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Abstract: The goal of this work is to monitor the laser powder bed fusion (LPBF) process using 

an array of sensors so that a record may be made of those temporal and spatial build locations 

where there is a high probability of defect formation. In pursuit of this goal, a commercial LPBF 

machine at the National Institute of Standards and Technology (NIST) was integrated with three 

types of sensors, namely, a photodetector, high-speed visible camera, and short wave infrared 

(SWIR) thermal camera with the following objectives: (1) to develop and apply a spectral graph 

theoretic approach to monitor the LPBF build condition from the data acquired by the three 

sensors; and (2) to compare results from the three different sensors in terms of their statistical 

fidelity in distinguishing between different build conditions. The first objective will lead to early 

identification of incipient defects from in-process sensor data. The second objective will ascertain 

the monitoring fidelity tradeoff involved in replacing an expensive sensor, such as a thermal 

camera, with a relatively inexpensive, low resolution sensor, e.g., a photodetector. As a first-step 

towards detection of defects and process irregularities that occur in practical LPBF scenarios, this 

work focuses on capturing and differentiating the distinctive thermal signatures that manifest in 

parts with overhang features. Overhang features can significantly decrease the ability of laser heat 

to diffuse from the heat source. This constrained heat flux may lead to issues such as poor surface 

finish, distortion and microstructure inhomogeneity. In this work, experimental sensor data is 

acquired during LPBF of a simple test part having an overhang angle of 40.5o. Extracting and 

detecting the difference in sensor signatures for such a simple case is the first-step towards in-situ 

defect detection in AM.  The proposed approach uses the Eigen spectrum of the spectral graph 

Laplacian matrix as a derived signature from the three different sensors to discriminate the thermal 

history of overhang features from that of the bulk areas of the part. The statistical accuracy for 

isolating the thermal patterns belonging to bulk and overhang features in terms of the F-score is as 

follows: (a) F-score of 95% from the SWIR thermal camera signatures; (b) 83% with the high-

speed visible camera; and (c) 79% with the photodetector. In comparison, conventional signal 

analysis techniques - e.g., neural networks, support vector machines, linear discriminant analysis 

were evaluated with F-score in the range of 40% to 60%.   

 

Keywords: Additive Manufacturing (AM), Laser Powder Bed Fusion (LPBF), Sensing, Process 

Monitoring, Spectral Graph Theory. 

                                                 

* Corresponding Author (Prahalada Rao), email: rao@unl.edu 



Accepted Manuscript MANU-18-1023 

2 

 

1 Introduction 

1.1 Motivation 

Powder bed fusion (PBF) refers to a family of Additive Manufacturing (AM) processes in which 

thermal energy selectively fuses regions of a powder bed [1]. A schematic of the PBF process is 

shown in Figure 1. A layer of powder material is spread across a build plate. Certain areas of this 

layer of powder are then selectively melted (fused) with an energy source, such as a laser or 

electron beam. The bed is lowered and another layer of powder is spread over it and melted [2]. 

This cycle continues until the part is built. The schematic of the PBF process shown in Figure 1 

embodies a laser power source for melting the material, accordingly, the convention is to refer to 

the process as Laser Powder Bed Fusion (LPBF). A mirror galvanometer scans the laser across the 

powder bed. The laser is focused on the bed with a spot size on the order of 50 to 100 µm, and the 

linear scan speed of the laser is typically varied in the 102  ̶  103 mm/s range [2].  

Insert Figure 1 Here. 

Close to 50 parameters are involved in the melting and solidification process in LPBF [3]. The 

defects in LPBF are multi-scaled and linked to distinctive process phenomena. The following types 

of defects have garnered the most attention: porosity, surface finish, cracking, layer delamination, 

and geometric distortion [4, 5]. Several empirical studies have mapped the effect of three process 

parameters on defects, namely, laser power, hatch spacing, viz., the distance between adjacent scan 

tracks within a layer, and laser scan velocity [6-10]. Defects in LPBF are tracked to the following 

four root causes [4, 5, 11]: 

1) poor part design, such as inadequately supported features,  

2) machine and environmental factors, such as poor calibration of the bed and optics,  
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3) inconsistencies in the input powder material, such as contamination and deviations in particle 

distributions, and  

4) improper process parameters, for example, inordinately high laser power causes vaporization 

of the material leading to keyhole collapse porosity, or insufficient overlap of adjacent scan 

tracks due to large hatch spacing results in so-called lack of fusion porosity [4, 12]. 

A major gap in the current research is in the lack of mapping of the process conditions to defects 

based on in-situ sensor data. This knowledge of the process signatures that are symptomatic of 

impending defects is the key tenet for future in-process monitoring and control of part quality in 

LPBF, and serves as the motivation for the present work.  

1.2 Goal and Objectives 

The goal of this work is to monitor the laser powder bed fusion (LPBF) process using in-process 

sensor signatures so that a record may be made of those temporal and spatial build locations where 

there is a high probability of defect formation. This goal is termed as build condition monitoring. 

In pursuit of this goal, a commercial LPBF machine was integrated with three sensors, namely, a 

photodetector (spectral response 300 nm to 1200 nm), high-speed visible spectrum video camera 

(4,000 frames per second, spectral response 300 nm to 950 nm), and short wave infrared (SWIR) 

thermal camera (1,800 frames per second, spectral response 1350 nm to 1600 nm, thermally 

calibrated from 500 °C to 1025 °C) with the following two-fold objectives.  

Objective 1: Develop and apply a spectral graph theoretic approach to monitor the build condition 

in LPBF from the data gathered by the aforementioned three sensors. The intent is to detect the 

onset of deleterious phenomena such as unexpected variations in the thermal history (cooling rate) 
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which would lead to inconsistent properties [13-15]. In the worst case, these may ultimately result 

in build failures. The proposed approach is extensible to other AM processes and sensor systems. 

Objective 2: Assess the statistical fidelity of the three different sensors, namely, high-speed 

camera, infrared thermal camera, and photodetector in monitoring the LPBF build condition by 

capturing the differences in the thermal signature of the part as it is being built. The intent is to 

ascertain the monitoring fidelity tradeoffs when replacing a relatively expensive, high-fidelity 

sensor such as a thermal camera with an inexpensive, low-fidelity sensor, e.g., photodetector.   

Realizing these objectives will lead to the following consequential impacts: 

1) In-process quality monitoring in LPBF. 

Unfortunately, even with the high-level of process automation in commercial equipment, print 

defects are common in LPBF, which hinders use of LPBF parts in mission-critical applications, 

such as aerospace and defense [16, 17]. While, there is an abundance of pioneering literature on 

sensor integration and hardware aspects for monitoring AM processes, there is persistent research 

gap in seamlessly integrating the in-process sensor data with approaches for online signal analytics 

[18, 19]. This gap has been pointed out in roadmap reports published by federal agencies and 

national labs [16, 20-23]. Addressing this need for online data analytics is critical to mitigate the 

poor repeatability and reliability in LPBF, and more generally in AM. 

2) Layer-wise analysis of sensor data to reduce expensive testing. 

To ensure compliance, the norm is to subject LPBF parts to X-Ray computed tomography (XCT) 

or destructive materials testing. This is prohibitively expensive and time consuming [24, 25]. 

However, if a layer-by-layer sensor data record is available, then this data, instead of destructive 
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testing or XCT scanning, can be used to rapidly qualify the part quality, leading to considerable 

cost savings [26, 27].  

Furthermore, because AM phenomena and concomitant defects occur at multiple scales, there is 

also the need to combine data from multiple sensors. The challenge with this concept of using 

sensor data for layer-wise quality assurance in AM ‒ termed as certify-as-you-build by Professor 

Jyoti Mazumder [28]  ‒  is that sensors may differ in resolution, sensitivity, or bandwidth 

appropriate to detect particular process signatures. The limited fidelity of a single sensor limits the 

variety of defects that it may be able to detect, if any at all.   

In closing this section, we note that researchers in the AM area prefer the term qualify-as-you-

build over certify-as-you-build, based on the reasoning that certification is typically done by a 

third-party in the quality assurance paradigm.  In the same vein, Sigma Labs, Inc., of New Mexico, 

has trademarked the term in-process quality assurance (IPQA) in reference to their PrintRite3D 

software that combines process monitoring, data analysis, and feedback control in AM [29, 30].  

1.3 Scientific Rationale and Hypothesis 

Each type of build defect in LPBF relates to a specific process phenomenon. The onset of such 

defect-causing phenomena may manifest in statistically distinctive signatures from appropriately 

designed and utilized sensors [31-33]. Hence, by tracking the signatures from in-process sensor 

data, it is hypothesized that the defects in LPBF process can be discriminated. The hypothesis 

tested in Sec. 5 is that the spectral graph theoretic approach forwarded in this work leads to higher 

statistical accuracy for distinguishing the build condition compared to popular machine learning 

approaches, such as neural networks and support vector machines. The statistical accuracy is 
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measured in terms of the statistical F-score, which combines both the Type I (false alarm) and 

Type II (failing to detect) statistical errors. 

The applicability of the different sensors and the proposed analysis methodology is tested by 

building an overhang part. While not a defect, the LPBF of overhang features is a challenging 

proposition due to the following reason.  As the thermal conductivity of the powder is roughly one 

third of a solid part, heat tends to accumulate within the overhang area, i.e., the thermal flux 

through an overhang is restricted [14]. Constriction of heat to a relatively small area leads to 

inconsistent thermal gradients within the overhang features compared to the bulk material, which 

ultimately manifests in distorted builds, poor surface finish, or heterogeneous microstructure [5, 

34].  In this work, the distinctive thermal signature representative of overhang features is used as 

a means to discriminate the build condition. Furthermore, the present work provides an avenue for 

online monitoring of in-process signals through analysis in the spectral graph domain.  

