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Abstract
Human-provided resource subsidies for wildlife are diverse, common, and have profound 
consequences for wildlife–pathogen interactions, as demonstrated by papers in this themed issue 
spanning empirical, theoretical, and management perspectives from a range of study systems. 
Contributions cut across scales of organization, from the within-host dynamics of immune 
function, to population-level impacts on parasite transmission, to landscape- and regional-scale 
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patterns of infection. In this concluding paper, we identify common threads and key findings from 
author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) 
animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; 
and (iv) inter-specific contacts and cross-species transmission. Exciting avenues for future work 
include studies that integrate mechanistic modeling and empirical approaches to better explore 
cross-scale processes, and experimental manipulations of food resources to quantify host and 
pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and 
ask how diet-altered changes to the host microbiome influence infection processes. Given the 
massive public health and conservation implications of anthropogenic resource shifts, we end by 
underscoring the need for practical recommendations to manage supplemental feeding practices, 
limit human–wildlife conflicts over shared food resources, and reduce cross-species transmission 
risks, including to humans.

Keywords
resource subsidy; anthropogenic change; human feeding of wildlife; pathogen transmission; 
within-host dynamics; cross-species transmission

Introduction
Human feeding of wildlife is pervasive and can occur through both intentional (bird feeders, 
tourist sites; [1,2]) and unintentional routes (landfills, agricultural crops; [3,4]). In response, 
animal populations can shift movement behaviors or geographic ranges, experience higher 
densities and contact rates, and show changes in demographic rates and interactions with 
other species. The population- and community-ecological consequences of supplemental 
feeding in wildlife have rarely been explored and could be far-reaching, particularly for 
infectious disease dynamics [5–8].

Papers in this issue directly examine the interactions between anthropogenic resource 
subsidy and infectious disease dynamics in wildlife using diverse approaches that include 
mechanistic models, observational field studies and experiments, analysis of citizen science 
data, and synthetic reviews. Empirical studies presented here examine diverse and engaging 
empirical systems, ranging from birds at backyard feeders, to bats in urban and agricultural 
environments, to elk in Yellowstone National Park (Figure 1). Despite differences in the 
biology of distinct systems and environmental contexts, papers in this theme issue point to 
common questions, patterns, and challenges for future work. Our goals in writing this 
synthesis are to identify these common threads and outline several immediate priorities for 
future research on the links between human resource subsidies and wildlife disease.

The taxonomic breadth of hosts and pathogens affected by resource provisioning, and the 
range of food sources examined here, underscore how pervasive this phenomenon has 
become. Given that responses of several pathogens studied here are accompanied by 
elevated risks of cross-species transmission to humans, livestock, or vulnerable wildlife 
populations, studies that provide a mechanistic understanding are sorely needed to predict 
future responses to feeding by humans. The inevitability that human populations will 
continue to expand, alter habitats globally, and encroach on wildlife, means that animal use 
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of resources provided by humans will only increase, lending a sense of urgency to 
understanding the impacts for wildlife, domestic animal, and human health [9].

Key findings and common threads across diverse systems and approaches
Host immunity shows complex responses to resource provisioning

Because mounting and maintaining immune defenses require energy and nutrients [10,11], 
access to anthropogenic food subsidies could increase the immune function of wildlife, 
especially during times or in habitats where natural food sources are scarce or limited [12]. 
Under the common assumption that provisioning leads to better-defended hosts, pathogen 
transmission should decrease owing to lower infection probability or faster recovery times 
[13,14], but such effects might be offset by other processes like aggregration around food 
that increase pathogen transmission [15]. Hite and Cressler (this issue) used a nested 
mechanistic models to show that even if resources decrease host susceptibility to infection, 
an increase in host densities in response to resource subsidies can override this effect and 
produce a higher total transmission rate.

Empirical studies in this issue showed that the relationship between provisioning and 
immunity can depend on the type of defense, quality of resources, and host and pathogen 
taxonomy, leading to divergent outcomes among study systems (reviewed in Strandin et al., 
this issue). This finding is consistent with past work on domesticated animals showing that 
different components of host immunity respond differently to resource subsidies, in part 
because of the variable costs of different immune process, and also because key macro- and 
micronutrients can lead to immune system biases [16,17]. In natural systems, Becker et al. 
(this issue) found that abundant livestock as food for vampire bats predicts stronger innate 
immunity relative to adaptive immunity. Heightened innate immunity in the bats was further 
associated with a lower probability of infection by Bartonella and hemoplasmas. 
Importantly, individual dietary history itself did not strongly predict variation in bat immune 
profiles, suggesting that broader habitat-level factors associated with livestock rearing could 
underlie parasite exposure and host immunity. In other cases, such as elk supplemented at 
winter feedgrounds (Cotterill et al. (this issue) and urban flying foxes [18], researchers 
hypothesized decreased immunocompetence with food provisioning, owing to elevated 
stress hormones stemming from high host densities and due to coinfections that impair 
immune response. Immune activity can also be compromised if human-provided food is 
contaminated with toxins or drugs. As a case in point, Spanish imperial eagles supplemented 
for conservation purposes with domestic rabbits (that had been treated with antibiotics and 
antiparasitic drugs) showed decreased complement activity owing to the presence of 
pharmaceuticals (especially fluoroquinolones) in their food [19]. Similarly, vampire bats that 
fed more consistently on domestic animals in agricultural habitats had higher concentrations 
of mercury that were associated with weaker bacterial killing ability of plasma [20].

