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Abstract: The goal of this work is to monitor the laser powder bed fusion (LPBF) process using
an array of sensors so that a record may be made of those temporal and spatial build locations
where there is a high probability of defect formation. In pursuit of this goal, a commercial LPBF
machine at the National Institute of Standards and Technology (NIST) was integrated with three
types of sensors, namely, a photodetector, high-speed visible camera, and short wave infrared
(SWIR) thermal camera with the following objectives: (1) to develop and apply a spectral graph
theoretic approach to monitor the LPBF build condition from the data acquired by the three
sensors; and (2) to compare results from the three different sensors in terms of their statistical
fidelity in distinguishing between different build conditions. The first objective will lead to early
identification of incipient defects from in-process sensor data. The second objective will ascertain
the monitoring fidelity tradeoff involved in replacing an expensive sensor, such as a thermal
camera, with a relatively inexpensive, low resolution sensor, e.g., a photodetector. As a first-step
towards detection of defects and process irregularities that occur in practical LPBF scenarios, this
work focuses on capturing and differentiating the distinctive thermal signatures that manifest in
parts with overhang features. Overhang features can significantly decrease the ability of laser heat
to diffuse from the heat source. This constrained heat flux may lead to issues such as poor surface
finish, distortion and microstructure inhomogeneity. In this work, experimental sensor data is
acquired during LPBF of a simple test part having an overhang angle of 40.5°. Extracting and
detecting the difference in sensor signatures for such a simple case is the first-step towards in-situ
defect detection in AM. The proposed approach uses the Eigen spectrum of the spectral graph
Laplacian matrix as a derived signature from the three different sensors to discriminate the thermal
history of overhang features from that of the bulk areas of the part. The statistical accuracy for
isolating the thermal patterns belonging to bulk and overhang features in terms of the F-score is as
follows: (a) F-score of 95% from the SWIR thermal camera signatures; (b) 83% with the high-
speed visible camera; and (c) 79% with the photodetector. In comparison, conventional signal
analysis techniques - e.g., neural networks, support vector machines, linear discriminant analysis
were evaluated with F-score in the range of 40% to 60%.
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1 Introduction

1.1 Motivation

Powder bed fusion (PBF) refers to a family of Additive Manufacturing (AM) processes in which
thermal energy selectively fuses regions of a powder bed [1]. A schematic of the PBF process is
shown in Figure 1. A layer of powder material is spread across a build plate. Certain areas of this
layer of powder are then selectively melted (fused) with an energy source, such as a laser or
electron beam. The bed is lowered and another layer of powder is spread over it and melted [2].
This cycle continues until the part is built. The schematic of the PBF process shown in Figure 1
embodies a laser power source for melting the material, accordingly, the convention is to refer to
the process as Laser Powder Bed Fusion (LPBF). A mirror galvanometer scans the laser across the
powder bed. The laser is focused on the bed with a spot size on the order of 50 to 100 um, and the

linear scan speed of the laser is typically varied in the 10? — 10> mm/s range [2].

Insert Figure 1 Here.

Close to 50 parameters are involved in the melting and solidification process in LPBF [3]. The
defects in LPBF are multi-scaled and linked to distinctive process phenomena. The following types
of defects have garnered the most attention: porosity, surface finish, cracking, layer delamination,
and geometric distortion [4, 5]. Several empirical studies have mapped the effect of three process
parameters on defects, namely, laser power, hatch spacing, viz., the distance between adjacent scan
tracks within a layer, and laser scan velocity [6-10]. Defects in LPBF are tracked to the following
four root causes [4, 5, 11]:

1) poor part design, such as inadequately supported features,

2) machine and environmental factors, such as poor calibration of the bed and optics,
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3) inconsistencies in the input powder material, such as contamination and deviations in particle
distributions, and

4) improper process parameters, for example, inordinately high laser power causes vaporization
of the material leading to keyhole collapse porosity, or insufficient overlap of adjacent scan

tracks due to large hatch spacing results in so-called lack of fusion porosity [4, 12].