The understanding of thermal aspects of overhang geometries is also consequential in the related 

context of design for additive manufacturing, for instance, recent studies emphasize the need for 

an evolved approach for support design depending upon the severity of the overhang feature [35]. 

This need is exemplified through the following experimental observation from Figure 2, which 

shows a biomedical titanium knee implant built by the authors using the LPBF process. This part 

has a severe overhang feature. To prevent the part from collapsing under its own weight, supports 

were automatically built under the overhang section by the native software supplied by the 

machine manufacturer. After the build, the overhang area was found to have coarse-grained 

microstructure and poor surface finish which renders this implant potentially unsafe in clinical use. 

Such defects in overhang geometries, also reported by other researchers, is primarily due to the 
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heat being constrained in a small area in the overhang section, owing to the overly thin cross-

section area of the supports, i.e., due to poor heat conduction [34, 36-39]. To avert such part 

inconsistencies, there is a need for a formal framework based on fundamental understanding of the 

thermal physics of the process to guide the design of the AM part. The present work provides a 

means to distinguish the thermal-related signatures that are symptomatic of undesirable build 

quality in LPBF process through a simple test artifact. This understanding of the thermal behavior 

during melting of overhang will play a foundational role in the future for developing design rules 

for AM parts with complex geometries. 

Insert Figure 2 Here. 

The rest of this paper is organized as follows, Sec. 2 summarizes the recent developments in 

sensing and monitoring in LPBF. Sec. 3 describes the experimental LPBF studies carried out at 

NIST. Sec. 4 elucidates the spectral graph theoretic approach and illustrates its application to a 

synthetic signal. Sec. 5 discusses the results from application of the spectral graph-theoretic 

approach to analyze the thermal imaging, high-speed videography, and photodetector signals 

acquired during the build process. In closure, the conclusions from this work and avenues for 

further research are discussed in Sec. 6. 

2 Sensor-based Monitoring in PBF 

Elwany and Tapia [40] have conducted a comprehensive review of sensor-based process 

monitoring approaches, specifically focused on metal AM processes. More recently, Foster et al. 

[15], Purtonen et al. [41], Mani et al. [22], Everton et al. [42], and Grasso and Colosimo [4] provide 

excellent reviews of the status quo of sensing and monitoring focused in metal AM. However, 

there is a persistent gap in analytical approaches to synthesize this data and extract patterns that 
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correlate with specific process conditions (build status) and defects [43]. Chua et al. in a recent 

article have placed emphasis on the need for (a) data mining, (b) data processing, and (c) data 

analysis to monitor and subsequently translate the sensor signatures into actionable feedback 

control [18].   

From the hardware vista, two methods are predominantly used in the literature towards monitoring 

the PBF; namely meltpool monitoring (MPM) systems, and layer-wise imaging (staring) systems. 

The relevant works under these respective headings are summarized in the following two sections, 

Sec. 2.1 and Sec. 2.2, respectively. 

2.1 Meltpool Monitoring Systems in PBF 

The AM group at the Catholic University of Leuven, Belgium has published several influential 

articles in the area of quality monitoring and control in LPBF, as well as in the general area of 

AM, a select few of these are cited herewith [32, 33, 44-47]. The common leitmotif in these prior 

works is in extracting features from the data from one sensor at a time, typically, in terms of a 

statistical moment (mean, variation) of image-based gray scale values, and correlating these 

features with controlled flaws based on offline analysis.  However, to take these pioneering works 

in sensing forward into the domain of real-time closed-loop process control and further to defect 

correction, there is a need to translate the signals into decisions in real-time. In turn, this work 

addresses a necessary and critical step to realize real-time decision-making by translating the AM 

process signatures in a form tractable for build condition monitoring.  

Craeghs et al. [47] explain the need for a meltpool imaging system, which is also coupled with 

sensors capable of monitoring status of process inputs. Although meltpool imaging is valuable for 

monitoring the local thermal aspects, it is difficult to translate the meltpool information quickly 
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into a corrective action since process dynamics are relatively faster than current technologies for 

sensor acquisition, processing, and feedback control. In other words, Craeghs et al. [47] 

recommend that a heterogeneous sensor suite be used for process monitoring PBF processes. The 

work reported in the present paper assess the fidelity of using different sensors for process 

monitoring.  

For monitoring the meltpool, a photodiode and (complementary metal oxide semiconductor) 

CMOS camera coaxial with the laser and equipped with infrared (IR) filters is used by Craeghs et 

al. [47].  This constrains the wavelength of light in the region of 780 nm to 950 nm. The upper 

limit is at around 1000 nm to block out the laser wavelength from entering the detectors. The 

sampling rate is 10 KHz, this translates to a sample every 100 μm, considering 1000 mm/sec scan 

speed.  Using image processing techniques, the authors ascertain the meltpool area and the length 

to width ratio of the meltpool, and use these for tracking the process. They found that these 

meltpool features are related to defects such as balling – however, the statistical significance of 

these studies has not been reported [48, 49].  

Chivel and Smurov [50] implemented a coaxial charge coupled device (CCD) camera 

(perpendicular to the powder bed through the optical track of the machine) and two color 

pyrometer (900 nm and 1700 nm) setup to monitor the meltpool morphology (100 µm, local focal 

diameter) and temperature in powder bed fusion process. The temperature distribution and 

intensity of the meltpool (from processing the CCD camera data) are correlated with the laser 

power. A linear trend in laser power at three levels (50 W, 100 W, 150 W) and meltpool surface 

temperature is observed (viz., between approximately 1800 °C and 2000 °C).  In the work 

predating Chivel and Smurov [50], Bayle and Doubenskaia [51] used a similar setup with a IR 
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camera along with a pyrometer with active wavelength of 1000 nm to 1500 nm mounted on a laser 

powder bed fusion machine. Pyrometer readings are obtained over time for different layer 

thickness and hatch spacing settings. The IR camera is used to monitor the dynamics of meltpool 

particles and spatter patterns as they interact with the laser beam.  

Two recent reports by Sigma Labs describe a heterogeneous sensing system to relate the thermal 

aspects of the L-PBF process to physical properties of the part, namely, the part density (porosity) 

[29, 30]. One of these reports describes a hardware system incorporating four in-situ sensors, 

consisting of two photodetectors, one pyrometer, and one position sensor to map the sensor 

signatures vis-à-vis the density of titanium alloy samples made under different laser power and 

velocity conditions [30]. The connection between the sensor signatures and part density is made 

via a trademarked proprietary metric called Thermal Emission Density (TEDTM). The TEDTM 

metric is reported to have a nearly one-to-one correlation with the part density. While this work 

demonstrates the efficacy and need for combining data from multiple sensors for online 

monitoring, the mathematical details of the data fusion process is not revealed, and the statistical 

error is not assessed.    

2.2 Layer-Wise Imaging or Staring Configuration Systems in PBF 

Jacobsmuhlen et al. [13] implemented an image-based monitoring approach specifically for 

detecting build super-elevations effects. Builds are said to be super-elevated if the prior solidified 

layers protrude out of a freshly deposited powder bed due to distortion.  Super-elevated builds will 

cause the recoater to make contact with the part as the powder is raked across the bed, leading to 

damage to the part and/or the recoater. To detect this condition Jacobsmuhlen et al. coupled a CCD 

camera with a tilt shift lens and mounted the camera assembly on a geared head. This setup has 
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the ability to traverse the camera in three axes and the tilt shift lens allows corrections of 

perspective distortions and enables the camera to maintain focus on the powder bed.  

The central theme of Jacobsmuhlen et al.’s work is to visually detect these super-elevated regions 

and compare the results with a reference, which will eventually allow adjustment of process 

parameters, such as laser power and hatch spacing. The experimental results of Jacobsmuhlen et 

al. indicate that super-elevations can be reduced by decreasing laser power and increasing hatch 

distance. By detecting the occurrence of super-elevation at an earlier stage, the layer height can be 

corrected, or the build can be cancelled. The drawback of the cited work is that the analysis for 

this work uses image processing techniques, namely the Hough transform and areal operations on 

images (connectivity thresholding), which is exceedingly sensitive to image processing-related 

parameters. The ability to translate these image processing techniques to different build geometries 

and defects remains to be ascertained.  

In a recent work, Cheng et al. used a near infrared thermal camera to correlate the effect of laser 

scan speed and layer height on the meltpool dimensions during LPBF of Inconel 718 material [52]. 

The intent is to use these meltpool measurements to monitor the build condition. While the 

meltpool length and width are reported to change with the laser scan velocity (in three levels, 400 

mm/sec, 600 mm/sec, and 800 mm/sec), the consequence of layer height on meltpool dimensions 

are negligible. While very valuable and foundational towards understanding the effect of process 

conditions on meltpool dynamics in LPBF, in this study by Cheng et al., the test artifact is a 

rectangular test coupon devoid of specific features. Furthermore, the test artifact is not examined 

for defects, such as porosity – which may result from changes in the scan velocity. This is because, 

the energy density (called Andrew Number) is inversely proportional to the laser velocity, and at 
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low energy density levels the powder particles may fail to fuse together, and consequently, lead to 

porosity. 

Krauss et al. [53, 54] incorporated a microbolometer-type infrared camera operating in the long 

wave infrared (LWIR) region, specifically in the 8,000 nm to 14,000 nm range. The IR camera is 

mounted on the outside of the build chamber, and looks down on the powder chamber at an angle 

of 45° through a germanium window. This setup allows measurement of larger area of the powder 

bed, as opposed to small local areas as in coaxial measurement systems. The central theme of the 

author’s work is to obtain the area and morphology of the heat affected zone (HAZ). They correlate 

the change in process parameters, such as laser power, scan velocity hatch distance, and layer 

thickness with the meltpool area, aspect ratio (length to width ratio). These correlations serve as 

the basis on which build quality can be monitored.  For instance, the authors deliberately induced 

large flaws in the build (voids), as opposed pores that typically occur in the 20-100 μm range. The 

measured melt pool morphology during the defective build with induced voids is compared with 

an ideal state. A significant difference is reported in the irradiance profile recorded for the ideal 

build versus defective build. 

