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1. Introduction
For a wide range of wildlife, anthropogenic change and human activities modify

the abundance, distribution and timing of food resources [1,2]. Although activities

such as deforestation and overfishing deplete resources for many wildlife species,

in other cases, urbanization, agriculture and supplemental feeding can provide

wildlife with abundant and predictable food [3–8]. As a result, many wildlife

have adapted their foraging behaviour to capitalize on these resources [9,10], lead-

ing to subsidized populations that are often larger,more aggregated and better fed

than their naturally foraging counterparts [11–13]. Importantly, novel assemblages

of species can form around anthropogenic resources [14,15], which could facilitate

the cross-species transmission of pathogens amongwildlife, humans and domestic

animals [16]. For example, bird feeders have been implicated in the emergence of

virulent pathogens such as Mycoplasma gallisepticum and Trichomonas gallinae in
songbirds [17,18]. The 2014 Ebola outbreak in West Africa and 1998 emergence

of Nipah virus in Malaysia also underscore the importance of understanding

how anthropogenic resources can bring wildlife reservoirs of zoonotic pathogens

into close proximity with humans and domesticated species [19–21].

Predicting howanthropogenic resourceswill impact host–parasite interactions

is challenging owing to multiple underlying mechanisms with potentially oppos-

ing effects [22,23]. Although energy and nutrients from supplemental food can

support robust immune function needed to resist and recover from infections

[24], anthropogenic food containing toxins or lacking nutrients could reduce

host immunity and increase susceptibility to infection and pathogen shedding

[25–27]. Moreover, aggregation around food sources can increase contact rates

and facilitate pathogen transmission [28–30]. These individual-scale effects and

local interactions are embedded within landscapes characterized by patchily dis-

tributed resources; as such, the pattern of resource provisioning could influence

host dispersal patterns and thus metapopulation dynamics of infectious disease

[31–33]. Understanding how anthropogenic resources will alter wildlife infection

and consequences for spillover risks thus requires integrating diverse expertise

and approaches across multiple levels of biological organization.

This theme issue stemmed from a symposium on ‘Resource provisioning and

wildlife–pathogen interactions in human-altered landscapes’ held at the 2016 Eco-

logical Society of America Annual Meeting, where population ecologists,

immunologists, epidemiologists and conservation biologists participated in six pre-

sentations and a panel discussion on supplemental feeding and wildlife disease.

This theme issue breaks new ground by integrating field, experimental, socioeco-

nomic and modelling studies from a diverse array of taxa and ecosystems to

understand host–parasite responses to anthropogenic resource subsidies. Contri-

buting papers synthesize emerging research and diverse perspectives on

interactions between resource availability and infection processes across many
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scales of biology and highlight the applied importance of these

findings for public health and wildlife conservation.
stb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170086
2. Topics addressed in this issue
Contributing papers of this theme issue examine questions that

scale from individual-level processes (e.g. how anthropogenic

resources affect within-host infection dynamics) up to regional-

and community-level interactions (e.g. how the distribution of

food resources influences parasite transmission across land-

scapes and host species barriers). The first series of papers

asks how food availability affects host condition, immune

defence and contact rates. The next set of papers examines

the landscape determinants of supplemental feeding and its

impacts on animal movement and parasite spread across

large spatial scales. A final series of papers investigates the

implications of food subsidies for themanagement of infectious

diseases and cross-species transmission risks while also

identifying future research priorities.

(a) Provisioning and individual-level processes
The theme issue’s first section uses theoretical models, synthetic

review, and observational and experimental studies to ask

how resource availability affects individual-level infection pro-

cesses such as host immune defence and contact rates. Hite &

Cressler [34] use mathematical models to demonstrate that

food resources affect parasite evolution via cross-scale effects

on within-host and population-level dynamics. When food

availability affects host density alone, parasite evolution favours

a single high-virulence, high-transmissibility strategy that

depresses host population size and its propensity to cycle at

high resource availability. When resources also affect within-

host parasite replication and host immune defence, a second,

low-virulence, low-exploitation strategy can emerge in which

host populations continue to cycle at high resource availabi-

lity. Thus, abundant resources could alter the evolutionary

trajectories of pathogens and their effects on host populations.

