well as snapshots of the quadrotor in
flight. Figs. 11 and 10 show examples of matched feature
inliers between the current and reference images for the WB
and SB cases, respectively. In both instances, the 3p+1 and
1p+1 RANSAC inlier ratios (0.675 and 0.92 in Figs. 11
and 10, respectively), were used to determine whether the
configuration between the current, It, and reference, Irk ,
images corresponds to a WB or SB case.

During the experiment, and depending on the WB vs.
SB choice, the Bebop was able to complete the reference
trajectory (see Table 1) in a total of 97-240 sec (Tot.
Time). Within this interval, the quadrotor performs mostly

Exp. Len. Tot. time Trans. time Avg. speed
3pt+1 75 m 97 sec 73 sec 1.0 m/s
3pt+1 75 m 130 sec 84 sec 0.9 m/s
3pt+1 75 m 133 sec 96 sec 0.8 m/s

5pt 75 m 210 sec 146 sec 0.5 m/s
5pt 75 m 240 sec 180 sec 0.4 m/s

Table 1. Performance comparison between the 3pt+1/1pt+1
and 5pt/2pt-based autonomous navigation algorithms for the
single-floor experiments (Set 1).

Figure 10. Short baseline case: 3pt+1 (left) and 1pt+1 (right)
RANSAC-based matching between 2 pairs of images (top Irk ,
bottom It) from the Bebop’s forward-facing camera.

Figure 11. Wide baseline case: 3pt+1 (left) and 1pt+1 (right)
RANSAC-based matching between 2 pairs of images (top Irk ,
bottom It) from the Bebop’s forward-facing camera.
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Figure 13. Experiment 2: Blueprint of the experimental area, the reference path, and the snapshot of the Bebop during flights.
Note that the stairs area is shown on images 5-8.

Impl. Solver RANSAC Freq.
5pt 1.3 ms 45 ms 8 Hz

3pt+1 0.13 ms 5 ms 15 Hz

Table 2. Execution time comparison between the 3pt+1 and 5pt
minimal solvers and corresponding RANSACs on the Bebop’s
processor.

translational motion (trans. time) for 73-180 sec, at an
average speed (avg. speed) of 1.0-0.4 m/s. Specifically,
Table 1 summarizes the performance results, in terms of
speed, from 5 experiments where two different options for
WB and SB RANSAC were employed. In particular, in
the first three experiments, the 3pt+1 along with 1pt+1
algorithm were used in the WB and SB RANSACs,
respectively, achieving an up to 2.5 times speedup as
compared to the case when the 5pt and 2pt algorithms were
used instead. The significant gain in navigation speed is
better explained by noting the substantial difference in the
processing requirements between the 5pt and 3pt+1 minimal
solvers, and thus among the corresponding RANSACs.
These timing results for the Bebop’s processor are listed
in Table 2. As evident from these comparisons, employing
the gravity direction in the motion-estimation algorithm
leads to significant gains in speed during autonomous visual
navigation.

3.4 Experiments Set 2 (flight across two floors
through stairs)

This set of experiments took place in the Walter Library’s
basement and 1st floor, which are connected through 2
staircases (south-north), each comprising two flights of
stairs. In this situation and due to the lengthier trajectory
(150 m), the quadrotor is more likely to lose track of the
reference image, and enter the lost mode (Fig. 12 shows an
example of an online query image and the returned images,
along with the number of inlier matches from the VT).

VT

Query Image

18 inliers

Returned Images

16 inliers 13 inliers

`

Figure 12. An example of an online image query when in lost
mode. The top image is the one that the quadrotor acquired
online but was not able to match with the reference image. The
bottom 3 images are the ones returned by the VT after querying
with the current quadrotor online image.

