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Abstract 38 

The demand for large-scale and long-term information on tree growth is increasing rapidly as 39 

environmental change research strives to quantify and forecast the impacts of continued 40 

warming on forest ecosystems. This demand combined with the now quasi-global availability 41 

of tree-ring observations has inspired researchers to compile large tree-ring networks to 42 

address continental or even global scale research questions. However, these emergent 43 

objectives contrast the paleo-oriented research ideas that have guided the development of 44 

many existing records. A series of challenges related to how, where, and when samples have 45 

been collected is thus complicating the transition of tree rings from a local to a global 46 

resource on the question of tree growth. Herein, we review possibilities to scale tree-ring data 47 

(A) from the sample to the individual, (B) from the individual to the site, and (C) from the 48 

site to larger spatial domains. Representative tree-ring sampling supported by creative 49 

statistical approaches is thereby key to capture the heterogeneity of climate-growth responses 50 

across forested landscapes. We highlight the benefits of combining the temporal information 51 

from tree rings with the spatial information offered by forest inventories and earth 52 

observations to quantify tree growth and its (a)biotic drivers. In addition, we show how the 53 

continued development of mechanistic tree-ring models can help address some of the non-54 

linearities and feedbacks that complicate the scaling of tree-ring data. Embracing scaling 55 

issues as part of its scope will greatly increase the contribution that dendrochronology can 56 

make to assessing climate impacts on forests and supporting the development of adaptation 57 

strategies.  58 
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1. Introduction 59 

1.1. An increasing need to scale tree-ring data 60 

Climate change during the Anthropocene is now considered a certainty (Marotzke et al., 61 

2017) and environmental research focuses increasingly on quantifying and forecasting the 62 

impacts of continued warming on ecosystems and natural resources. Forests are receiving 63 

particular attention because they absorb large amounts of excess atmospheric CO2 from 64 

anthropogenic emissions (Le Quéré et al., 2016) and store this carbon in woody biomass for 65 

decades to centuries (Körner, 2017). Importantly, rising temperatures can have beneficial or 66 

detrimental effects on forests, depending on present climatic limitations (Charney et al., 67 

2016). For instance, climate warming in cold-humid areas can stimulate tree growth through 68 

a prolonged growing season and more rapid cellular development (Cuny et al., 2014; Rossi et 69 

al., 2016). In drier regions, a warming-induced increase in atmospheric water demand 70 

triggers physiological changes in trees that lower hydraulic conductivity, reduce the 71 

production and allocation of carbohydrates to growth, and ultimately aggravate forest 72 

mortality (Adams et al., 2017). This continuum of possible warming effects provides 73 

incentive to understand forest ecosystem processes and their response to changes in the 74 

(a)biotic environment across scales. 75 

 76 

In principal, measurements of secondary growth patterns in trees, shrubs, and perennial herbs 77 

(subsequently called “tree rings”) are the primary resource to retrospectively provide tree 78 

growth information across large environmental gradients and sub-annual to centennial time 79 

scales. Such data are increasingly being accessed to study global change impacts on forest 80 

ecosystems. A number of recent studies have compiled large tree-ring networks to hind- and 81 

forecast forest growth variability and its climate response (Babst et al., 2013; Charney et al., 82 

2016; Martin‐Benito and Pederson, 2015; Restaino et al., 2016; Tei et al., 2017), track the 83 
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recovery of growth after extreme events (Anderegg et al., 2015; Wu et al., 2017), relate 84 

growth variability to canopy dynamics (Vicente-Serrano et al., 2016), Seftigen et al. in 85 

review), or search for signals of CO2 fertilization (Gedalof and Berg, 2010; Girardin et al., 86 

2016; Peñuelas et al., 2011). In addition, tree-ring data are increasingly used to quantify 87 

aboveground biomass increment (Babst et al., 2014b), improve our physiological 88 

understanding of xylogenesis (i.e. wood formation; (Rathgeber et al., 2016), and calibrate 89 

mechanistic models for climate reconstruction (Guiot et al., 2014). 90 

 91 

Table 1: Definitions of important terms used in this review (partly inspired by (Scholes, 92 

2017) 93 

Term Definition 

Scale (noun) Spatial extent and/or temporal duration. 

Scale (verb) Extrapolation or projection of a result from one scale to another. Linear 

scaling (i.e., proportional or additive scaling) assumes that the driving 

processes are homogeneous over the scale range and that no interactions in 

space or time impose non-linearities. An example is the scaling of forest 

biomass increment from a sample of 0.1-hectare forest plots to a 10,000-

hectare landscape. If heterogeneities (e.g., in forest type or time-since-

disturbance) make simple linear scaling inaccurate, power-law scaling can 

capture nonlinearities across scales. For example, the scaling of bole diameter 

to whole-tree biomass involves allometric (power-law) equations, that are 

usually empirically derived, but may be (quasi-)mechanistic. 

Downscaling the process of disaggregation of a result to a smaller scale; i.e., a one-to-many 

problem. Climate system downscaling is a well-known example. The 

aggregated result is known; the challenge is to assign values (along with 

uncertainty) to the underlying subunits, according to some information about 

their heterogeneity. 

Upscaling the process of aggregation to a larger scale; i.e., a many-to-one problem. An 

example is the upscaling of information from many trees at a site to a single 

site-level estimate (e.g. a mean site chronology). Another example is the 

summing of biomass increment estimates from all trees in a forest plot to 

reach a stand-level estimate of biomass increment. 

Resolution Also known as “grain”, the smallest measurement unit in either space or time. 

 94 

With the exception of parts of the tropics, tree-ring availability is now quasi-global (Babst et 95 
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al., 2017), inviting the use of existing archives in a variety of research contexts. However, 96 

tree rings remain a very local and variable product of tree-internal processes that are 97 

modulated by the tree’s immediate biotic and abiotic environment (Rathgeber et al., 2016). 98 

Making inference and prediction at larger spatial scales based on such local data (involving 99 

scaling, interpolation, and projection; Table 1) is challenging and introduces uncertainty that 100 

researchers need to be aware of and – to the extent possible – quantify (Figure 1). To that 101 

point, inference and prediction at large scales is complicated by heterogeneity (Scholes, 102 

2017), for example when a tree-ring network insufficiently represents forest structure, 103 

composition, and disturbance regimes across a landscape. Further, fixed statistical 104 

relationships often fail to capture non-linearities and feedbacks in environmental systems, 105 

calling for mechanistic process representation when modeling tree growth (Section 4). In this 106 

light, we find it prudent to quickly pause and examine the potential and challenges associated 107 

with scaling tree-ring information. Herein, we address the following three steps: 108 

 109 

(A) From the sample to the whole tree: Tree-ring samples are collected as cross-sections, 110 

increment cores, or micro-cores. Regardless of their shape or size, these samples capture 111 

growth only at one location along the stem, branch, or root. Multiple samples are often 112 

collected from the same individual. After ensuring correct dating of each sample visually 113 

and statistically (i.e. “crossdating”; (Black et al., 2016), the measurements of all samples 114 

are combined to represent the individual. This first step of upscaling (Table 1) usually 115 

uses simple averaging, but can involve more complex approaches such as allometric 116 

scaling or structural modeling (Wagner et al., 2017). 117 

(B) From the tree to the site: A “site” is the area that encompasses the sampled individuals. 118 

Upscaling to the site level means combining the measurements from all individuals into 119 

one or multiple time series. This step has typically been approached either by averaging 120 
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or summing, depending on the tree-ring parameter and the research question: (1) 121 

detrending and averaging for total or partial ring width, wood density, and blue intensity; 122 

(2) either summing measurements from all individuals within a defined area (Babst et 123 

al., 2014b; Dye et al., 2016) or multiplying their average by a known stand density 124 

(Alexander et al., 2017) for basal area, volume, and biomass increment; (3) either 125 

averaging individual measurements or combining the material from multiple individuals 126 

into one measurement (“pooling”) for stable isotopes (McCarroll and Loader, 2004); (4) 127 

averaging for cell-level measurements, such as cell number, lumen area, or secondary 128 

wall thickness (Peters et al., 2018; Rathgeber et al., 2016).  129 

(C) From the site to larger spatial scales: Site records are compiled into tree-ring networks 130 

to cover regions or continents. Depending on the research question, these networks are 131 

either assessed in their entirety, or sites are grouped by species (Zhang et al., 2017), 132 

growth variability (Seim et al., 2015), growth trends (Hellmann et al., 2016), climate 133 

response (Babst et al., 2013; Björklund et al., 2017; Charney et al., 2016; Martin‐134 

Benito and Pederson, 2015), or biogeography (Girardin et al., 2016). At the heart of 135 

these spatial assessments are analyses of climate-growth relationships – sometimes 136 

combined with clustering techniques, dimension reduction, or embedded in a machine 137 

learning framework (see Section 2.2.1). The resulting regional records are assumed to 138 

represent the geographic space covered by the underlying tree-ring network, an 139 

assumption that will need thorough testing in the future (see Sections 2.1 and 5). 140 

 141 
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 142 

Figure 1: Overview of the propagating uncertainty during the upscaling of tree-ring data. 143 

The primary sources of uncertainty are listed for each scaling step (A-C) at the example 144 

of Norway spruce (Picea abies). The sample images are adapted from (Babst et al., 145 