A major gap in the current research is in the lack of mapping of the process conditions to defects
based on in-situ sensor data. This knowledge of the process signatures that are symptomatic of
impending defects is the key tenet for future in-process monitoring and control of part quality in

LPBF, and serves as the motivation for the present work.
1.2 Goal and Objectives

The goal of this work is to monitor the laser powder bed fusion (LPBF) process using in-process
sensor signatures so that a record may be made of those temporal and spatial build locations where
there is a high probability of defect formation. This goal is termed as build condition monitoring.
In pursuit of this goal, a commercial LPBF machine was integrated with three sensors, namely, a
photodetector (spectral response 300 nm to 1200 nm), high-speed visible spectrum video camera
(4,000 frames per second, spectral response 300 nm to 950 nm), and short wave infrared (SWIR)
thermal camera (1,800 frames per second, spectral response 1350 nm to 1600 nm, thermally

calibrated from 500 °C to 1025 °C) with the following two-fold objectives.

Objective 1: Develop and apply a spectral graph theoretic approach to monitor the build condition
in LPBF from the data gathered by the aforementioned three sensors. The intent is to detect the

onset of deleterious phenomena such as unexpected variations in the thermal history (cooling rate)
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which would lead to inconsistent properties [13-15]. In the worst case, these may ultimately result

in build failures. The proposed approach is extensible to other AM processes and sensor systems.

Objective 2: Assess the statistical fidelity of the three different sensors, namely, high-speed
camera, infrared thermal camera, and photodetector in monitoring the LPBF build condition by
capturing the differences in the thermal signature of the part as it is being built. The intent is to
ascertain the monitoring fidelity tradeoffs when replacing a relatively expensive, high-fidelity

sensor such as a thermal camera with an inexpensive, low-fidelity sensor, e.g., photodetector.

Realizing these objectives will lead to the following consequential impacts:

1) In-process quality monitoring in LPBF.

Unfortunately, even with the high-level of process automation in commercial equipment, print
defects are common in LPBF, which hinders use of LPBF parts in mission-critical applications,
such as aerospace and defense [16, 17]. While, there is an abundance of pioneering literature on
sensor integration and hardware aspects for monitoring AM processes, there is persistent research
gap in seamlessly integrating the in-process sensor data with approaches for online signal analytics
[18, 19]. This gap has been pointed out in roadmap reports published by federal agencies and
national labs [16, 20-23]. Addressing this need for online data analytics is critical to mitigate the

poor repeatability and reliability in LPBF, and more generally in AM.

2) Layer-wise analysis of sensor data to reduce expensive testing.
To ensure compliance, the norm is to subject LPBF parts to X-Ray computed tomography (XCT)
or destructive materials testing. This is prohibitively expensive and time consuming [24, 25].

However, if a layer-by-layer sensor data record is available, then this data, instead of destructive
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testing or XCT scanning, can be used to rapidly qualify the part quality, leading to considerable

cost savings [26, 27].

Furthermore, because AM phenomena and concomitant defects occur at multiple scales, there is
also the need to combine data from multiple sensors. The challenge with this concept of using
sensor data for layer-wise quality assurance in AM — termed as certify-as-you-build by Professor
Jyoti Mazumder [28] — is that sensors may differ in resolution, sensitivity, or bandwidth
appropriate to detect particular process signatures. The limited fidelity of a single sensor limits the

variety of defects that it may be able to detect, if any at all.

In closing this section, we note that researchers in the AM area prefer the term qualify-as-you-
build over certify-as-you-build, based on the reasoning that certification is typically done by a
third-party in the quality assurance paradigm. In the same vein, Sigma Labs, Inc., of New Mexico,
has trademarked the term in-process quality assurance (IPQA) in reference to their PrintRite3D

software that combines process monitoring, data analysis, and feedback control in AM [29, 30].

1.3  Scientific Rationale and Hypothesis

Each type of build defect in LPBF relates to a specific process phenomenon. The onset of such
defect-causing phenomena may manifest in statistically distinctive signatures from appropriately
designed and utilized sensors [31-33]. Hence, by tracking the signatures from in-process sensor
data, it is hypothesized that the defects in LPBF process can be discriminated. The hypothesis
tested in Sec. 5 is that the spectral graph theoretic approach forwarded in this work leads to higher
statistical accuracy for distinguishing the build condition compared to popular machine learning

approaches, such as neural networks and support vector machines. The statistical accuracy is
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measured in terms of the statistical F-score, which combines both the Type I (false alarm) and

Type II (failing to detect) statistical errors.