Furthermore, the quadrotor has to fly through two staircases,
where the high rate of change of the ultrasonic sensor’s
height measurement caused the vision-only approach (5pt +
2pt RANSAC) to fail to complete the trajectory. The main
challenge in this experiment was accurately estimating the
optical flow. In particular, the stairs comprise textureless
steps and part of the staircases (transitions between images
4-6 and 7-9 in Fig. 13) is featureless and quite dark as
compared to the rest of the path. In addition, there was
regular pedestrian traffic in the experimental area with
people often walking in front of the quadrotor (see Fig. 14),
disturbing its path-following process. Despite the adverse
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Figure 14. Example images of people walking or standing in
Bebop’s path.

conditions, the quadrotor was able to successfully navigate
through this path, and achieved the performance summarized
in Table 3. Fig. 13 shows the blueprint of the experimental
area with the reference visual path (red bold line) overlaid,
as well as snapshots of the Bebop in flight. The videos of
both sets of experiments are available at Do et al. (2016).

Exp. Len. Tot. time Trans. time Avg. speed
3pt+1 150 m 250 sec 154 sec 1.0 m/s
3pt+1 150 m 235 sec 181 sec 0.8 m/s
3pt+1 150 m 274 sec 213 sec 0.7 m/s

Table 3. Performance of the 3pt+1/1pt+1-based autonomous
navigation algorithm for the multi-floor experiments (Set 2).

4 Conclusion and Future Work
In this paper, we presented a visual-servoing algorithm

for autonomous quadrotor navigation within a previously-
mapped area. In our work, the map is constructed offline
from images collected by a user walking though the
area of interest carrying the quadrotor. Specifically, the
visual map is represented as a graph of images linked
with edges whose weights (cost to traverse) are inversely
proportional to their number of common features. Once
the visual graph is constructed, and given as input the
start, intermediate, and goal locations of the quadrotor, it
automatically generates the desired path as a sequence of
reference images. This information is then provided to the
quadrotor, which estimates, in real time, the motion that
minimizes the difference between its current and reference
images, and controls its roll, pitch, yaw-rate, and thrust for
achieving that.

Besides the ease of path-specification, a key advantage
of our approach is that by employing a mixture of WB

and SB RANSAC algorithms online for (i) determining
the type of desired motion (translation and rotation versus
rotation in place) and (ii) selecting the next reference
image, the quadrotor is able to reliably navigate through
areas comprising lenthgy corridors, as well as narrow
passages. Additionally, it is able to cope with static and
moving obstacles and recover its path after losing track
of its reference image. Moreover, we have shown that
by employing information about the direction of gravity
in the WB and SB RANSAC algorithms (i.e., using the
3pt+1/1pt+1 instead of the 5pt/2pt minimal solvers) we
are able to realize significant gains in processing, and
hence speed of navigation. Lastly, critical improvements in
robustness, especially when flying over low-texture areas,
were achieved by extending the PF4Flow optical-flow
algorithm to progressively use larger parts of the downward-
pointing camera’s images for estimating the vehicle’s
horizontal velocity. The performance of the proposed
autonomous navigation algorithm was assessed in two sets
of experiments over two lengthy paths (75 m and 150 m),
across two floors, and under challenging conditions (e.g.,
moving obstacles, specular reflections, featureless corridors,
textureless stairs, dark areas) while running in real-time on
the resource-constrained processor of a commercial-of-the-
self, low-cost quadrotor.

As part of our future work, we plan to assess and improve
the performance of our autonomous quadrotor navigation
algorithm for the case where the images used for constructing
the visual map were recorded by a different camera (e.g.,
from another type of quadrotor). Robustness to large changes
in the appearance of areas of the building, as well as the
lighting conditions are also within our future interests.
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A Appendix
A.1 2pt/1pt+1 RANSAC minimal solver

Consider two unit bearing measurements I1bfi ,
I2bfi to

a feature fi from two images, and assume that the motion
between them is purely rotational, i.e.,

I2bfi = R(I2I1 q̄)
I1bfi , (11)

where I2I1 q̄ is the unit quaternion of rotation. When only visual
information is available, finding I2

I1
q̄ requires two feature

matches between I1 and I2 to satisfy (11). We refer to this
as the 2pt-minimal problem. On the other hand, when the
direction of gravity is known for both images, i.e.,

I2 ĝ = R(I2I1 q̄)
I1 ĝ (12)

we only need one feature match to satisfy (11). We refer to
this problem as the 1pt+1 minimal problem.

