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A B S T R A C T

In mucosal drug delivery, two design goals are desirable: 1) insure drug passage through the mucosal barrier
to the epithelium prior to drug removal from the respective organ via mucus clearance; and 2) design carrier
particles to achieve a prescribed arrival time and drug uptake schedule at the epithelium. Both goals are
achievable if one can control “one-sided” diffusive passage times of drug carrier particles: from deposition
at the mucus interface, through the mucosal barrier, to the epithelium. The passage time distribution must
be, with high confidence, shorter than the timescales of mucus clearance to maximize drug uptake. For
100 nm and smaller drug-loaded nanoparticulates, as well as pure drug powders or drug solutions, diffusion
is normal (i.e., Brownian) and rapid, easily passing through the mucosal barrier prior to clearance. Major
challenges in quantitative control over mucosal drug delivery lie with larger drug-loaded nanoparticulates
that are comparable to or larger than the pores within the mucus gel network, for which diffusion is not
simple Brownian motion and typically much less rapid; in these scenarios, a timescale competition ensues
between particle passage through the mucus barrier and mucus clearance from the organ. In the lung, as a
primary example, coordinated cilia and air drag continuously transport mucus toward the trachea, where
mucus and trapped cargo are swallowed into the digestive tract. Mucus clearance times in lung airways
range from minutes to hours or significantly longer depending on deposition in the upper, middle, lower
airways and on lung health, giving a wide time window for drug-loaded particle design to achieve controlled
delivery to the epithelium. We review the physical and chemical factors (of both particles and mucus) that
dictate particle diffusion in mucus, and the technological strategies (theoretical and experimental) required
to achieve the design goals. First we describe an idealized scenario — a homogeneous viscous fluid of uniform
depth with a particle undergoing passive normal diffusion — where the theory of Brownian motion affords the
ability to rigorously specify particle size distributions to meet a prescribed, one-sided, diffusive passage time
distribution. Furthermore, we describe how the theory of Brownian motion provides the scaling of one-sided
diffusive passage times with respect to mucus viscosity and layer depth, and under reasonable caveats, one can
also prescribe passage time scaling due to heterogeneity in viscosity and layer depth. Small-molecule drugs
and muco-inert, drug-loaded carrier particles 100 nm and smaller fall into this class of rigorously controllable
passage times for drug delivery. Second we describe the prevalent scenarios in which drug-loaded carrier
particles in mucus violate simple Brownian motion, instead exhibiting anomalous sub-diffusion, for which
all theoretical control over diffusive passage times is lost, and experiments are prohibitive if not impossible
to measure one-sided passage times. We then discuss strategies to overcome these roadblocks, requiring
new particle-tracking experiments and emerging advances in theory and computation of anomalous, sub-
diffusive processes that are necessary to predict and control one-sided particle passage times from deposition
at the mucosal interface to epithelial uptake. We highlight progress to date, remaining hurdles, and prospects
for achieving the two design goals for 200 nm and larger, drug-loaded, non-dissolving, nanoparticulates.
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1. Introduction

Inhaled drug delivery must overcome the same primary defense
mechanism that Nature has engineered to prevent all inhaled insults
from engagement with and absorption by lung epithelial tissue: the
mucosal barrier [1]. Mucus likewise coats the nasal, sinus, digestive,
and reproductive tracts, and indeed all organs not covered by
skin. Mucus layers present a diffusive barrier to viruses (∼100 nm),
bacteria (microns), environmental particulates and drug particles
spanning nanometers to microns. For inhaled small molecule drugs
typically delivered with nebulizer sprays, or with powder parti-
cles that dissolve instantly upon landing at the air-mucus interface,
drug diffusion through the mucus layer obeys simple Brownian
motion and is instantaneous relative to mucus clearance times. Drug
molecules or particles that tightly bind to the mucus microstructure,
or that diffuse sufficiently slowly, are removed by mucus clearance.
(All organs not covered by skin have mucus barriers for muco-
trapping of insults, with organ-specific mucus clearance mechanisms
to remove trapped insults before they penetrate the barrier, and
mucus replenishment sources to maintain the barrier.)

For all other drug-loaded carrier particles that are sufficiently
large (200 nm and larger), not permanently bound to the mucus
mesh, and do not dissolve in mucus prior to contact with epithe-
lial tissue or clearance from the protected organ, their diffusion
in mucus is not described by simple Brownian motion. This has
profound consequences for being able to control passage times
through a mucus barrier. Particle diffusive passage times through
a mucus barrier of known depth varies dramatically (potentially
many orders of magnitude) depending on size and chemical prop-
erties of the particle and biophysical properties of the mucus.
Furthermore, there is no theory for passage times, nor how they
scale with depth of a layer or with heterogeneity of the fluid, for
anomalous, transient, sub-diffusion. Mucus itself varies dramatically
from human to human, organ to organ, health to disease. Fig. 1 aims
to provide intuition of the qualitative and quantitative differences in
the diffusion of muco-inert particles of three Class sizes relative to
the pore-network length scales of the mucus gel.

(Significant effort has gone into tuning the surface chem-
istry of drug-loaded nanoparticulates for mucosal delivery, aim-
ing to disrupt the scenario of Fig. 1 for muco-inert particles
of Class 2 size especially, but also Class 3. With strong muco-
repulsive interactions, 200–300 nm particles that would otherwise
have strong steric interactions with the mucus mesh, instead repel
the mucin molecules, creating larger pores that minimize steric
interactions, enhancing their diffusive mobility [2,3]. Third party

crosslinkers (e.g., antibodies) have been shown to possess the abil-
ity to anchor ∼100 nm nanoparticles to constituents of the mucus
polymer network, thereby arresting its motion in a manner that is
equivalent to a knockdown of the effective Brownian diffusivity [4].
We note possibilities of a cocktail surface chemistry strategy [5], with
an exterior muco-inert coating to promote diffusion through the
mucosal barrier that dissolves on the timescales of passage through
the barrier, exposing a second surface coating for epithelial absorp-
tion. This strategy only raises the bar on the diffusive passage time
focus of this review, since one must tune dissolution times of the
exterior coating in mucus to diffusive passage times.)

In this review we discuss the theoretical technologies, and the
experimental technologies for sufficient data acquisition, that are
required to quantify and control one-sided diffusive passage times of
drug-loaded carrier particles through mucosal barriers. In all organs,
particles are deposited at the mucosal interface opposite the epithe-
lium, and must diffuse through the barrier to the epithelial interface;
thus the terminology used is “one-sided” diffusive passage time. We
emphasize at the outset that the required theoretical and experimen-
tal technologies are not yet solved, but they are achievable. We strive
to explain how emerging experimental and theoretical technologies
promise to significantly narrow the gaps in current understanding of
the non-Brownian diffusive processes governing many current drug
carrier particles, and thereby to make strides toward predictive drug
particle engineering design and control.

The present review does not address drug-loaded particle
deposition strategies or the timescales of mucus clearance from a
particular organ. For inhaled drug delivery and lung mucus clearance
timescales, we defer to the vast and active literature on these
assessments [6–14].

Herein, we focus on rigorous estimates of one-sided diffusive
passage times from particle deposition at the exterior mucus inter-
face through the barrier to the mucus-epithelium interface. After
summarizing the precise control on passage times afforded by any
particle undergoing simple Brownian motion in mucus, we address
the conditions on particles and mucus for which this assumption is
violated. We also assume particle size is sustained during diffusion in
the layer; while we could incorporate dissolution of the shell radius,
the complexities of mucus viscoelasticity and heterogeneity in depth
and biophysical properties, and both size-dependence and chemical
affinity of particles to mucus, are our priority for this review.

The race between transport through and transport of the mucosal
barrier. For all deposited particles, including drug-loaded carrier
particles, pathogens, and environmental particulates, spanning
nanometer to micron scales, the mucus barrier imposes a limbo
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Fig. 1. Diagram depicting the effect of particle size on the nature (Brownian vs. non-Brownian) of diffusive motion in mucus barriers. Class 1: Small molecules and drug-loaded
nanoparticulates 100 nm or smaller that do not chemically bind to the mucus mesh are minimally affected by the mucus microstructure and rapidly move via Brownian motion
through the barrier. Class 2: Muco-inert particles of size proportional to mucus pores experience steric interactions with the mesh and entropic fluctuations from the mucus gel
microstructure. Their increments are not only reduced relative to freely diffusing smaller particles, they are correlated, violating Brownian motion. Class 3: Muco-inert particles
much larger than the mucus pores, e.g., 500 nm to 1 lm depending on the mucus source, experience the full range of entropic fluctuations from the mucus microstructure, and
are the ideal probes for particle-tracking microrheology. These particle increments are likewise correlated, reflecting elastic memory of the mucus gel, and exhibit transient,
anomalous, sub-diffusive behavior. Class 2 and 3 particles with adhesive or repulsive interactions to the mucus mesh exhibit a wide range of mobilities that, with rare exception,
also violate simple Brownian motion. Advanced particle-tracking experiments of drug-loaded nanoparticulates, ranging from 200 nm to microns, are required to give sufficient
data to select among possible models for transient, anomalous, sub-diffusion, and to properly estimate best-fit model parameters. From these results, due to the absence of theory
for passage times of such non-Brownian processes, model computations become the required technology to estimate one-sided passage times through mucus barriers.

status, or delay, during which individual particles must penetrate the
mucus barrier to encounter epithelial cells or vasculature. This time
delay provided by the mucosal barrier gives the organ time to trans-
port and clear the mucus layer plus all trapped cargo. Meanwhile, the
organ continually replenishes the mucus barrier. For example, the
lung produces on the order of a liter of mucus per day to maintain
homeostasis [1,15]. Mucus clearance is achieved by a combination of
coordinated cilia and air drag from tidal breathing in normal circum-
stances, each biased toward the trachea, estimated at tens of microns
per second in the small airways, and up to ten times faster in the
upper airways and trachea [cf. [8]]. This experimental data trans-
lates to estimates of clearance times spanning minutes to hours in
the upper airways and up to days in the central airways in healthy
lungs. Thus it is important to know which branches in the airways a
given inhaler will deposit particles of given sizes, since that sets the
distribution of clearance times that drug particle diffusion through
the mucosal barrier must outrace. (An interesting issue arises in the
deep lung which has significant pulmonary surfactant. Raesch et
al. [16] studied the corona that forms around nanoparticles subjected
to porcine pulmonary surfactant, revealing differences due to sur-
face chemistries of the particles. Since mucus layers decrease to
negligible in the deep lung, the impact of surfactant on passage times
of particles that reach the deep lung is a very interesting, and to our
knowledge, unexplored question.)