It is important to note that evidence for nutritional condition altering wildlife immune 
defenses is limited to a relatively small number of hosts, and studies of macro- and micro-
nutrient influences on immunity are needed to more critically evaluate this assumption. 
Genome-wide RNA sequencing could help researchers focus on particular defense 
mechanisms by quantifying immune gene expression between provisioned and 
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unprovisioned groups, and those with or without known infections [21,22]. In future work, 
phylogenetically informed meta-analysis could help quantify the importance of food 
quantity, quality, and host and pathogen traits [23] for immune defense and infection 
outcomes across wildlife systems.

Behavioral changes in foraging and contact can alter local transmission processes

Several studies in this theme issue demonstrate how resource provisioning can alter key 
behaviors that underlie pathogen transmission, including foraging behavior, aggregation, and 
contacts between species [15,24,25]. Crowding of individuals around supplemental 
resources can lead to higher host densities and contact rates, and thus increase density-
dependent transmission, as illustrated previously through theoretical models [13]. Moyers et 
al. (this issue) designed an experiment to test how feeder density influenced contact rates 
and exposure to the bacterium Mycoplasma gallisepticum in captive house finches. Their 
work showed that higher bird feeder density in enclosures caused the rapid spread of clinical 
infections, whereas lower feeder density reduced pathogen spread, possibly due in part to the 
presence of sub-clinical and potentially immunizing exposures. Importantly, further work is 
needed to examine how individual-level host heterogeneity in the use of supplemental 
resources contributes to population-level infection dynamics; for example, can subsets of 
hosts that aggregate around resources act as super-spreaders, or might host heterogeneity 
limit the population-level spread of disease?

Cotterill et al. (this issue) reviewed the implications of intentional winter feeding of elk (to 
limit encounters with cattle) in the western USA. Feed grounds have facilitated brucellosis 
transmission among elk by elevating local density and contact rates [26] and, more 
speculatively, by decreasing immune function. Feeding has now created a policy 
conundrum: high infection prevalence in elk leads to greater motivation to separate elk and 
cattle, which leads to continued winter feeding and further infection risk. While numerous 
papers in this theme issue advance a mechanistic understanding of the links between disease 
and provisioning, disentangling the roles of aggregation and subsequent contact rates, versus 
changes in immune functions, for driving pathogen transmission will require further work.

Resource provisioning often causes changes in diet and foraging behaviors, especially 
among urbanized wildlife populations that subsist on supplemental food. Murray et al. (this 
issue) showed that white ibises shifting from natural wetlands to urban parks in Florida, 
where they commonly forage on provisioned food, have lower ectoparasite burdens. To 
explain this pattern, the authors hypothesize that easier food access might allow birds to 
spend less time foraging and more time preening to remove parasites. In urban and coastal 
Queensland, the Australian white ibis experienced explosive population growth in the 1990s 
due to provisioning from open landfills [27,28]. The abundance of anthropogenic food waste 
as well as deliberate feeding in urban parks led to a shift from coastal nesting and foraging 
to suburban and urban foraging, bring ibis into greater contact with each other, as well as 
with chickens on poultry farms and people in recreational areas [27]. Increased population 
density and interaction among ibis and with domesticated animals and people could also 
increase risk of intra- and interspecies pathogen transmission. Understanding the 
mechanistic links between shifts in behavior and disease risk could be strengthened by 
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future studies that simultaneously measure specific behaviors (at the individual level) and 
changes in infection (at individual and population levels). For some food-provisioned 
populations, efforts to limit contact rates during high-risk intervals (e.g., by ending feed 
dates earlier in the season for elk, or spacing out bird feeders at lower density) or preserve 
particular behaviors (e.g., such as preening or other anti-parasite behaviors) could prove 
important for managing infection risk in wildlife.