In summary, in both cases, we need 2 pairs of
linearly independent unit vectors (u1,u2), and (v1,v2), to
satisfy (11) or (12), [or equivalently (13) below] where
u1 = I1bf1 ,v1 = I2bf1 , while u2 = I1bf2 ,v2 = I2bf2 or
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u2 = I1 ĝ,v2 = I2 ĝ. In what follows, we prove the following
theorem:

Theorem 1. Given two pairs of unit vectors (u1,u2),
and (v1, capitallettersmathbfv2), where u1 and u2 are
linearly independent, satisfying:

vi = R(q̄)ui i = 1, 2 (13)

the unknown quaternion of rotation q̄T =
[
q q4

]T
can be

found as:
if (v1 − u1)× (v2 − u2) 6= 0 then

q̄ = γ

[
(v1 − u1)× (v2 − u2)
(v1 + u1)T (v2 − u2)

]
else

if vT
1 (u1 × u2) 6= 0 then

q̄ = η

[
(v1 × v2)× (u1 × u2)

(v1 × v2)T (v1 × v2 + u1 × u2)

]
else

if u1 = v1 and u2 = v2 then

q̄ =

[
0
1

]
else
q̄ = 1

‖vi+ui‖

[
vi + ui

0

]
, vi + ui 6= 0, i ∈ {1, 2}

end if
end if

end if

Proof:
In what follows, we present an algebraic derivation of the

preceding relations. A geometry-based proof of this result is
shown in Reynolds (1998).

Employing the quaternion relations in Trawny and
Roumeliotis (2005) we have:

vi = R(q̄)ui

⇔
[
vi
0

]
= q̄ ⊗

[
ui
0

]
⊗ q̄−1

⇔
[
vi
0

]
⊗ q̄ − q̄ ⊗

[
ui
0

]
= 0

⇔
[
L

([
vi
0

])
−R

([
ui
0

])] [
q
q4

]
= 0

⇔
[[
−bvi ×c vi
−vT

i 0

]
−
[
bui ×c ui
−uT

i 0

]] [
q
q4

]
= 0

⇔
[
−bvi + ui ×c vi − ui
−(vi − ui)

T 0

] [
q
q4

]
= 0

⇔
{ −bvi + ui ×cq + (vi − ui)q4 = 0 (14)

(vi − ui)
Tq = 0 (15)

A.1.1 Case 1 [C1]: (v1 − u1)× (v2 − u2) 6= 0
From (15) for i = 1, 2, ∃ γ 6= 0:

q = γ(v1 − u1)× (v2 − u2) (16)

Substituting (16) in (14) for i = 1 yields:

(v1 − u1)q4 = γbv1 + u1 ×c(v1 − u1)× (v2 − u2)

⇔ (v1 − u1)q4 = γ(v1 − u1)(v1 + u1)T (v2 − u2) (17)
⇒ q4 = γ(v1 + u1)T (v2 − u2) (18)

where (17) is obtained by ba×cbb×c = baT − (aTb)I,
while q4 in (18) is found by noting that v1 6= u1, else [C1]
will not hold. Note that, the solution will not change if we
find q4 by substituting q into (14) for i = 2 (instead of i = 1).
In such case, we will get q′4 = −γ(v2 + u2)T (v1 − u1).
Note though that:

q4
γ
− q′4
γ

= (v1 + u1)T (v2 − u2) + (v2 + u2)T (v1 − u1)

= 2(vT

1v2 − uT

1u2)

= 2(uT

1R
T (q̄)R(q̄)u2 − uT

1u2)

= 0

and thus q4 = q′4. Hence, under [C1], we obtain the
quaternion solution:

q̄ =

[
q
q4

]
= γ

[
(v1 − u1)× (v2 − u2)
(v1 + u1)T (v2 − u2)

]
(19)

where γ is the normalization constant that ensures unit
length.