The mucus escalator picture implies that all trapped cargo
in a local mucus patch is transported together, indiscriminately.
As the conveyor moves, individual particle mobility will lead to
repositioning among all the cargo, where the key issue for this
review is any individual particle’s position relative to the deposition

interface and epithelium. Cough is a totally different lung airway
clearance mechanism (cf. [17]), with the obvious effect of violently
forcing the mucus layer toward the larynx with turbulent air drag,
including detaching and propelling droplets of mucus into the air
stream toward the trachea. We do not address the impact of cough on
drug particle delivery. There is a non-intuitive cough effect, consist-
ing of stress-induced biochemical cascades that trigger ion transport
and thereby stimulate hydration of the airway [18–22], allowing
more efficient transport by cilia and normal breathing. These effects
give a causal explanation for the persistent cough, day and night, of
individuals with cystic fibrosis.

While particle diffusion in mucus is 3-dimensional, time to transport
from the deposition interface to the epithelium is the key quantity
of interest. While the diffusive mobility of particles in mucus is 3-
dimensional, the only dimension that matters with respect to drug
uptake is motion toward the epithelium. The time it takes for one-
sided diffusion, from the deposition interface to epithelial tissue, is
our definition of the particle passage time. As noted above, passage
times of particles in mucus barriers vary dramatically depending on
the diffusion process of that particle in that mucus. The processes
range from simple Brownian motion for sufficiently small and non-
interacting particles to a wide range of sub-diffusive, non-Brownian
stochastic processes. The intimate interplay between physical and
chemical properties of particles and mucus, their impact on particle
passage times, and the technologies that are necessary to engineer
predictive control over drug particle uptake at the epithelium, are
the focus of our review.

The experimental techniques that have been applied to estimate
particle diffusive mobility in mucus are summarized in Section 5,
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along with the emerging realizations within the drug delivery liter-
ature how particle size and surface chemistry have such a dramatic
impact on diffusive mobility in mucus. The experimental methods—
including Diffusion Chambers, FRAP, and Particle Tracking—each
have limitations that are described in Section 5. However, at this
junction we want to call attention to additional concerns that are
subtle yet quite important in the overall goal to estimate particle
diffusive passage times through mucosal barriers in the lung, sinus,
digestive or reproductive tract where the particle is deposited at one
boundary of the mucus barrier and has to diffuse through to the
other boundary with the epithelium. This physiological “one-sided”
diffusive passage time problem is typically not what is observed in
ex vivo experiments.

If only particles would diffuse “normally”, physiological versus ex
vivo experimental conditions would not matter. One subtle issue is
extrapolation from experimental observation of particle motion in
controlled settings to the geometry of lung airways or other organs.
In diffusion chamber and FRAP experiments (see Section 5), the dif-
fusion of small molecules and nanoparticles (1–100 nm diameter)
are observed in mucus samples from a patient or assay, revealing
a bulk effective diffusivity that was, surprisingly at the time, only
a few times greater than pure buffer. However, small non-binding
molecules and nanoparticles are mostly diffusing in the pores of
the mucus gel, rarely interacting with the mucin network of entan-
gled and crosslinked macromolecules. Therefore, the diffusion is
consistent with normal, Brownian motion, and the concept of an
effective diffusion coefficient for such particles in mucus is valid.
This experimental confirmation has strong implications, because
for normal Brownian motion, one can rigorously extrapolate from
experimental initial and boundary conditions to the physiological
“one-sided diffusion” conditions. The theory and numerical simula-
tions for Brownian motion and one-sided passage times is presented
in Sections 2 and 3, the ideal scenario.

The effective diffusivity approach to quantify mobility as a proxy
for passage times. Almost all drug delivery experiments, analyses,
and inferences rely on an “effective diffusivity” for a given particle
mobility in mucus, which either explicitly or implicitly assumes that
Brownian motion is an accurate physical model of particle diffusion
through mucosal barriers. What predictions about passage times
can, and cannot, be inferred from an effective diffusivity approach?
A typical assessment of diffusive mobility of drug particles is to
track particles using microscopy for a specific timescale, e.g., 1 s, and
to estimate the effective diffusivity of that particle in that mucus
sample for that timescale, typically 1 s.

Effective diffusivity breaks down for sufficiently large particles because
of steric hindrance with, electrostatic and binding interactions with,
viscoelastic properties of, and spatial heterogeneity of, the mucus bar-
rier. The ability to extrapolate beyond the timescale of experimental
observations is based on the fact that effective diffusivity for simple
Brownian diffusion (explained and illustrated in Section 2) is inde-
pendent of the observational timescale chosen: 1 s, 1 min, or 1 h.
Sufficiently small molecules, nanoparticles, antibodies, and viruses
(except those that become directly or indirectly crosslinked to the
mucus mesh) diffuse normally through the pores of the mucus
mesh, which by volume constitute 90–98%, with minimal hindrance
due to the 2–10% volume of the large molecule network. However,
particles above ∼200 nm in diameter typically do not exhibit nor-
mal Brownian motion, and the degree of departure from normal
Brownian motion of any given particle in mucus depends on a multi-
tude of health factors that influence the pore size distribution within
the mucin molecular mesh as well as the attractive versus repulsive
interactions between the mucin mesh, and particle size which deter-
mines whether the particle samples some or all entropic fluctuations
of the mesh. For particles comparable in size to the local pore scales,
equivalently the local length scales of the mucin-dominated mesh,
steric interactions with the molecular mesh dominate mobility and

change the qualitative character of the position increments of the
particles. The entropic fluctuations of the mesh drive particle motion,
so one still observes “movement” but it is strongly hindered relative
to smaller particles that rarely encounter the molecular mesh.

Furthermore, surface chemistry of particles comparable in size,
or larger than, the network mesh scales, becomes an important
factor in mobility. This intuitive concept has been explored widely
in engineering of surface-modified drug carrier particles that are
muco-adhesive versus muco-repulsive, aiming toward prolonged
versus shortened passage times through mucus barriers; we revisit
these issues below. For particles much larger than the local mesh
scales, elasticity of the mucus network strongly influences particle
motion and induces clear departure from simple Brownian motion.
Particle increments locally strain the mesh across all length scales
probed by the particle, the strained mesh responds, attempting
to relax (reverse the strain) and return to equilibrium, introduc-
ing negative correlations in the increments over the time scales of
elastic relaxation probed by the particle size. If sufficiently large
particles have “neutral” affinity to the network, then the observed
displacements versus lag time, when transformed to frequency
space, yield the viscous (loss) and elastic (storage) moduli of the
mucus sample; this is indeed the basis of passive particle tracking
microrheology that was introduced in the mid-1990s [23–27]. The
microrheology reviews by Waigh [28,29], separated by a decade, are
highly recommended.

During the development of passive particle tracking
microrheology, explorations of biomaterials such as entangled and
crosslinked F-actin solutions led to important limitations on the
ability to infer linear viscoelastic moduli from particle position time
series. The observed motion of passively diffusing beads within
the biomaterial was shown to be strongly influenced by the bead
size and surface chemistry relative to the length scales and chem-
ical properties of the mesh created by the entangled/crosslinked
biomolecules; cf. [30]. These and related studies were critical for
microrheology, since they shed light on the myriad factors that vio-
late the generalized Stokes-Einstein relation, and thereby tracked
particle time series do not yield the linear viscoelastic moduli of
the biological material being studied. These observations compelled
advances in theoretical microrheology in order to faithfully interpret
experimental data, with particle size used to probe the length scales
of the macromolecular mesh and the viscosity of the fluids filling
the pores, particle surface chemistry used to probe affinity and
phobicity of biomolecules relative to particle surface treatments, and
multiple particle tracking (two-bead microrheology) used to screen
particle-fluid chemical interactions and infer viscoelastic properties
of the medium at intermediate length scales between particles. In
Ref. [30], microbeads of varying diameter and surface treatment
were compared in identical F-actin solutions, including bovine
albumin coated, polyethelene-glycol (PEG) coated, and uncoated
carboxylated microbeads.

All of these findings shed light on the critical factors influencing
how foreign particles diffuse within mucus: small and large particles
relative to the pore scales of the mucus molecular mesh, and parti-
cles that match the dominant mesh scales, all experience completely
different diffusive motion, with only sufficiently small, non-bound
particles exhibiting simple Brownian motion. Likewise, particles
that have neutral, attractive, and repulsive interactions, especially
those with diameters at the dominant mesh scales or larger,
experience completely different diffusive motion. Furthermore, par-
ticles at or larger than the mucus mesh scales exhibit transient,
sub-diffusive motion, converging to normal diffusive behavior only
at observation lag times exceeding the longest timescales of memory
of the mucus sample (rarely observed). The reviews by Ribbeck and
collaborators [31,32] give an excellent treatment of the remarkable
diversity of particle mobility in mucin solutions. For microrheology,
these lessons reveal that one can make huge, orders of magnitude,
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errors in inference of viscoelastic moduli with particle tracking by
failure to select the right particle size and surface chemistry.

For particle drug delivery, the “correct” linear viscoelastic moduli
of the mucosal barrier is irrelevant; the critical issue is the ability
to control one-sided passage times from the particle deposition
interface through the mucus layer to the epithelium. The particle
size and surface chemistry lessons from particle tracking in soft bio-
materials were immediately adopted in mucosal drug delivery, with
two diametrically opposed strategies: muco-adhesive and muco-
repulsive surface chemistry. When molecules with a binding affinity
to the mucus mesh are tightly bound to the surface of drug particles,
the particles are muco-adhesive, forcing prolonged passage times.
The aim is to provide an extended time release of drugs within
the particles, during which the particles slowly release their drug
payload. However, this strategy is fraught with the high likelihood
of drug particle clearance from the protected organ, with negative
consequences, e.g., in inhaled drug delivery for asthma (immune
suppression in the stomach instead of the lung) [33], cf. [34]. Surface
chemistries such as polyethelene-glycol (PEG) have been shown to
be muco-repulsive, with the ability to tune the particle size, as well as
molecular weight and surface density of PEG, to control nanoparticle
diffusion in mucus from diverse organs and mammals [35].