Behavioral changes in host movement can influence landscape-level disease processes

Provisioning can cause changes to host movements and infection patterns at large spatial 
scales. As reviewed by Satterfield et al. (this issue), anthropogenic food subsidies can 
decrease migratory movements and concentrate hosts into resource-subsidized regions, 
where greater host aggregation, year-round parasite accumulation, and longer residency 
times could increase exposure to pathogens [6,23]. The authors note that shifts towards more 
sedentary behavior in response to resource provisioning has occurred for multiple migratory 
and nomadic species, in some cases associated with resulting increases in infection risk [29–
32]. For example, satellite telemetry studies of Pteropus medius, the reservoir for Nipah 
virus in Bangladesh, suggest that this species is much more sedentary than its relative, P. 
vampyrus in Malaysia, which could be due, in part, to anthropogenic food resources (Epstein 
et al., unpublished) [33]. Date palm sap, harvested by humans in Bangladesh, is exploited by 
frugivorous bats throughout winter months and is the primary route of Nipah virus spillover 
from bats to people [34,35]. Alternatively, animals that stop migrating might be exposed to a 
lower diversity of parasites across their migratory range, and more limited host movements 
could reduce the spatial spread of pathogens [36,37]. A theoretical model (Brown and Hall, 
this issue) explored these questions for a partially migratory host affected by a vector-borne 
pathogen. The model showed that when provisioning increased the survival of resident hosts 
during the non-breeding season, both infection prevalence and the fraction of the population 
that is non-migratory increased. Because greater proportions of residents permit the 
sustained transmission of pathogens, this behavioral shift could be especially costly to 
remaining migrants that travel through areas with infected residents; resource provisioning 
could therefore threaten the persistence of migratory behavior.

For some highly mobile hosts, resource provisioning will alter daily foraging movements 
and habitat use. In Australia, naturally nomadic fruit bats have shifted into urban areas 
where they feed on native and exotic flowering and fruiting trees planted by humans [30,38]. 
Paez et al. (this issue) applied optimal foraging theory to explore how urban bat colonies 
alter their foraging strategies in response to decreasing native habitat and seasonal food 
availability. Their work predicts that residency in urban patches will increase as native 
foraging habitats become more isolated, and during periods of overall food scarcity. Longer 
residency in urban centers could set the stage for less frequent but larger viral outbreaks in 
bats, resulting in higher exposure to humans and domesticated animals [38,39].

Changes to interspecific interactions can cause cross-species transmission and pathogen 
emergence

Cross-species pathogen transmission requires several ecological, epidemiological, and 
behavioral factors to align [40]. Importantly, anthropogenic provisioning can influence 
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multiple components of this alignment by (i) changing host community composition, (ii) 
altering infection dynamics within populations of reservoir hosts, and (iii) affecting contact 
rates between host species. First, because the responses of host species to novel resources in 
human-altered landscapes can range from disappearance to explosive population growth, 
provisioning can dramatically alter host community composition and patterns of pathogen 
transmission [41–43]. As an example of these changes, large-scale monocultures in Brazil 
and Panama altered rodent communities and increased human exposures to rodent species 
infected with hantavirus [44,45]. At the largest spatial scales, provisioning could expand 
host geographic ranges, creating novel opportunities for cross-species transmission where 
hosts previously did not co-occur [46]. Second, changes to infection dynamics within 
primary host species (see above sections) can have knock-on effects that amplify or dampen 
the probability of transmission given inter-specific contacts [15]. Third, even if host 
community composition and disease dynamics in reservoir species remain unchanged, 
provisioning can facilitate cross-species transmission by altering the frequency and nature of 
inter-species contacts. For example, bats foraging on mango trees planted near pig farms, or 
bats drinking palm sap as it runs down tree trunks into collecting vessels, created new routes 
of Nipah virus transmission from bats to pigs and humans, respectively [35,47]. The 
common practice of allowing domestic animals to feed on dropped or bitten fruit, that may 
have been contaminated by bats, also increases the risk of pathogen transmission [48,49]. In 
Bangladesh, 26 common fruits grown and eaten by people are known to be eaten by 
frugivorous bats, and eating dropped fruit with animal bite marks regularly occurs (Epstein 
et al., unpublished.) Similar processes could influence pathogen transmission among wildlife 
when resources promote multi-species aggregations of previously ecologically isolated 
species [50,51]. Importantly, these mechanisms of resource-driven changes in cross-species 
transmission might act synergistically. As discussed by Becker et al. (this issue), livestock 
both stimulates vampire bat population growth and, by its own presence, expands 
opportunities for cross-species transmission of rabies virus and potentially other pathogens.