A.1.2 Case 2 [C2]: (v1 − u1)× (v2 − u2) = 0
This condition means that ∃ α 6= 0 such that:

v1 − u1 = α(v2 − u2),

⇔R(q̄)u1 − u1 = α(R(q̄)u2 − u2)

⇔R(q̄)(u1 − αu2) = u1 − αu2 (20)
⇔R(q̄)T (v1 − αv2) = v1 − αv2 (21)

From (20), we conclude that u1 − αu2 is an eigenvector
corresponding to the eigenvalue 1 of the rotational matrix
R(q̄), and thus, it is colinear with the unit vector of
rotation k and the corresponding quaternion vector q. As
a consequence, u1,u2, and q are coplanar. Analogously,
from (21), we conclude that v1,v2, and q are coplanar.

A.1.3 Subcase 2a [C2a]: vT
1 (u1 × u2) 6= 0

Under this configuration (see Fig. 15), the plane Πu (formed
by u1,u2) intersects the plane Πv (formed by v1,v2) at a
unique line, with the same direction as the vector

q = η(v1 × v2)× (u1 × u2), η 6= 0 (22)

Substituting q from (22) into (14) for i = 1 yields:

(v1 − u1)q4

= ηbv1 + u1 ×cbv1 × v2 ×c(u1 × u2)

= η((v1 + u1)T (u1 × u2)(v1 × v2)

− (v1 + u1)T (v1 × v2)(u1 × u2))
(23)

= η (vT

1 bu1 ×cu2(v1 × v2)− uT

1 bv1 ×cv2(u1 × u2))
(24)

where (23) is obtained using the identity ba×cbb×cc =
(aTc)b− (aTb)c, while (24) results from the property of
the cross-product aT (a× b) = 0. Next, we note that from
[C2]:

(v1 − u1)× (v2 − u2) = 0

⇒ vT

1 bv1 − u1 ×c(v2 − u2) = 0

⇒ − vT

1 bu1 ×c(v2 − u2) = 0

⇒ vT

1 bu1 ×cu2 = −uT

1 bv1 ×cv2 (25)
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✆✉

✆✈

�✶
�✷

✁✶

✁✷

q

Figure 15. Geometric interpretation of case [C2a]: The plane
Πu, comprising vectors u1,u2, intersects the plane Πv ,
comprising vectors v1,v2, at a line with direction q.

Employing (25), (24) can be written as:

(v1 − u1)q4 =

η vT

1 bu1 ×cu2 ((v1 × v2) + (u1 × u2))
(26)

Projecting both sides of (26) on (v1 × v2) yields:

(v1 × v2)T (v1 − u1)q4 =

η vT

1 bu1 ×cu2

(
‖(v1 × v2)‖2 + (v1 × v2)T (u1 × u2)

)
(27)

⇒ (−u1
T bv1 ×cv2) q4 =

η vT

1 bu1 ×cu2

(
‖(v1 × v2)‖2 + (v1 × v2)T (u1 × u2)

)
(28)

⇒ q4 = η (v1 × v2)T (v1 × v2 + u1 × u2) (29)

where to arrive to (29), we employ again (25).
Summarizing (22) and (29), the solution for [C2a] is:

q̄ = η

[
(v1 × v2)× (u1 × u2)

(v1 × v2)T (v1 × v2 + u1 × u2)

]
(30)

where η is the normalization constant that ensures unit
length.