The mucus gel also utilizes a backup defense mechanism with
active (i.e., highly mobile) binding or crosslinking agents, antibodies,
that transiently bind to both the perceived invasive species and
the mucus macromolecular mesh. The role played by antibodies
in mucus has been the focus of the Lai lab at UNC for several
years [36–39] for diverse applications including but not restricted
to drug delivery. These small molecule anchors typically possess a
weak affinity for the mucus microstructure so that their mobility in
mucus is only slightly reduced. However, with a slightly stronger
affinity to any invasive inhaled species (pathogens or particulates)
in mucus, and the ability for many molecular anchors to crosslink
to the invasive species and the mucus mesh, natural and engineered
antibodies have the capacity to dramatically, and rapidly, decrease
mobility and thereby increase the passage times of the invasive
species well beyond the time window for mucus clearance [34,35].

For particles that are larger than lung mucus network length
scales, e.g., 500 nm and 1 lm diameter beads, strongly non-
Brownian, sub-diffusive particle motion is detected over a wide
range of lag times (cf. [40]). This sub-diffusive behavior will per-
sist up to the longest elastic memory timescales of the local net-
work surrounding the particle, which typically exceed the total
observation times of particle tracking. For such particles, surface
treatment (attractive or repulsive to the mucus network) perturbs
the particle motion, thus perturbs the inference of microrheology
of the mucus sample if that was the purpose of particle tracking.
However, for drug delivery purposes, inference of mucus rheol-
ogy is not the goal; surface treatment of drug particles is a way
to perturb mobility through electrostatic or binding interactions
with the mucus network, and thereby influence passage times. This
strategy is far more powerful for diffusion in viscoelastic media
than simple viscous fluids precisely because passage times for tran-
sient sub-diffusive motion scale completely differently than simple
diffusion. E.g., doubling effective diffusivity for Brownian motion
leads to halving of the mean passage time through a given layer
depth; changes in transient sub-diffusive motion can have a strongly
nonlinear impact on passage times, inducing orders of magnitude
changes rather than multiplicative factors (cf. [40]), discussed in
more detail in the theoretical sections below.

The timescales of memory in particle fluctuations are most easily
recognized if one plots the mean-squared displacements (MSD)
versus lag time (time between particle position observations). MSD
is the most-used summary statistic for diffusive mobility, includ-
ing the drug delivery literature. Tracked particles above ∼200 nm
in diameter are typically sub-diffusive (i.e., the MSD does not scale

linearly with lag time) for lag times up to the longest memory
timescale of the mucus network. The memory timescales of mucus,
even in the equilibrium state of particle tracking experiments, are at
least minutes, and typically hours or longer, far beyond the exper-
imental timescales of particle tracking. The ability to assess the
longest timescale of memory in mucus is an open problem, even if
the mucus sample is homogeneous. Furthermore, if the passage time
of a drug particle exceeds the mucus memory timescales, then there
is a transition from sub-diffusive scaling to normal diffusion. There
is no theory for passage times of transient sub-diffusive behavior,
and no theory for passage times in heterogeneous viscoelastic media,
as discussed later. This has many profound consequences, discussed
throughout this review, with the upshot being that it is impossible
to extrapolate from existing experimental data to passage times for
controlled drug delivery. Prospects to overcome these hurdles are
likewise addressed below.

Leading researchers in drug delivery make a rational compromise,
giving up the ideal goal of accurate assessments of passage times
for drug carrier particles in mucus, instead choosing a fixed timescale
well within experimental capabilities, e.g., 1 s, and assessing mobility
exclusively on that timescale, or lag time. This approach gives
qualitative assessments, in particular, relative mobilities among can-
didate drug carrier particles. But it does not give quantitative assess-
ments. To get a sense of the limitation of measuring mobility for a
fixed lag time, consider the MSD of a tracked microbead in mucus.
Due to viscoelasticity, the MSD is sub-linear, and lies below the lin-
ear MSD of normal diffusion for observational lag times up to 30 s or
1 min, which is a typical duration for microbead particle track-
ing [40]. This means that fits over a chosen lag time to an “effective
diffusivity”, i.e., a linear fit to a sub-linear MSD curve, will give a
different line with a different slope (and thus a different inferred
diffusivity) for every lag time! While it is perfectly acceptable to
compare relative mobilities via an effective diffusion coefficient for
a chosen timescale, say 1 s, one cannot extrapolate from effective
diffusivity over that timescale to any other timescale, and especially
not to passage times, even if the mucus barrier was perfectly homo-
geneous in physical properties (rheology) and in layer thickness.

The power to extrapolate, from a carefully designed experimen-
tal dataset to predictive engineering control of particle passage
times in mucosal barriers, is made possible by the scaling laws of
normal diffusion and Brownian motion, embodied in the Stokes-
Einstein relation recalled in Sections 2, 4. In the remainder of this
review, we first discuss the ideal conditions under which this is a
valid assumption, followed by the long list of assumptions that are
violated for drug particles in mucus, and the pitfalls (potentially
dramatic errors) of any attempt to invoke an effective diffusivity
for estimation of particle passage times through mucosal layers. We
then present theoretical and computational modeling approaches,
and the requisite experiments and data, to overcome each limita-
tion and pitfall in the “effective diffusivity approach.” While not all of
these technological solutions, either experimental or computational,
are currently implemented in drug particle design and delivery, we
review progress that has been made, as well as further progress on
the horizon to overcome remaining hurdles. At the very least, this
review outlines a strategy toward increased certainty in the design
and control of drug particle delivery, with the caveat that some
remaining hurdles represent significant challenges, experimentally
and theoretically.

Why not eschew theory and measure passage times directly? For
anomalous sub-diffusion of 200 nm and larger particles in mucus,
little if anything is known about first passage times, or about how
passage times scale with layer depth, and there is no theory that
relates free diffusion to one-sided diffusion with reflection at the
deposition interface. An empirical approach to drug particle design
would be to simply eschew theory and directly measure passage
times in mucus layers. The experimental technologies, time, and
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cost required for sufficiently many observations to infer a reliable
one-sided passage time distribution, even for a given particle in a
specific mucus sample of a fixed layer thickness, are prohibitive. The
experimental limitations are, first and foremost, technological. Very
few, if any, labs do particle tracking in a physiological geometry;
e.g., depositing particles at one mucus layer interface and tracking
their diffusion through the layer to the opposing interface. Further-
more, most labs only have 2D particle tracking capabilities, which
only provides particle position time series in a focal plane, paral-
lel to the plates that bound the sample; this limits observations of
particles within a focal plane. As with flow of mucus along the air-
way, the sinus, digestive or reproductive tract, the measurement of
interest for drug delivery is movement in the direction orthogonal to
clearance; experimentally, that means through all focal planes from
the top interface to a chosen depth. Thus, 3D particle tracking is
essential to any empirical approach to measure passage times.

Piezoelectric stages and emerging light sheet microscopy allow,
in principle, 3D particle tracking (by a rapid scan of focal planes).
But 3D tracking generates huge video data files, 100s of gigabytes
to terabytes depending on the number of particles and the dura-
tion required to observe passage through prescribed layer depths of
10–100 lm. For inhaled lung delivery, one can use human bronchial
epithelial (HBE) cell cultures, place fluorescent particles at the air-
mucus interface, and then track them until they reach the epithelial
layer using 3D microscopy. This strategy is conceivable, but has not
been carried out to our knowledge for micron-scale particles due
to 3D tracking requirements and the time that would be required.
Whether one-sided sub-diffusive transport in a cylinder geome-
try is equivalent to an annular geometry of the airway is another
interesting question.

Thus one is faced with the following scenario. Experimental mea-
surements of particle diffusive mobility in stationary mucus sam-
ples of sufficient volume are required to get particle position time
series for sufficiently long timescales. Then one has to extrapolate
from the particle tracking data to one-sided passage time distri-
butions versus mucus depth. Finally, one must perform these 3D
experiments, record and analyze the particle tracking data versus
particle control parameters, diameter and surface chemistry. Even
if one has the resources to perform all of these experiments, con-
vert the particle tracking video data to particle position time series,
and analyze the data: is this sufficient to extrapolate and estimate
particle passage time distributions versus mucosal layer depths (see
Table 1). Furthermore, do experiments and passage time estimates
for one organ mucus sample apply to the same organ but different
mucus sample, e.g., versus age, disease and disease progression of the
individual? How do the passage time estimates scale with particle
diameter or mucus layer depth? Can one extrapolate across different
particle surface chemistries?

Under ideal circumstances, the answer to all of the above
questions is affirmative. The ideal assumptions are mucus is a
homogeneous, viscous fluid with a known viscosity (e.g., 10–100
times more viscous than water); and the diffusing particle is a pas-
sive tracer that moves solely due to entropic fluctuations of the
simple fluid. For any interaction between the particle and fluid that
does not corrupt the Brownian nature of particle diffusion, then
there is an effective diffusivity. Under these assumptions, since exact
scaling laws exist, one does not have to perform experiments or

Table 1
Estimated depth of mucus barriers for various
organs [41,42].

Lung: central airway 10–20 lm
Lung: upper airway 50–100 lm
GI tract: stomach 40–450 lm
GI tract: ilium 10 lm
GI tract: colon 110–160 lm

numerical simulations of passage times for all particle sizes and
mucus viscosities and layer thicknesses. In fact, one does not have to
observe even one passage time of one particle; the entire distribution
of passage times is known for any particle diameter, fluid viscosity
and thickness of the layer. This will be presented and illustrated in
Sections 2, 3. We then walk through evaluations of passage times as
each of these idealized assumptions are relaxed in light of what we
know about drug particles, human organ mucus, and particle-mucus
interactions.