2014a) and the species distribution map is from lutherie.net/eurospruce. 146 

 147 

If these upscaling steps are carefully followed and cumulative uncertainties are adequately 148 

considered, tree-ring data can theoretically meet the demand for global information on long-149 

term forest growth. In practice, however, a series of challenges related to how, where, and 150 

when samples have been collected accompanies the transition of tree rings from a local to a 151 

global resource. 152 

 153 

 154 

1.2. Challenges associated with scaling tree-ring data 155 

The heterogeneity of environmental systems is best represented if data points are distributed 156 

systematically or randomly across the target space. This is not the case for the vast majority 157 

of existing tree-ring records because scaling was historically not the goal of 158 

dendrochronological sampling. Instead, data collection has been study-specific, for example 159 
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to date archaeological material, detect disturbance events, or assess the co-variation of tree 160 

growth with an environmental variable. More recently, the scope of tree-ring research has 161 

broadened to include ecophysiology (Levesque et al., 2017), wood anatomy (von Arx et al., 162 

2016), and growth phenology (Cuny et al., 2015). This is fortunate because these emerging 163 

fields are considerably advancing our understanding of tree functioning, which will allow 164 

non-linearities and feedbacks to be mechanistically modeled and reconstructed (see Section 165 

4). Yet, their sampling strategies are also not geared towards scaling and their contribution to 166 

representing larger spatial scales with tree-ring observations remains minor. This diverse 167 

sampling background complicates upscaling of tree-ring information across all three steps: 168 

 169 

(A) Representing the whole tree: Mature trees are usually sampled along the lower part of 170 

the stem, which is oldest and most accessible. How representative stem growth at this 171 

location is for the entire tree body depends on the dynamics of resource allocation and 172 

biomass formation. Assessing this variability would require sampling an individual at 173 

multiple heights, a laborious technique that is readily applied to shrubs (Buchwal et al., 174 

2013) but almost never performed on tall trees (but see (van der Maaten-Theunissen and 175 

Bouriaud, 2012). In addition, tree boles are never perfect cones and uncertainty from 176 

collecting only few samples around the stem needs to be reduced (Bakker, 2005). 177 

Another limitation of most existing tree-ring records is that tree dimensions (e.g. 178 

diameter and height) at the time of sampling have not been recorded. This hampers the 179 

estimation and reconstruction of whole-tree volume or biomass – and thus the 180 

representation of growth in absolute terms (Babst et al., 2014b). Aside from physical 181 

sampling, our limited understanding of tree-internal processes can bias ecophysiological 182 

conclusions drawn from tree-ring data. For instance, tree-ring stable isotope ratios differ 183 

from those of freshly produced carbohydrates in leaves because additional isotopic 184 
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fractionation and mixing occur during transport and transitory storage (Gessler et al., 185 

2014). These effects are not well understood. 186 

(B) Representing the site: A traditional focus of tree-ring sampling has been on old and 187 

usually dominant individuals of a single species (Cook et al., 1995) that respond to a 188 

strong common environmental driver. This approach has served to maximize the 189 

common growth variability among trees, which could then be used as a proxy, e.g. for 190 

climate reconstruction. Such selective sampling clearly contradicts the objective of 191 

quantifying forest growth, because failure to represent the full tree population at a site 192 

and over time can severely bias tree-ring estimates of biomass accumulation (Brienen et 193 

al., 2017; Nehrbass‐ Ahles et al., 2014; Peters et al., 2015). In addition, the 194 

documentation of most tree-ring records in public archives (e.g. the International Tree 195 

Ring Data Bank; ITRDB) is insufficient in terms of site extent, species composition, and 196 

forest age or size structure.  197 

(C) Representing larger spatial scales: An ideal network of tree-ring sites covers the 198 

geographic extent of the study area and reflects, in proportion to the area they occupy, 199 

the range of bioclimatic conditions experienced by a given species within this area. This 200 

ideal has probably rarely been achieved. Instead, traditional sampling for 201 

dendroclimatological purposes has often targeted areas with marginal growth conditions, 202 

which only occupy a small fraction of the landscape. We note, however, the difficulty of 203 

evaluating the spatial representativeness of existing networks because appropriate 204 

reference datasets are often lacking (see Section 2.1). If very large amounts of tree-ring 205 

data are compiled in mixed-species networks, their coverage can be more readily 206 

assessed. For example, a recent evaluation of the ITRDB indicated good coverage of 207 

climates with a mean annual temperature below 15 °C, whereas the spatial distribution of 208 

sites was strongly biased towards North America and Europe (Babst et al., 2017). Yet, 209 
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even across these well-replicated continents, most records are subject to the above-210 

mentioned sampling biases and the lack of biometric measurements restricts analyses to 211 

relative (i.e. detrended) growth variability and its climate response (Charney et al., 2016; 212 

St George and Ault, 2014). Going forward, it will be important to develop new tree-ring 213 

networks in more consistent and spatially representative ways (see Sections 2 and 3). 214 

 215 

Uncertainties arising from the above-listed challenges may be more or less relevant in the 216 

context of a given study, but they generally propagate through all spatial scales (Figure 1). 217 

This does not preclude tree rings from being used in global research, but adds weight to 218 

careful data treatment. In the following, we review possibilities to facilitate the scaling of 219 

existing and newly collected tree-ring data. In Section 2, we discuss statistical approaches to 220 

derive spatial patterns from existing networks, such as the ITRDB. Section 3 highlights 221 

possibilities to produce spatially explicit records of forest growth by integrating the temporal 222 

information from tree rings with the spatial information from forest inventories and remotely 223 

sensed Earth observations. Section 4 describes tree-ring and vegetation models of increasing 224 

complexity and scope that can provide a mechanistic understanding of tree growth, which is 225 

particularly relevant for predictions into future time frames. In addition to this general 226 

review, we provide in each section a practical example related to tree ring-based inference at 227 

large scales. 228 

 229 

2. Spatial patterns from detrended tree-ring data 230 

2.1. On the climate sensitivity bias in global archives 231 

Thus far, analyses of tree-ring networks have primarily been based on establishing statistical 232 

relationships between annual tree-ring records and monthly to seasonal climate. This is 233 

because climate is the most important driver of inter-annual tree growth variability around the 234 
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globe (St George and Ault, 2014) and long-term instrumental records of temperature, 235 

precipitation, and derivatives thereof are readily available. However, an important 236 

precondition for this approach is that the trees that constitute a tree-ring network actually do 237 

respond to changes in one or multiple climate parameters. In other words, the statistical 238 

relationships are strongest in areas where climate is most limiting for growth (Fritts, 1976), 239 

for example at the cold or dry edge of a species’ distribution range. It is exactly these 240 

restrictive environments that have frequently been targeted by dendroclimatologists to 241 

maximize the co-variation of the tree-ring proxy with the desired climate parameter for 242 

reconstruction (e.g. (Wilson et al., 2016). Hence, it seems likely that – even though 243 

palaeoclimatology is only one facet of tree-ring research – marginal sites are overrepresented 244 

in global tree-ring archives. Depending on the severity of this bias, it may accentuate the 245 

derived biogeographic patterns in the climate response of forests (Babst et al., 2013; Charney 246 

et al., 2016; St George and Ault, 2014; Zhang et al.) and the networks cannot be considered 247 

to be fully representative of forest growth at large scales. 248 

 249 

Quantifying this putative oversensitivity to climate in large tree-ring archives requires the 250 

development of new, representative reference networks (see Section 3.1). Initial research in 251 

this direction suggests considerable geographic variation in the magnitude of the climate 252 

sensitivity bias. For example, Klesse et al (in review a) found that ITRDB tree-ring time 253 

series in the US Southwest were 40 to 60% more sensitive to climate variation than 254 

surrounding samples collected in forest inventory plots. When the two datasets were used to 255 

estimate growth trends in response to projected climate change through 2099 in this region, 256 

the ITRDB trees implied a 41% greater decline in growth compared to the representative 257 

forest inventory sample. By contrast, a Europe-wide comparison of tree-ring data from the 258 

ITRDB against a newly collected network of sample plots showed no significant difference in 259 
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climate sensitivity (Klesse et al. in review b). Hence, a general statement on the magnitude of 260 

the climate sensitivity bias in the ITRDB cannot be made at this point and further evaluation 261 

efforts – including collating existing data not available through public repositories and/or 262 

developing new networks of tree-ring records – will be crucial to increase the 263 

representativeness of tree-ring archives for global forest growth. 264 

 265 

2.2. Statistical projection of relative growth variability 266 

Because the collection of tree-ring data worldwide and in near real-time is unrealistic, the 267 

goal of upscaling from sites to landscapes (step C) can only be achieved via projection of tree 268 

growth across areas where measurements are missing. This is possible based on empirically 269 

calibrated relationships between tree growth and its abiotic drivers. For example, networks of 270 

detrended tree-ring width data can be used to detect synchronous growth anomalies across 271 

sites and help attribute them to the spatial extent of extreme climatic events (Babst et al., 272 

2012). One limitation of this approach, however, is the small number of available predictor 273 

variables that are spatially resolved and cover sufficiently long time scales. Indeed, the length 274 

of most earth observations records does not allow calibrating robust statistical models that 275 

could be used to predict tree growth variability. This leaves gridded climate products (e.g. 276 