A.1.4 Subcase 2b [C2b]: vT
1 (u1 × u2) = 0

This condition means that u1,u2,v1,v2, and q are all
coplanar (see Fig. 16). We assume that q 6= 0, otherwise q̄ is

✆✉ ✑ ✆✈

�✶

�✷

✁✶
✁✷

q

Figure 16. Geometric interpretation of case [C2b]: The planes
Πu and Πv coincide, thus the 5 vectors u1,u2,v1,v2, and q
are coplanar.

the unit quaternion. In such case, we first show that q4 = 0.
Specifically, we use the Rodriquez formula for expressing

the rotation matrix in terms of the quaternion (Trawny and
Roumeliotis 2005) and expand (13) as follows:

vi = R(q̄)ui

= ((2q2

4 − 1)I− 2q4bq×c+ 2qqT )ui

= (2q2

4 − 1)ui + 2(qTui)q− 2q4(q× ui) (31)

Note that (q× ui) is perpendicular to all other vectors
appearing in (31). Thus, projecting both sides of (31) on
(q× ui) yields q4 = 0. Substituting q4 back in (31) results
in:

ui + vi = 2(qTui)q, i = 1, 2 (32)

If u1 + v1 = u2 + v2 = 0, we employ the assumption q 6=
0, (32) leads to:

qTui = 0, i = 1, 2 (33)

Note that since u1,u2, and q are coplanar, (33) infers that u1

and u2 are colinear. This contradicts the linear independent
assumption of u1 and u2.

Now, we consider the case where ui + vi 6= 0 and uj +
vj = 0, where i 6= j and i, j ∈ {1, 2}. From (32), we have:

q = ρ(ui + vi) ρ 6= 0

⇒ q =
1

‖ui + vi‖
(ui + vi) (34)

Note that this choice of q in (34) also satisfies qTuj = 0, or
equivalently:

(ui + vi)
Tuj = uT

i uj + vT

i uj

= uT

i R
T (q̄)R(q̄)uj + vT

i uj

= vT

i vj − vT

i vj = 0 (35)

where (35) is obtained by noting that uj = −vj . Thus with
ui + vi 6= 0, we have:

q̄ =
1

‖ui + vi‖

[
ui + vi

0

]
(36)

Finally, when ui + vi 6= 0 and uj + vj 6= 0, (32) shows
that:

(ui + vi)× (uj + vj) = 0

or equivalently, q, ui + vi, and uj + vj are all colinear.
Therefore, regardless of the choice of i, j, they yield the same
solution:

q̄ =
1

‖ui + vi‖

[
ui + vi

0

]
=

1

‖uj + vj‖

[
uj + vj

0

]
(37)

A.2 Motion estimation from 2 views
In this section, we describe an efficient Gauss-Newton

method to determine the 5 dof transformation between 2
views given the bearing measurements to common features.

A.2.1 Problem formulation Consider n features common
to the images I1, I2, where each feature fi’s 3D position is
expressed w.r.t frames {I1} and {I2} as I1pfi and I2pfi ,
respectively. The measurement model in frame {Ij} (j =
1, 2) is the 2D projection of each feature fi (i = 1, . . . , n)
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with additive zero-mean Gaussian noise:

jzi = Π(Ijpfi) + jni (38)

where Π(
[
x y z

]T
) =

[
x
z

y
z

]T
, and jni ∼ N (0, σ2I).

Next, we remove the unobservable scale (in this case the
distance I2dI1

between the two images) by employing the
following geometric constraint:

I2pfi = R(q̄)I1pfi + I2pI1

= R(q̄)I1pfi + I2dI1
t

⇒ 1
I2dI1

I2pfi = R(q̄)

(
1

I2dI1

I1pfi

)
+ t

⇒ I2fi = R(q̄)I1fi + t (39)

where q̄ and t are quaternion of rotation and unit vector of
translational direction, respectively, from {I1} to {I2}, while
we have defined:

I2fi ,
1

I2dI1

I2pfi , and I1fi ,
1

I2dI1

I1pfi

Equation (39) describes the 5 dof constraint between the
feature i’s scaled 3D positions in 2 views.