Strandin et al. [35] review empirical findings on how anth-

ropogenic food provisioning influences wildlife immunity,

using both field-based studies and captive studies with wildlife

species. Although enhanced immune function results from

supplemental feeding in wild and captive settings, toxic com-

pounds associated with some anthropogenic resources can

reduce host immunity in the wild, highlighting the complex-

ity of this topic. The authors stress a need for further research,

especially field studies, and highlight the potential for

modern molecular techniques to enhance understanding of

wildlife immunity.

Murray et al. [36] use an observational field study to

examine the relationships between urban habituation and

nutritional status, body condition and ectoparasite burdens

of American white ibis (Eudocimus albus). Ibises in urban

areas are often fed by people, and these anthropogenic

resources likely result in a health trade-off: while provisioned

birds had lower measures of body condition, they also

showed lower ectoparasite burdens. The authors hypothesize

that provisioned ibis spend less time foraging and more time

preening to remove parasites. The net effect of provisioning

on infection outcomes in urban ibis is still under study.

Becker et al. [37] examine how livestock abundance corre-

lates with immunity and bacterial infection of vampire bats

(Desmodus rotundus) in Peru and Belize. They find that bats
with access to more livestock prey show greater investment in

innate relative to adaptive immunity and that this pattern pro-

vides a mechanistic link to lower bacterial prevalence in

provisioned bats. They conclude that predicting how provision-

ing influences infection requires considering how within-host

processes and transmission modes respond to resource shifts.

Moyers et al. [38] use experiments with house finches (Hae-
morhous mexicanus) and bird feeders to ask how provisioning

intensity affects host behaviour and transmission of a bacterial

pathogen (Mycoplasma gallisepticum). They find that low feeder

density frequently exposes birds to subclinical pathogen doses,

whereas high feeder density results in higher pathogen trans-

mission rates. Their results suggest that the intensity of

supplemental feedingpractices can influence infectionoutcomes.

Lawson et al. [39] present findings on the long-term

surveillance ofwild birds inGreat Britain and infections byproto-

zoan (finch trichomonosis), viral (Paridae pox) and bacterial

(salmonellosis) pathogens. In each case, human activities influ-

ence transmission dynamics, but in different ways. The need to

balance the risks and benefits of supplementary feeding for

bothbirds andpeople is highlighted, as is the importance of enga-

ging with the general public and relevant interest groups to

promoteandencouragecompliancewithbest-practiceguidelines.

(b) Landscape context and provisioning
The next section of this theme issue examines the landscape

determinants of anthropogenic resources and how their distri-

bution influences host movement and parasite spread across

large spatial scales. Cox & Gaston [40] review the links between

supplemental feeding in urban habitats and their impacts on

wildlife andhuman–nature experiences. Theysuggest thatwild-

life attraction to provisioned food provides a positive feedback

that encourages more interactions among humans and wildlife.

While these interactions can benefit humans (e.g. mental health)

and foster connections to nature, potential negative effects of

provisioning (e.g. pathogen transmission) are unlikely to be

apparent to thepublic.Theauthors suggest educationcampaigns

that incorporate animal welfare concerns could help manage

human feeding behaviour by increasing public awareness of

harm caused by supplemental feeding in some contexts.

Human-provided resources can change animal movement

behaviour, including long-distance migrations. Satterfield

et al. [41] review how migratory species respond to anthropo-

genic food resources and present a conceptual framework for

understanding how these changes can alter infection risk.

They highlight the example ofOphryocystis elektroscirrha (a pro-
tozoan pathogen) inmonarch butterflies (Danaus plexippus) and
the importance of cross-disciplinary research to advance under-

standing of this topic. In particular, the authors encourage

study on a wider range of migratory taxa and emphasize that

new tracking technologies (e.g. geolocators, isotopes) can

better examine mechanisms underlying interactions between

food resources, animal migration and infectious disease.