Altered dynamics of cross-species transmission are among the most visible and alarming 
responses to resource provisioning because they can directly impact human health, 
agriculture, or the conservation of vulnerable wildlife populations. For example, livestock-
driven increases in vampire bat rabies have made this disease one of the three most 
important zoonoses in Latin America and a significant barrier to the advancement of 
agrarian communities [52,53]. Similarly, the resource-driven rise of Hendra virus cases in 
humans and horses in Australia created economic and social challenges, ranging from the 
rising need for veterinary vaccines to protect horses, to conservation challenges as bat 
persecution is promoted for disease control [38,54]. In Asia, the transmission of zoonoses 
from provisioned non-human primates to people impacts tourism [55]. Importantly, 
provisioned landscapes can provide opportunities for spillover infections from humans (or 
livestock) to wildlife, and potential spillback into humans. For example, in parts of Africa, 
baboons commonly frequent human settlements and obtain food from houses or waste sites. 
Parasitological surveys showed baboons near these settlements can harbor parasitic worms 
and protozoa that commonly infect humans, although further diagnostic work is needed to 
determine whether the primate isolates match parasite genotypes recovered from nearby 
humans [56,57]. Better quantifying the contexts under which provisioning mediates cross-
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species transmission could provide an epidemiological lever to promote more responsible 
management of anthropogenic food subsidies for wildlife.

Critical priorities for future work
Taxonomic biases in studies of provisioning and infection

Work included in this Theme Issue reflects the taxonomic breadth of hosts and parasites 
studied in the context of resource provisioning, and also highlights taxonomic gaps to be 
addressed in future work. The empirical studies presented here focus primarily on mammals 
(e.g., bats, ungulates) and birds (e.g., passerines, wading birds), with less representation 
from invertebrates (e.g., monarch butterflies, Daphnia). Studies here also focused heavily on 
microparasites, particularly bacteria and viruses, transmitted through direct and non-close 
contact (e.g., fecaloral routes), although ectoparasites are also represented. More generally, 
throughout the literature, studies of provisioning and host-parasite interactions are biased 
towards these taxa (reviewed in [15, 23]). For example, a recent meta-analysis of over 300 
host-parasite interactions was dominated by studies of microparasites transmitted by close 
and non-close contact, and of helminths transmitted through non-close contact and 
intermediate hosts [23]. Vector-borne diseases, and protozoan and fungal parasites are 
generally poorly represented, highlighting a priority for future studies, particularly in light of 
expanding vector distributions under climate change and the role of fungal parasites in 
wildlife population declines [58–61]. Past studies of food provisioning and wildlife disease 
also heavily biased towards mammals and birds, with much less work on invertebrates and 
other ectotherms. Civitello et al. (this issue) highlight how nutrient inputs into aquatic 
ecosystems (as a form of anthropogenic subsidy) can have similar effects on host-parasite 
interactions as food subsidy to wildlife (by increasing host density and altering parasite 
production within hosts). This observation stresses the need for greater inclusion of 
amphibians, reptiles, fish, and invertebrates in studies of provisioning and disease.

Modeling studies to link effects of provisioning across biological scales

Resources can affect within-host processes relevant to pathogen colonization, between-host 
transmission at the population level, and landscape-level processes such as host dispersal. 
Mathematical models provide powerful tools for linking infection dynamics across scales of 
organization and for informing the conditions under which provisioning can increase or 
decrease infection. For example, theory to date has shown that when resources strongly 
enhance host defenses, this can limit pathogen transmission that otherwise would increase 
from resource-induced increases in host density [13,62]. If host defenses are unchanged or 
weakened by human-provided resources, increased exposure to pathogens resulting from 
elevated host densities and behavioral changes are likely to increase pathogen invasion and 
prevalence [15]. A separate body of theory used metapopulation models to examine how the 
distribution of resource-rich habitats, and their impact on colonization and extinction, affects 
host-pathogen dynamics. This work shows that increasing the frequency of provisioning 
across the landscape increases pathogen establishment and spread; yet nonlinear 
relationships between infection prevalence and the relative abundance of provisioned 
habitats can emerge if provisioning and infection influence host movement decisions and 
dispersal success [63,64]. Despite these recent advances, a need remains for mathematical 
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models that more explicitly link processes across individual, population, and landscape 
scales.