Next, we seek to find the optimal solution y =[
q̄T I2pT

I1

I1pT

f1
· · · I1pT

fn

]T
, that minimizes the total

reprojection error:

C(y) =
n∑
i=1

(∥∥1zi −Π(I1pfi)
∥∥2 +

∥∥2zi −Π(I2pfi)
∥∥2)

=

n∑
i=1

(∥∥1zi −Π(I1pfi)
∥∥2 +

∥∥2zi −Π(R(q̄)I1pfi + I2dI1
t)
∥∥2)

=

n∑
i=1

(∥∥∥∥1zi −Π(
1

I2dI1

I1pfi)

∥∥∥∥2 +

∥∥∥∥2zi −Π

(
R(q̄)(

1
I2dI1

I1pfi) + t

)∥∥∥∥2
) (40)

=
n∑
i=1

(∥∥1zi −Π(I1fi)
∥∥2 +

∥∥2zi −Π (R(q̄)I1fi + t)
∥∥2) (41)

where (40) is obtained by noting that the perspective
projection is scale-invariant (i.e., Π(λx) = Π(x), ∀λ 6= 0),
and (41) results from the definition of I1fi and (39).

Denoting x =
[
q̄T tT I1fT

1 · · · I1fT
n

]T
, we have:

y∗ = argmin C(y), subject to ‖q̄‖ = 1

⇔ x∗ = argmin C(x), subject to ‖q̄‖ = 1, ‖t‖ = 1 (42)

To solve the non-linear least square (LS) problem (42),
we employ iterative Gauss-Newton minimization: At every
iteration k, x(k+1) = x(k) ⊕ δx(k), where the update
operation ⊕ is defined in Appendix A.2.2.

A.2.2 Solution In what follows, we first describe the
pertubation model x = x̂⊕ δx that we use, where x is
the true state vector, x̂ =

[
ˆ̄q
T

t̂T I1 f̂T
1 · · · I1 f̂T

n

]T
is the

estimate, and δx is the state pertubation corresponds to
the estimate x̂ and their pertubation models. Recalling that
the state vector comprises 3 main elements (orientation
expressed as a unit quaternion, unit vector of translation, and
scaled feature positions w.r.t {I1}), we define the pertubation
model for each state quantity as follows:

Unit-quaternion pertubation:

q̄ = δq̄ ⊗ ˆ̄q (43)
⇒ R(q̄) ' (I− bδθ ×c)R(ˆ̄q) (44)

with δq̄ = (1 + ‖δθ‖2
4 )−

1
2

[
1
2δθ

T 1
]T

, δθ is the small
angle-axis pertubation (i.e., ‖δθ‖ ' 0), where the last
equation is obtained using the small-angle approximation
[see Trawny and Roumeliotis (2005) for details].

Unit-vector of translation pertubation:

t = R(̂t⊥, α)R(̂t⊥⊥, β)̂t (45)

where
[̂
t t̂⊥ t̂⊥⊥

]
forms a rotation matrix, and α, β

are small pertubation angles. Using the small-angle
approximation, in (45) we obtain:

t ' (I− αbt̂⊥ ×c)(I− βbt̂⊥⊥ ×c)̂t
' (I− αbt̂⊥ ×c − βbt̂⊥⊥ ×c)̂t (46)

' t̂ + αt̂⊥⊥ − βt̂⊥ (47)

where in (46) we dropped the second-order term
αβbt̂⊥ ×cbt̂⊥⊥ ×c, while (47) is obtained by using the
right-hand rule for the cross-product of t̂, t̂⊥, and t̂⊥⊥.

Feature position pertubation:

I1fi = I1 f̂i + δfi (48)

which is simply an additive model (no constraint is imposed
on this element of the state vector).