The applicability of the different sensors and the proposed analysis methodology is tested by
building an overhang part. While not a defect, the LPBF of overhang features is a challenging
proposition due to the following reason. As the thermal conductivity of the powder is roughly one
third of a solid part, heat tends to accumulate within the overhang area, i.e., the thermal flux
through an overhang is restricted [14]. Constriction of heat to a relatively small area leads to
inconsistent thermal gradients within the overhang features compared to the bulk material, which
ultimately manifests in distorted builds, poor surface finish, or heterogeneous microstructure [5,
34]. In this work, the distinctive thermal signature representative of overhang features is used as
a means to discriminate the build condition. Furthermore, the present work provides an avenue for

online monitoring of in-process signals through analysis in the spectral graph domain.

The understanding of thermal aspects of overhang geometries is also consequential in the related
context of design for additive manufacturing, for instance, recent studies emphasize the need for
an evolved approach for support design depending upon the severity of the overhang feature [35].
This need 1s exemplified through the following experimental observation from Figure 2, which
shows a biomedical titanium knee implant built by the authors using the LPBF process. This part
has a severe overhang feature. To prevent the part from collapsing under its own weight, supports
were automatically built under the overhang section by the native software supplied by the
machine manufacturer. After the build, the overhang area was found to have coarse-grained
microstructure and poor surface finish which renders this implant potentially unsafe in clinical use.

Such defects in overhang geometries, also reported by other researchers, is primarily due to the



Accepted Manuscript MANU-18-1023

heat being constrained in a small area in the overhang section, owing to the overly thin cross-
section area of the supports, i.e., due to poor heat conduction [34, 36-39]. To avert such part
inconsistencies, there is a need for a formal framework based on fundamental understanding of the
thermal physics of the process to guide the design of the AM part. The present work provides a
means to distinguish the thermal-related signatures that are symptomatic of undesirable build
quality in LPBF process through a simple test artifact. This understanding of the thermal behavior
during melting of overhang will play a foundational role in the future for developing design rules

for AM parts with complex geometries.

Insert Figure 2 Here.

The rest of this paper is organized as follows, Sec. 2 summarizes the recent developments in
sensing and monitoring in LPBF. Sec. 3 describes the experimental LPBF studies carried out at
NIST. Sec. 4 elucidates the spectral graph theoretic approach and illustrates its application to a
synthetic signal. Sec. 5 discusses the results from application of the spectral graph-theoretic
approach to analyze the thermal imaging, high-speed videography, and photodetector signals
acquired during the build process. In closure, the conclusions from this work and avenues for

further research are discussed in Sec. 6.
2 Sensor-based Monitoring in PBF

Elwany and Tapia [40] have conducted a comprehensive review of sensor-based process
monitoring approaches, specifically focused on metal AM processes. More recently, Foster ef al.
[15], Purtonen et al. [41], Mani et al. [22], Everton et al. [42], and Grasso and Colosimo [4] provide
excellent reviews of the status quo of sensing and monitoring focused in metal AM. However,

there is a persistent gap in analytical approaches to synthesize this data and extract patterns that
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correlate with specific process conditions (build status) and defects [43]. Chua et al. in a recent
article have placed emphasis on the need for (a) data mining, (b) data processing, and (c) data
analysis to monitor and subsequently translate the sensor signatures into actionable feedback

control [18].

From the hardware vista, two methods are predominantly used in the literature towards monitoring
the PBF; namely meltpool monitoring (MPM) systems, and layer-wise imaging (staring) systems.
The relevant works under these respective headings are summarized in the following two sections,

Sec. 2.1 and Sec. 2.2, respectively.
2.1 Meltpool Monitoring Systems in PBF

The AM group at the Catholic University of Leuven, Belgium has published several influential
articles in the area of quality monitoring and control in LPBF, as well as in the general area of
AM, a select few of these are cited herewith [32, 33, 44-47]. The common leitmotif in these prior
works is in extracting features from the data from one sensor at a time, typically, in terms of a
statistical moment (mean, variation) of image-based gray scale values, and correlating these
features with controlled flaws based on offline analysis. However, to take these pioneering works
in sensing forward into the domain of real-time closed-loop process control and further to defect
correction, there is a need to translate the signals into decisions in real-time. In turn, this work
addresses a necessary and critical step to realize real-time decision-making by translating the AM

process signatures in a form tractable for build condition monitoring.