In this issue, Hite and Cressler contribute a cross-scale approach by developing a 
mechanistic framework coupling within-host processes (through improved immune defense 
and increased pathogen replication in response to resources) and between-host processes 
(through transmission and resource-mediated population growth rates). Their model explores 
the consequences of resource acquisition for parasite virulence evolution and its potential to 
stabilize resource-driven cycles in host population dynamics. The authors demonstrate that 
linking within-host and population-level processes can produce cyclic host population 
dynamics and associated within-host cycles of high and low parasite replication, an 
emergent phenomenon that does not occur when within-host processes are ignored. In other 
work, Civitello et al. (this issue) demonstrate that incorporating trophic complexity (by 
considering predators and competitors of provisioned hosts) can reverse predictions about 
resource-mediated increases in pathogen prevalence. Resource subsidies increase pathogen 
prevalence when only hosts are present, but competitors and predators can lower infection 
prevalence (in some cases causing pathogen extinction) when resources are abundant. These 
studies highlight the importance of considering processes at scales above and below the 
population level in predicting resource subsidy effects on pathogen transmission dynamics. 
An additional key insight from theoretical work is that empirical studies must be long 
enough relative to the duration of infection to capture stable or cyclic responses of 
population and infection dynamics under provisioning. Promising future avenues include 
investigating how resources affect coinfection (e.g., in shaping immune-mediated 
competitive interactions between micro- and macroparasites); the responses of parasites with 
complex transmission modes (e.g., vector-borne and trophically transmitted parasites); and 
relationships for multi-host pathogens where host species that differ in competence might 
respond differently to provisioned resources (e.g., in population density or susceptibility to 
infection) [9].

Future theoretical models that are paired closely with detailed empirical work could be 
especially fruitful in understanding the dynamical outcomes of provisioning. Such work 
could couple local and landscape-level effects of resources on well studied host-pathogen 
interactions. Given that theory to date on provisioning and infection has focused separately 
on population and metapopulation scales, one area that is crucially needed involves models 
that explicitly link local dynamics (e.g., resource effects on individual hosts or contact rates) 
to regional movements of the host and pathogen that also depend on resource distributions 
(Figure 2). From an applied perspective, such models could also allow researchers to predict 
the outcomes of different habitat management scenarios that might alter resources in ways 
that lower infection risks [13,63,65].

Experimental manipulations of food resources to quantify responses of hosts and 
pathogens

Research manipulating food resources is noticeably rare among the growing body of 
literature developing around the effects of anthropogenic food subsidies on host–parasite 
dynamics. Indeed, this theme issue reflects this disparity between observational and 
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experimental approaches, with only a single study (Moyers et al., this issue) among the 
latter. A handful of studies published elsewhere have experimentally manipulated food; for 
example, work by Wright and Gompper [66] showed that clumped food resources increased 
the transmission of endoparasites in raccoons, suggesting a possible behavioral mechanism 
for changes in prevalence. Wilcoxen et al. [67] and Galbraith et al. [68] both manipulated the 
presence or absence of bird feeders and found effects of feeder presence on health-
associated traits such as body condition, as well as effects on the prevalence of diverse 
parasites and pathogens. Responses to feeder presence in Galbraith et al. [68] were parasite- 
and host-specific. Although experimental in nature, field studies such as these still have 
difficulty establishing definite causation (e.g., in contrast, see [69]). For example, in some 
systems, diseased animals could be more strongly motivated to seek out supplemental food 
resources, leading to patterns of higher infection prevalence at supplemented sites that could 
also be interpreted as a positive effect of resources on pathogen transmission [70].

Most experiments to date manipulate food through experimental supplementation, but future 
work could reduce access to anthropogenic foods, especially for species for which finding or 
monitoring unprovisioned populations is difficult. For example, vampire bats in Latin 
America are most abundant and thus readily sampled near livestock-rich areas [71], and 
locating unprovisioned rainforest populations is difficult [72]. Moreover, multiple 
confounding factors, including habitat characteristics and host density, differ between 
provisioned and unprovisioned groups (Becker et al., this issue). In this case, restricting 
access to livestock, such as through artificial lighting to deter bat feeding [73], might be one 
way to monitor host and pathogen responses to reduced access to anthropogenic food. For 
other hosts, limiting access to human foods through fencing, or through campaigns to restrict 
tourist feeding of wildlife, could generate heterogeneity in resources.

Manipulating food quantity and quality is needed to explore the effects of food nutritional 
value on multiple measures of host immune defense, the host microbiome (discussed below), 
and susceptibility to target pathogens. Some experimental provisioning work has examined 
individual and population-level outcomes in birds and rodents [74–77]. Many of these 
experiments have been conducted in semi-controlled settings, such as aviaries and field 
enclosures, reflecting challenges associated with regulating food and disease exposure in 
free-ranging wildlife, which can disperse over large areas. However, confinement might also 
impact disease outcomes in unnatural ways, such as by increasing the frequency and 
intensity of intraspecific transmission opportunities, and inducing stress that often impairs 
host immunity (Strandin et al., this issue).