(Harris et al., 2014) as the only option, although these data have some caveats when used in 277 

the context of bioclimatic niches (Ols et al., 2017). Climate is an important driver of global 278 

tree growth variability, but it is not the only one. The very best calibrations that have been 279 

optimized for climate reconstruction explain 50-60% of the variance in the instrumental 280 

target (Wilson et al., 2016), whereas seasonal climate-growth relationships that emerge from 281 

large networks are much weaker (St George and Ault, 2014). In addition, the seasonality in 282 

climate response differs considerably between climatic domains, making it impossible to 283 

globally attribute growth variability to climate during a single season. For all these reasons, 284 
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new and creative statistical approaches are needed to be able to project radial growth 285 

variability at large spatial scales. 286 

 287 

2.2.1 Practical Example 1: Towards gridded tree-ring width anomalies for Europe 288 

Here we present and evaluate a machine learning approach to produce gridded tree-ring 289 

products at continental scales. We thereby pursue a purely empirical approach (as opposed to 290 

mechanistic formulations of biophysical processes; see Section 4) and estimate relative radial 291 

growth variability from a set of climatic predictor variables in a regression model. We used 292 

random decision forests (RDF; (Breiman, 2001), a well-established technique that provides a 293 

flexible framework for learning nonparametric and nonlinear relationships when faced with 294 

many and collinear predictors. Our RDF models each contained 100 random decision trees 295 

and the final tree-ring width anomalies were predicted by averaging the outputs of each 296 

individual decision tree to prevent overfitting. RDF models need to be trained with observed 297 

datasets (Figure 2). For this we used European tree-ring width chronologies from the ITRDB 298 

(detrended with a 30-year cubic smoothing spline) and climate data from the corresponding 299 

CRU TS-3.22 grid cells (Harris et al., 2014), including monthly minimum, mean and 300 

maximum temperature, diurnal temperature range, ground frost frequency, precipitation, wet 301 

day frequency, vapor pressure, potential evapotranspiration, and cloud cover. Climate data 302 

from the preceding and current years (24 months) were entered in the model to account for 303 

lag effects frequently observed in tree-ring data (Zhang et al., 2017). The ITRDB contains 304 

enough data (~1000 European sites) to train individual RDF models separately for the most 305 

frequent tree genera (Table 2), many of which are primarily represented by one species. In 306 

addition, we trained a model where sites from all genera were pooled together. To evaluate 307 

model performance, we applied a leave-one-site-out cross-validation, under the condition that 308 

a specific chronology was only estimated based on other sites of the same genus that do not 309 
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fall within the same CRU TS-3.22 grid cell (i.e. to prevent biases). 310 

 311 

 Monthly predictor variables Seasonal predictor variables 

Genus MEF  RMSE MEF  RMSE 

Abies 0.329 0.146 0.261 0.527 

Fagus 0.313 0.179 0.257 0.512 

Larix 0.158 0.204 0.090 0.302 

Picea 0.310 0.127 0.245 0.515 

Pinus 0.240 0.130 0.173 0.430 

Quercus 0.326 0.136 0.267 0.534 

All sites 0.287 0.145 0.225 0.485 

Table 2: Performance of random forest regression models for predicting the growth 312 

variability of individual tree genera across Europe, assessed with a leave-one-site-out 313 

validation. Seasonal climatic predictors were aggregated for both the previous and current 314 

years (March – May; June – August; September – November) and the winter in between 315 

(December – February). MEF – Nash-Sutcliffe modeling efficiency; RMSE – root mean 316 

square error 317 

 318 

Across the entire European network, approximately 29% of the variance was explained (i.e. a 319 

Nash-Sutcliffe modeling efficiency (MEF; (Nash and Sutcliffe, 1970) of about 0.29; Table 2). 320 

Importantly, RDF models with monthly predictors yielded stronger predictive accuracy 321 

compared to those with seasonally aggregated predictors. This underlines the changing 322 

seasonality in climate response across the represented climatic domains (Babst et al., 2013). 323 

The RDF models for individual genera performed similarly to the overall model (31-33% 324 

explained variance), except for Larix and Pinus where MEF was lower. For Larix, this is 325 

likely due to well-documented periodic defoliation by the Larch budmoth (Esper et al., 2007), 326 

which negatively affects growth and partly decouples it from its climatic drivers. Excluding 327 

known budmoth years is thus a possibility to improve future RDF predictions. For Pinus, the 328 

lower RDF performance could simply be related to the large number of Pinus species that are 329 

represented on the ITRDB, which increases both the distribution range and the diversity in 330 

climate response. 331 

 332 



 15 

After the training phase described above, the inferred RDF models were combined with the 333 

gridded data products of the CRU TS-3.22 dataset to project radial growth anomalies across 334 

Europe, yielding annual raster maps of relative growth variability for each tree genus (Figure 335 

S1, Appendix A). Projection excluded those areas falling outside the geographic distribution 336 

of a given genus (referencing the 1 km2 resolution distribution maps in the European Atlas of 337 

Forest Tree Species; (de Rigo et al., 2016). Accordingly, a CRU TS-3.22 grid cell (0.5° 338 

resolution) was included, if it covered at least one smaller grid cell from the distribution maps 339 

that reported a presence of the genus at >5%. Encouragingly, our first results show clear 340 

differences in spatial growth variability among genera (Appendix A), even for those that 341 

belong to the same plant functional type. In addition to attributing these patterns to specific 342 

drivers, we are working on improving the RDF performance. This could be achieved by 343 

including not only the inter-annual climate variability in the models, but also the long-term 344 

mean climatic conditions at each site. This way, the contrasting effects of, e.g., a warm 345 

anomaly under cold-humid (expected growth increase) vs. hot-dry (expected growth decrease) 346 

conditions can be better accounted for. In addition, we aim to consider non-climatic drivers in 347 

the RDF models as suitable spatial data become available. 348 
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 349 

Figure 2: Random decision forest approach to produce gridded projections of radial tree 350 

growth variability. This example includes all Fagus sylvatica sites that were available from 351 

the International Tree-Ring Data Bank as of October 2016.  352 
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2.3.  Spatially varying climate responses of radial tree growth 353 

The statistical exercise presented in Section 2.2.1 assumes that climate-growth relationships 354 

are fixed throughout the domain of interest, whether across all species or in taxonomic groups 355 

(genera) – an assumption that we address in the following. It also showed that predicting 356 

relative growth variability from climate variability alone leaves a considerable fraction of the 357 

variance unexplained. By contrast, changes in the underlying climate-growth relationships 358 

should be more straightforward to predict and project because they follow gross 359 

biogeographic patterns (Babst et al., 2013; Charney et al., 2016). Indeed, a substantial body 360 

of literature has successfully mapped historical climate-growth relationships across space and 361 

time (Martin‐Benito and Pederson, 2015; Restaino et al., 2016; St George and Ault, 2014). 362 

However, if the goal is to interpolate local observations of climate response across the 363 

intervening geographic space between unevenly distributed sites, a series of spatial 364 

challenges emerges. A first challenge relates to differences in the climate response between 365 

species at a given location (Teets et al., 2018). Accounting for this requires high-resolution 366 

maps of species composition for the entire target region, which may not exist everywhere 367 

and/or lack in-situ quality checking (Serra-Diaz et al., 2017). Hence, the influence of species 368 

composition on the climate response of forests remains difficult to assess at large scales 369 

(Grossiord et al., 2014). A second challenge stems from limited information on micro-370 

climate, nutrient availability, hydrology and topography. Such abiotic micro-site conditions 371 

can alter the climate response of trees (Nicklen et al., 2016; Salzer et al., 2009), but high-372 

resolution data across the scaling area are rarely available. These two challenges are 373 

compounded by a third challenge: a shortage of tree-ring data for many species and certain 374 

ecoregions, especially in the tropics, that are severely under-represented in public archives 375 

(Babst et al., 2017). 376 

 377 
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These spatial challenges force researchers to find a balance between the level of detail that is 378 

considered in an analysis and the spatial scale that can be reached with the available data. 379 

One relatively coarse option is to construct a single statistical model that describes growth as 380 

a function of the climatic niche that encompasses all trees within the scaling region, 381 

regardless of species (e.g. the “all sites” RDF model in Section 2.2.1). If we looked at a slice 382 

of this growth-climate function along one climate axis of the niche, we would expect it to 383 

look unimodal (Figure 3a). However, the underlying function would be multivariate, 384 

nonlinear, and relatively data-intensive to parameterize. In addition, this approach assumes 385 

that spatial differences in climate response can be solely attributed to gradients in the baseline 386 

climate, rather than to differences in species composition, competition, or other co-variates. 387 

In other words, site- and species-specific characteristics are averaged out for the sake of 388 

generalization, which may be necessary to reach very large spatial domains. In a global 389 

context, it may be plausible to subject all species to the same treatment because 390 

biogeographic patterns in climate response are generally more pronounced than differences 391 

between species (Fritts 1976). In reality, this assumption is violated, because important biotic 392 

drivers of tree growth (e.g., pests and pathogens) are observed to be species-specific (Esper et 393 

al., 2007).  394 

 395 
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Figure 3: Idealized growth rate as a function of a single climate variable across the target 396 

niche (a). This function can be approximated by a series of linear segments obtained from 397 

local climate response zones (b).  398 

 399 

A refined version of this approach, while still pooling all species, is to construct separate 400 

growth-climate functions for geographic sub-areas (“response zones”) of the target domain 401 