Craeghs et al. [47] explain the need for a meltpool imaging system, which is also coupled with
sensors capable of monitoring status of process inputs. Although meltpool imaging is valuable for
monitoring the local thermal aspects, it is difficult to translate the meltpool information quickly

8
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into a corrective action since process dynamics are relatively faster than current technologies for
sensor acquisition, processing, and feedback control. In other words, Craeghs et al. [47]
recommend that a heterogeneous sensor suite be used for process monitoring PBF processes. The
work reported in the present paper assess the fidelity of using different sensors for process

monitoring.

For monitoring the meltpool, a photodiode and (complementary metal oxide semiconductor)
CMOS camera coaxial with the laser and equipped with infrared (IR) filters is used by Craeghs et
al. [47]. This constrains the wavelength of light in the region of 780 nm to 950 nm. The upper
limit is at around 1000 nm to block out the laser wavelength from entering the detectors. The
sampling rate is 10 KHz, this translates to a sample every 100 pm, considering 1000 mm/sec scan
speed. Using image processing techniques, the authors ascertain the meltpool area and the length
to width ratio of the meltpool, and use these for tracking the process. They found that these
meltpool features are related to defects such as balling — however, the statistical significance of

these studies has not been reported [48, 49].

Chivel and Smurov [50] implemented a coaxial charge coupled device (CCD) camera
(perpendicular to the powder bed through the optical track of the machine) and two color
pyrometer (900 nm and 1700 nm) setup to monitor the meltpool morphology (100 um, local focal
diameter) and temperature in powder bed fusion process. The temperature distribution and
intensity of the meltpool (from processing the CCD camera data) are correlated with the laser
power. A linear trend in laser power at three levels (50 W, 100 W, 150 W) and meltpool surface
temperature is observed (viz., between approximately 1800 °C and 2000 °C). In the work

predating Chivel and Smurov [50], Bayle and Doubenskaia [51] used a similar setup with a IR
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camera along with a pyrometer with active wavelength of 1000 nm to 1500 nm mounted on a laser
powder bed fusion machine. Pyrometer readings are obtained over time for different layer
thickness and hatch spacing settings. The IR camera is used to monitor the dynamics of meltpool

particles and spatter patterns as they interact with the laser beam.

Two recent reports by Sigma Labs describe a heterogeneous sensing system to relate the thermal
aspects of the L-PBF process to physical properties of the part, namely, the part density (porosity)
[29, 30]. One of these reports describes a hardware system incorporating four in-situ sensors,
consisting of two photodetectors, one pyrometer, and one position sensor to map the sensor
signatures vis-a-vis the density of titanium alloy samples made under different laser power and
velocity conditions [30]. The connection between the sensor signatures and part density is made
via a trademarked proprietary metric called Thermal Emission Density (TED™). The TED™
metric is reported to have a nearly one-to-one correlation with the part density. While this work
demonstrates the efficacy and need for combining data from multiple sensors for online
monitoring, the mathematical details of the data fusion process is not revealed, and the statistical

error 1s not assessed.
2.2 Layer-Wise Imaging or Staring Configuration Systems in PBF

Jacobsmuhlen et al. [13] implemented an image-based monitoring approach specifically for
detecting build super-elevations effects. Builds are said to be super-elevated if the prior solidified
layers protrude out of a freshly deposited powder bed due to distortion. Super-elevated builds will
cause the recoater to make contact with the part as the powder is raked across the bed, leading to
damage to the part and/or the recoater. To detect this condition Jacobsmuhlen et al. coupled a CCD

camera with a tilt shift lens and mounted the camera assembly on a geared head. This setup has

10
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the ability to traverse the camera in three axes and the tilt shift lens allows corrections of

perspective distortions and enables the camera to maintain focus on the powder bed.