To reiterate, the practical applicability of these pioneering and early works is overshadowed by the 

offline analysis of data from a single sensor. To realize the qualify-as-you-build paradigm in AM, 

these foregoing studies should be coupled with emerging machine learning techniques from the 

big data analytics domain that can combine data from multiple sensors.    
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3 Experimental Setup and Data Acquisition 

3.1 Measurement System and Test Artifact  

This section describes the sensor suite instrumented on a commercial LPBF machine (EOS M270) 

at NIST. The machine was integrated with three types of sensors, namely, a short wave infrared 

thermal camera, a high-speed visible camera, and a photodetector. Table 1 summarizes the location 

and relevant specifications of the sensors. The SWIR thermal camera and photodetector capture 

the thermal aspects of the meltpool, whereas the high-speed video camera captures its shape and 

surrounding spatter pattern. Photodetector data was acquired at a sampling rate of 1 MHz, in 

addition to frame pulses from each camera indicating the time each frame is acquired. Figure 3 

and Figure 4 show the schematic and actual implementation of the setup, respectively. The detailed 

explanation of the setup is available in Ref. [55, 56]. 

Insert Table 1 Here. 

Insert Figure 3 Here. 

Insert Figure 4 Here. 

The test artifact, which is made from nickel alloy 625 (tradename Inconel 625, UNS designation 

N06625), has an overhang of 40.5𝑜, and does not include support structure. In this work, sensor 

information is analyzed at three example build heights, namely, 6.06 mm, 7.90 mm, and 9.70 mm. 

These example layers include formation of the overhang structure. The process parameters are 

shown in Table 2. The overarching aim is to distinguish the thermal patterns that emerge during 

melting of overhang.  
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The overhang here is specifically defined as being the last two scan vectors prior to or just after 

forming the edge, not including the pre- or post-contour scan as shown in Figure 5. The rest of the 

scans, apart from the pre- or post-contour scans, are considered to belong to the bulk volume of 

the part. A stripe pattern scan strategy is used and shown in Figure 5(c and d); hence the laser scans 

along the overhang four times (four stripes) for each layer past 4 mm build height. The stripe 

orientation shifts 90° between layers, and the three example layers demonstrate vertical stripe 

pattern such that each scan vector within a stripe is horizontally aligned with the thermal camera 

field of view.  

Admittedly, the part design studied herein is a simple unsupported overhang geometry and bereft 

of the complex geometrical features that can be created with LPBF. The test artifact shown in 

Figure 5 was chosen by researchers at NIST to study the physical aspects of the meltpool when 

building overhang geometries, so that the thermal phenomena can be explained using physical 

modeling. The relatively compact dimensions and tractable geometry of this test artifact allows 

researchers at NIST to avoid de-focusing concerns with the infrared camera ‒ the precision of the 

thermal measurements will be deleterious affected if a large object is observed, given that the field 

of view of the thermal camera is limited. In other words, because the sensors used in this study are 

not coaxial with the laser but are in the staring configuration, hence, if a bigger and more complex 

object is monitored the details of the meltpool shape will be occluded due to blurring if the field 

of view is increased.   

We reiterate that this work takes the first-step in a series of forthcoming research that will focus 

on sensor-based monitoring of defects in AM using spectral graph theory. At the time of this 

writing, one article that uses the photodetector sensor data to detect material cross- contamination 
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in LPBF has been accepted in this journal. A second article in using gray-scale static imaging of 

the powder bed to detect porosity in LPBF is currently under review. Both these articles apply 

spectral graph theoretic data analysis techniques. A more concise version of these papers has been 

accepted for publication in the proceedings of the 2018 ASME Manufacturing Science and 

Engineering Conference (MSEC) [57, 58]. 

Insert Table 2 Here. 

Insert Figure 5 Here. 

3.2 Visualization of the Representative Data Acquired 

This section describes the qualitative differences in the three types of sensor data acquired while 

scanning the overhang and bulk features. 

1) Thermal Camera Images 

Thermal video files were captured as raw 14-bit digitized data. These images are pre-processed 

and converted to radiance temperature values through a calibration procedure described in Ref. 

[59].  Radiance temperature, not to be confused with true temperature, is the equivalent 

temperature measured if the emitting surface has an emissivity of  = 1.  The image pixel values 

are multiplied by a factor of 10 and then stored as unsigned 16-bit integers to reduce the file size; 

hence there is a loss in numerical precision of 0.1 °C. Each thermal frame is a two dimensional 

matrix of 128 pixels × 360 pixels. The data captured in a frame is an average over 40 μs of data. 

This is related to the integration time (or shutter speed) of the camera. In this work, analysis will 

be conducted on the binary transformation of the thermal images, because the temperature 

recorded by the thermal camera is a radiance temperature, which has not been corrected using 
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emissivity values to obtain the true thermodynamic surface temperature.   However, this does not 

inhibit the analysis techniques described to observe relative effect of build conditions on thermal 

video signal.   

For example, the meltpool images taken with an SWIR thermal camera (sensor) while scanning 

the bulk and overhang sections of a test artifact used in this work are shown in Figure 6(a) and (b), 

respectively. Figure 6(b) reveals that melting of the overhang section manifests in distinctive 

meltpool shapes[13, 14]; the meltpool for the overhang features, is roughly 1.5 times larger in 

length than its bulk counterpart. This is likely due to the residual heat in the overhang section 

stemming from the poor heat flux therein. Consequently, it is posited that correlation of the 

meltpool signature with the build condition facilitates in the isolation of process variation.  

Insert Figure 6 Here. 

2) High-speed Visible Camera Imaging 

The high-speed visible camera images are windowed to 256 pixels × 256 pixels. Images are 

acquired at 1,000 frames per second. Representative images for the overhang and bulk build 

features are shown in Figure 7(a) and (b) respectively. The difference in the meltpool 

characteristics between overhang and bulk features in high-speed visible camera images, although 

discernable, are not as prominent as in the corresponding thermal images shown in Figure 6.  

Insert Figure 7 Here. 

3) Photodetector Signal (Time Series Data) 

The photodetector signal is acquired as a time series sampled at 1 MHz; the response is in voltage. 

To ensure photodetector and both thermal and visible camera signals can be synchronized during 
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analysis, both photodetector raw signal and frame pulses (a 5 V square pulse indicating when a 

frame is captured) from the camera are collected on the same data acquisition system.   

 Furthermore, in analysis of the photodetector signal, the number of data points corresponding to 

the framerate of the thermal camera must be taken into consideration. This is obtained by dividing 

the sampling rate of the photodetector (1 MHz) by the framerate of the thermal camera 

(1800 frames per second). This equates to 555 data points (roughly 555 µs) measured by the 

photodetector within one frame period of the thermal camera. A representative trace juxtaposing 

the photodetector signal for the overhang and bulk build features is shown Figure 8(a). A spike in 

the photodetector signal for the overhang condition is observed. Some typical difficulties with 

using existing statistical signal processing approaches in the context of the LPBF photodetector 

sensor data from this work are exemplified in Figure 8. 

Insert Figure 8 Here. 

  Figure 8(b) shows the Fourier transform of the same photodetector signal for time series for 

the overhang and bulk features described in Figure 8(a). The difference in the spectral profile 

of the signal for the two build conditions, i.e., overhang and bulk, are scarcely distinguishable; 

only one clear peak was observed despite the high sampling rate (1 MHz). Analysis of the 

power spectrum revealed that the two build states were not statistically distinguishable.   

 The cumulative probability distribution of the photodetector trace for the overhang and bulk 

features over several frames (or 555 data points) is mapped in Figure 8(c). The large shifts in 

the distribution shape and spread over different frames, evocative of the inherent 

nonstationarity of LPBF process, curtails any attempt to fit a fixed parametric statistical 

distribution to the data. 
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4 Proposed Methodology 

The aim of this section is to develop a spectral graph theoretic approach for analysis of 

multidimensional signals. This approach is used later to capture the differences in the thermal 

signatures during the melting of the overhang and bulk features of the test artifact shown in Figure 

5. Application of graph theoretic approaches for signal processing is a nascent domain with recent 

notable review articles by Hammond et al. [60], Sandryhaila et al. [61], and Shuman et al. [62, 

63]. Niyogi et al. in a series of seminal articles proposed embedding high dimensional data as an 

undirected graph, and subsequently projecting the data into the Eigenvector space of the graph 

Laplacian [64-66].  

4.1 Previous Work in Spectral Graph Theory by the Authors 

This work builds upon the authors’ previous research in spectral graph theory for manufacturing 

applications [67-72]. These previous works are enumerated below. 

1) The authors used spectral graph theory to differentiate between different types of surfaces in 

ultraprecision semiconductor chemical mechanical planarization (CMP) process [67]. The 

spectral graph theoretic invariant Fiedler number (λ2), viz., the second Eigenvalue of the 

spectral graph Laplacian matrix, described later in Sec. 4.2, in Eqn. (9) and (10), was used as a 

discriminant to track changes in the surface that were not detected using statistical surface 

roughness parameters [67].  

2) The preceding work was extended to online monitoring of surface finish in conventional 

machining. A CCD camera was used to take images of a rotating shaft as it was being 
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machined. The machined surface images were analyzed online, and the Fiedler number (𝜆2) is 

correlated with the surface roughness [68]. 