(Charney et al., 2016). This allows approximating the global response curve with a series of 402 

local linear models specific to these response zones (Figure 3b). The zones themselves could 403 

be based on existing ecoregions (Omernik and Griffith, 2014) or other (e.g. geological) 404 

criteria to account for some of the missing non-climatic co-variates. Alternatively, they can 405 

be inferred from the climate responses contained in the tree-ring time series themselves. For 406 

instance, Charney et al (2016) defined response zones by first clustering tree-ring sites across 407 

North America based on their climate correlation functions and then used an RDF analysis to 408 

assign all grid cells on the landscape to one of the clusters according to their baseline 409 

climates. This has the significant advantage that, as baseline climates shift in the future, both 410 

geographic (i.e. poleward) shifts in the response zones and changes in the climate sensitivity 411 

itself can be accounted for. Moving forward, a further refinement could be to capture 412 

variation in the local slopes of climate-growth relationships using models that include both 413 

long-term climate normals and short-term climate anomalies (and interactions between them) 414 

as predictors of growth. In particular, this would capture continuous variation in climate-415 

growth responses across climatic gradients. 416 

 417 

Clearly the most precise approach would be to construct the growth-climate function 418 

including the effects of individual species. Besides considering species-specific 419 

characteristics, this would also account for the fact that populations near the distribution limit 420 

are genetically adapted to respond less strongly to variability in limiting climatic drivers 421 

(Housset et al., 2018). However, detailed maps of species locations and composition would 422 
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still be required to represent the actual climate response at a given location (de Rigo et al., 423 

2016; Serra-Diaz et al., 2017) and weight the species-specific responses in a mixed species 424 

system. In addition, representative tree-ring data from across the entire distribution range is 425 

needed, which is currently not available for most species. Establishing this observational 426 

basis through data mining initiatives and the development of new and spatially representative 427 

tree-ring networks will be key to enable the projection of species-specific climate responses 428 

with precision.  429 

 430 

In contrast to the spatial challenges described above, temporal limitations to empirically 431 

forecasting the climate response will not be resolved by extensive and representative 432 

sampling. One reason is that the overlap between tree-ring and instrumental data is often 433 

limited to a few decades and extrapolation to future time frames is thus based on relatively 434 

short-term observations. This is problematic because the climate response is not only 435 

determined by how tree growth corresponds to climate on an inter-annual basis. The response 436 

can be modified by longer-term climate patterns (Madrigal-González et al., 2017; Mendivelso 437 

et al., 2014) that are not captured in short time series. In addition, there may be a 438 

compounding effect when “ecological memory” leads to lagged responses after disturbances 439 

or climate anomalies (Ogle et al., 2015), or when a recurring climate anomaly alters the 440 

growth response itself (Brzostek et al., 2014; Galiano et al., 2012). For example, one hot 441 

summer may lead to only a minor decrease in growth rate in a drought-prone region, whereas 442 

a sequence of hot summers can cause increasingly dramatic growth declines. By contrast, 443 

there can be acclimation, wherein the recurrence of a climate anomaly (e.g. drought) lessens 444 

the strength of the growth response (Ainsworth and Long, 2005; Farrior et al., 2015).  This is 445 

possible because trees are plastic organisms that can shift their resources over time, e.g. by 446 

growing more roots, restructuring branches, thickening the bark, or decreasing leaf size. Such 447 
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physiological changes allow trees to better conserve water and return to normal growth more 448 

rapidly after a drought episode. In addition, when we aim to forecast over time periods of 449 

generations, we have to consider the possibility of genetic adaptation and species migration 450 

(Aitken et al., 2008; Housset et al., 2018). Both of these processes tend to make future 451 

generations of trees growing at a location better suited to the new climate than the preceding 452 

generations. Finally, the trees of the future are likely to experience different combinations of 453 

temperature, precipitation, and atmospheric CO2 concentrations than those in the past 454 

(Ainsworth and Long, 2005). Hence, any attempt to statistically forecast based on stationary 455 

observations from the past is always fraught (Gustafson, 2013). For all of these reasons, an 456 

advanced mechanistic understanding of tree growth and climate response is needed (Section 457 

4). 458 

 459 

3. Integration of tree rings with other ecological or Earth observations 460 

Tree-ring data offer decadal- to centennial-length records of radial tree growth at (sub-461 

)annual resolution, allowing growth variability and its drivers to be investigated through time. 462 

However, quantifying absolute tree- and site-level growth (steps A and B) from tree rings 463 

requires additional information on the dimensions of trees and the characteristics of a forest 464 

stand. This kind of information is increasingly available from forest inventories and Earth 465 

observations. In turn, tree-ring data can help compensate the coarse temporal resolution of 466 

forest inventories (plots are typically revisited once every 3-10 years) and the generally short 467 

time series of both data streams. Bringing together the temporal and spatial strengths of these 468 

three types of observations opens possibilities to quantify tree growth across a range of 469 

scales. 470 

 471 

3.1. Forest inventories 472 
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Tree rings have been used to assess tree growth in a forestry context since the mid-19th 473 

century, but it is only recently that collections made by forest inventory programs or in other 474 

permanent sample plots are being developed into data networks. Examples of these initiatives 475 

include Canada (Duchesne et al., 2017), the western United States (DeRose et al., 2017), 476 

Romania (Bouriaud et al., 2016), Mexico (G. Gutierez-Garcia, pers. comm.), and parts of the 477 

tropics (Brienen et al., 2016). These data are already being used, e.g., to detect signals of CO2 478 

fertilization (Girardin et al., 2016) or to assess shifts in growth response to climate (Charru et 479 

al., 2017; D’Orangeville et al., 2016). Here we lay out opportunities to quantify trends and 480 

temporal variability of tree growth that emerge from this novel type of tree-ring network. We 481 

also discuss statistical tools for integrating tree-ring with forest inventory data and thereby 482 

move beyond the traditional statistical modeling based solely on the principle limiting factors 483 

(Fritts, 1976). Finally, we identify some of the challenges that remain for combining tree-ring 484 

and forest inventory data into long-term records.  485 

 486 

Collecting tree-ring data in a forest plot context has three major advantages with respect to 487 

the scaling and projection of growth or aboveground biomass increment (ABI): 1) sampling 488 

is comparatively representative or unbiased, 2) absolute rather than relative tree growth can 489 

be quantified, and 3) the inventory offers complementary information on the characteristics 490 

of the forest stand in which a tree is growing. Together, these advantages help overcome 491 

some of the limitations associated with traditional tree-ring sampling and modeling (see 492 

Section 1.2). National forest inventory (NFI) programs are specifically designed to make 493 

estimates of forest characteristics (area or volume of forest; number and dimensions of trees) 494 

at large spatial scales from carefully designed networks of sampling plots (Bechtold and 495 

Patterson, 2005). The design may vary from one political entity to another (McRoberts et al., 496 

2009), but their spatial representation of forested areas is essentially unparalleled. Within 497 
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plots, the collection of increment cores in an unbiased manner with respect to tree species and 498 

size or age classes makes sampling more representative of a forest (and overall forest growth) 499 

compared to that designed for dendroclimatological purposes (Nehrbass‐Ahles et al., 2014). 500 

Tree-ring data collected in forest plots that are not part of an NFI also make useful 501 

contributions to the overarching goal of building representative networks, particularly when 502 

the plots are arranged along environmental gradients (e.g., (Buechling et al., 2017; Foster et 503 

al., 2016; Rollinson et al., 2016; Sánchez-Salguero et al., 2015). This “representativeness” 504 

within forest stands and across landscapes is key to addressing the heterogeneities, 505 

nonlinearities, and feedbacks that make scaling a challenge (Scholes, 2017).  506 

 507 

Increment cores collected in forest plots are usually associated with measurements of tree 508 

dimensions and stand conditions. A measurement of diameter at breast height (DBH) at the 509 

time of sampling makes it possible to reconstruct annual tree diameter (Bakker, 2005), which 510 

can then be transformed into absolute estimates of tree growth (Alexander et al., 2017; Babst 511 

et al., 2014b). Analyzing absolute growth is key to addressing questions about the role of 512 

forests in the terrestrial carbon cycle and integrating tree-ring data with observed or simulated 513 

forest productivity (Babst et al., 2014a), Klesse et al. in review b). In this context, metrics 514 

like basal area increment (BAI) and ABI are more useful and interpretable than relative 515 

growth variability generated by detrending raw tree-level measurements (Cook et al., 1995) 516 

to construct a site-level chronology. Besides the associated loss of inter-tree variability, 517 

detrending is one of the most subjective and debated aspects of tree-ring research because the 518 

choice of method critically affects the environmental information that is preserved in ring-519 

width time-series (Sullivan and Csank, 2016).   520 

 521 



 24 

Individual tree growth is also influenced by competition from neighboring trees, and in a 522 

carbon accounting context, it becomes critical to quantify, understand, and project such 523 

demography-driven changes in forest growth (Chen et al., 2016; Trotsiuk et al., 2016). 524 

Capturing the influence of competition on individual tree growth is also key to scaling step B 525 