Measurement function: Based on the pertubation models
in (44), (47), and (48), we define the following pertubation
state vector:

δx =
[
δrT δfT

1 · · · δfT
n

]T
=
[
δθT α β δfT

1 · · · δfT
n

]T
(49)

Next, we linearize the measurement of feature i in the first
image I1, using Taylor series expansion around the estimate
x̂(k) at iteration k to obtain:

1zi = Π(I1fi) + 1ni

' Π(I1 f̂
(k)
i ) +

(
∂Π

∂I1fi
(I1 f̂

(k)
i )

)
δf

(k)
i + 1ni

' Π(I1 f̂
(k)
i ) + H

(k)
1i δf

(k)
i + 1ni (50)

where

H
(k)
1i =

∂Π

∂I1fi
(
[
x y z

]T
) =

[
1
z 0 −x

z2

0 1
z

−y
z2

]
Subsequently, from the geometric constraint (39), and
the pertubation models (44), (47), and (48), we find the
pertubation for the feature’s position in {I2}, denoted as

Prepared using sagej.cls



Do, Carrillo-Arce, and Roumeliotis 15

δI2fi, as follows:
I2fi = R(q̄)I1fi + t

⇒I2fi ' (I− bδθ ×c)R(ˆ̄q)(I1 f̂i + δfi)

+ t̂ + αt̂⊥⊥ − βt̂⊥

⇒I2fi −R(ˆ̄q)I1 f̂i − t̂ ' −bδθ ×cR(ˆ̄q)I1 f̂i + R(ˆ̄q)δfi

+ αt̂⊥⊥ − βt̂⊥

⇒δI2fi ' R(ˆ̄q)δfi +
[
bR(ˆ̄q)I1 f̂i ×c t̂⊥⊥ −t̂⊥

]
δr

(51)

where to reach (51), we have defined:

δI2fi = I2fi − I2 f̂i = I2fi − (R(ˆ̄q)I1 f̂i + t̂)

Based on (50) and (51), we linearize the measurement of
feature i in the second image I2 as follows:

2zi ' Π(I2 f̂
(k)
i ) + H

(k)
2i δ

I2f
(k)
i + 2ni

' Π(I2 f̂
(k)
i ) + H

(k)
2i R(ˆ̄q(k))δf

(k)
i

+ H
(k)
2i

[
bR(ˆ̄q(k))I1 f̂

(k)
i ×c t̂(k)⊥⊥ −t̂(k)⊥

]
δr(k)

2ni

' Π(I2 f̂
(k)
i ) + J

(k)
fi δf

(k)
i + J

(k)
ri δr

(k) + 2ni (52)

where in (52) we have defined:

H
(k)
2i =

∂Π

∂I1fi
(I1 f̂

(k)
i )

J
(k)
fi = H

(k)
2i R(ˆ̄q(k))

J
(k)
ri = H

(k)
2i

[
bR(ˆ̄q(k))I1 f̂

(k)
i ×c t̂(k)⊥⊥ −t̂(k)⊥

]
Employing the linearizations of (50) and (52), we transform
the non-linear LS problem (42) into a linear LS problem.
Specifically, at each iteration k, we seek to find the δx(k)

that minimizes the following LS cost function:

C′(δx(k)) =
n∑
i=1

(∥∥∥1zi −Π(I1 f̂
(k)
i )−H

(k)
1i δf

(k)
i )

∥∥∥2 +

∥∥∥2zi −Π(I2 f̂
(k)
i )− J

(k)
fi δf

(k)
i − J

(k)
pi δr

(k)
∥∥∥2)

=
n∑
i=1

(∥∥∥∥∥
[
δ1zi
δ2zi

]
−

[
H

(k)
1i 0

J
(k)
fi J

(k)
ri

] [
δf

(k)
i

δr(k)

]∥∥∥∥∥
2)
(53)

where δjzi = jzi −Π(Ij f̂
(k)
i ).

Computing δx(k) = argmin C′(δx(k)) is equivalent to
finding the LS solution of the following over-determined
(n > 5) linear system of equations:

δ1z1
δ2z1
δ1z2
δ2z2

...
δ1zn
δ2zn


=



H
(k)
11 0 · · · · · · 0 0

J
(k)
f1 0 · · · · · · 0 J

(k)
r1

0 H
(k)
12 0 · · · 0 0

0 J
(k)
f2 0 · · · 0 J

(k)
r2

...
...