Future field experiments might simultaneously control multiple components of provisioning, 
especially if anthropogenic foods dampen the seasonality or pulsed timing of natural 
resources, and at the same time make food more spatially aggregated, or change resource 
quality. These same studies could experimentally reduce infections in some hosts, to 
separate responses of host behavior, physiology and fitness from parasite infection itself. 
Given the pervasiveness of provisioning, many opportunities exist to integrate experiments 
within current feeding activities, particularly within wildlife management and conservation 
efforts (e.g., Cotterill et al., this issue). Moreover, the strong causal inference provided by 
well-planned and executed experiments (e.g., by manipulating both infection and resources 
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in free-ranging wildlife [74]) necessitates greater emphasis on these approaches to better 
understand how anthropogenic resources affect host–parasite dynamics.

Understanding consequences of resource subsidies for the evolution of pathogen 
virulence

By affecting pathogen transmission and within-host processes, resource provisioning could 
ultimately affect host and pathogen evolution, an idea explored in depth by Hite and Cressler 
(this issue). General theory on virulence evolution predicts that greater opportunities for 
horizontal pathogen transmission, such as might be created by aggregation around 
provisioned resources, could favor the evolution of more virulent pathogen strains [78]. As 
described earlier, Hite and Cressler’s paper used a multi-scale model to show that such a 
result can arise even when provisioning increases host immunity. Empirical work is crucially 
needed from naturally-occurring host-pathogen systems to test the virulence of pathogen 
strains from provisioned and unprovisioned host populations (e.g., [29]).

Although not examined by papers in this issue, provisioning can, in some cases, allow 
wildlife to better tolerate infection [15], an idea supported by laboratory studies 
demonstrating that improved nutrition can prolong the survival of infected animals and 
increase the duration of pathogen shedding [79,80]. Because host mortality cuts short the 
infectious period for many pathogens, this can constrain greater within-host replication by 
pathogens, and hence limit virulence evolution. In contrast, more tolerant hosts could select 
for more virulent pathogen strains by releasing pathogens from some of the costs of 
virulence [79]. Thus, although improved condition could reduce disease-induced mortality 
of provisioned hosts in the short-term, provisioning could favor the evolution of higher 
virulence in the longer term [81]. Evolutionary models and empirical studies that explore the 
impact of resource subsidies on host tolerance to infection, within the context of other 
processes, are needed to identify the conditions under which provisioned populations 
support pathogen strains of higher virulence.

Seeking how changes to the host microbiome affect larger-scale infection processes

Another important area for future work is understanding how dietary changes associated 
with provisioning could impact the host microbiome and within-host dynamics [15]. The 
composition of gut microbial communities can influence the immune system, thereby 
affecting host susceptibility and pathogen colonization [82]. For example, experimental 
simplification of microbiota from Cuban tree frog tadpoles increased their susceptibility to 
invasion by gut helminths as adults [83]. The composition and diversity of the gut 
microbiome is itself strongly shaped by individual diet [84,85], and thus provisioned wildlife 
would be expected to differ in both their microbiota and their susceptibility to enteric 
pathogens. Yet field studies of microbiomes in provisioned hosts are rare; in one example, 
the gut microbiota of baboons foraging on leftover food in Bedouin settlements mirrored the 
gut microbiota of people living in the Bedouin communities [86].

Comparative work on the microbiome between provisioned and wild populations is 
necessary to establish how specific dietary differences influence gut microbial composition 
and diversity. For example, shifts from protein- to carbohydrate-rich diets in urban-foraging 
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wildlife such as white ibis (Murray et al., this issue) could have especially pronounced 
effects on microbiomes, and, in turn, pathogen invasion. In one rare case study, shifts toward 
grain-based diets may have disrupted the microbiota of Canada geese and facilitated 
Clostridium perfringens colonization [87]. From another perspective, foraging on 
anthropogenic resources in urban and agricultural environments could also expose species 
such as vampire bats and flying foxes (Paez et al., this issue; Becker et al., this issue) to 
contaminants (e.g., pesticides and antibiotics) that alter microbial community composition 
[88]. When possible, manipulative experiments are needed to examine causal relationships 
between different components of provisioned diets and the microbiome. Moreover, 
relationships among microbiome diversity, microbiome composition, and susceptibility to 
pathogen challenge in the context of provisioning must be elucidated to understand how 
changing microbiota influences host susceptibility to infection. Finally, data linking diet, 
microbial diversity, and immunity could be used to parameterize mathematical models to 
holistically explore how provisioning influences infection dynamics.