Recapitulation of factors that violate the ideal scenario with full
control over one-sided passage times of particles through mucosal
organ barriers. Airway, sinus, cervical, and intestinal mucus is not a
simple viscous fluid. Mucus is a viscoelastic hydrogel, consisting of
a mixture of water, salts, proteins, immune response agents such as
antibodies and bacteriophages, DNA from dead cells, and a spectrum
of mucin macromolecules. Mucins are large molecular weight
glycoproteins with remarkable structure, including interspersed
domains of different scales and charge density (cf. [7]) that convey
the functionality of the mucosal barrier. Mucus forms a crosslinked,
entangled, heterogeneous network, creating a distribution of fluid-
filled pores ranging in size from 100 nm to 500 nm [41,43,44].
Dedicated experimental studies are required to identify the pore size
distribution for a given mucus sample. The mucus pore size distribu-
tion has dramatic implications for size-dependent particle diffusive
mobility, as illustrated in Fig. 1 and discussed above. Particles much
smaller than the local pore scales rarely interact with the mucus
mesh network, and typically diffuse normally with diffusivity deter-
mined by the local fluid viscosity and particle diameter. This explains
why small molecules and 50 nm nanoparticles and 100 nm viruses
in diffusion chambers with mucus that has ∼200–300 nm mean pore
diameter exhibit simple Brownian motion.

There is further evidence that the local fluid viscosity within
pores is heterogeneous, owing possibly to density variations in small
proteins or weak particle interactions with the local network that
can be modeled as a local effective viscosity. We discuss the impact
of viscous heterogeneity on Brownian diffusion and passage times in
Sections 3, 4.

As discussed above, particles with diameter sufficiently large
(typically above 200 nm) relative to the length scales of the
mucin network, if they have neutral interactions with the network,
exhibit correlated fluctuations and sub-diffusive MSD scaling
over long timescales that reveal the local, frequency-dependent,
viscous and elastic moduli of the mucus gel. This scenario is the
fundamental basis of passive particle tracking microrheology — to
convert entropic fluctuations of passive microbeads to equilibrium
viscoelastic moduli via the Generalized Stokes-Einstein Relation
(GSER, cf. [23,45]), which we recall and discuss in Section 3. If
sufficiently large particles have attractive and/or repulsive interac-
tions with the mucus network, their motion is some perturbation
of neutral particle motion, which will typically not obey the GSER
scaling behavior. In all cases, the particle diffusive behavior is not
simple Brownian motion, and the only strategy for estimation of
passage times is based on modeling and simulation. Such a strategy
requires sophisticated modeling of transient, sub-diffusive processes
together with significant experimental and theoretical challenges to
identify the timescales of memory due to elasticity of the network
(cf. [46–51]).

A higher level design task, our penultimate goal in this review,
is to not only insure drug penetration through the mucus barrier
with quantification of the inherent uncertainty, but to control the
passage time distributions, i.e., arrival times to the epithelium, of
drug carrier particles. We summarize the requisite technologies
(experimental and theoretical) to achieve such a high-level design,
both progress and challenges associated with each technology,
toward a capability to dictate the dynamic schedule of drug dosage
to the airway epithelium, including an assessment of the factors
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governing variability and uncertainty even if the full design task is
fulfilled.

2. The ideal scenario with precise control over inhaled particle
passage times through mucus barriers

Assume a mucus layer of uniform thickness, L, uniform viscosity
g, and particles of radius r. In this section, we assume the simplest
scenario, namely that particles undergo simple Brownian motion (a
precise mathematical definition is presented in Section 2.1). We treat
the mucus deposition interface as a reflecting boundary; particles
start at the deposition interface, with movement only allowed into
the mucus layer. The mucus-epithelium interface is modeled as an
absorbing boundary; when a particle first encounters this boundary,
the total elapsed time is recorded and the time series is terminated.
A sample particle trajectory is shown in Fig. 2.

Many such particle trajectories are simulated, and the time it
takes to pass from entry point to exit point, the one-sided particle
passage time, is recorded for each simulated particle. In Fig. 3,
a histogram of passage times from 10,000 particle simulations
is shown, along with the exact values of the probability density
function and mean first passage time given in Section 3.

A natural question arises at this point: What are the first passage
time distributions and mean passage times for other particle radii r,
mucus viscosities g and thicknesses L? We can, of course, compute
the answers across the full 3-parameter space (r,g, L) for a relevant
range of each parameter, just like we generated the passage time
histogram in Fig. 3 for the choice (r, g, L) = (0.5, 2.34 × 10-8, 5).
Figs. 4 and 5 illustrate the brute force results of direct simulations for
(r,g, L) = (0.5, 2.34 × 10-8, L) for mucus depths L = 1, 2, . . . 10 lm,
and (r,g, L) = (r, 2.34 × 10-8, 5) for r = 0.1R, 0.2R, . . . R.

Figs. 4 and 5 correspond to sparse data along two line segments in
a 3-dimensional parallelopiped, indicating how cumbersome it is to
not only generate the data over a large parameter space, but then one
has to mine the dataset for meaningful information. We shall come
back to this onerous task when we discuss the realities of particles
diffusing in mucus. Meanwhile, if one looks at the mean first pas-
sage times (MFPT) in Figs. 4 and 5, a striking realization is evident:
the MFPT scales linearly with r and quadratically with L. If we had
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Fig. 2. A sample Brownian particle trajectory in a layer of uniform depth L = 5 lm
and viscosity g = 25 times that of water, 2.34 × 10-8 lm2s-1, with a time step, t,
of 1/60 s. As the particle of radius r = 0.5 lm undergoes Brownian motion through
the layer, it stays near the presumed air-fluid interface at early times, returning to
and reflecting from the upper boundary. Gradually, the particle moves away from the
boundary and eventually is absorbed at the lower boundary at T = 601 s for this
simulation.
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Fig. 3. Probability Density histogram of passage times for particle simulations
described in Fig. 2, together with the exact PDF and mean first passage time. The PDF
is closely approximated by a lognormal distribution.

computed the analog of Figs. 4 and 5 for g, we would observe a linear
scaling of MFPT with g.

Here is where a rigorous theory for the ideal scenario not only
confirms these observations, but generalizes them across the entire
3-parameter space (r,g, L)! The exact formula for the MFPT of the
one-sided diffusion of Brownian particles of radius r in a layer of
uniform viscosity g and uniform depth L, starting at a reflecting
boundary z = 0 and diffusing until hitting an absorbing boundary
z = L, is

〈
T
〉

=
L2

2D
, D =

EB

6pgr
, (2.1)

or

〈
T
〉

=
3p
EB

grL2. (2.2)

where EB = kBTK ≈ 4.1 pN nm (at 25 ◦C) is the natural energy
scaling factor for molecular scale systems. Therefore we confirm that
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Fig. 4. First passage time distributions for different values of the layer thickness,
L. The means for the distributions are indicated by the dots below each, and they
demonstrate that the times it takes to pass through the layer increases as a power law
with respect to the thickness of the layer.
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Fig. 5. First passage time distributions as a function of particle radius, r. The mean
first passage times have a linear relationship with both r and g.

the MFPT scales linearly with r and g and quadratically with L, and
given the precise particle size, mucus viscosity and thickness, the
exact value of MFPT is known. Furthermore, there is an exact formula
for the entire passage time distribution, given in Section 3, which
is an infinite series but it can be calculated numerically to arbitrary
precision, as illustrated in Figs. 3 and 4.

With these precise results in hand, we return to the design goals
for inhaled drug particle delivery, and assume the ideal scenario is
applicable. For sufficiently small molecules and nanoparticles that
do not interact with the mucus network in any significant way,
their diffusion is normal with an effective diffusivity D = EB/(6pgr),
the celebrated Stokes-Einstein relation. If particles are polydisperse
with a known distribution of radii r, it is straightforward to gen-
erate the full passage time distribution and MFPT. In Section 3, we
discuss analogous scenarios in which the layer thickness is non-
uniform and the viscosity is heterogeneous, and show how the
theory of Brownian motion can be extended, tediously yet straight-
forwardly, to rigorously compute the full passage time distributions
and MFPTs for polydisperse particles in heterogeneous viscous fluids
of variable thickness. This exercise illustrates the power of the direct
application of the scaling laws for Brownian motion. For application
of the fundamental theory to drug particle design, one designs the
particle radius distribution and wants to prescribe the passage time
distribution. The only unknowns that we need are the mucus vis-
cosity distribution and the mucus thickness profile in the airways
of deposition. As stated at the outset, we defer to other technolo-
gies to estimate the layer thickness profile; heterogeneous thickness
profiles are addressed in Section 2.2 for this ideal scenario. Thus,
our only remaining task is to infer the mucus viscosity distribution,
an inverse problem, whose solution for viscous fluids is straight-
forward via particle tracking. One first must distribute particles of
any fixed radius randomly throughout the mucus sample, and use
particle tracking technology to get their position time series.

For each particle position time series, in a locally uniform viscous
fluid, the maximum likelihood estimator of the diffusivity is

D =
1

2N

N∑
n=1

∥∥Dxn
∥∥2

Dtn
. (2.3)

The increment statistics of each particle will give the local
diffusivity D = EB/(6pgr) of the spatial mucus environment they

are sampling. Since r, EB are known, one determines g at the random
experimental sampling of the mucus volume. The only caveat is that
the length scales of heterogeneity in viscosity should be larger than
the distance traversed by each tracked particle. One can confirm this
caveat by looking at the histograms of increments to confirm they
are Gaussian and not a mixture of Gaussians (which would indicate
the particle increments are from distinct viscosities); if necessary,
one can reduce the observation time of each particle to resolve finer
spatial scales of viscous heterogeneity. This adaptation to smaller
observation times is possible for normal Brownian motion, with the
only price being a larger error bar in the inferred diffusivity; for
non-Brownian motion, fewer observations, i.e., shorter increment lag
times of observed particles, severely limits the ability to perform
model selection among all candidate non-Brownian, sub-diffusive
processes.

Since exact relationships are known for all parameters of interest,
all problems of this nature are precisely connected to one another.
That is, one can normalize the probability density functions and
time values by the mean first passage time, T, such that all of these
curves collapse on each other, shown in Fig. 6. Given the dimension-
less curve shown in Fig. 6, we can rescale the curve to represent
the probability density function when we know the values of the
parameters of interest (i.e., D and L) (Fig. 7).

2.1. First passage time across a viscous mucus barrier

The development of first passage time theory for stochastic
physics of submicron biological systems has advanced significantly
in the last few decades [52–61]. The strength of the theory is its
ability to explore how thermal fluctuations, chemical interactions,
and mechanical forces on a particle play out in specific scenarios
that include the complex geometries typical of living systems.
For example, the first passage time for a transcription factor to
locate a specific sequence of DNA involves random motion within
the nucleoplasm, interspersed with random motion along DNA
filaments. The combination of the two phases of motion substantially
speeds up the first passage time [60].