(Figure 4) because individual tree growth both influences and is influenced by forest stand 526 

basal area, forming a self-regulating (density-dependent) feedback. Tree-ring data collected 527 

in a forest plot context make it possible to model the influence of forest stand conditions 528 

explicitly, as exemplified in several recent studies (Buechling et al., 2017; Foster et al., 2016; 529 

Rollinson et al., 2016; Sánchez-Salguero et al., 2015). Including such in-situ information in 530 

statistical models is expected to produce more realistic predictions of tree growth compared 531 

to those based exclusively on climate variability. 532 

 533 

 534 

Figure 4: Scaling of tree growth from observations of bole diameter and tree-ring width to 535 

tree- and site-level aboveground biomass (AGB) involves upscaling steps A and B. Forest 536 

plot data provide information on the drivers of tree growth, including site factors such as 537 

slope, aspect, and soil conditions, stand-level basal area, and climate.  538 

 539 

These three characteristics of tree-ring data collected in a forest plot context – 540 

representativeness, growth on an absolute scale, and accompanying information on the forest 541 

stand – enable the scaling from individual observations of bole diameter and radial 542 

increments to stand- and landscape-scale biomass accumulation (Figure 4). Annual 543 

reconstructions of DBH can be transformed to whole tree biomass increments using 544 
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allometric equations (scaling step A; (Forrester et al., 2017). We note that the use of 545 

allometric equations is associated with its own set of uncertainties (Alexander et al., 2017; 546 

Nickless et al., 2011), some of which can be constrained with additional information derived 547 

from tree rings. For example, time series of wood density variation, combined with allometric 548 

estimates of tree volume, can improve estimates of whole-tree biomass increment (Bouriaud 549 

et al., 2015; Clough et al., 2017). Tree-level biomass increment can then be summed across 550 

individuals in the plot and adjusted by a known expansion factor (for either a fixed or 551 

variable plot radius design; step B). Subsequently, the plot-level biomass estimates can be 552 

scaled to the target population using plot-level expansion factors or pre-determined sample-553 

based estimators (Bechtold and Patterson, 2005). Alternatively, plot-level estimates are 554 

projected onto some other spatial scale using remote sensing observations (step C; Section 555 

3.2; (Jucker et al., 2017). 556 

 557 

Integration of tree-ring and other forest inventory data can also take the form of data 558 

assimilation. The two data streams can for example be assimilated using a state-space model 559 

(Clark et al., 2007), or a hierarchical Bayesian model with two regressions, one for each type 560 

of observation, and a constant of proportionality between corresponding regression 561 

coefficients (Evans et al., 2017). Both of these statistical approaches can additionally take 562 

advantage of bole diameter re-measurement data for trees with and without increment cores 563 

and model the multiple influences on individual tree growth explicitly. Assimilation of these 564 

two sources of information on the common process of tree growth should advance our 565 

understanding of that process, while refining estimates of both process variability and 566 

measurement uncertainty – key elements for improved forecasting of forest ecosystems 567 

(Dietze, 2017).  568 

 569 
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An important limitation on long-term reconstructions of NFI plot-level growth arises from 570 

temporal changes in stand conditions (e.g., demography and competition). Specifically, the 571 

trees that are alive at the time of sampling do not necessarily represent a random subset of the 572 

trees that once lived. While random or systematic sampling avoids the biases associated with 573 

the tree-selection principle of traditional dendroclimatology, other biases remain (e.g., slow-574 

grower survivorship bias, big-tree selection bias, and large tree bias sensu (Brienen et al., 575 

2012). These pitfalls highlight the merits of establishing and maintaining permanent NFI 576 

remeasurement plots on a multi-decadal scale that can track temporal changes in stand 577 

conditions and complement time-series of climatic predictors in statistical models. However, 578 

most existing NFIs do not yet offer sufficient temporal depth to account for forest dynamics. 579 

One possible solution is to apply the best available empirical models of stand development 580 

(i.e., growth-and-yield models, density management diagrams, empirical succession 581 

mapping) to reconstruct past stand conditions. Related (Bayesian) approaches may use state 582 

data assimilation or a state-space modeling framework to parameterize models of stand 583 

development from experimental forests where data do extend for several decades. Addressing 584 

the slow-grower survivorship and big-tree selection biases, as well as the competitive 585 

influence of trees that are no longer on the landscape will be crucial to fully realizing the 586 

research potential of paired tree-ring and forest plot data to reconstruct forest growth in pre-587 

inventory times. 588 

 589 

3.2. Earth observations 590 

Remotely sensed Earth observations have long been valued as a tool for broad-scale 591 

quantification and monitoring of ecosystem dynamics across space and more recently also 592 

time (e.g. (Zhu et al., 2016). The increasing length of continuous satellite records facilitates 593 

integration with temporally more coarsely resolved data such as tree rings (Vicente-Serrano 594 
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et al., 2016). In addition, we emphasize here that the combination of tree-ring data with earth 595 

observations is not restricted to large-scale applications, but that it can support and advance 596 

all three scaling steps (Figure 5). This is possible because – independent of the spatial scale – 597 

all information derived from remote sensing systems is fundamentally based on relating 598 

spectral reflectance data to field measurements via empirical models.  599 

 600 

 601 

Figure 5: Overview of the spatial scales at which tree-ring and remotely sensed observations 602 

can be integrated to support the three upscaling steps (A-C). dam - decameter 603 

 604 

Terrestrial light detection and ranging data (LiDAR; also called terrestrial laser scanning, 605 

TLS) are the remotely sensed data most relevant at the individual tree scale. The application 606 

of TLS systems to characterize forest stands began about a decade ago (Newnham et al., 607 

2015) and recent methodological advances have included structural modeling of individual 608 

trees based on TLS point clouds (Åkerblom et al., 2015). The potential to estimate above-609 

ground (and even below-ground; (Liski et al., 2014) biomass from such data is increasingly 610 
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explored (Calders et al., 2015), but similar to conventional forest inventory data (Section 611 

3.1), TLS does not provide temporal information on tree growth. Hence, the integration of 612 

tree-ring and TLS data to reconstruct historical tree dimensions (step A) is promising, 613 

because it avoids uncertainties related to the use of allometric functions and may offer a more 614 

precise representation of individual tree shapes (Wagner et al., 2017). However, the 615 

application of TLS in dense forest stands can be complicated by occlusion effects (e.g. 616 

bushes or small trees blocking the view of the scanner), weather conditions (wind, 617 

precipitation, or fog), and limitations of the scanning device itself. The latter concern mostly 618 

the coarser spatial resolution of distant tree parts (i.e. crowns) compared to that of lower stem 619 

parts, as well as the time it takes to scan an entire forest stand from a sufficient number of 620 

angles to produce a continuous point cloud. How these challenges affect the integration of 621 

TLS data with tree-ring measurements and the quality of the resulting tree volume 622 

reconstructions is yet to be explored. 623 

 624 

Airborne remote sensing is showing the most potential for scaling to the site level (step B). 625 

LiDAR can provide three-dimensional information about vegetation structure at local to 626 

regional scales and structure from motion photogrammetry can provide approximations 627 

thereof. This information can be calibrated against in-situ data of basal area, canopy height, 628 

biomass, stand density, or leaf area to assess spatial variability in these parameters (Jucker et 629 

al., 2017). If repeated LiDAR flights are available, it is even possible to monitor temporal 630 

dynamics in integrated and height-specific canopy parameters (Griebel et al., 2017), though 631 

this is challenging. Temporally resolved LiDAR data are still very rare, but should become 632 

more readily available with the increasing use of aircraft (Cunliffe et al., 2016) and drones 633 

(Tang and Shao, 2015) in forest monitoring programs. Because of the discontinuous data 634 

availability in both space and time, integration of airborne LiDAR with tree-ring records has 635 
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so far been limited. This link will be strengthened in the future as advances are made on both 636 

sides: tree-ring sampling will become spatially more representative (Section 3.1); airborne 637 

LiDAR will increasingly be used to characterize not only larger forest stands, but also 638 

individual trees (Eysn et al., 2015), which can complement the application of TLS in complex 639 

stands. These efforts are converging towards more precise estimation and reconstruction of 640 

tree- and stand-level biomass or basal area increment. 641 

 642 

While integration of tree-ring data with terrestrial and airborne LiDAR is still in its infancy, 643 

their combination with spectral data from polar-orbiting satellites is well established. 644 

Examples of environmental research that has used this combination include ecology (D'arrigo 645 

et al., 2000; Dorman et al., 2015; Huang et al., 2015), entomology (Çoban et al., 2014; 646 

Sangüesa-Barreda et al., 2014) and hydrology (Morales et al., 2015). For example, tree-ring 647 

data were used to verify an insect defoliation classification inferred from remote sensing 648 

(Çoban et al., 2014), or as a proxy to reconstruct inter-annual fluctuations in lake area 649 

observed from Landsat time series (Morales et al., 2015). The satellite-derived parameter 650 

most frequently combined with tree rings has been the Normalized Difference Vegetation 651 

Index (NDVI), a measure of vegetation greenness. With now over thirty years of repeated 652 

observations, global data products such as the Global Inventory for Mapping and Modeling 653 

Studies (GIMMS; (Tucker et al., 2005)), have allowed for the comparison of tree-ring and 654 

NDVI responses to environmental change across a range of spatial and temporal scales 655 