Implications of provisioning for conservation and human health
The importance of understanding human motivations for feeding wildlife

The pervasiveness and popularity of intentional wildlife provisioning (e.g., Cox and Gaston, 
this issue) suggests that humans have strong underlying motivations for this activity, 
particularly in the case of backyard bird feeding, on which people spend $4.5 billion 
annually in the U.S. alone [89]. Although bird feeding is the most prevalent form of 
intentional provisioning, a clear picture of the disease risks this activity imposes on wildlife 
and humans remains elusive [70]. The intentional feeding of charismatic mammals is 
common and probably alters disease risk as well. For example, provisioning of wild 
primates is prevalent within the context of Hindu and Buddhist culture, and has been 
enhanced with increasing tourism [90]. Motivations for feeding wildlife are complex and 
may vary regionally [91,92], but numerous studies have shown a key impetus of the 
psychological benefits of direct human-wildlife interaction [93], including a sense of 
pleasure or relaxation, feelings of usefulness, and an increased connection to nature [94–97]. 
In fact, the vast majority of people surveyed about their willingness to interact with wild 
primates were aware of the potential disease risks associated with this interaction, and yet 
more than half still responded that they would touch wild primates if given the opportunity 
[98]. Welfare motivations are also commonly cited by those who provision wildlife [96], 
including a desire to help wildlife or “assist them through hard times” [95,97]. Indeed, 
provisioning tends to be strongest in seasons when natural food is perceived to be limited 
[95], suggesting a strong role of welfare motivations.

Cox and Gaston (this issue) suggest that positive reactions from wildlife, as well as 
psychological benefits to humans, strongly motivate people to offer supplemental foods, 
although more empirical evidence is needed. For example, humans that receive significant 
positive benefits from feeding (increased well-being or reduced stress) are probably more 
likely to continue provisioning. On the other hand, Cox and Gaston (this issue) also propose 
that the negative consequences of supplemental feeding, such as disease transmission among 
wildlife (Lawson et al., this issue), or human health risks, often do not feed back to dampen 
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provisioning behavior because these effects are rarely apparent to the public [95]. The recent 
trend toward reduced feeding of (non-bird) wildlife in the United States (Cox and Gaston, 
this issue) suggests that active campaigns against feeding of mammals are beginning to 
influence human behavior. Thus, by tapping into the welfare motivations for feeding 
wildlife, changes in human behavior are possible. Success in changing behavior might be 
more even more likely when campaigns directly target the negative effects on humans, such 
as in cases of human-wildlife conflict and pathogen spillover.

To the extent possible, intentional supplemental feeding should be managed to maximize 
benefits to both humans and wildlife. For example, the recently documented association 
between higher levels of afternoon bird abundance and reductions in the severity of 
depression, anxiety, and stress in humans led the authors to propose the active use of 
supplemental feeding to create “optimal” bird abundance levels for human health [99]. For 
many bird species, supplemental feeding decreases starvation risk [100] and can improve 
breeding success [101]. Yet, feeding has also been associated with changes in community 
structure [102], range expansion [103], and, as this issue illustrates, pathogen transmission. 
Unfortunately, it seems unlikely that optimal levels of feeding for humans and wildlife will 
coincide. Thus, given the species- and habitat-specific effects of supplemental feeding 
[102,104], determining the ideal levels of provisioning for most wildlife will be challenging. 
In cases where clear negative effects of resource provisioning on wildlife are documented, 
educational campaigns would ideally leverage welfare-driven motivations for feeding by 
creating negative feedback loops on human behavior (Cox and Gaston, this issue). Overall, 
effective management of intentional provisioning will require significantly more data than 
are currently available on both human motivations for feeding, effects of feeding on wildlife, 
and potential feedback loops between wildlife effects and human behavior. Given the 
enormous and potentially growing scale of human supplementation of wildlife [89], 
developing effective management tools is both timely and critical.

Recommendations for limiting disease risks associated with human–wildlife contacts

The proximity with wildlife afforded by resource subsidies in urban and agricultural 
landscapes brings humans and domestic animals into contact with wildlife pathogens, and 
wildlife into contact with human pathogens (Figure 3). Some of the most readily observed 
examples include growing populations of urban mesocarnivores (e.g., foxes, raccoons and 
skunks) that can attack humans and domestic animals when infected with rabies [105]. Non-
human primates can also become aggressive following habituation to human-provided food, 
leading to the transmission of zoonotic viruses in some cases [106], and exposing primates 
to respiratory infections from human researchers and tourists in other scenarios [107]. 
Wildlife professionals might be exposed to zoonotic pathogens when translocating 
nonhuman primates in response to human-wildlife conflict [108]. Even when interspecific 
contacts between wildlife and humans are rare, pathogens can transfer between humans and 
wildlife by environmental routes or through arthropod vectors. Examples include a rise in 
human infections with the soil-borne tapeworm Echinococcus multilocularis, attributed to 
provisioned urban red foxes in Europe [109]. Human and animal Nipah virus infections have 
occurred through the consumption of food contaminated by bat excreta [110,111], and 
greater human exposures to hantavirus through environmental infectious stages followed the 
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growth of rodent populations that exploit agricultural crops [44,45]. Zooanthroponoses 
(pathogens transmitted from humans to other animals) are less appreciated, but affect 
wildlife globally [112,113]. The preponderance of environmentally and vector-transmitted 
pathogens at the human-wildlife interface raises important challenges to recognize links with 
resource provisioning. Epidemiological investigations that identify agents of disease must be 
followed with ecological studies to identify natural hosts and the ecological context that 
enables cross-species transmission [114]. Fortunately, rapid and powerful DNA/RNA 
sequencing technologies [115], together with increasingly sophisticated tools for inferring 
pathogen transmission between species [116] offer currently under-utilized opportunities to 
improve scientific understanding of the changing patterns of pathogen transmission in 
provisioned environments.