Brown &Hall [42] ask how provisioning that promotes resi-

dency in partially migratory animals can influence pathogen

dynamics and, in turn, thepersistence ofmigration.Usingmath-

ematical models for a partially migratory bird species

experiencingvector-bornepathogen transmission at its breeding

grounds, they demonstrate howprovisioning that increases resi-

dent nonbreeding survival extends the window of pathogen

transmission. This can allow sustained transmission of patho-

gens that are highly virulent to hosts during migration, which

in turn erodes the benefits of migratory escape from pathogens.

http://rstb.royalsocietypublishing.org/
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Their work highlights how local food subsidies can have range-

wide consequences for pathogen impacts on highly mobile

wildlife species.

Paez et al. [43] apply optimal foraging theory to under-

stand drivers of patch residency in the context of recent

urban habituation of flying foxes (Pteropus spp.) in Australia.

They use theoretical models to show that expected patch resi-

dence time increases with the search time needed to find new

food resources. These models reveal that small increases in

searching times produce large increases in residence time,

which may explain the recent surge of flying foxes in urban

Australia which has been concomitant with the loss of critical

winter nectar habitats [44].

(c) Implications for disease control and future research
The final section focuses on howanthropogenic resources affect

disease risk from management perspectives and identifies

future research priorities. Cotteril et al. [45] review a challenge

that arises from intentional supplementation of wildlife for

game and livestock management. The practice of feeding elk

(Cervus canadensis) in the Greater Yellowstone Ecosystem has

increased the prevalence of brucellosis but has also reduced

opportunities for contact between elk and cattle. A major chal-

lenge in the Greater Yellowstone Ecosystem is how to reduce

feeding elk without triggering an increase in elk-to-cattle con-

tact that can cause the spillover of Brucella abortis. This review
highlights how partnerships between research and manage-

ment, guided by hypothesis testing, can provide adaptive

management insights of wildlife disease.

Civitello et al. [46] expand the breadth of work included in

this theme issue by reviewing the similarities and differences

in the epidemiological impacts of widespread forms of nutrient

input from human activities: agricultural fertilization and

aquatic nutrient enrichment. They further develop mathemat-

ical models to assess whether including trophic complexity

affects the relationship between resource enrichment and

host–pathogen interactions. When trophic complexity is

ignored, infection prevalence increases with resources; how-

ever, including competitors or predators of provisioned hosts

can reverse this prediction, causing infection prevalence to

stabilize or even decline at high degrees of resource enrichment.

In the closing paper, Altizer et al. [47] identify common

threads from the contributions of this theme issue and high-

light outstanding areas for future research. Research

priorities include: developing mechanistic models that link

the effects of resource provisioning across scales (within-host,

population and landscape scales);manipulating food resources

in field-based experiments and quantifying host and pathogen
responses; quantifying feedback between wildlife disease and

human behaviours that provision animals; and designing eco-

logical interventions to limit opportunities for cross-species

transmission by building upon a mechanistic understanding

of host and pathogen biology.
3. Conclusion
Globally, wildlife are capitalizing on food provided by human

activities, which has important implications for host–parasite

interactions. This theme issue provides multi-displinary

insights to help unravel the complex interactions among

individual-, population- and landscape-level processes that

determine infection outcomes in provisioned wildlife.

The included contributions highlight that novel immuno-

logical and ecological conditions associated with provisioning

have profound impacts on the transmission of wildlife patho-

gens. Greater host aggregation, loss of migratory behaviour,

improved demographic rates, immune impairment and

increased overlap betweenwildlife and spillover hostswith pro-

visioning can all increase infection risks. Yet contributions also

highlight that such risks may not universally increase with pro-

visioning. Parasite evolution, increased time and energy

allocation to immune defence or anti-parasite behaviours, and

trophic interactions can, under certain conditions, reduce para-

site transmission and limit spillover. Importantly, this theme

issue highlights that public education and adaptive manage-

ment can contribute to ‘win–win’ scenarios for feeding wildlife

that optimize benefits for conservation, disease management

and human health.
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