3) The spectral graph theoretic approach was used for detection of change points from sensor 

data. The Fiedler number (λ2) from different types of planar graphs is monitored using 

multivariate control chart to capture the onset of anomalous process conditions in 

ultraprecision machining (UPM) and chemical mechanical planarization (CMP) processes 

[73]. 

4) The Fiedler number was used to differentiate the geometric integrity of fused filament 

fabrication (FFF) AM parts made using different materials [71] based on laser-scanned point 

cloud data.  This work was further extended to parts made under different FFF conditions using 

several spectral graph Laplacian Eigenvalues and not just Fiedler number [69, 72]. 

This work differs from the authors’ previous works in the following manner. It is the first to report 

the application of Laplacian Eigenvectors for diagnosis of process conditions in AM. The approach 

is integrated within a learning framework for online monitoring of process conditions. None of the 

previous studies by the authors had an online learning capability for state detection from sensor 

signals. This is not a trivial extension because the Laplacian Eigenvectors present a multi-

dimensional challenge to classification. Furthermore, the previous works were based on converting 

a signal into an unweighted and undirected graph. This required using thresholding functions, 

which in turn leads to loss of information. In this current work, such a threshold is not required as 

the graph constructed is of the weighted and undirected type. A brief overview of the approach is 

provided in the forthcoming Sec. 4.2.  



Accepted Manuscript MANU-18-1023 

20 

 

4.2 Overview of the Approach 

Before describing the mathematical intricacies of the approach, a high-level overview is provided. 

The mathematical convention is to denote matrices and vectors with bold typesets. Suppose a 

sequence of sensor data, 𝓧 (time series or images) is gathered from a process. Further, consider 

that the process manifests in 𝑛 different known process conditions or build states labelled as 𝓈1, 

𝓈2, 𝓈𝑖⋯ 𝓈𝑛. In LPBF these states could refer to different process conditions, such as melting of 

bulk, overhang, thin sections, etc. This allows the sensor data 𝓧 associated with each condition 𝓈𝑖 

to be represented with the symbol 𝔁𝑖. The aim is to identify the system state 𝓈𝑖 from which an 

unlabeled signal 𝑦 is observed; i.e., if a signal 𝑦 is observed, the purpose is to find the process 

condition i to which it belongs. From the LPBF perspective, for instance, the intent is to conclude 

from one frame of the high-speed video camera whether there is an impending build failure; or 

given a photodetector signal sample, infer if the onset of distortion is imminent. The signal 𝔁𝑖  can 

take various forms depending on the type of sensor data acquired. 

 Temporal data [𝔁𝑖]
𝑚×𝑑: Each column of 𝔁𝑖 is type of a sensor, and each row is a measurement 

in time 𝑡 =  {1…𝑚} for the 𝑑 sensors; each 𝑎𝑗
𝑡 is a data point for sensor 𝑗 =  {1…𝑑} at time 

instant 𝑡. In the context of LPBF this matrix could represent multiple photodetector signals 

acquired simultaneously, where each column of 𝔁𝑖 is the data from a photodetector. It is 

restated that 𝔁𝑖 is associated with a specific process state 𝓈𝑖. 

𝔁𝑖 =

[
 
 
 
𝑎1
1 𝑎1

2  ⋯ 𝑎1
𝑑

𝑎𝑡
1

⋮
⋱ 𝑎𝑡

𝑑

⋮
𝑎𝑚
1 ⋯ 𝑎𝑚

𝑑 ]
 
 
 

 (1) 
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 Spatiotemporal data, such as from a high-speed visible camera or thermal camera, where each 

𝒙𝑖
𝑡 is an image frame captured at time instant 𝑡 for a state i. The matrix 𝔁𝑖 must be further 

qualified with a time index 𝑡 because data is acquired in discrete frames. Thermal and video 

camera data are in such a format; the signal in this instance is a three dimensional array. Each 

𝒙𝑖
𝑡 is an array of image pixels. For a frame of a thermal camera image, each pixel corresponds 

to intensity of light converted to a radiant temperature value using the thermal calibration; for 

the high-speed video camera each pixel records the intensity of light.  

 Purely spatial point cloud data, where 𝔁𝑖 contains information of coordinate the locations. 

Another example is the 3D point cloud data, such as those obtained from a laser or structured 

light scanner. This information is obtained as spatial coordinate indexed information [69]. 

The approach involves the following three broad steps (see Figure 9); the detailed steps and 

mathematics are explained later. 

Insert Figure 9 here. 

Step 1: Transform the signals 𝔁𝑖 corresponding to each pre-labeled state 𝓈𝑖 into an undiected, 

weighted network graph 𝐺𝑖(𝑉, 𝐸,𝑊). Where, 𝑉 and 𝐸 are the vertices and edges of the graph and 

W is the weight between the edges. 

Step 2: The spectral graph Laplacian matrix 𝓛𝑖 is computed from the graph 𝐺𝑖. The first non-zero 

𝓃 graph Laplacian Eigenvectors 𝒗𝑖 are used as an orthogonal basis set corresponding to the 

process state 𝓈𝑖.  

Step 3: Each 𝔁𝑖 is decomposed by taking an inner product  𝒙𝑖
T ∙ 𝒗𝑖 akin to a Fourier transform into 

a set of coefficients 𝒄𝑖 called graph Fourier coefficients.  
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 The graph Fourier coefficients is written in block matrix form as ℂ =

[[𝒄1
T] [𝒄2

T] ⋯ [𝒄𝑖
T] ⋯ [𝒄𝑛

T]] corresponding to different states 𝓈1, 𝓈2, 𝓈𝑖⋯ 𝓈𝑛 . The 

matrix ℂ is called the dictionary. 

 Given an unlabeled signal 𝑦, an inner product 𝓹𝑖 = 𝑦
T ∙ 𝓋𝑖 is taken with each of the n basis 

vector sets one at a time; where n are the different states.  The matrices 𝓹𝑖
T are called the 

candidate coefficients. Each 𝓹𝑖
T  is compared with the corresponding 𝒄𝑖

T in  the dictionary ℂ 

in terms of the squared error 𝑒𝑖. The comparison resulting in the least error is the designated 

state of 𝑦. 

The advantages of the approach are as follows: 

1. The graph Fourier transform eschews intermediate signal filtering steps and accommodates 

multi-dimensional signals. It does not require mining statistical features, such as mean, 

standard deviation, etc., from the data. Hence the presented approach is feature-free. Given 

an unlabeled signal 𝑦 belonging to an unknown state 𝓈𝑖, a computationally simple inner 

product is needed for classification. This is apt for online monitoring applications. 

2. The approach does not require a priori defined basis functions akin to the sinusoidal basis for 

the Fourier transform; nor does it rely on a predefined probability distribution as in typical 

stochastic modeling schemas; and lastly the need for a rigid model structure is eliminated, 

e.g., number of hidden layers and nodes in a neural network. 
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The disadvantages of this approach are:  

1. As with all supervised classification models, a pre-labeled data set is needed.  

2. All the sensor data [𝔁𝑖]
𝑚×𝑑, if they are temporal sensors, must have the same sampling rate. 

This assumption can be relaxed by signal smoothing steps. Frequent symbols and notations 

are noted in Table 3. Each of the three steps of the approach is next described in detail. 

Insert Table 3 Here. 

1) Step 1: Converting a signal into a Network Graph. 

The aim of this step is to represent a sequence 𝓧 of sensor data (time series, images) as a weighted, 

undirected network graph 𝐺, i.e., achieve the mapping 𝓧 ↦  𝐺(𝑉, 𝐸,𝑊) with nodes (vertices) 𝑉, 

edges (links) 𝐸, and edge weights 𝑊.  The graph 𝐺(𝑉, 𝐸,𝑊) is a lower dimensional representation 

of 𝓧. Consider a m-data point long signal 𝔁𝑖 corresponding to a known state 𝓈𝑖, 𝑖 =  {1…𝑛} as 

per the matrix shown in Eqn. (1). 

This signal is divided into h windows of length k (= m/h) data points each. Let each window be 

represented as a k×d matrix 𝒙𝑖
𝑝
, 𝑝 ∈  {1…ℎ}, 𝔁𝑖 is written in block matrix form as, 

𝔁𝑖 = [
𝑥𝑖
1

⋮
𝑥𝑖
𝑝
]  (2) 

For each 𝒙𝑖
𝑝
 the following graph transform procedure is followed.  First, pairwise comparison 𝓌𝑖𝑗 

are computed using a kernel function Ω ; in Eqn. (3), 𝒙𝑞⃗⃗⃗⃗  and 𝒙𝑟⃗⃗⃗⃗  are two rows of the signal window 

𝒙𝑖
𝑝
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𝓌𝑞𝑟 = Ω(𝒙𝑞⃗⃗⃗⃗ , 𝒙𝑟⃗⃗⃗⃗ ) ∀ 𝑞, 𝑟 ∈ (1⋯𝑘). (3) 

Different types of kernel functions Ω may be used, for instance, the Gaussian (Eqn. (4)) and 

Mahalanobis (Eqn. (5)) kernel shown below: 

𝓌𝑞𝑟 = 𝑒
−[
‖𝒙𝑞⃗⃗ ⃗⃗  −𝒙𝑟⃗⃗ ⃗⃗ ‖

𝜎
]

2

 

(4) 

𝓌𝑞𝑟 = (𝒙𝑞⃗⃗⃗⃗ − 𝒙𝑟⃗⃗⃗⃗ )𝐶
−1(𝒙𝑞⃗⃗⃗⃗ − 𝒙𝑟⃗⃗⃗⃗ ) (5) 

The weight of an edge connecting a node q with another node r is 𝓌𝑞𝑟. It is apparent that the 

topology of the graph 𝐺 depends on the kernel Ω. In this work, the Mahalanobis kernel, Eqn. (5) 

with 𝐶 as the variance-covariance matrix is used exclusively. The mathematical implication of 

using the Mahalanobis kernel are as follows: 

lim
𝒙𝑞⃗⃗ ⃗⃗  −𝒙𝑟⃗⃗ ⃗⃗ →0

𝓌𝑞𝑟 = 0 (6) 

In other words, given two data points 𝒙𝑞⃗⃗⃗⃗  and 𝒙𝑟⃗⃗⃗⃗ , the more similar 𝒙𝑞⃗⃗⃗⃗  and 𝒙𝑟⃗⃗⃗⃗  are, the weaker is the 

connection between the two. The symmetric similarity matrix 𝑺𝑘×𝑘 = [𝓌𝑞𝑟] represents a weighted 

and undirected network graph 𝐺; each row and column of 𝑺𝑘×𝑘  is the vertex 𝑉 (or node) of the 

graph, the relationship between two nodes is indexed by edges, in terms of its connection status 𝐸, 

and weight 𝑊. The graph is then represented as 𝐺 ≡ (𝑉, 𝐸,𝑊). The following notational additions 

are made: 𝑺𝒙𝑖
𝑝 and 𝐺𝒙𝑖

𝑝, where 𝒙𝑖
𝑝
 relates to a specific window 𝔁𝑖 for the signal 𝑝. 