In this section, we formulate penetration of a mucosal barrier by
drug particles as a first passage time problem. For completeness, we
include the basic formulation of a first passage time distribution.

Let X(t) be the distance of a given particle undergoing Brownian
motion from the airway lumen. Let the random variable t be the first
passage time, defined as the first time at which the particle reaches
the epithelium at X(t) = L (in mathematical terms the definition is
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tions by L and D such that all curves are equivalent.
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t = inf{t > 0 : X(t) = L}). Let p(x, x0, t) be a solution to the Fokker-
Planck equation [62],

∂p
∂t

= D
∂2p
∂x2

, 0 < x < L, (2.4)

∂p
∂x

= 0, x = 0, (2.5)

p(L, x0, t) = 0, t > 0, (2.6)

p(x, x0, 0) = d(x − x0). (2.7)

The solution to this equation can be regarded in two equivalent
ways. First, p( • ) can be viewed as the normalized concentration of
a drug particle released instantaneously at a distance x0 from the
airway lumen and absorbed at the epithelium. Second, from the
perspective a single drug particle, we have

p(x, x0, t)dx = Prob
{
x < X(t) < x + dx, t < t | X(0) = x0

}
. (2.8)

Given the solution to Eq. (2.4), the first passage time density is
derived as follows. The probability the particle has not yet exited the
layer at time t is called the survival probability and is given by

S(t) = Prob[t < t | x0] =
∫ L

0
p(x, x0, t)dx. (2.9)

The first passage time distribution is then

f (t | x0) = − dS
dt

= −
∫ L

0

∂p
∂t

(x, x0, t)dx

= −D
∫ L

0

∂2p
∂x2

(x, x0, t)dx

= −D
∂p
∂x

(L, x0, t),

(2.10)

where the last two lines made use of Eq. (2.4).
The FPT can be written in two equivalent forms, both of which

are infinite series rather than an algebraic formula. Nonetheless,

the terms of the series converge under most circumstances so that
the series can be truncated to obtain an approximation with any
desired accuracy. The truncation error gets smaller as more terms
are included in the series. There are two different series representa-
tions [63]: one that converges quickly for short times and the other
for large times. For fast convergence at small times (t < L2/(2D)), the
first passage time density is

f (t | x0) =
1√

4pDt3

∞∑
n=0

(−1)n ×
{
(L(2n + 1) + x0) e− (L(2n+1)+x0)2

4Dt

+ (L(2n + 1) − x0) e− (L(2n+1)−x0)2

4Dt

}
. (2.11)

For fast convergence at large times
(

t > L2

2D

)
, the first passage

time density is

f (t | x0) = − 2D
L

∞∑
n=1

(−1)nan cos(anx0)e−a2
nDt , (2.12)

where

an =
p

L
(n − 1/2). (2.13)

At x0 = 0, the formulae for the first passage time density and
cumulative distribution (denoted as F(t)) simplify to

f (t | 0) =
1
T

√
2
p

(
T
t

)3/2 ∞∑
n=0

(−1)n(2n + 1)e−(2n+1)2 T
2t , (2.14)

F(t | 0) = 2
∞∑

n=0

(−1)nerfc

(
(2n + 1)

√
T
2t

)
, (2.15)

and

f (t | 0) = − p

2T

∞∑
n=1

(−1)n(2n − 1)e− p2
8 (2n−1)2t/T , (2.16)

F(t | 0) = 1 +
4
p

∞∑
n=1

(−1)n

(2n − 1)
e− p2

8 (2n−1)2t/T . (2.17)

In practice, either expression can be used, except for extreme
values of very large or vary small values of t.

An explicit solution to Eq. (2.4) can only be found in limited
circumstances. A simpler equation for the mean first passage time
is available [62,64], which allows us to extend our understanding,
for example, to the case where the mucus layer has variable depth
and/or viscosity. Denote the mean first passage time as T(r), where r
is the initial position. One can show that the MFPT satisfies

D∇2T = −1, r ∈ (0, L) × R2 (2.18)

∂T
∂x

= 0, x = 0 (2.19)

T = 0, x = L. (2.20)

In the absence of heterogeneity in D, the MFPT is

T(x) =
L2 − x2

2D
. (2.21)
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At x0 = 0, the above formula simplifies to Eq. (2.1).
To illustrate how the MFPT alone can be useful, we examine the

effect of variability in the depth of the mucus barrier.

2.2. Heterogeneity in the layer depth

It is highly idealized to assume that the mucus barrier has a
uniform depth across the entire surface of the organ. As we show
in this section, the effect of variable depth on the MFPT is not as
simple as one might expect. Suppose we compare the MFPT for two
hypothetical scenarios: a constant depth layer and a variable depth
layer, each having the same average depth. The following result
tells us that even though the two layers contain the same volume
of mucus, it takes longer on average for a particle to penetrate the
variable depth layer. While some particles in the variable depth layer
start closer to the epithelium and take less time to traverse the
mucus barrier, an equal fraction of particles start farther away and
require more time. Recall that the MFPT scales with the square of the
depth L. Hence, the slow down for the fraction that start farther from
the epithelium will be comparatively larger than the speed up for the
fraction that start closer. This observation follows the general rule
that diffusive transport is more efficient over short distances than
long distances [65] for normal Brownian motion; for non-Brownian,
transient, sub-diffusive processes, there is no analogous result.

Assume that the layer thickness is a function of y, the distance
along the centerline of the airway. For simplicity, assume that the
depth is a periodic function L

( y
k

)
> 0, with period k > 0 and average

depth 〈L〉

〈
L
〉

=
1
k

∫ k

0
L
(

y
k

)
dy. (2.22)

If we assume that we have a slowly-varying depth then the MFPT
is approximately

T( y) ∼ L
( y
k

)2

2D
, k � 〈

L
〉
. (2.23)

Averaging the MFPT over the initial position y then yields

〈T〉 ∼
〈
L2〉
2D

. (2.24)

Notice that this result is not the one we might expect from a naive
guess, namely 〈T〉 ∼ 〈L〉2/(2D). Indeed, we can write L

( y
k

)
=

〈
L
〉
+f ( y)

where f(y) is a periodic function with zero average (〈f(y)〉 = 0). Then
we have

〈
L( y)2

〉
=

〈[〈
L
〉
+ f ( y)

]2
〉

=
〈
L
〉2 +

〈
f 2

〉
. (2.25)

The specific value of 〈 f 2〉 depends on the maximum amplitude.
For example, if f(y) = Asin(2py/k), where 0 < A < L is the
amplitude, then 〈 f 2〉 = A2/2.

3. Heterogeneity in the viscosity of a mucus barrier

Variation in the viscosity within the pores of a mucus barrier,
relevant to sufficiently small particle diffusion, arises due to local
density of proteins and other small molecules. The pore viscosity
is potentially stratified from the mucus deposition interface to the
epithelium, arising perhaps from mucus production in the epithe-
lium or active forcing at the deposition or epithelial interface. The

principal result of this section is that the MFPT across a variable
viscosity mucus layer is roughly equivalent to a homogeneous layer
with a spatially averaged viscosity. For a stratified layer, the MFPT
is simply the sum of all the MFPTs through each sublayer, and the
relative order of each layer does not affect the MFPT. Neither of these
results is known to generalize to viscoelastic diffusion.

Suppose that the viscosity depends on the position within the
mucus layer. We define

D(r) =
EB

6pg(r)r
. (3.1)

There are multiple formulations for stochastic models of particle
motion with variable diffusivity, often referred to as multiplicative
noise. Physical considerations are required to resolve the appro-
priate model. The most common approach is to require the model
to satisfy a detailed balance constraint, which ensures that the
particle distribution approaches a steady state that is consistent with
the Boltzmann distribution [66,67]. This is the correct approach,
provided that there are no active (i.e., energy consuming) processes
that establish concentration gradients under steady state conditions.
Particle diffusion in a Newtonian fluid with variable viscosity is
governed by

∂

∂t
p(r, t | r0) = ∇ • (D(r)∇p), r ∈ (0, L) × R, (3.2)

∂p
∂x

= 0, x = L, (3.3)

p = 0, x = 0, (3.4)

p(r, 0 | r0) = d(r − r0). (3.5)

To derive a stochastic differential equation that can be used to
simulate paths, we first rewrite Eq. (3.2) in Fokker-Planck form

∂

∂t
p(r, t | r0) = −∇ • (p∇D) + ∇2 (D(r)p) . (3.6)

The corresponding stochastic differential equation is

dr = ∇D(r(t))dt +
√

2D(r(t))dW(t), (3.7)

where dW is the standard Wiener process [62]. The simplest numer-
ical scheme is Euler’s method,

r(tn+1) = r(tn) + Dt∇D (r(tn)) +
√

2D(r(tn))DtZ(tn), (3.8)

where tn = nDt and Z(tn) is a normal random variable with mean
zero and unit variance. An efficient Euler-like scheme for simulating
the process near reflecting boundaries is given by [68]. We want to
examine two scenarios: viscosity periodic in y and viscosity periodic
in x. For simplicity, we ignore the z direction.

3.1. Depth-wise variable viscosity

The extension of the MFPT Eq. (2.18) to variable viscosity (depth
wise) is

d
dx

(
D(x)

dT
dx

)
= −1 (3.9)
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T ′(0) = T(L) = 0. (3.10)

The solution is

T(x) =
∫ L

x

udu
D(u)

. (3.11)

Starting at the interface,

T(0) =
∫ L

0

xdx
D(x)

. (3.12)

If D(x) is piecewise constant, then the MFPT is simply the sum of
all the MFPTs through each sublayer.