(Coulthard et al., 2017; Vicente-Serrano et al., 2013). The most common approaches have 656 

been to either compare the climate signals that are embedded in these two data streams (Del 657 

Castillo et al., 2015; Girardin et al., 2014; Pasho and Alla, 2015), or to correlate time series of 658 

tree rings and NDVI directly (Beck et al., 2013; Berner et al., 2011; Bunn et al., 2013; 659 

Girardin et al., 2016; Poulter et al., 2013; Vicente-Serrano et al., 2016). Generally, these 660 
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studies have found a positive correlation between inter-annual NDVI variability and annual 661 

tree growth, but there are notable exceptions along the North American Arctic treeline (Beck 662 

et al., 2013), in Europe (Pasho and Alla, 2015), and in parts of Canada (Girardin et al., 2016) 663 

where this correlation is lacking. These exceptions point to two main challenges associated 664 

with the integration of tree-ring and satellite observations. 665 

 666 

The first challenge concerns the mismatch in spatial scale between site-level observations of 667 

tree rings and raster data from satellite sensors. The latter integrate surface reflectance 668 

information at various spatial scales, e.g, 30 m for Landsat, 250 m for MODIS, and 1-8 km 669 

for AVHRR. Each pixel integrates a mixture of species, disturbance histories, and land use 670 

activities that may affect the spectral information and complicate the comparison with single-671 

species tree-ring chronologies. The second challenge emerges from temporal mismatches 672 

between the processes of canopy formation, leaf-level photosynthesis, and wood formation in 673 

trees. The climate response of photosynthesis is more or less instantaneous, but the time lag 674 

between photosynthetic carbon uptake, growth, and biomass increment is well documented 675 

(Cuny et al., 2015). Further, it is well known that climate variability can have lagged effects 676 

on tree growth via the storage and remobilization of carbohydrate reserves (Richardson et al., 677 

2013; Zhang et al., 2017). For all these reasons, tree-ring data and vegetation indices cannot 678 

be expected to correspond directly and the dynamics of these temporal lags likely differ 679 

between ecosystems, species, and climatic domains. 680 

 681 

3.2.1 Practical Example 2: Comparing tree-ring and NDVI data across Canada 682 

To illustrate the temporal mismatch of canopy processes and stem growth, we compared tree-683 

ring width, NDVI, and their correlations with monthly CRU TS-3.22 temperature (Harris et 684 

al., 2014) from the corresponding grid cells across Canada’s boreal forest (Figure 6). We 685 
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obtained tree-ring width data from 598 plots (19 species) that were established as part of the 686 

Canadian NFI program. The tree-ring data were detrended using generalized negative 687 

exponential models and whitened (see (Girardin et al., 2016) for details). For each plot, we 688 

obtained the corresponding GIMMS-3g NDVI record (Tucker et al., 2005), aggregated into a 689 

0.5° regular grid using nearest-neighbor interpolation and subsequently averaged at monthly 690 

resolution. Point-wise Pearson correlations were computed between all three datasets over the 691 

1982-2002 period. This analysis showed that tree-ring width and NDVI correlate in areas 692 

where they are both driven by temperature during the same season (Figure 6). In some areas, 693 

however, the seasonality in the climate response differed clearly between NDVI and tree-ring 694 

width, which may at least partly explain why some studies report a spatially heterogeneous 695 

correlation between the two metrics (Beck et al., 2013; Girardin et al., 2016; Pasho and Alla, 696 

2015). From this, we conclude that spatiotemporal patterns in tree-ring data and vegetation 697 

indices are not equivalent, and that their differing climatic drivers need to be considered in 698 

any comparison. 699 
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 700 

Figure 6: Pearson correlation coefficients between detrended tree-ring width (TRW), the 701 

normalized difference vegetation index (NDVI), and temperature (tmp) over the 1982-2002 702 

period. Panel (a): June-August NDVI vs. TRW; Panel (b): NDVI vs. tmp; Panel (c) June-703 

August NDVI vs. tmp; Panel (d): TRW vs. tmp. Please note that sites and grid cells are 704 

ordered by increasing latitude in panels (b-d). Dashed lines separate the previous and current 705 

year. 706 

 707 

4. Mechanistic modeling of tree growth 708 

Statistical scaling allows capturing some of the landscape heterogeneity, but the static 709 

relationships derived from observations are clearly limited in terms of representing non-710 

linearities and feedbacks in ecosystems. Hence, there is need to include more process 711 

information when linking wood formation to environmental variability, when reconstructing 712 
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historical climate (Guiot et al., 2014), and especially when attempting to forecast into a future 713 

time frame (Gustafson, 2013). Figure 7 illustrates the current range of tree-ring model 714 

complexity, from highly empirical monthly time-step approaches (e.g. (Tolwinski-Ward et 715 

al., 2011) to highly physiological simulations of carbon and water flows in whole trees at 716 

very fine time steps (De Schepper and Steppe, 2010; Hölttä et al., 2010). A new approach is 717 

also shown within this scheme, with the objective of linking specific cambial-growth and 718 

whole-tree physiological models for global applications (see Section 4.2.1 for a description). 719 

 720 
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Figure 7: Models of xylogenesis have been developed at different levels of complexity and 721 

across a range of temporal scales. Efforts are now being made to develop a new and broadly 722 

applicable modeling approach (Section 4.2.1) that will simulate whole tree growth as a 723 

function of environmental influences on physiological processes. Tmp – temperature; prc – 724 

precipitation; lat – latitude; St – photosynthates; Rw – soil moisture 725 

 726 

4.1. Simulating radial growth as a function of climatic controls 727 

(Wilson and Howard, 1968) published the first model of intra-annual xylogenesis, which 728 

reproduced the daily cellular development throughout the growing season using “rules” to 729 

regulate cellular division, enlargement, wall thickening, and death. Realistic daily xylem 730 

development was produced, but no environmental controls were imposed (i.e. the rates of 731 

growth processes were model inputs), and so this approach can be considered “descriptive”. 732 

A handful of models were subsequently published (Howard and Wilson, 1972; Stevens, 733 

1975; Wilson, 1973) that still required input parameters that vary in time to produce realistic 734 

growth rings. To overcome these limitations, (Fritts et al., 1991) developed a mechanistic 735 

model of daily cellular development called TRACH that was driven by temperature, water 736 

balance, and day length. This approach was already more general and relatively mechanistic, 737 

but it required as input the number of cells produced during the growing season and did not 738 

consider the supply of growth substrates (see Section 4.2). Expanding upon some of the ideas 739 

in TRACH, the now widely used Vaganov-Shashkin (VS) forward model of tree-ring 740 

formation (Vaganov et al., 2006) was developed. The VS model is built around the 741 

assumption that external multivariate environmental forcing exerts a direct and potentially 742 

non-linear influence on secondary tree growth. Accordingly, tree rings and their internal 743 

structure (e.g. cell number and size) are simulated based on climatic controls on the kinetics 744 

of cell formation (Cuny et al., 2014; Rathgeber et al., 2016). The VS model includes two 745 

basic conditions for the non-linear dependence of wood formation on the environment: the 746 

Principle of Limiting Factor (Fritts, 1976) with respect to daily temperature and soil moisture, 747 
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and a threshold growth response function to represent the dependence of cell formation on 748 

ambient temperature and soil moisture (Vaganov et al., 2006). 749 

 750 

The primary output of the VS model consists of synthetically generated standardized tree-751 

ring indices that would be expected, if local climate were the only external driver of tree 752 

growth. This is similar to empirical approaches (Section 2.2) and the skill of the VS model 753 

(unless fine-tuned for specific sites) is roughly comparable to that achieved with statistical 754 

transfer function methods that are commonly applied in dendrochronology (Cook and 755 

Pederson, 2011; Evans et al., 2006). However, the VS model has significant advantages over 756 

purely statistical models in that it provides daily-resolved estimates of integral growth rates 757 

throughout the year and attributes them to different climatic drivers (Shishov et al., 2016). 758 

This greatly facilitates the interpretation of inter- and intra-annual growth patterns, for 759 

instance when capturing a reduction in radial growth rates during summer drought in 760 

Mediterranean areas (Touchan et al., 2012). The applicability of the VS model has also been 761 

demonstrated for other biomes across Asia and North America (Anchukaitis et al., 2006; 762 

Evans et al., 2006; Shi et al., 2008; Zhang et al., 2011). Comparisons between VS-simulated 763 

and observed tree-ring chronologies are particularly interesting, as they allow assessing 764 

whether temporal non-stationarity in climate-growth relationships arise from climate change 765 

alone (Anchukaitis et al., 2006), or from other (a)biotic sources. 766 

 767 

Problematically, it is impractical to upscale site-level chronologies (step C) using the VS 768 

model because the detailed information (more than 40 tunable input parameters) that drives 769 

the simulation of cell-level processes in the model is unavailable at large spatial scales. 770 

Attempting to facilitate such large-scale application, a numerically more efficient forward 771 

tree-ring model, the Vaganov-Shaskin Lite (VSL), has been developed (Tolwinski-Ward et 772 
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al., 2011). The VSL model excludes the cell-level processes and has thus been reduced to a 773 

product of three limiting climatic factors: temperature, soil water balance and solar radiation. 774 