An analogy can be drawn between a graph network with an electrical circuit with resistors. Indeed 

there is an equivalence in literature between the Laplacian Matrix and the Kirchhoff Matrix of 
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electrical circuits [74]. The node 𝑉 of a graph corresponds to the node or common point in the 

circuit; the edge 𝐸 of the graph is a branch in the circuit; and the resistance on the branch is the 

weight 𝑊. The smaller the weight of the edge connecting two nodes, the smaller the resistance 

between them.  

Knowing that the electric current takes the path of shortest resistance, an electrical network can be 

characterized in terms of the path taken by the current; if the resistance along a branch changes, 

the path taken may also change. Hence, by tracking changes in the path taken by the current, drastic 

changes that may have occurred in the circuit can be detected. This very idea carries over to the 

presented approach. A signal is redrawn as a graph and the different paths on a graph are tracked 

in terms of the Eigenvectors of the Laplacian Matrix.  

2) Step 2: Extracting topological information for the graph surface 

The aim of this step is to extract topological information from the graph 𝐺. Once the data 𝑥𝑖
𝑝

  in a 

particular window is represented as a graph 𝐺𝒙𝑖
𝑝, the Laplacian Eigenvectors are computed. This 

topological information is subsequently used to capture the process dynamics contained in the 

signal 𝓍𝑖. Going back to 𝒙𝑖
𝑝
,  the degree 𝑑𝑞 of a node 𝑞, 𝑞 = {1…k} is computed, which is a count 

of the number of edges that are incident upon the node. The node degree is the sum of each row in 

the similarity matrix 𝑺K × K  and the diagonal degree matrix 𝓓 structured from 𝑑𝑞 is obtained as 

follows, 

𝑑𝑞 =∑𝑤𝑞𝑟

𝑘

𝑟=1

 ∀ 𝑞, 𝑟 = {1…𝑘} (7) 

𝓓𝑘 × 𝑘 ≝ diag(𝑑1, ⋯ , 𝑑𝑘). (8) 



Accepted Manuscript MANU-18-1023 

26 

 

This leads to the normalized Laplacian ℒn of the graph 𝐺, which is defined as, 

𝓛n  ≝ 𝓓 −
1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2, 

where, 𝓓 −
1

2 = diag (1
√𝑑1
⁄ ,⋯ , 1

√𝑑𝑘
⁄ ). 

(9) 

An alternative is the random walk Laplacian ℒ𝑟  of the graph 𝐺 is defined as, 

𝓛r   ≝ 𝓓 −1 × (𝓓 − 𝑺), (10) 

Simplifying the notation, both Laplacians are represented with the symbol ℒ. Thereafter, the Eigen 

spectrum of ℒ is computed as, 

𝓛𝒗 = λ∗𝒗. (11) 

At the end of Step 2 a spectral graph transform on a signal  𝒳 is defined;  

𝐺(𝓧) → 𝓛𝓧(λ
∗, 𝒗). (12) 

In other words, the information in the signal 𝓧 is captured in the form of the Eigenvectors (𝑣) and 

Eigenvalues (λ∗) of the Laplacian matrix.  

3) Step 3: Classification of Process States 

The aim of this step is to find out or classify the process state 𝓈𝑖, given a signal 𝑦. For instance, 

given a frame of the thermal image, the intent is to ascertain if there is an impending build fault.  

This is a type of a supervised classification approach, where a set a labeled data is assumed to exist 

a priori. This presumption of labeled data is one of the disadvantages of this approach, it will be 

relaxed with new graph theoretic unsupervised learning approaches in the authors’ future work. 

Step 3.1: This step applies the graph transform from Eqn. (12) to the signal 𝓍𝑖 corresponding to a 

state 𝓈𝑖, as follows, where h is the number of windows in the signal, 
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𝐺(𝔁𝑖) = [

𝓛𝑥𝑖
1

⋮
𝓛
𝑥𝑖
ℎ

]. (13) 

This means that the signal 𝒙𝑖
𝑝
 corresponding to a state 𝓈𝑖, at window 𝑝 is associated with a 

Laplacian Eigenvector basis 𝒗𝒙𝑖
𝑝 through the spectral graph transform. Each 𝒗𝒙𝑖

𝑝 is a k-long column 

vector. 

Step 3.2: Next, the aim is to learn a single universal basis 𝓥𝓈𝑖   for a system 𝓈𝑖 as data is 

continuously acquired (consider that the signal 𝒙𝑖 arrives in discrete chunks as a window).  This is 

done through a simple update schema, akin to the delta update rule frequently used in machine 

learning [75]. For each window, the basis vectors are updated as follows, 

𝑽
𝑥𝑖
𝑝+1  = 𝒗𝒙𝑖

𝑝 + ∆(𝒗
𝒙𝑖
𝑝+1 − 𝒗𝒙𝑖

𝑝) , 𝑝 = {1…ℎ}  (14) 

Initialized with 𝑽𝒙𝑖
1 = 𝒗𝒙𝑖

1 with ∆ set to a small value (∆ = 0.01 in this work). To make the process 

computationally simpler a smaller subset of the Laplacian Eigenvalues is updated; typically, the 

first 10 non-zero Eigenvectors of the Laplacian ℒ𝑥𝑖
𝑝 were found to be adequate. Hence, the 

universal basis 𝓥𝓈𝑖  
𝑘×𝓃

 is the matrix obtained when 𝑽𝒙𝒊 converges, that is 𝓥𝓈𝑖  = 𝑽𝑥𝑖
ℎ, where 𝓃 is 

the number of non-zero Eigenvectors updated. 

Step 3.3: The spectral graph Fourier transform, which is analogous to the discrete Fourier 

transform is now defined. A spectral graph Fourier transform 𝐺̂(⋅) on a signal 𝓧𝑁×1 (consider d = 

1 for simplicity) can be defined assuming that the Laplacian matrix (ℒ) is not defective, i.e., the 

graph has no isolated nodes as follows, 
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𝐺̂(𝓧) = [𝓧T ⋅ 𝑽1 = 𝑐1 ⋯ 𝓧T ⋅ 𝑽𝑁 = 𝑐𝑁] 

𝓧 =∑𝐺̂(𝓧) ⋅ 𝑽𝑖

𝑖=𝑛

𝑖=0

 

(15) 

Applying this analogy to the signal 𝑥𝑖 across each of the h windows by taking the product (𝒙𝑖
𝑝)
T
∙

𝓥𝓈𝑖  ∀ 𝑝 = {1…ℎ} leads to the coefficient matrix 𝐺̂(𝒙𝑖). 

𝐺̂(𝒙𝑖 ) = [[(𝒙𝑖
1)𝑇(𝓥𝓈𝑖  ) = 𝕔1,𝓈𝑖 

𝑑×𝓃] ⋯ [(𝒙𝑖
ℎ
 
)
T
(𝓥𝓈𝑖  ) = 𝕔ℎ,𝓈𝑖 ]] 

(16) 

Essentially, each term 𝕔𝑝,𝓈𝑖 is a matrix that is 𝑑 × 𝓃 long, where 𝓃 are the number of Eigenvectors 

in the universal basis 𝓥𝓈𝑖  selected for analysis; the universal basis 𝓥𝓈𝑖  has dimensions 𝑘 × 𝓃.  If 

this procedure is repeated for all n systems 𝓈1⋯𝓈𝑛, then a dictionary of coefficients can be formed, 

written in block matrix form ℂ (ℎ×𝑛), and partitioned by 𝕔1,𝓈𝑖
T each of which has dimensions 𝓃 ×

𝑑: 

ℂ (ℎ×𝑛) =

[
 
 
 
 
𝕔1,𝓈1

T ⋯𝕔1,𝓈𝑖
T⋯ 𝕔1,𝓈𝑛

T

𝕔2,𝓈1
T

⋮

⋯𝕔2,𝓈𝑖
T⋯

⋮

𝕔2,𝓈𝑛
T

⋮
𝕔ℎ,𝓈1

T ⋯𝕔ℎ,𝓈𝑖
T⋯ 𝕔ℎ,𝓈𝑛

T
]
 
 
 
 

 

(17) 

Step 3.4: Given an unknown signal 𝒚, with k × d data points an inner product (𝒚)T ∙ 𝓥𝓈𝑖   is taken 

with each of the n universal basis vector sets 𝓥𝓈𝑖  one at a time. This gives a candidate set populated 

by block matrices [𝓹𝓈𝑖]
𝑑×𝓃

, as follows,  

ℙ = [[𝓹𝓈1
T ], ⋯  [𝓹𝓈𝑛

T ] ] . (18) 



Accepted Manuscript MANU-18-1023 

29 

 

Step 3.5: The next step is to compare each of the candidate block matrices 𝓹𝓈1with the dictionary 

of coefficients 𝕔𝑝,𝓈𝑖  in Eqn. (17) having the corresponding label 𝓈𝑖. In other words, find the error 

between 𝓹𝓈𝑖 and corresponding 𝕔𝑝,𝓈1 ∀ 𝑝. This is done by taking the sum of square errors, 

𝑒𝓈1 = ∑ ‖(𝕔𝑝,𝓈𝑖
T −𝓹𝓈𝑖

T)‖𝑝=ℎ
𝑝=1

2
. (19) 

The label assigned to 𝑦 is the one which has the minimum sum of square errors, i.e.,  argmin
𝓈𝑖

𝑒𝓈𝑖. 