The central theme of Jacobsmuhlen et al.’s work is to visually detect these super-elevated regions
and compare the results with a reference, which will eventually allow adjustment of process
parameters, such as laser power and hatch spacing. The experimental results of Jacobsmuhlen e?
al. indicate that super-elevations can be reduced by decreasing laser power and increasing hatch
distance. By detecting the occurrence of super-elevation at an earlier stage, the layer height can be
corrected, or the build can be cancelled. The drawback of the cited work is that the analysis for
this work uses image processing techniques, namely the Hough transform and areal operations on
images (connectivity thresholding), which is exceedingly sensitive to image processing-related
parameters. The ability to translate these image processing techniques to different build geometries

and defects remains to be ascertained.

In a recent work, Cheng et al. used a near infrared thermal camera to correlate the effect of laser
scan speed and layer height on the meltpool dimensions during LPBF of Inconel 718 material [52].
The intent is to use these meltpool measurements to monitor the build condition. While the
meltpool length and width are reported to change with the laser scan velocity (in three levels, 400
mm/sec, 600 mm/sec, and 800 mm/sec), the consequence of layer height on meltpool dimensions
are negligible. While very valuable and foundational towards understanding the effect of process
conditions on meltpool dynamics in LPBF, in this study by Cheng ef al., the test artifact is a
rectangular test coupon devoid of specific features. Furthermore, the test artifact is not examined
for defects, such as porosity — which may result from changes in the scan velocity. This is because,

the energy density (called Andrew Number) is inversely proportional to the laser velocity, and at

11
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low energy density levels the powder particles may fail to fuse together, and consequently, lead to

porosity.

Krauss et al. [53, 54] incorporated a microbolometer-type infrared camera operating in the long
wave infrared (LWIR) region, specifically in the 8,000 nm to 14,000 nm range. The IR camera is
mounted on the outside of the build chamber, and looks down on the powder chamber at an angle
of 45° through a germanium window. This setup allows measurement of larger area of the powder
bed, as opposed to small local areas as in coaxial measurement systems. The central theme of the
author’s work is to obtain the area and morphology of the heat affected zone (HAZ). They correlate
the change in process parameters, such as laser power, scan velocity hatch distance, and layer
thickness with the meltpool area, aspect ratio (length to width ratio). These correlations serve as
the basis on which build quality can be monitored. For instance, the authors deliberately induced
large flaws in the build (voids), as opposed pores that typically occur in the 20-100 um range. The
measured melt pool morphology during the defective build with induced voids is compared with
an ideal state. A significant difference is reported in the irradiance profile recorded for the ideal

build versus defective build.

To reiterate, the practical applicability of these pioneering and early works is overshadowed by the
offline analysis of data from a single sensor. To realize the qualify-as-you-build paradigm in AM,
these foregoing studies should be coupled with emerging machine learning techniques from the

big data analytics domain that can combine data from multiple sensors.

12
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3 Experimental Setup and Data Acquisition

3.1 Measurement System and Test Artifact

This section describes the sensor suite instrumented on a commercial LPBF machine (EOS M270)
at NIST. The machine was integrated with three types of sensors, namely, a short wave infrared
thermal camera, a high-speed visible camera, and a photodetector. Table 1 summarizes the location
and relevant specifications of the sensors. The SWIR thermal camera and photodetector capture
the thermal aspects of the meltpool, whereas the high-speed video camera captures its shape and
surrounding spatter pattern. Photodetector data was acquired at a sampling rate of 1 MHz, in
addition to frame pulses from each camera indicating the time each frame is acquired. Figure 3
and Figure 4 show the schematic and actual implementation of the setup, respectively. The detailed

explanation of the setup is available in Ref. [55, 56].

Insert Table 1 Here.

Insert Figure 3 Here.

Insert Figure 4 Here.

The test artifact, which is made from nickel alloy 625 (tradename Inconel 625, UNS designation
N06625), has an overhang of 40.5°, and does not include support structure. In this work, sensor
information is analyzed at three example build heights, namely, 6.06 mm, 7.90 mm, and 9.70 mm.
These example layers include formation of the overhang structure. The process parameters are
shown in Table 2. The overarching aim is to distinguish the thermal patterns that emerge during

melting of overhang.