. . . . . .
...

...
0 · · · · · · · · · H

(k)
1n 0

0 · · · · · · · · · J
(k)
fn J

(k)
rn




δf

(k)
1

δf
(k)
2
...

δf
(k)
n

δr(k)


(54)

To efficiently solve (54), we take advantage of its sparse
structure as described in the following steps:

Step 1: Solve for δr(k) We will first eliminate all the terms
δf

(k)
i , i = 1, . . . , n. To do so, we define the following matrix:

U =


uT
1
(k) 0 · · · · · · 0 0
0 uT

2
(k) 0 · · · 0 0

...
...

. . . . . .
...

...
0 · · · · · · · · · 0 uT

n
(k)

 (55)

whose each 1× 4 block element is defined as:

u
(k)
i =

[
u
(k)
i(1:2)

u
(k)
i(3:4)

]
=


ziJ

T(k)
fi(1:2,1:2)

[
J
(k)
fi(2,:)

I1 f̂i

−J(k)
fi(1,:)

I1 f̂i

]
−J(k)

fi(2,:)
I1 f̂i

J
(k)
fi(1,:)

I1 f̂i

 (56)

Hence, each uT
i has the following property:

uT

i
(k)

[
H

(k)
1i

J
(k)
fi

]
= 0T ⇔


1
zi

0

0 1
zi

JT

fi
(k)

−xi

z2i

−yi
z2i

[u(k)
i(1:2)

u
(k)
i(3:4)

]
= 0

(57)
where I1 f̂

(k)
i =

[
xi yi zi

]T
. Multiplying both sides

of (54) with U yields:


u

T(k)
1(1:2)δ

1z1 − u
T(k)
1(3:4)δ

2z1

u
T(k)
2(1:2)δ

1z2 − u
T(k)
2(3:4)δ

2z2
...

u
T(k)
n(1:2)δ

1zn − u
T(k)
n(3:4)δ

2zn

 =


u

T(k)
1(3:4)J

(k)
r1

u
T(k)
2(3:4)J

(k)
r2

...
u

T(k)
n(3:4)J

(k)
rn

 δr(k)
(58)

Note that through this analytical process (U is computed in
closed-form), we reduced the dimension of the problem we
need to solve from 4n× (3n+ 5) for (54) to n× 5 for (58),
which is very efficient to solve for δr(k).

Step 2: Solve for each δf (k)i Given δr(k), we can separately
solve for each δf

(k)
i by employing the following 4× 3

system of equations resulting from the two block rows of (54)
corresponding to each feature i:

[
δ1zi

δ2zi − J
(k)
fi δr

(k)

]
=

[
H

(k)
1i

J
(k)
fi

]
δf

(k)
i (59)

Again, we can easily take advantage of the structure of (59)
and employ in place Givens rotations (Golub and Van-Loan
2012) to transform it to an upper triangular system of size
3× 3 and solve it efficiently.

After obtaining δx(k), we employ (43), (45), and (48) to
update x̂(k+1) = x̂(k) ⊕ δx(k) while ensuring unity of the
quaternion and the translational vector; then, we repeat this
process till convergence.
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B Nomenclature
Il Image number l in the visual graph
Isj Image set point j from the user
Ir

k Reference image k along the visual path
{Ir

k} Camera frame when image Ir

k is acquired
It Current image taken at time instant t
{It} Camera frame when image It is acquired
Irkpfi Position of feature fi in frame {Ir

k}
Irkbfi Unit bearing vector of feature fi in frame {Ir

k}
Itpfi Position of feature fi in frame {It}
Itbfi Unit bearing vector of feature fi in frame {It}
IrkpIt Position of frame {It} in frame {Ir

k}
IrktIt Unit translational vector of frame {It} in frame {Ir

k}
Irk
It
R Rotational matrix describing the orientation of {It}

in frame {Ir

k}
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