Further, it runs on monthly time steps and contains only 12 tunable parameters. A 775 

disadvantage of this simplification is that the VSL model cannot resolve sub-monthly growth 776 

processes related to, for example, variability in wood density (Björklund et al., 2017) or 777 

growth phenology. However, monthly-resolved climatic input data are broadly available from 778 

meteorological stations and often contain much fewer gaps than do daily observations. Hence, 779 

the VSL model is widely applicable and has been deemed capable of reproducing the 780 

variability in tree-ring width chronologies from more than 2000 sites on the ITRDB 781 

(Breitenmoser et al., 2014). Moreover, outputs from satellite Earth observations (Section 3.2) 782 

and dynamic global vegetation models (DGVMs; Section 4.3) are often provided at monthly 783 

resolution, making the VSL model a good candidate for pseudo-proxy experiments (Evans et 784 

al., 2013).  785 

 786 

The VS model and its descendent have proven valuable for the study of forest growth 787 

responses to climate change, but they still only include climate variables as input parameters 788 

and do not consider other internal and external drivers of tree growth. Hence, their ability to 789 

forecast tree growth and its climate response does not extend beyond that of empirical models 790 

(Section 2). An interesting prospect is to integrate these VS-type models with vegetation 791 

models that explicitly simulate relevant biological processes such as photosynthesis, 792 

respiration, and resource allocation. For example, (Mina et al., 2016) recently demonstrated 793 

that simulations of stand basal area with the ForClim model (Bugmann, 1996) could be 794 

improved by implementing the seasonal climate response of synthetic tree-ring chronologies 795 

from the VSL model. Such model-model integration approaches appear promising and should 796 
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be extended to larger scales (e.g. using newly developing NFI networks; Section 3.1) and a 797 

variety of DGVMs. 798 

 799 

4.2. Towards large-scale modeling of whole-tree growth 800 

Tree rings are increasingly used to study the impacts of environmental change on forest 801 

ecosystems and carbon cycling (Babst et al., 2014a; Babst et al., 2017). For such applications, 802 

it is not sufficient to model only direct climate impacts on radial growth (Section 4.1). 803 

Models need to additionally account for indirect effects of changing external forcing (climate, 804 

CO2, etc.) via canopy-level processes (Li et al., 2014). An early example of this is the model 805 

of (Deleuze and Houllier, 1998) that – similar to the VS model – was also designed to reduce 806 

the parameterization requirements of TRACH and predicts intra-annual wood density profiles 807 

of conifer species. In addition to simulating cambial cell division, enlargement, and wall 808 

thickening as functions of climate, their model assumes that wall thickening is co-limited by 809 

the supply of photosynthates, calculated from temperature and transpiration under the 810 

assumption of fixed foliar mass. This model has been successfully used to study intra-annual 811 

fluctuations in wood density, in combination with a more comprehensive treatment of plant 812 

water and photosynthate transport (Wilkinson et al., 2015). However, the implemented cohort 813 

approach to cellular differentiation limits comparisons with observed radial files (von Arx et 814 

al., 2016) and does not include scaling of radial-file growth to the whole tree.  815 

 816 

More recently, (De Schepper and Steppe, 2010) developed a whole-tree model of reversible 817 

(diurnal) and irreversible (structural) stem diameter variations, using a very detailed 818 

representation of dynamic water and sugar transport between numerous levels in a tree on a 819 

time step of less than one second. Irreversible radial growth occurs as a function of local 820 

turgor and sugar content, but the focus of the model is on reversible changes. (Hölttä et al., 821 
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2010) built on this model by adding cellular-level dynamics and thereby produced a 822 

remarkably comprehensive approach to modeling whole-tree growth, albeit omitting 823 

hormonal control. Their approach is very promising as a detailed physiological treatment and 824 

produces interesting conclusions regarding the effect of tree size on environmental 825 

influences. However, photosynthesis and transpiration are computed off-line, rather than as 826 

part of the model simulation, and a very large number of empirical parameters are required. 827 

Furthermore, the high-resolution time-stepping and consequent computing demands limit its 828 

application for large-scale studies of forest-environment interactions. Despite the knowledge 829 

of xylogenesis captured by these models, there is to date no generally applicable approach to 830 

modeling whole-tree growth at large scales. This would require a broadly applicable model 831 

structure with a few key parameter differences between plant functional types (or ideally 832 

species), as is currently implemented for photosynthesis in DGVMs (Section 4.3).  833 

 834 

4.2.1 Practical example 3: Towards a broadly applicable whole-tree model 835 

We have been building on the approaches discussed above to construct a whole-tree model 836 

called “Grow Up”, that is capable of being parameterized for any species and will be 837 

incorporated into a DGVM framework. A tree is assumed to grow as a coordinated whole, led 838 

by nutrient uptake and allocation, which promotes cambial activity, resulting in demand for 839 

carbon and nutrients from the developing xylem. Cells in one lateral radial file per tree are 840 

represented, with the processes of division, enlargement, wall thickening, and death 841 

controlled by a range of external and internal factors (Figure 8). The activities of apical 842 

meristems are also considered to enable whole-tree growth as described in (Hayat et al., 843 

2017), an earlier version of our model. Reserve pools of carbon, nitrogen, and phosphorus 844 

enable carry-over effects between years, and the relative activities of the different meristems 845 

are controlled by shading, nutrient status, soil water, and phenological signals. 846 
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 847 

Three vectors are used to hold the state variables of the cells in the radial file: the cell 848 

development stage (i.e. cambial initial, xylem mother, enlarging, thickening, or mature), 849 

radial cell diameter, and cell wall thickness. When a cell matures, it is added to the tree stem 850 

and not treated further, although heartwood formation occurs in response to canopy die-back. 851 

The vectors start with the innermost immature cell along the radial file and end at the 852 

innermost phloem mother cell, which is a fixed anchor. The vectors are adjusted as cells are 853 

added through division or lost through maturation. The primary outputs directly derived from 854 

the xylogenetic component of Grow Up are annual width and mass increment of the stem, as 855 

well as intra-ring density profiles. More detailed outputs such as the weekly kinetics of 856 

cellular development can also be produced for comparison with observations obtained using 857 

microcores (e.g. (Cuny et al., 2014). This basic xylogenetic scheme is assumed to be 858 

universal in all tree species. However, our understanding of the rules governing cambial 859 

activation and dormancy, the rates of cellular division, transitions between cell types, rates of 860 

expansion, and rates of cell wall thickening, is currently incomplete and so we are now 861 

focused on testing different hypotheses. 862 

 863 
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Figure 8: New model of cell development in a radial file using a vector approach and rules 864 

for cell differentiation based on internal and external drivers. Tmp – temperature; St - 865 

photosynthates 866 

 867 

Our initial assumptions for the controls on the development of the radial file assume that the 868 

rates of growth of cambial, mother, and enlarging cells are influenced by water supply, 869 

temperature, a hormonal signal from the canopy, and the concentration of sugars in the 870 

cambium using simple response functions. Cambial cells divide when they reach a critical 871 

size, producing mother cells. Mother cells divide if they reach a critical size and transition to 872 

(non-dividing) enlarging cells when they reach a certain distance from the phloem. Enlarging 873 

cells enter the thickening phase once they reach a critical size, and thickening continues up to 874 

a critical limit at which the cell dies and becomes mature and functional xylem (see Figure 8). 875 

The critical cell sizes and cell wall thicknesses, as well as the rates of thickening, are 876 

currently fixed parameters, with only the rates of cellular growth depending on environmental 877 

factors. These assumptions are being tested using microcores collected as components of 878 

various field campaigns and experiments (e.g. (Cuny et al., 2014). We are currently working 879 

on implementing this scheme within the HYBRID9 DGVM framework, and it is anticipated 880 

that this new approach will challenge the predictions of the current generation of DGVMs in 881 

fundamental ways, as well as open them up to direct comparison with tree-ring archives. 882 

 883 

4.3. Tree-ring integration with ecophysiological and dynamic global vegetation models 884 

Climate policy relies heavily on predictions from earth system models and the DGVMs that 885 

are part of them (Boucher et al., 2016). Problematically, current DGVMs struggle to simulate 886 

forest growth and its climate response accurately, particularly at annual or longer time scales 887 

(Anderegg et al., 2015; Pappas et al., 2017; Rollinson et al., 2017; Tei et al., 2017; Zhang et 888 

al., 2017). Hence, we see great potential for both tree-ring observations and ecophysiological 889 

models of tree growth to help evaluate and improve DGVMs. A conceptual challenge is 890 
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thereby to reconcile the carbon source (i.e. photosynthesis) and sink limitations on tree 891 

growth (Fatichi et al., 2014; Körner, 2015). Sink limitations (see Section 4.1) and their 892 

possible feedbacks on photosynthesis are currently not implemented in DGVMs, which 893 

generates uncertainty (Friend et al., 2014) because growth is treated only as a downstream 894 

process. Explicitly representing xylogenesis in DGVMs (see Section 4.2.1), or at least 895 

evaluating DGVMs at stand and regional scales using ecophysiological models with explicit 896 

tree growth modules, could be promising ways to refine projections of forest carbon cycling. 897 

Until this approach can be fully implemented and rigorously tested, tree rings should 898 

continue to be used in DGVM development by serving as observational references for model-899 

data comparisons and model parameterization. 900 

 901 

Past research has revealed a large spread in the ability of different DGVMs to reproduce 902 

patterns observed in tree rings. Besides being exceedingly sensitive to climate variability 903 