Under some circumstances, ecological interventions that build on a mechanistic 
understanding of host and pathogen biology can prevent cross-species transmission. Most 
notably, preventing wildlife access to unintentionally provisioned resources, or creating a 
barrier between provisioned resources and domesticated animals (e.g., planting orchards 
away from livestock enclosures to reduce the risk of Nipah spillover on farms in Malaysia), 
can restrict opportunities for overlap between host species and function as a barrier to 
pathogen spillover [117]. As one key example, blocking the foodborne transmission of 
Nipah virus from pteropid fruit bats to humans using a bamboo skirt placed at the top of date 
palm sap collection pots restricts bat access to this shared food resource, and could reduce 
the risk of Nipah virus exposure in humans [118,119]. This case study highlights not only 
how basic ecological data on the foraging behavior of reservoir hosts can aid in the design of 
interventions, but also how insights from social science and the application of locally 
available practices can produce economically affordable management tools [120]. Such 
“ecological interventions” may also be cheaper and more effective than antibiotics or 
vaccines that are mobilized after cross-species exposures occur. Other intervention strategies 
can promote sanitary best practices to prevent the build-up on infectious stages on feeders 
(e.g., washing backyard bird feeders), encouraging the dispersal of feed in smaller units over 
larger areas to reduce aggregation and lower contact rates (e.g., with management-based 
feeding [121]), and educating the public about disease risks posed by well-intentioned but 
harmful feeding activities [122,123]. Given that resource provisioning is ultimately derived 
from human actions, perceptions, and policies, the integration of ecological, sociological, 
and management perspectives will be a key lever by which infectious disease risks can be 
minimized for the well-being of humans, domesticated animals, and wildlife.
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Figure 1. 
Taxonomic breadth of hosts provisioned by humans covered by studies in this Theme Issue: 
A. Common vampire bat (Desmodus rotundus) in Belize (Brock Fenton), B. Elk (Cervus 
elaphus) in the Greater Yellowstone Ecosystem (Paul Cross), C. Monarch butterflies 
(Danaus plexippus) in Mexico (Natalie Tarpein), D. House finch (Haemorhous mexicanus) 
infected withMycoplasma gallisepticum in North America (Bob Vuxinic), and E. Daphnia 
dentifera infected with a fungal pathogen (Metschnikowia bicuspidata) (Tad Dallas [124]).
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Figure 2. 
Interactions between human-provided food and pathogen dynamics can occur at multiple 
scales of organization, as illustrated by American white ibis (Eudocimus albus) and 
environmentally-transmitted enteric pathogens. Anthropogenic food subsidies in urban 
habitats could influence within-host dynamics (e.g., individual susceptibility and intensity of 
pathogen shedding, in green), local transmission processes (e.g., intra- and inter-specific 
contact rates, uptake of pathogen from the environment, in blue), and landscape dynamics 
(e.g., host movement between natural and provisioned habitats, site fidelity, in pink). 
Combined modeling and empirical work is needed to quantify the importance of processes 
operating within scales, and to predict how processes at one scale affect dynamics at larger 
scales of organization.

Altizer et al. Page 21

Philos Trans R Soc Lond B Biol Sci. Author manuscript; available in PMC 2018 May 05.

 Europe PM
C

 Funders A
uthor M

anuscripts
 Europe PM

C
 Funders A

uthor M
anuscripts



Figure 3. 
Possible effects of provisioning on amplifying pathogen spillover risks by 1) increasing 
pathogen transmission and shedding from reservoir hosts (e.g., through increased 
aggregation, susceptibility, and shedding intensity) and 2) increasing opportunities for 
contact between humans and domestic animals and either reservoir hosts or pathogen in the 
environment. Silhouettes and arrows display case studies from this theme issue where 
provisioning had little effect or decreased infection relative to more natural environments 
(black; white ibis, vampire bats) and where provisioning amplified infection cycles (red; 
flying foxes, elk, house finches) and could potentially increase the risks of cross-species 
transmission.
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