3.2. Variable viscosity along the centerline axis of an airway

Suppose that D(r) = D(y/k), with k > 0, is a k periodic function.
Variation of viscosity in the y coordinate yields the MFPT problem,

∂2T
∂x2

+
1

D( y/k)
∂

∂y

(
D

(
y
k

)
∂T
∂y

)
= − 1

D( y/k)
(3.13)

∂T
∂x

(0, y) = T(L, y) = 0, (3.14)

T(x, y) = T(x, y + k). (3.15)

Both T and D are strictly positive, and we can assume that the two
functions are anti-correlated in y, meaning that when D increases,
we can expect a corresponding decrease in T. Hence, we can assume
that

〈
1

D( y/k)
∂

∂y

(
D

(
y
k

)
∂T
∂y

)〉
=

1
k

〈
D′( y/k)
D( y/k)

∂T
∂y

〉
≈ 0. (3.16)

(One can show that this is asymptotically accurate for both k 
 L and
k � L.) By averaging Eqs. (3.13)–(3.15) with respect to a uniformly
distributed initial position y0 and setting x0 = 0, we obtain

〈T〉 ≈ L2

2

〈
1

D
( y
k

)
〉

=
6prL2

2EB

〈
g

(
y
k

)〉
. (3.17)

Hence, the MFPT is proportional to the averaged viscosity.

4. First passage times across a viscoelastic mucus barrier

Unlike particles below 100 nm diameter exhibiting viscous
dynamics, particles of diameter ∼200 nm or larger interact with the
mucosal mesh structure, thereby exhibiting dynamical “memory”
that cannot be explained by Brownian motion alone. That is, if Xt

is the position of the particle at time t, Brownian dynamics would
predict that the mean squared displacement (MSD) of the particle
scales linearly in time,

〈
(Xt − X0)2

〉
∝ t. (4.1)

However, the MSD of these larger particles is almost always sub-
diffusive on observational timescales of particle tracking, with

〈
(Xt − X0)2

〉
∝ ta , (4.2)

for 0 < a < 1 and on some timescale t ∈ (tmin, tmax). The
fundamental laws of motion of such particles are described by a
Generalized Langevin Equation (GLE) [69],

mẌt = −jXt −
∫ t

−∞
c(t − s)Ẋs ds + Ft , (4.3)

where m is the mass of the particle, Ẍt is its acceleration, j is a spring-
like potential force, c(t) is the memory kernel for the frictional force
on the velocity Ẋt , and Ft is the thermal force, a stationary stochastic
process satisfying the Fluctuation-Dissipation theorem [69], such
that its autocorrelation is given by

〈
Fs, Fs+t

〉
= EBc(t). (4.4)

While the GLE interprets conveniently as the decomposition
of the total force (mẌt) acting on the particle into potential,
frictional, and thermal forces, it can be rigorously derived from the
Hamiltonian equations of motion for any particle in a microcanonical
physical ensemble [70]. As such, the GLE has often served as
a foundational tool for physically valid modeling of viscoelastic
particle dynamics [47,49-51,71]. Two GLE models have proved
particularly useful in this respect.

The first assumes a Maxwellian linear viscoelastic regime [50],
wherein the memory kernel c(t) is composed of discrete, power-law
distributed relaxation spectra,

c(t) =
g

K

K∑
k=1

exp(−t/tk), tk = t(K/k)1/a. (4.5)

Assuming a negligible potential force j = 0, the so-called gener-
alized Rouse spectrum (Eq. (4.5)) induces transient subdiffusion [71],

〈
(Xt − X0)2

〉
=

{
ta t ∈ (tmin, tmax)

t otherwise,
(4.6)

where tmin and tmax are functions of t and K.
The second major GLE model is that of fractional Brownian

motion (fBM), a continuous Gaussian process with zero mean and
covariance function

〈
Xs, Xt

〉
= (D/2) (|t|a + |s|a − |t − s|a) , (4.7)

such that it exhibits uniform subdiffusion

〈
(Xt − X0)2

〉
= Dta. (4.8)

It can be shown that fBM satisfies a GLE with negligible potential
force j = 0 and in the “zero-mass limit” m = 0, with c(t) ∝ t-a [72].

4.1. Calculation of first passage times

Several analytic results for first passage times have been derived
for fBM (cf. [73]) and to a lesser extent, for GLEs as well [74].
However, almost none of the results we have surveyed account
for the reflecting boundary condition required here. One notable
exception is [75], which derives the MFPT for an fBM particle, but
only when released far from the airway lumen, x0 � 0. In contrast
to these analytic results, the following method of simulating FPTs
alleviates many restrictions, at a moderate cost of computational
power and (controllable) approximation accuracy.
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First, we note that the reflecting-boundary process X̃t corre-
sponding to a general one-dimensional stochastic process Xt is given
by [76]

X̃t = Xt − inf
0≤s≤t

Xs, (4.9)

which only for Brownian motion corresponds to X̃t = |Xt|. To
simulate the reflected process one then employs a simple numerical
discretization scheme [77]

X̃n = Xn − min
0≤j≤n

Xj, (4.10)

where X0, · · · , XN are observations of Xt with frequency Dt. [77] prove
that for fBM, the strong discretization error is of order Dta/2. On the
other hand, both fBM and the Rouse-GLE with zero-mass limit are
stationary-increment processes with closed-form autocorrelation
functions [71], which can be simulated in O(NlogN) operations using
the circulant embedding method of [78,79]. In the more general
setting, the GLE can be solved explicitly in the Fourier domain

X(y) =
1

j − my2 + iyĉ(y)
F(y), (4.11)

where X(y) = F{Xt} =
∫ ∞
−∞ e−iytXt dt, F(y) = F{Ft}, and ĉ(y) =∫ ∞

0 e−iytc(t) dt, such that Xt can be simulated approximately using
FFT methods. Employing a similar approach, [51] showed that the
MFPT across a two-sided barrier of the Rouse-GLE (Eq. (4.5)) scales
linearly in the particle radius r, and quadratically in the barrier depth
L, which agrees with the analytic calculation for Brownian motion
with reflecting boundary (Eq. (2.1)).

4.2. Parameter estimation from experimental data

In [46,47], the two- or three-dimensional trajectory of the particle
Xt is modeled as

Xt = lt + S
1/2Zt , (4.12)

where l is a vector of coordinate-wise linear drifts, S is a variance
matrix, and Zt are independent and identically distributed Gaussian
continuous stationary-increments (CSI) processes, such that their
covariance structure is entirely characterized by the coordinate-wise
MSD,

〈
(Zt − Z0)2

〉
= g(t, h). (4.13)

Both fBM and the Rouse-GLE (Eq. (4.5)) with j = 0 and m =
0 [71] are shown to be expressible in this form, with h = a and
h = (a, t, K). Let X = (X0, . . . , XN) denote observations of the particle
recorded at regular time intervals of Dt. Then under model (4.12), the
maximum likelihood estimate of all parameters H = (l,S, h),

Ĥ = arg max
H

p(X | H), (4.14)

along with its error bars, can be calculated efficiently via the methods
in [46,47,80]. In particular, [47] show that the generalized Rouse-
GLE model provides a much better fit than fBM to tracer particles
in 2.5 wt% human bronchial epithelial (HBE) mucus, reliably detect-
ing tmin, the transition time from ordinary to sub-diffusive MSD
scaling. However, calibrating the number of modes K from exper-
imental data remains a computational challenge, and the experi-
mental timescales thus far offer virtually no information about tmax,
the longest timescale of memory, a fundamental parameter for FPT

calculations. The shortest timescale of memory in HBE mucus, tmin, is
negligible (fractions of a second) for passage time estimates, whereas
the longest timescale of memory, tmax, is minutes if not hours, and
thereby is critical for passage time estimates. However, a dedi-
cated experimental effort to track particles for minutes is required,
where one can expand the lag time between observations but must
track particles far beyond current tracking data. This will not only
require experimental time and cost, video data storage expense, but
also light sheet 3D particle tracking and automated conversion of
video files to particle time series such as the convolutional neural
net algorithm [81]. Given such 3D time series, methods in [47]
will produce a fully parametrized, generalized Rouse-GLE model,
which can then be simulated to predict physiological passage times
versus mucus layer thickness, as illustrated in [51], assuming mucus
viscoelasticity is homogeneous! Of course, mucus is heterogeneous,
so future prospects to accommodate this reality are presented next.

4.3. Heterogeneous viscoelastic mucus barriers

Obtaining a physically valid description of particle dynamics
reflecting both (i) a memory component due to interactions with the
mucus network and (ii) the spatial heterogeneity of said network – is
an open modeling challenge. One possible approach is to couple the
GLE (4.3) with a nonlinear potential force, such that

mẌt = −U′(Xt) −
∫ t

−∞
c(t − s)Ẋs ds + Ft. (4.15)

The Boltzmann distribution of the particle is then

p(x) ∝ exp
{
− U(x)

EB

}
, (4.16)

suggesting that the potential term U(x) can account for variations
in the elasticity and/or mesh size of the mucus network, which
affect the particle’s mobility. Euler-type discretization schemes for
Eq. (4.16) have been discussed by [82,83], although the scaling of
these algorithms is O(N2), due to the presence of the memory kernel.

5. Experimental techniques to quantify “nanoparticle” transport
in mucus

Any mathematical modality and prediction of the timescales
of “nanoparticle” penetration through mucosal barriers critically
depends on accurate experimental measurements of transport
properties. Here “nano” refers to particle scales ranging from
nanometers to microns. This has motivated a number of techniques
to assess the degree to which transport is hindered by the mucus
barrier, and furthermore to use these techniques to test particle
design parameters (size and surface chemistry) for their impact on
diffusive transport in mucus. We introduce and briefly describe the
most common experimental techniques used in recent years and
their respective advantages as well as limitations.

5.1. Diffusion chambers

One of the earliest techniques used to quantify the diffusion of
small molecules and nanoparticles through mucus was the diffusion
chamber [84–88], where a thin layer of mucus is sandwiched
between a donor and an acceptor compartment (Fig. 8a). The
rates with which a particle or molecule of interest in the donor
compartment can diffuse through the mucus layer into the acceptor
compartment, as a result of the concentration gradient, can be
measured over time. At steady-state flux, an effective diffusion
coefficient D can be calculated from the concentration profile within
the mucus layer [89].
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Fig. 8. Experimental techniques commonly used to quantify nanoparticle transport in mucus. (a) Diffusion chamber schematic showing concentration-driven nanoparticle
(NP) diffusion from a donor compartment into a similar acceptor compartment. NP diffuse across a thin mucus layer sandwiched between filters of the donor and acceptor
compartments. The concentration profile of NP within the mucus layer can be used to calculate the diffusion coefficient. (b) Fluorescence recovery after photobleaching (FRAP)
schematic showing photobleaching (white circle) of a mucus specimen (dosed with red fluorescent NP) at time zero followed by fluorescence recovery of the circular region by
rapid diffusion of unbleached NP in the specimen. The time required to reach 50% fluorescence recovery (t12) in the photobleached region can be used to calculate the effective
diffusion coefficient of NP. Mobile and immobile fractions of NP are determined based on the ratio of the plateau intensity at the end of the recovery profile. (c) Multiple particle
tracking (MFPT) schematic showing various representative NP trajectories in mucus.