Having described the mechanics of the approach, in the forthcoming section (Sec. 4.3) the 

underlying mathematical intuition is elucidated. 

4.3 Mathematical Rationale for the Spectral Graph Theoretic Approach 

Two mathematical justifications as to why the Laplacian Eigenvectors are appropriate quantifiers 

for monitoring the process states are tendered: 

(a) An analogy with the Fourier transform from the statistical signal processing is proffered. 

(b) An explanation is given from the network topology perspective. 

1) A Justification from the Signal Processing Viewpoint  

The following properties of the normalized Laplacian matrix 𝓛n are important. Because 𝓛n is a 

diagonally dominant symmetric matrix with non-positive off-diagonal elements (called Steiltjes 

matrix) [76] it leads to the following properties,  

1. 𝓛 is symmetric positive semi-definite, i.e., 𝓛 ≥ 0.  

2. The Eigenvectors of 𝓛 are orthonormal to each other, i.e.,𝓿1 ⊥ 𝓿2⋯ ⊥ ⋯𝓿𝑘; ⟨𝓿𝑝, 𝓿𝑞⟩ =

0; ⟨𝓿𝑝, 𝓿𝑝⟩ = 1, where 𝓿𝑝 is an individual Eigenvector.  The first eigenvector 𝓿1 is an 

identity vector. 
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Although, these properties do not hold for the random walk Laplacian 𝓛r, the Eigenvectors of 𝓛r 

can be orthogonalized using the Gram-Schmidt process  [77] . Based on the orthogonality of the 

Laplacian Eigenvectors, a link between the Graph transform 𝓛𝓧(λ
∗, 𝑣) and the fast Fourier 

transform (FFT) can be made. From Eqn. (15) it is apparent that the Eigenvectors of the Laplacian 

are essentially akin to a Fourier basis, with coefficients 𝑎𝑖 (𝑎𝑖 ∈ ℝ, because 𝓧T, 𝓿 ∈ ℝ). 

Moreover, because all the Laplacian Eigenvalues are real, the following holds,  

〈𝓧T, 𝒗𝑖〉 = 𝑐𝑖 = 𝑘𝑖λ𝑖, ∀𝑖 > 1 (20) 

 In other words, the so-called graph Fourier coefficients 𝑐𝑖 are multiples of the Eigenvalues λ
∗
 of 

the Laplacian. In summary, a mapping 𝓧 ↦ 𝓛𝒳(λ
∗, 𝒗) can be achieved whose dynamics are 

characterized using the Laplacian Eigenvectors (𝑣). Instead of tracking statistical features of the 

signal in the time and frequency domain, the proposed graph theoretic approach entails monitoring 

the topology of the network graph (𝐺) in terms of the Laplacian Eigenvectors (𝒗).  

2) A Justification from the Network Topology Viewpoint  

This section provides the mathematical rationale from the geometric topology viewpoint for using 

the Laplacian Eigenspectrum(λ∗, 𝒗).  The first justification in the literature is due to Belkin and 

Niyogi [64, 65] who substantiate the intuition that the graph Laplacian indeed captures the complex 

spatio-temporal dynamics of high dimensional data in a low dimension space, namely, the graph 

𝐺(𝑉, 𝐸,𝑊) based on the theory of Laplace-Beltrami operators on Riemannian manifolds. 

Elucidating this justification is beyond the scope of the current work.  

The second justification is motivated from spectral graph segmentation area. It is based on the 

normalized Laplacian, and was proved by Shi and Malik [78].  Shi and Malik show that the 
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Laplacian Eigenvector 𝒗2 (Fiedler vector) is the most efficient means to partition a graph 𝐺 ≡

(𝑉, 𝐸,𝑊). Partitioning a graph is analogous to the number of edges that must be broken to cut a 

graph into two. The Eigenvector 𝓿2 is the shortest way to partition a graph (sever the least amount 

of edges); the Eigenvector 𝓿3 is longer, and so on (𝓿1 is merely a vector of ones, and corresponds 

to a eigenvalue of 1). In other words, the Laplacian Eigenvectors and Eigenvalues are not merely 

statistics, but are topological invariants that are representative of the signal structure in the graph 

space.  

The specific mathematical implication Shi and Malik’s work is that the graph segmentation (or 

cutting) problem has an efficient discrete solution in the Rayleigh quotient of the Laplacian matrix 

𝓛 [78]. Consequently, on using the Courant-Fischer theorem (see Ref. [79]), which gives min and 

max bounds on the Rayleigh quotient, Shi and Malik arrive at the following solution to a 

discretized modification of the graph segmentation problem, where 𝐱 is a vector in the span of 𝓛, 

and the left hand side terms are Rayleigh quotients of the Laplacian. 

arg min
𝐱j 

𝐱j
T𝓛𝐱j

𝐱j
𝐓𝐱j

= 𝓿2, min
xj

𝐱j
T𝓛𝐱j

𝐱j
T𝐱j

= λ2; and 

arg max
xj 

𝐱j
Tℒ𝐱j

𝐱j
T𝐱j

= 𝓿k,    max
xj

𝐱j
T𝓛𝐱j

𝐱j
T𝐱j

= λk 

(21) 

Therefore, the Fiedler vector (𝓿2) solves the graph segmentation (cutting) problem, with Fiedler 

number (λ2) as the minimum attained [78]. The highest Eigenvalue (λk) is the maxima. Thus, the 

Laplacian Eigenvectors are linked to the inherent structure in the signal. 
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4.4 Application of the Approach to Synthetically Generated Signals. 

The aim of this section is to test the efficacy of the spectral graph approach in classifying signals 

from a nonlinear deterministic Rössler time series [80]. The Rössler system 𝜑(𝑡; 𝑎, 𝑏, 𝑐) shown 

below in Eq. (22) and plotted in Figure 10 are a set of interlinked nonlinear differential equations, 

whose behavior is governed by three constants: 𝑎 , 𝑏 , and 𝑐. A slight change in these constants 

leads to markedly different behavior of the system. It is an archetypical nonlinear dynamic system, 

which shows sensitivity to initial conditions. Four types of systems are generated by setting the 

constant 𝑎 to four different values, namely, 𝑎 = 0.16; 0.17; 0.19; and 0.21. These four systems are 

labelled 𝓈1, 𝓈2, 𝓈3, and 𝓈4 (see also Figure 10). The generated signals are 20,000 data points long 

for each 𝒙(𝑡), 𝒚(𝑡), and 𝒛(𝑡), which are initialized at {0,0,0}. Each 𝒙(𝑡), 𝒚(𝑡) and 𝒛(𝑡) is 

considered a signal, each of which occupies one column in Eqn. (1). Different values of the 

constant 𝑎 leads to different  𝜑(𝑡).  

𝜑(𝑡; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

𝑑

𝑑𝑡
𝒙(𝑡) = −(𝒚(𝑡) + 𝒛(𝑡))

𝑑

𝑑𝑡
𝒚(𝑡) = 𝒙(𝑡) + a𝒚(𝑡) 

𝑑

𝑑𝑡
𝒛(𝑡) = b + 𝒙(𝑡) ∙ 𝒛(𝑡) − c𝒛(𝑡)}

 
 

 
 

 (22) 

 

Insert Figure 10 Here. 

The following procedure is used: four different levels of Gaussian white noise (η) are added to the 

system; η = {0,5%, 10%, 20%} From each of the four systems 125 samples each 20,000 data points 

long are selected. Referring to Eqn. (1), the dimensions d = 3 for the Rossler system, and 

m = 20,000. Three different window sizes of length k = 500, 750, and 1000 data points are 

evaluated. The classification fidelity on applying the graph theoretic approach in terms of the F-
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score is recorded. The F-score is an aggregate measure of the statistical Type I (false alarm) and 

Type II (failing to detect) error. The higher the F-score the better. The process is repeated 5 times, 

i.e., five-fold replication study. The result from this analysis is shown in terms of the F-score 

contingent on the noise level (η) and window size is presented in Table 4. 

From Table 4 it is evident that window k = 750 gives a consistently higher F-score. Remarkably, 

addition of noise to the system does not lead to significant changes in F-score, which underscores 

the robustness of the proposed approach to noise. The reason a window of size of k =750 leads to 

the best results is because it is neither too short to be afflicted with temporal correlation, nor too 

large to affected by noise.   The so-called confusion matrix for k = 750 is shown in Table 5 along 

with a sample calculation for the F-score. The approach is compared against seven other popular 

classifiers in Table 6.  

The inputs to these classifiers are eight statistical moments: mean, median, standard deviation, 

skewness, kurtosis, minimum, maximum, and inter-quartile range. These features are extracted for 

each of the three components, 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), of the Rossler system, and principal 

components (capturing 99% of the variation) are used within the seven different machine learning 

approaches. The results, presented in Table 6, indicate that the proposed approach with Laplacian 

Eigenvectors outperforms these other approaches. 

Insert Table 4 Here. 

Insert Table 5 Here. 