13
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The overhang here is specifically defined as being the last two scan vectors prior to or just after
forming the edge, not including the pre- or post-contour scan as shown in Figure 5. The rest of the
scans, apart from the pre- or post-contour scans, are considered to belong to the bulk volume of
the part. A stripe pattern scan strategy is used and shown in Figure 5(c and d); hence the laser scans
along the overhang four times (four stripes) for each layer past 4 mm build height. The stripe
orientation shifts 90° between layers, and the three example layers demonstrate vertical stripe
pattern such that each scan vector within a stripe is horizontally aligned with the thermal camera

field of view.

Admittedly, the part design studied herein is a simple unsupported overhang geometry and bereft
of the complex geometrical features that can be created with LPBF. The test artifact shown in
Figure 5 was chosen by researchers at NIST to study the physical aspects of the meltpool when
building overhang geometries, so that the thermal phenomena can be explained using physical
modeling. The relatively compact dimensions and tractable geometry of this test artifact allows
researchers at NIST to avoid de-focusing concerns with the infrared camera — the precision of the
thermal measurements will be deleterious affected if a large object is observed, given that the field
of view of the thermal camera is limited. In other words, because the sensors used in this study are
not coaxial with the laser but are in the staring configuration, hence, if a bigger and more complex
object is monitored the details of the meltpool shape will be occluded due to blurring if the field

of view is increased.

We reiterate that this work takes the first-step in a series of forthcoming research that will focus
on sensor-based monitoring of defects in AM using spectral graph theory. At the time of this

writing, one article that uses the photodetector sensor data to detect material cross- contamination

14
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in LPBF has been accepted in this journal. A second article in using gray-scale static imaging of
the powder bed to detect porosity in LPBF is currently under review. Both these articles apply
spectral graph theoretic data analysis techniques. A more concise version of these papers has been
accepted for publication in the proceedings of the 2018 ASME Manufacturing Science and

Engineering Conference (MSEC) [57, 58].

Insert Table 2 Here.

Insert Figure 5 Here.

3.2 Visualization of the Representative Data Acquired

This section describes the qualitative differences in the three types of sensor data acquired while

scanning the overhang and bulk features.
1) Thermal Camera Images

Thermal video files were captured as raw 14-bit digitized data. These images are pre-processed
and converted to radiance temperature values through a calibration procedure described in Ref.
[59]. Radiance temperature, not to be confused with true temperature, is the equivalent
temperature measured if the emitting surface has an emissivity of € = 1. The image pixel values
are multiplied by a factor of 10 and then stored as unsigned 16-bit integers to reduce the file size;
hence there is a loss in numerical precision of 0.1 °C. Each thermal frame is a two dimensional
matrix of 128 pixels % 360 pixels. The data captured in a frame is an average over 40 ps of data.
This is related to the integration time (or shutter speed) of the camera. In this work, analysis will
be conducted on the binary transformation of the thermal images, because the temperature

recorded by the thermal camera is a radiance temperature, which has not been corrected using

15



Accepted Manuscript MANU-18-1023

emissivity values to obtain the true thermodynamic surface temperature. However, this does not
inhibit the analysis techniques described to observe relative effect of build conditions on thermal

video signal.

For example, the meltpool images taken with an SWIR thermal camera (sensor) while scanning
the bulk and overhang sections of a test artifact used in this work are shown in Figure 6(a) and (b),
respectively. Figure 6(b) reveals that melting of the overhang section manifests in distinctive
meltpool shapes[13, 14]; the meltpool for the overhang features, is roughly 1.5 times larger in
length than its bulk counterpart. This is likely due to the residual heat in the overhang section
stemming from the poor heat flux therein. Consequently, it is posited that correlation of the

meltpool signature with the build condition facilitates in the isolation of process variation.

Insert Figure 6 Here.

2) High-speed Visible Camera Imaging

The high-speed visible camera images are windowed to 256 pixels x 256 pixels. Images are
acquired at 1,000 frames per second. Representative images for the overhang and bulk build
features are shown in Figure 7(a) and (b) respectively. The difference in the meltpool
characteristics between overhang and bulk features in high-speed visible camera images, although

discernable, are not as prominent as in the corresponding thermal images shown in Figure 6.

Insert Figure 7 Here.