Norris and Sinko were among the first to use the diffusion cham-
ber system (Transwell-Snapwell diffusion chamber apparatus) to
study the one-dimensional effective diffusivity of nanoparticles of
various sizes in mucus [90]. Using reconstituted porcine gastric
mucin gel as a model for human mucus, the group observed a
significant decrease in diffusive mobility (beyond the expected scal-
ing with particle size from the Stokes-Einstein relation), as inferred
from measured translocation permeability as the particle size
approached 300 nm. Similarly, Sanders et al. reported decreasing
penetration percentages of carboxylated polystyrene nanoparticles
(0.24, 0.022, and 0.0017%) diffusing across a 220 lm thick cystic
fibrosis (CF) sputum layer as the particle size increased (124, 270,
and 560 nm, respectively) [84]. From these results, the authors
concluded that the bulk viscoelasticity of the CF sputum effectively
limited the diffusion of nanoparticles. To paraphrase, the nanopar-
ticle diffusion data in CF sputum was violating the Stokes-Einstein
scaling behavior of the diffusion coefficient D with particle size, from
which the authors concluded that particles in mucus above a certain
size, e.g.,200–300 nm, fail to adhere to normal Brownian motion.
These observations were a few years into the rapidly growing field
of particle-tracking microrheology, where it was widely observed
that particles at or above the length scales of the microstructure in
colloids and polymer solutions exhibit non-Brownian, indeed sub-
diffusive scaling, which was consistent with some mechanism of
hindered diffusion relative to Brownian motion.

Although the diffusion chamber technique for measuring drug
and particle diffusion across mucus barriers is simple and allows
quantification of the effective flux from which average effective
diffusion coefficients can be calculate, there are a number of
important limitations. For example, these measurements are
typically taken over the course of several hours, which limits insights
into the transport behavior over short durations [84]. There are also
experimental setup challenges that can strongly influence the mea-
surements but are very difficult to control, such as controlling the
thickness of the mucus layer, ensuring uniformity of the mucus
thickness over the entire surface of the filters, potential blockage of
filter pores by mucins, and alterations in mucus properties during
preparation [91]. Indeed, the diffusion chamber filter is often able to
non-specifically adhere to nanoparticles [84] and/or allow significant
amounts of mucin molecules to diffuse into either the donor or
acceptor compartments, thereby reducing the barrier properties of
the mucus layer [90]. Finally, diffusion chamber measurements only
provide bulk average estimates of an effective diffusivity. Thus,

such measurements rely on the fundamental assumption of normal
Brownian motion (otherwise, there is no known relation between
measured flux and diffusion law parameters such as diffusivity), and
further fail to provide insights into distributions and heterogeneity in
the diffusive mobility of nanoparticles. Both issues confound mathe-
matical efforts to predict passage times on the basis of experimental
data, which require one to accurately identify a diffusion pro-
cess consistent with measured data, to select among all candidate
processes, and to estimate parameters of the best-fit process. Due
to these significant challenges, many investigators turned to high-
resolution microscopy techniques to characterize transport through
mucus.

5.2. Fluorescence recovery after photobleaching

Fluorescence recovery after photobleaching (FRAP) has been
used to quantify the effective diffusion rates of proteins, viruses,
nanoparticles, and many other macromolecules in various biolog-
ical tissues, including mucus [91–95]. The basis of FRAP involves
using strong fluorescence intensity to effectively photobleach a small
defined area within a specimen containing a fluorescent entity of
interest (e.g., a protein), followed by quantifying the recovery of
fluorescence into the defined area over time (Fig. 8b). An effective
diffusion coefficient can be calculated for the molecule of inter-
est, generally based on the time required to reach 50% recovery
of pre-bleached fluorescence. The immobile fractions can also be
determined based on the ratio of the plateau intensity in the FRAP
recovery profile compared to the intensity in a neighboring non-
bleached area [92]. Each FRAP measurement typically takes a few
minutes compared to the multiple hours required with diffusion
chambers, and multiple measurements are performed on each spec-
imen (8–20) to arrive at an average diffusivity measurement. As
emphasized throughout this review, for small molecules and suffi-
ciently small nanoparticles below the length scales of the entangled
and crosslinked mucin network, and that do not bind significantly to
the mucus network, their diffusion is reasonably modeled by simple
Brownian motion, for which an effective diffusivity is relevant.

The landmark work by the Saltzman and Cone groups on diffusion
in human mid-cycle cervical mucus utilized FRAP to measure the
diffusion coefficients of antibodies (IgG and IgA) and select cap-
sid viruses (Norwalk and human papilloma). Prior to their work,
the prevailing dogma was that the bulk viscosity of mucus greatly
limited the diffusion of proteins and viruses across mucus. The FRAP
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technique enabled them to discover that both antibodies and viruses
can undergo rapid diffusion in mucus at rates comparable to those
in buffer [91,93]. In a different study using FRAP, Braeckmans et al.
observed rapid and nearly complete fluorescence recovery (>90%) of
different-sized fluorescent labeled dextran (hydrodynamic radii of 9,
15, and 33 nm) in CF sputum, which further verifies that CF sputum
pores are filled with relatively low viscosity interstitial fluids (only
4- to 6-fold higher viscosity than that of pure water) [92]. In the
same study, FRAP was also used to measure the immobile fractions
of 37 and 89 nm polystyrene nanoparticles in CF mucus (38% and
56%, respectively); the authors attributed the high immobile frac-
tions to adhesive interactions between the hydrophobic domains of
mucins and hydrophobic polystyrene particle surface. More recently,
nanoparticle transport in native and highly purified mucus matrices
was assessed in the presence of guluronate oligomers using FRAP.
By decreasing the density of mucin network crosslinks and conse-
quently increasing the network pore size, the authors found that
guluronate oligomers increased mobility of the nanoparticles across
mucus layers [95].

As described above, due to its ability to quantify real-time trans-
port over very small distances and durations (i.e., high spatiotempo-
ral resolution), FRAP has provided valuable insights into the effective
diffusion of sufficiently small molecules and nanoparticles in mucus.
It is possible to measure spatial variability in transport, thus het-
erogeneity in effective diffusivity, by performing multiple measure-
ments in different regions of a specimen, which represents another
improvement over diffusion chamber studies that yield only one
measured transport value per specimen. Nevertheless, it is impor-
tant to note that each FRAP measurement still represents only an
ensemble-averaged diffusion rate within that region, and hence fails
to provide quantitative insights into the heterogeneity of transport
among different populations of particles. Insight into heterogene-
ity is particularly important for diffusion in heterogeneous media
such as mucus, where the same particles can exhibit orders of
magnitude variations in diffusion coefficients [96]. Another con-
cern with FRAP is the high concentration of fluorescent particles
required within the mucus sample to produce a bright and uniform
fluorescent background [97], which generally promotes a smooth
recovery curve for accurate estimation of diffusion coefficients. At
high concentrations, nanoparticles can cause mucin fibers to aggre-
gate, resulting in significant microstructural changes to the mucus
mesh, such as increased mesh pore size [93,98]. We reiterate that
the overall successes in understanding diffusive transport in mucus
using FRAP are exclusively for sufficiently small particles, Class 1 in
Fig. 1.

5.3. Particle tracking

To circumvent issues with and limitations of FRAP, researchers
are increasingly adopting another microscopy method, particle
tracking (PT), for quantifying transport of drug and gene carrier
particles in various tissues, including nanoparticle transport in
mucus [3,34,35,44,99-107]. PT involves capturing videos of nanopar-
ticle diffusion with high frame rates, and subsequently converting
the real-time motion of individual nanoparticles into position time
series (“tracks”), from which data analysis can be performed. If the
particles are sufficiently small and their tracks are consistent with
Brownian motion, then an effective diffusivity of the mucus (or any
fluid) sample can be inferred, locally from individual nanoparticles
and volume averaged for an ensemble of particles in any chosen
volume that contains the tracked particles. In order to ensure high
fidelity tracking of the same nanoparticles, PT is typically performed
with an epifluorescence or confocal microscope equipped with a
high magnification objective (63× or 100×) and a high-speed cam-
era capable of up to 60 frames per second (fps) imaging [108]. Unlike
FRAP, PT does not require high concentrations of nanoparticles in the

mucus sample, minimizing concerns with mucus dilution or mucin
bundling and with particle-particle interactions. The common statis-
tic for PT experiments is the mean-squared-displacement (MSD) of
individual or ensemble-averaged particle traces (Fig. 8c). The MSD
statistic can be used to quantitatively estimate how far particles
move over given timescales if the particles obey Brownian motion,
as explained in Sections 2 and 3, but only qualitative, relative
estimates can be inferred from the MSD statistic for non-Brownian
motion [41,96,108-110], and even then, all relative mobilities are
restricted to the duration of the particle tracks, which are typically at
most 1 min.

There are additional drawbacks and shortcomings of focusing
on MSD to understand particle mobility. First, the common
understanding of MSD scaling (linear, sublinear, etc.) is based on
“free diffusion in unbounded domains”, which eliminates virtually
all biologically relevant scenarios. Second, correlations in the
increments of a path can be influenced by a host of factors, and often
several completely different mechanisms can have the same effect
on the “shape” (i.e., scaling) of the MSD locally and globally versus
lag time (time between increments). Third, standard methods for
calculating the MSD (e.g., using overlapping lag times to get enough
data for longer lag times, and estimating particle by a non-zero mean
of the increments, then subtraction of drift from the increments)
impose correlations that skew the MSD estimate [46,47].

The modern theory of statistical physics for micron scale
biological systems has largely eliminated the need for the traditional
MSD-based analysis. There is a wide range of mechanistic stochastic
models that describe a particle and the factors within the
physical system that influence its motion. Moreover, there is a
highly developed mathematical framework for formulating new
stochastic models or revising existing ones as our understanding
evolves [62,111,112]. A stochastic model can be used to predict
particle mobility in realistic biological contexts, including boundary
effects, with first passage time theory [60,64,112]. These advances
were illustrated in Section 3. Modern statistical methods can be used
in conjunction with a stochastic model to analyze particle tracking
data in order to extract relevant parameter values and quantitatively
compare competing models [46,47]. These advances and remaining
challenges were addressed in Section 4.