Insert Table 6 Here. 
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5 Results and Discussions - Application of Spectral Graph Theory to LPBF  

The aim of this section is to apply the spectral graph approach described in Sec. 4 to discriminate 

between the overhang and bulk build conditions. Data from each of the three type of signals, 

thermal images, high-speed video frames and the photodetector time traces are analyzed, and their 

ability to distinguish between the two build conditions (overhang and bulk) is statistically assessed 

in terms of the F-score. A critical parameter that needs to be determined a priori is the window 

length k. In the thermal video and IR images the window size is 1 frame; for the photodetector, the 

window size was selected to be 555 data points (acquired over a time interval of 555 µs) long to 

correspond to one thermal image frame, as explained before. 

For the thermal and video images, each pixel row corresponds to a row on the matrix 𝑥𝑖, shown in 

Eqn. (1). Whereas, the photodetector signal is a column vector. Using Eqn. (5), the weight matrix 

𝓌𝑞𝑟 is obtained, and the steps in Eqn. (7) – Eqn. (9) are followed. This gives the Eigen spectrum 

(𝜆∗, 𝜈). The Eigenvalues 𝜆∗ are plotted to illustrate visually the manner in which the signals for 

different build conditions, namely, melting of overhang and bulk features, are distinguishable in 

the spectral graph domain. These plots are shown in Figure 11, based on which the following 

inferences are drawn: 

  Figure 11(a) traces the second Eigenvalue (𝜆2), also called the Fiedler number across 5000 

thermal camera frames for one layer (9.70 mm layer height) of the process. Distinctive peaks 

are evident in the plot where the overhang sections are built. The smoothed trend line in the 

figure obtained using a seventh order Savitzky-Golay filter taken over a window size 101 

data points to accentuate the patterns in the data.  
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 Corresponding to the same 5,000 frames in Figure 11(a), in Figure 11(b) is the L2 norm of 

the Eigenvalues (𝜆∗) given by ‖𝜆2
2, 𝜆3

2, … , 𝜆𝑘
2‖ for the photodetector signal. This is because 

the Fiedler number alone failed to show any clear peaks. The trends are not as visually 

prominent as those obtained from the thermal camera, indeed some of the peaks in the 

photodetector signal do not seem to align with those of the thermal camera. This is most 

likely due to the sensitivity of photodetector to the direction of the scan. As the laser melts 

material, nearer to the photodetector higher amplitude peaks are observed, compared to the 

instances where the laser is farther away. A count of the (periodic) peaks in Figure 11(b) 

reveal that they correspond to the number of hatches. Given this variation in the signal 

characteristics it is reasonable to expect a lower detection fidelity for the photodetector signal 

compared to the thermal camera. 

Continuing with the analysis, the approach is applied to the data acquired by the three sensors for 

distinguishing between the overhang and bulk build conditions. The approach is compared against 

seven other popular machine learning approaches following the procedure described in Sec. 4.4. 

For brevity, the parameter settings are encapsulated in the Appendix.  

Insert Figure 11 Here. 

Noting that for the photodetector signal the random walk Laplacian for Eqn. (11) is used. Table 7 

represents the performance of the spectral analysis algorithm for all three types of sensor signals 

in terms of F-score value. Based on Table 7 and Table 8 the following inferences are tendered: 

1) The proposed spectral graph theoretic approach outperforms all the other approaches tested, 

this holds for all sensing scenarios (Table 7). An F-score in the range of 80-95% is possible 
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with the proposed approach. While it is at best 60% with the other approaches, i.e., little better 

than a random guess. 

2) The prediction results from the photodetector signal are inferior for spectral graph theoretic 

approach compared to the same approach applied to other sensor signals. Nonetheless, the 

F-score results are within 20% of the highest resolution sensor, i.e., the thermal camera. The 

confusion matrix, based on 250 randomly selected samples — a sample is a frame for the 

thermal and video images and 555 µs of data for the photodetector — is shown in Table 8.  

3)  The detection fidelity is contingent on the analytical approach used. Even a sensor with the 

highest spatial resolution, such as a thermal camera, when integrated with an ill-suited 

analytical approach will lead to poor results. For instance, the thermal camera when combined 

with a linear discriminant classifier, has poor F-score (36%) compared to the visible camera 

(58%) and photodetector (59%). 

Insert Table 7 Here. 

Insert Table 8 Here. 

6 Conclusions and Future Work 

This work proposed a spectral graph theoretic approach for monitoring the build condition in laser 

powder bed fusion (LPBF) additive manufacturing (AM) process via a sensing array consisting of 

a photodetector, SWIR thermal camera, and high-speed video camera. The central idea of the 

approach is to convert the sensor data into a lower dimensional manifold, specifically, a weighted 

and undirected network graph. Specific conclusions are as follows: 
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1. An LPBF part with a steep overhang feature (40.5°) is built without supports. The build is 

monitored continuously with the aforementioned sensor suite with the intent to detect the 

difference in signal patterns when the bulk and overhang sections are sintered. Extracting and 

detecting the difference in sensor signatures for such a simple case is the first-step towards 

in-situ defect detection in AM. The analysis was extended to more sophisticated machine 

learning approaches, such as neural networks and support vector machines, among others 

(Sec. 5). These approaches had a fidelity (F-score) for distinguishing between the overhang 

and bulk states in the vicinity of 40-60%. 

2. The proposed graph theoretic approach was applied to the sensor data with the intent to 

distinguish between the overhang and bulk build states, the F-score obtained is in the region 

of 80 to 95%, contingent on the type of sensors: F-score ~ 95% from the short wave infrared 

thermal camera; F-score ~ 83% for the high-speed video camera, and F-score ~ 79% for the 

photodetector sensor.  

These results lead to the following inferences: 

 To monitor the LPBF process, in-process sensing must be integrated with new and advanced 

analytical approaches capable of combining data from multiple sensors. Existing approaches, 

such as neural networks are ineffective probably due to their inability to discern the subtle and 

short-lived indications of an incipient fault, and limitations with accommodating 

heterogeneous sensors.   

 A low fidelity sensor, such as photodetector, although not as capable in discriminating between 

build conditions as a high-fidelity sensor, its detection capability is still within 20% of the 

thermal camera. This limitation may be overcome by using multiple photodetector sensors 

together. 
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This work exposes the following unanswered, open research questions, which the authors will 

endeavor to address in their forthcoming work: 

i. What other different types and more relevant microstructure-level defects, such as powder 

contamination, poor fusion, porosity delamination, etc., may be detected? 

ii. What is the link between specific defects and sensor signal patterns? In other words, is there 

a one-to-one link between a type of defect and its severity, and the sensor signature it 

manifests? 

iii. What is the detection lag; does the detection accuracy improve with sensor redundancy? 

What is the effect of sensor noise and position on the detection accuracy? 

iv. How does the approach translate into more complicated geometries, and different types of 

defects, and eventually design rules in AM?  

In closure, while this research proposes an approach for monitoring of process states and the 

detection of incipient defects, thus laying the conceptual ground work for a qualify-as-you-build 

paradigm in AM, nevertheless, it does not provide an avenue to repair or correct impending defects 

through closed loop feedback control. Prompt defect correction is important in AM, because, once 

a defect is created in a layer it is liable to be permanently sealed in by subsequent layers. 

Accordingly, the next-step for the authors, apart from addressing the four questions posed 

heretofore, is to build a mechanism for defect correction within the AM process. To realize this 

need for process correction, the authors have access to three hybrid additive-subtractive AM 

systems at their home institution – University of Nebraska-Lincoln, namely, two Matsuura Lumex 

Avance 25 hybrid LPBF systems, and one Optomec hybrid directed energy deposition system. 

These hybrid AM systems have a subtractive machining head inside the machine, which can be 
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used for removal of an entire defect-prone layer. Moreover, these machines allow complete control 

over the process parameters; this freedom to alter parameters, which is absent in most commercial 

AM systems, engenders a means to correct defects. For instance, if porosity formation due to lack 

of fusion is detected from in-process sensor data, the laser power may be increased to an 

appropriate level to fuse the un-melted powder particles. On the other hand, if pinhole porosity 

due to overly high input laser power were to occur in a particular layer, the subtractive machining 

head may be used to remove such a layer, and the process commenced with changed parameters 

(e.g., lowering the laser power).  Hence, this work is the critical first-step towards transcending 

the qualify-as-you-build concept and usher a new correct-as-you-build paradigm in AM leading 

to parts with zero defects.   
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Table 1: The information related to all sensors used in the LPBF process 

Sensor Type Location Details 

Short  

Wave Infrared 

Thermal 

camera 

Stirling cooled, 

extended range 

Indium 

Antimonide 

(InSb) detector 

with Cameralink 

connection. 1 

megapixel. 

Behind the machine 

door, inclined at an 

angle of 43.7𝑜 with 

the build plane. 

 Frame rate: 1,800 frames per 

second. 

 Wavelength: 1,350 nm – 1,600 nm. 

 Shutter speed/Integration time: 40 

μs. 

 Calibration range: [500, 1025]oC. 

 Instantaneous field of view (iFoV): 

36 μm per pixel. 

High Speed 

Visible Camera 

Silicon-based 

array. 1.2 

megapixel. 

Inside the build 

chamber 

(Upper right corner). 

Frame rate: 4,000 frames per second. 

Photodetector 

Lensed, silicon-

based 

photodiode. 

Parallel with the 

thermal camera. 

Spectral response: 300 nm to 

1,200 nm. 

Cutoff frequency: 141.5 kHz. 

Sampling rate: 1 MHz. 
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Table 2: Scanning parameters used for fabrication of overhanging structure shown in Figure 5. 