(Rollinson et al., 2017; Zhang et al., 2017); Klesse et al. in review b), modeled NPP tends to 904 

recover much quicker after extreme events (Anderegg et al., 2015) and lacks the memory 905 

effects that are commonly observed in tree-ring observations also in non-extreme years 906 

(Pappas et al., 2017; Zhang et al., 2017). Accordingly, neither the significant correlations 907 

with previous year’s climate, nor the positive auto-correlation structure of most tree-ring time 908 

series are simulated accurately. These findings point to deficits in the carbon allocation 909 

schemes that are implemented in current DGVMs (Sitch et al., 2015). Carbon allocation and 910 

turnover have been identified as an important source of uncertainty (Bloom et al., 2016; De 911 

Kauwe et al., 2014; Friend et al., 2014; Montané et al., 2017) that is compounded by a 912 

shortage of long-term observations of root and foliar dynamics.  913 

 914 
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Not surprisingly, an ecophysiological model with a sophisticated carbon allocation scheme – 915 

i.e. the MAIDEN model (Misson, 2004) – has shown the highest correlations (r > 0.5) with 916 

tree-ring chronologies from coniferous and broadleaf species at Mediterranean and boreal 917 

sites (Gea-Izquierdo et al., 2015; Gennaretti et al., 2017). MAIDEN uses mechanistic rules 918 

for the temporal allocation of photosynthates to four carbon pools (leaves, stem, roots, and 919 

non-structural carbohydrates) according to phenological phases. While its large-scale 920 

application to estimate tree growth is still limited because certain allocation parameters need 921 

to be fitted site-by-site, the integration of the MAIDEN model with tree-ring observations has 922 

already been proposed with a view on paleo-applications. For instance, (Guiot et al., 2014) 923 

have advocated the use of this and other ecophysiological models in the inverse mode to 924 

hindcast climate variability over centuries. In this application, the model parameters are first 925 

manually or automatically optimized to represent the observed radial increment. Using 926 

model-data-fusion techniques (Peng et al., 2011) the tree-ring data are then assimilated into 927 

the model to iteratively constrain the most likely climate conditions (i.e. probability 928 

distributions) that produce the observed radial increment in a given year (Boucher et al., 929 

2014). For the pre-instrumental period when only tree-ring data are available, the climate 930 

probability distribution of a chosen reference (i.e. average) year is iteratively modified 931 

according to the annual tree-ring anomaly from that year (Guiot et al., 2014). This way, a 932 

climate probability distribution for each year of the reconstruction is determined. Such 933 

climate reconstructions based on mechanistic models have the advantage over purely 934 

empirical calibrations that the influence of non-climatic effects that are represented in the 935 

model (e.g. CO2) can be assessed. 936 

 937 

With a view on DGVM development, model-data-fusion approaches involving tree-ring data 938 

(see above) could constrain carbon allocation to stem growth and thereby help evaluate and 939 
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improve imperfect allocation schemes. In addition, a series of model inter-comparison 940 

exercises would be useful to determine, why some models perform better than others in 941 

simulating forest growth and its climate response. Such exercises are being conducted for 942 

different ecosystem variables (see e.g. the MsTMIP project of the North American Carbon 943 

Program; https://nacp.ornl.gov/MsTMIP.shtml) and we are convinced that including tree-ring 944 

benchmarks from different ecoregions will be quite fruitful to provide quantitative insight in 945 

the representation of critical processes in DGVMs. However, one challenge for comparing 946 

multiple models with tree rings will be to generate parameters that are spatially and 947 

conceptually comparable. From the tree-ring side, estimates of absolute growth rates (e.g. in 948 

g C m-2y-1) will be required that optimally account for management, disturbances, and base 949 

mortality rates (Section 3.1). From the modeling side, the detail of the implemented carbon 950 

pools (leaves, branches, stem, coarse and fine roots, non-structural carbohydrates, etc.) and 951 

the respective output parameters (or “emergent properties”) will need to be examined to 952 

determine the best metrics for comparison with tree-ring data.  953 

 954 

5. Perspectives for tree-ring research 955 

Our discussion around the statistical scaling of tree-ring data in sections 2 and 3 has 956 

emphasized the need for representative sampling to capture the heterogeneity of forested 957 

landscapes. The systematic or random distribution of samples along the body of an 958 

individual, of individuals within a site, and of sites across the landscape will allow for more 959 

robust projection across the space where observations are sparse or missing. In addition, 960 

representative sampling of the area covered by the grid cells of raster data products should 961 

reduce the spatial mismatch between tree-ring data and satellite Earth observations or DGVM 962 

output. This objective of spatial representativeness is somewhat new to the field of 963 

dendrochronology. While other disciplines (e.g. ecosystem ecology or forestry) have a long 964 

https://nacp.ornl.gov/MsTMIP.shtml
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history of optimizing sampling schemes for spatial or temporal scaling (Scholes, 2017), these 965 

ideas have only recently started to enter the scope of tree-ring research and require a certain 966 

rethinking of established protocols. For example, if tree-ring sampling should represent a 967 

larger population of trees (e.g. a stand), the strength of the common growth variability among 968 

trees (traditionally assessed by the mean inter-series correlation or the expressed population 969 

signal; (Buras, 2017; Cook and Peters, 1997) cannot serve as the main quality measure of the 970 

site-level time series. Hence, new quality criteria and guidelines for tree-ring sampling need 971 

to be established that can serve both the needs of individual studies and the overarching goal 972 

of scaling. We recommend that this be done within interdisciplinary research initiatives, 973 

including dendrochronologists, forest and landscape ecologists, and foresters. 974 

 975 

At present, we have the best control over uncertainties in tree-ring data at the site level. Over 976 

the past years, a number of studies have been published that characterized trend biases in 977 

time series of tree growth (e.g. (Brienen et al., 2012; Brienen et al., 2017; Peters et al., 2015) 978 

or the impact of sampling biases on tree-ring quantification of stand-level above-ground 979 

biomass increment (Alexander et al., 2017; Nehrbass‐Ahles et al., 2014). These studies will 980 

serve as important guidelines in future field campaigns. By contrast, sampling biases at the 981 

individual level are insufficiently constrained, in part because the heterogeneity and 982 

dynamics of resource allocation to stem growth are not well understood. This could for 983 

example be tackled through intense sampling along trees that were commercially felled or 984 

uprooted after a storm. If combined with wood anatomical measurements (von Arx et al., 985 

2016), such data could additionally serve as an improved test bed for mechanistic models of 986 

xylogenesis (Section 4). These models are becoming increasingly important tools to assess, 987 

reconstruct, and forecast tree growth responses to a changing environment because – even 988 

with the most representative sampling – statistical scaling is limited by non-linearities and 989 
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feedbacks in ecosystem processes (Scholes, 2017). Finally, uncertainties in tree-ring data will 990 

be the most challenging to assess at large spatial scales where individual- and site-level 991 

uncertainties cumulate. Yet, as new tree-ring and NFI data with well-quantified uncertainty 992 

are made accessible and interoperable across national boundaries, a global network of 993 

annually resolved forest biomass reconstructions can emerge. An important application of 994 

these data will then be to evaluate the ITRDB and ensure that this legacy of decades of tree-995 

ring research can continue to support Earth system science (Babst et al., 2017). 996 

 997 

When tree rings go global – as is the theme of this review – the goal is to generate knowledge 998 

and data that can inform adaptation and mitigation strategies in the face of climate change. 999 

The primary strength of tree-ring records has so far been seen in their temporal depth that 1000 

allows placing the current climatic variability and ongoing trends in a millennium-length 1001 

context (Wilson et al., 2016). Indeed, it is both important and disturbing to learn that the 1002 

severity of recent drought events was unprecedented over the past millennium (Belmecheri et 1003 

al., 2016; Griffin and Anchukaitis, 2014), that man-made influences on atmospheric 1004 

circulation patterns can promote more frequent extreme events (e.g. through Arctic warming; 1005 

(Trouet et al., 2018), and that these events are directly linked to forest mortality, disturbances, 1006 

and changes in the terrestrial carbon cycle (Schwalm et al., 2012; Williams et al., 2013). 1007 

However, anthropogenic climate change is now considered indisputable and there is a need to 1008 

transition from temperature reconstructions proving that the Earth is warming at an 1009 

unprecedented rate towards tree-ring research that assesses, reconstructs and predicts the 1010 

responses and feedbacks of forest ecosystems to climate change. Dendrochronology can 1011 

make important contributions at every step of successful scaling (Sections 2 and 3) and 1012 

refined process understanding (Section 4). How and how quickly can we expect tree growth 1013 

and its climate sensitivity to change with continued warming? Will thinning forests mitigate 1014 



 46 

drought stress? How much carbon would be sequestered by forests under different 1015 

management scenarios? By answering these and other relevant questions, tree-ring research 1016 

can directly support the development and assessment of climate change adaptation strategies.  1017 
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Appendix A: Supplementary figure 1518 

 1519 
 1520 

 1521 
 1522 
Figure S1: Gridded tree-ring width anomalies (increment) between 2006-2010 for the six 1523 
most represented tree genera on the International Tree Ring Data Bank. The maps have been 1524 
produced using the random decision forest approach presented in Figure 2 of the main 1525 
manuscript. 1526 