In one of the first PT experiments studying transport of nanopar-
ticles in mucus, Dawson et al. measured the movements of
carboxylate- and amine-modified polystyrene nanoparticles sized
100–500 nm in sputum obtained from patients with CF [107]. The
authors used the PT data to calculate effective diffusion coeffi-
cients for these nanoparticles (notwithstanding the strong likelihood
that many of the particles were undergoing non-Brownian motion).
They concluded an order of magnitude greater diffusion rates than
predicted based on macrorheology of CF sputum, but still more than
300-fold slower than the diffusion of the same particles in water.
These conclusions are subject to the concerns raised throughout
the review, namely that effective diffusivity is not well-defined
for transient sub-diffusion, giving a different diffusivity at every
timescale. Indeed, identical 500 nm particles have been studied in
reconstituted human bronchial epithelial mucus, across a range of
mucus wt% solids spanning healthy to moderate CF disease progres-
sion, and all PT data reveal transient sub-diffusive behavior [40].
Furthermore, there is no study to date that confirms equivalence of
micro and macro rheology of CF sputum. Nonetheless, the trends
revealed in this study are valuable, i.e., relative mobilities based on
effective diffusivity at a common fixed timescale are valid qualitative
metrics of diffusive mobility.

PT has further been a powerful tool in facilitating the develop-
ment of methods to enhance nanoparticle diffusion through mucus,
such as developing muco-inert particles coated with hydrophilic
polymers [35] or the use of mucolytics to aid nanoparticle
transport [105,113]. Rather than measuring only ensemble-averaged
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diffusion rates, such as with FRAP, the ability of PT to resolve motions
on an individual particle basis has enabled a sensitive method
to assess the performance of different particle formulations. For
example, Wang and Lai found that high grafting density of low MW
polyethylene glycol (PEG) on polymeric nanoparticle surfaces could
enable rapid particle diffusion in mucus compared to particles coated
with PEG at lower grafting densities, achieving effective diffusivities
over 1 second timescales in mucus only 7-fold reduced compared to
in water [2].

While PT is a robust technique for quantifying transport of a
large number of individual particles in mucus and other extracellular
barriers, there are a number of limitations to note. First, the
tracked object must be sufficiently bright and retain adequate signal-
to-noise ratio during microscopy (i.e. limited photobleaching). Thus,
it is difficult if not impossible to employ PT to measure the transport
of proteins and very small biological systems. Second, current
microscopy methods are typically limited to 2D rather than 3D video
microscopy.

Due to the limited thickness of the focal plane, small nanopar-
ticles that inherently have greater diffusivity quickly diffuse out
of the focal plane, limiting the duration over which particles can
be tracked to no more than a few seconds. This naturally raises
concerns whether diffusion measurements made on the order
of only a few seconds can accurately predict the transport of
particles over physiologically relevant time scales of several to many
minutes or even longer. This potential discrepancy was highlighted
recently when comparing the transport of 100 nm nanoparticles
using PT (shorter-time scale diffusion) versus FRAP (longer-time
scale diffusion), which yielded significant differences in the calcu-
lated mobile fractions (43% versus 24%, respectively) [114]. The lack
of proper statistical weighting of particle traces can also signifi-
cantly bias the calculated averages and distributions of nanoparticle
diffusivities [48].

For the purposes of assessing passage times of all drug carrier
particles above ∼200 nm in mucus barriers, which do not exhibit
Brownian motion, a serious challenge arises that is discussed in
greater detail in Section 4. Suffice to say, such non-Brownian,
transient sub-diffusive motion is due to the viscoelasticity of
the mucus gel, whose entropic fluctuations are not simply white
noise. Rather, the fluctuations have colored noise arising from the
timescales of memory in the elastic network; particle diffusion that
feels these elastic network fluctuations will be sub-diffusive over
all timescales of memory, and then transition to simple Brownian
motion for timescales beyond the longest memory of the mucus
gel. This situation requires extreme care in modeling the underly-
ing stochastic process, in validating models based on experimental
data, in parameter estimation, and especially in predicting passage
times through layers of varying thicknesses, since there are virtually
no theoretical analogs of the Brownian motion formulas for mean
passage times and passage time distributions! These challenges are
discussed in Section 4. However, a fundamental requirement for
transient sub-diffusive processes, which describe all particles above
200 nm in mucus, is to capture sufficiently long particle trajectories
via PT such that one can assess the longest timescales of memory
across the fluid volume. For this purpose, much longer observations
of the particles of interest in mucus are required than the current 30
s duration particle tracks at 60 fps in most of our studies thus far [40].

Finally, particle tracking analysis, despite the aid of tracking
software, continues to require substantial user supervision and inter-
vention to ensure accurate extraction of position-time series. There
has been significant progress toward the goal of fully automated
tracking, and dozens of effective methods have been developed that
are capable, given ideal conditions, automatically converting image
data into position-time series particle paths [108,115,116]. However,
given the conditions commonly encountered in experimental data—
such as spatiotemporal heterogeneity, variable background intensity,

photobleaching, and low signal-to-noise ratio (SNR)—analyzing PT
videos remains a labor intensive process. This not only limits the
throughput of the experiments, but also introduces user-variations
in tracking analysis [81]. Over the last decade, machine learning tools
have rapidly advanced the field of computer imaging [117,118]. This
emerging technology has been adapted to the task of automated par-
ticle tracking, processing 4D image data into position-time series
particle paths [81]. Using a type of computer algorithm called a
convolutional neural network, the neural network tracker provides
full automation with substantially improved accuracy over existing
methods, over a broad range of experimental conditions commonly
encountered in the field of drug delivery. This technology promises
to enable broad adoption of PT as a standard laboratory tool for
quantifying particle mobility in micron scale biological systems.

6. Conclusion

Our aim in this review has been to frame the goals of mucosal
drug-loaded particle delivery in terms of technologies required to
control physiologically relevant, one-sided diffusive passage times:
from deposition at the mucus interface, through the mucosal barrier,
to the epithelium. If one can control particle passage times from
deposition to absorption by epithelial tissue, then one can control
drug dosage and rate of uptake via drug carrier particle design. The
design space of particles consists of size, surface chemistry, and
stability while transporting in mucus. The states-of-the-art for the
requisite experimental and theoretical technologies for control of
one-sided passage times of drug carrier particles through mucosal
barriers have been reviewed, highlighting remaining hurdles and
prospects for overcoming them.

The passage-time perspective is an extension of the prevalent
assessment in mucosal drug delivery based on effective diffusivity,
estimated from experimental data over a fixed timescale
(cf. [3,31,32,35,44,96,99-107]. When particle diffusion is Brownian,
e.g., small molecules and Class 1 (Fig. 1) nanoparticles in a homo-
geneous mucus of a prescribed thickness, then the full theoretical
power of Brownian motion (exact formulas for mean first passage
time and passage time distribution) can be applied to gain a rigor-
ous quantitative assessment of one-sided passage times from free
diffusion experiments on a short, fixed timescale. Furthermore,
the scaling of passage times with respect to particle size, mucus
viscosity and layer thickness, are all explicitly known. We further
discussed how to generalize these results for two physiologically rel-
evant violations of the ideal scenario: heterogeneity in the viscosity
and thickness of the mucus layer. The scaling behavior of the
Stokes-Einstein relation already gives hints at the averaging results
we presented: heterogeneity in viscosity can be replaced with an
averaged viscosity, due to the linear scaling of mean first passage
time with viscosity (and with particle size), whereas the scaling with
depth of the layer is quadratic, yielding non-intuitive mean first
passage time results due to modulations in the air-mucus interface.

For non-Brownian motion typical of Class 2 and 3 particles in
mucus depicted in Fig. 1, the fixed timescale, effective diffusivity
approach is only qualitative, and only applicable for the timescales
of experimental observation, which are typically much shorter
than passage times through organ mucosal barriers. Thus, effec-
tive diffusivity does not provide quantitative estimates of passage
times for 200 nm and larger drug-carrier particles for mucosal drug
delivery. In Section 4 we summarize a theoretical strategy to rig-
orously assess physiologically relevant, one-sided passage time dis-
tributions, relying on data from emerging 4D (3D + time) particle
tracking technologies discussed in Section 5. When simple Brow-
nian motion is violated (essentially all particles 200 nm in size or
larger in typical human mucus) due to a combination of steric
interactions with, entropic fluctuations of, electrostatic interactions
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with, and transient binding interactions (directly or through third
party molecular anchors) with, the mucus macromolecular network.
We likewise discussed viscoelastic heterogeneity of mucus and
non-uniformity in layer depth. In all such particle-mucus scenarios,
mobility is strongly time-dependent, so that none of the fixed timescale
experiments and mobility characterizations are sufficient to extrapolate
to passage times. Intriguing open questions remain as to how to
simulate passage times for transient, sub-diffusive motion through
a heterogeneous viscoelastic medium. Solutions to these questions
and the development of the requisite experimental and theoretical
technologies are the focus of current research among the authors and
collaborators.

Finally, we cannot overemphasize the importance of the mucus
source. We have described the experimental and theoretical
technologies that will, hopefully within a few years, give the capa-
bility to predict passage times for given particles in a given mucus
sample. However, the predictions are strongly dependent on the
individuality of the mucus source, with very different outcomes
depending on the organ, the individual’s health versus disease, age,
and many factors that have yet to be resolved. We note, for example,
the dramatic changes in the diffusive mobility and estimates of pas-
sage times for identical micron beads in human bronchial epithelial
mucus over a range of weight percent solids of [40], a proposed
biomarker in disease progression for cystic fibrosis and COPD. Iden-
tification of lung mucus profiles for sub-populations that stand to
benefit from drug therapies has certainly been pursued, e.g., for
asthma, diabetes, gene therapy, and COPD, and the technologies
reviewed here stand to benefit the drug particle design strategies.
Such studies reveal the importance of the mucus source in the design
of drug carrier particles, and how diffusion in mucus of identical par-
ticles in any human organ can vary dramatically with age, health
factors, disease and disease progression.
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