Print Parameter Value 

Hatch distance (spacing) 0.1 mm 

Stripe width 4 mm 

Stripe overlap 0.1 mm 

Layer thickness 20 μm 

Scan speed 800 mm/s 

Laser power 

195 W (infill) 

100 W (pre-contour) 

120 W (post-contour) 
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Table 3: List of major mathematic symbols and notations used in this work. 

Symbol Description 

𝓧 Sequence of sensor data (time series or images) 

𝓈1, 𝓈2, 𝓈𝑖⋯ 

𝓈𝑛 

Process conditions or build states 

𝔁𝑖 Sensor data 𝓧 associated for each state 𝓈𝑖 
𝑝 ∈  {1…ℎ} Number of windows 

𝑞 ∈ {1…k} Length of windows 

𝒙𝑞⃗⃗⃗⃗  , 𝒙𝑟⃗⃗⃗⃗  Two rows of the signal window 𝑥𝑖
𝑝
 

𝓌𝑞𝑟 Pairwise comparison of 𝒙𝑞⃗⃗⃗⃗  and 𝒙𝑟⃗⃗⃗⃗  

𝐺𝑖(𝑉, 𝐸,𝑊) Undirected, weighted graph with, nodes 𝑉, edges 𝐸 and weights W 

𝑺 Symmetric similarity matrix 

𝓓 Diagonal degree matrix 

𝓛𝑖 Spectral graph Laplacian matrix for each state 𝓈𝑖 
𝒗𝑖 Graph Laplacian Eigenvectors 

𝓥𝓈𝑖  Single universal basis for a system 𝓈𝑖 

𝓃 The number of Eigenvectors in the universal basis 

𝐺(𝓧) Spectral graph transform on a signal  𝓧 

ℂ Graph Fourier coefficients 

ℙ Candidate coefficients 

𝑒𝓈1 Sum of square errors for classification of a system 𝓈𝑖 
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Table 4: Evaluation of the proposed approach for the Rossler system depicted in Percentage F-

score results (higher the better) for distinguishing between the four Rossler systems, the numbers 

in parenthesis are the standard deviations from a five-fold classification study. 

Noise Level 

(η%) 

Window Sizes (k in Eq. (2)) 

k = 500 k = 750 k =1000 

η = 0% 0.8 (0.05) 0.83 (0.04) 0.81 (0.04) 

η =10% 0.77 (0.02) 0.83 (0.05) 0.84 (0.03) 

η =15% 0.77 (0.05) 0.83 (0.04) 0.81 (0.04) 

η = 20% 0.74 (0.04) 0.83 (0.03) 0.79 (0.05) 
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Table 5: The confusion matrix for distinguishing between the four Rossler systems. 

 
Predicted Process Condition False Negative Rate 

(FNR, Type II error) 𝓈1 𝓈2 𝓈3 𝓈4 

A
ct

u
al

 

P
ro

ce
ss

 

C
o
n
d
it

io
n
 𝓈1 122 3 0 0 3/125   = 2.4% 

𝓈2 26 93 6 0 32/125 = 25.6% 

𝓈3 5 11 99 10 26/125 = 20.8% 

𝓈4 0 0 23 102 23/125 = 18.4% 

False Positive Rate 

(FPR, Type I error) 

31/375 

= 8.2% 

14/125 

= 11.2% 

29/125 

= 23.2% 

10/125 

= 8% 

             Avg. FNR (β)  

                           = 16.8% 

Avg. FPR 

α =  12.5% 

F-score =1 − 2
α + β

 α×β
 = 0.821 (82.1%) 
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Table 6: Comparing the graph theoretic approach against six other popular machine learning 

approaches. The numbers in table are the F-scores (larger is better) along with the standard 

deviation over five replications in the parenthesis. 
Noise 

Level 

(η) 

Classifier 

Linear 

Discriminant 

(LD) 

K-Nearest 

Neighbors 

(KNN) 

Decision 

Tree 

Support 

Vector 

Machines 

(SVM) 

Boosted 

Trees 

(BT) 

Neural 

Network 

(NN) 

Quadratic 

Discriminant 

Analysis 

(QDA) 

Proposed 

Graph 

Theoretic 

Approach 

0% 0.81(0.01) 0.79(0.02) 0.76(0.03) 0.83(0.02) 0.80 (0.02) 0.79 (0.01) 0.81(0.01) 0.83 (0.04) 

10% 0.74 (0.01) 0.63(0.02) 0.72(0.03) 0.75 (0.03) 0.78 (0.02) 0.75 (0.02) 0.78 (0.02) 0.83 (0.05) 

15% 0.73(0.02) 0.6 (0.03) 0.77(0.02) 0.72 (0.03) 0.78 (0.02) 0.73 (0.02) 0.75 (0.02) 0.83 (0.04) 

20% 0.72(0.03) 0.58(0.04) 0.7 (0.04) 0.7 (0.04) 0.75 (0.02) 0.72 (0.03) 0.75 (0.02) 0.83 (0.03) 
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Table 7: F-score results from applying the proposed approach to each of the three types of sensor 

signals. (a) The percentage F-score results for detecting the two process conditions in thermal 

camera, visible camera and photodetector, the numbers in parenthesis represents the standard 

deviation from a five-fold replication (data from three layers). Acronyms are as follows: LD: 

Linear Discriminant, KNN: K-Nearest Neighbors, Tree: Decision Tree, SVM: Support Vector 

Machines, BT: Boosted Trees, NN: Neural Network, QDA: Quadratic Discriminant Analysis. 

Sensor 
Data 

Dimension 

Proposed  

Approach 

LD 

 

KNN Tree SVM Boosted 

Trees 

NN QDA 

Thermal Camera 
2D 

(128×360) 

0.95 

(0.01) 

0.36 

(0.02) 

0.5 

(0.02) 

0.38 

(0.03) 

0.42 

(0.03) 

0.43 

(0.03) 

0.40 

(0.02) 

0.6 

(0.02) 

Visible Camera 
2D 

(256×256) 

0.83 

(0.02) 

0.58 

(0.02) 

0.57 

(0.03) 

0.61 

(0.01) 

0.63 

(0.02) 

0.62 

(0.01) 

0.54 

(0.00) 

0.5 

(0.01) 

Photodetector 1D (555 × 1) 
0.79 

(0.01) 

0.59 

(0.02) 

0.6 

(0.02) 

0.62 

(0.01) 

0.61 

(0.01) 

0.61 

(0.02) 

0.6 

(0.01) 

0.5 

(0.01) 
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Table 8: The confusion matrix for detecting the two conditions (overhang and bulk) from the 

thermal camera, high-speed camera and photodetector. The data is for 250 randomly chosen 

sequences from each build condition. 

   Predicted Build Condition 

   Overhang Bulk 
A

ct
u
al

 P
ro

ce
ss

 

C
o
n
d
it

io
n
 Thermal Camera 

Overhang 250 0 

Bulk 24 226 

Visible Camera 
Overhang 250 0 

Bulk 83 167 

Photodetector 
Overhang 157 93 

Bulk 9 241 
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Appendix 

Classification Method Input type Setting 

Laplacian Eigenvector 

Basis 

Thermal camera 

No. of Eigenvectors: 10 

Laplacian matrix: weighted symmetric 

Kernel Function: Mahalanobis distance. 

Visible camera 

No. of Eigenvectors: 1 

Laplacian matrix: weighted symmetric 

Kernel Function: Mahalanobis distance. 

Photodetector  

No. of Eigenvectors: 5 

Laplacian matrix: weighted random walk (orthogonalized 

using Gram Schmidt ) 

Kernel Function: Mahalanobis distance. 

Linear Discriminant 

(LD) 

8 Statistical Features 

for each dimension/ 

column: 

Mean, 

Standard Deviation 

Range, 

Skewness, 

Kurtosis, 

Interquartile range, 

Min, 

Max 

Linear boundaries between classes 

K-Nearest Neighbors 

(KNN) 
numbers of neighbors: 1 

Decision Tree maximum number of splits: 100 

Support Vector Machines 

(SVM) 
Gaussian scale: √number of predictors / 4 

Boosted Trees 

(BT) 

an ensemble of decision trees (maximum number of splits 

set to 20) using the AdaBoost algorithm 

Neural Network 

(NN) 
number of hidden neurons: 2 

Quadratic Discriminant 

Analysis 

(QDA) 

Elliptical, parabolic and hyperbolic boundaries between 

classes 
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List of Figures 

Figure Number Figure Caption 

Figure 1 The schematic diagram of the laser-based powder bed fusion (LPBF) process. 

Figure 2 
An LPBF knee implant with an overhang feature shows poor surface finish and 

coarse microstructure. 

Figure 3 Schematic layout of sensors installed on the LPBF 3D printer 

Figure 4 
close up and schematic layout of the thermal camera and high-speed video 

camera. 

Figure 5 

(a) The part schematic (all dimensions in mm, drawings are not to scale) 

measuring 16 mm on all sides with 40.5° overhang angle, (b) as-built without 

supports, (c and d) Side-view and top views of the stripe pattern at the build 

height of 7.9 mm in the context of the thermal camera position. 

Figure 6 
Distinctive meltpool shape for bulk (a) and overhang (b) areas. Note the 

residual heat for the overhang area resulting from the previously scanned stripe. 

Figure 7 
Two representative high-speed video images for (a) bulk build conditions (b) 

overhang build condition corresponding to the frames in Figure 6. 

Figure 8 

Photodetector signal windows for the overhang and bulk features (a) intensity, 

(b) Fourier transform, and (c) empirical cumulative distribution function 

(ECDF) for three consecutive layers. 

Figure 9 The three steps in the proposed spectral graph theoretic approach 

Figure 10 The four different Rossler systems used for testing the approach. 

Figure 11 
Fiedler number pattern for one frame of thermal camera (b) Second norm of 

graph Fourier coefficients of photodetector. 

 