3) Photodetector Signal (Time Series Data)
The photodetector signal is acquired as a time series sampled at 1 MHz; the response is in voltage.

To ensure photodetector and both thermal and visible camera signals can be synchronized during

16
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analysis, both photodetector raw signal and frame pulses (a 5 V square pulse indicating when a

frame is captured) from the camera are collected on the same data acquisition system.

Furthermore, in analysis of the photodetector signal, the number of data points corresponding to
the framerate of the thermal camera must be taken into consideration. This is obtained by dividing
the sampling rate of the photodetector (I MHz) by the framerate of the thermal camera
(1800 frames per second). This equates to 555 data points (roughly 555 us) measured by the
photodetector within one frame period of the thermal camera. A representative trace juxtaposing
the photodetector signal for the overhang and bulk build features is shown Figure 8(a). A spike in
the photodetector signal for the overhang condition is observed. Some typical difficulties with
using existing statistical signal processing approaches in the context of the LPBF photodetector

sensor data from this work are exemplified in Figure 8.

Insert Figure 8 Here.

e Figure 8(b) shows the Fourier transform of the same photodetector signal for time series for
the overhang and bulk features described in Figure 8(a). The difference in the spectral profile
of the signal for the two build conditions, i.e., overhang and bulk, are scarcely distinguishable;
only one clear peak was observed despite the high sampling rate (1 MHz). Analysis of the
power spectrum revealed that the two build states were not statistically distinguishable.

e The cumulative probability distribution of the photodetector trace for the overhang and bulk
features over several frames (or 555 data points) is mapped in Figure 8(c). The large shifts in
the distribution shape and spread over different frames, evocative of the inherent
nonstationarity of LPBF process, curtails any attempt to fit a fixed parametric statistical

distribution to the data.
17
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4 Proposed Methodology

The aim of this section is to develop a spectral graph theoretic approach for analysis of
multidimensional signals. This approach is used later to capture the differences in the thermal
signatures during the melting of the overhang and bulk features of the test artifact shown in Figure
5. Application of graph theoretic approaches for signal processing is a nascent domain with recent
notable review articles by Hammond et al. [60], Sandryhaila et al. [61], and Shuman et al. [62,
63]. Niyogi et al. in a series of seminal articles proposed embedding high dimensional data as an
undirected graph, and subsequently projecting the data into the Eigenvector space of the graph

Laplacian [64-66].
4.1 Previous Work in Spectral Graph Theory by the Authors

This work builds upon the authors’ previous research in spectral graph theory for manufacturing

applications [67-72]. These previous works are enumerated below.

1) The authors used spectral graph theory to differentiate between different types of surfaces in
ultraprecision semiconductor chemical mechanical planarization (CMP) process [67]. The
spectral graph theoretic invariant Fiedler number (A2), viz., the second Eigenvalue of the
spectral graph Laplacian matrix, described later in Sec. 4.2, in Eqn. (9) and (10), was used as a
discriminant to track changes in the surface that were not detected using statistical surface
roughness parameters [67].

2) The preceding work was extended to online monitoring of surface finish in conventional

machining. A CCD camera was used to take images of a rotating shaft as it was being
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machined. The machined surface images were analyzed online, and the Fiedler number (4,) is
correlated with the surface roughness [68].

The spectral graph theoretic approach was used for detection of change points from sensor
data. The Fiedler number (A2) from different types of planar graphs is monitored using
multivariate control chart to capture the onset of anomalous process conditions in
ultraprecision machining (UPM) and chemical mechanical planarization (CMP) processes
[73].

The Fiedler number was used to differentiate the geometric integrity of fused filament
fabrication (FFF) AM parts made using different materials [71] based on laser-scanned point
cloud data. This work was further extended to parts made under different FFF conditions using

several spectral graph Laplacian Eigenvalues and not just Fiedler number [69, 72].

This work differs from the authors’ previous works in the following manner. It is the first to report

the application of Laplacian Eigenvectors for diagnosis of process conditions in AM. The approach

is integrated within a learning framework for online monitoring of process conditions. None of the

previous studies by the authors had an online learning capability for state detection from sensor

signals. This is not a trivial extension because the Laplacian Eigenvectors present a multi-

dimensional challenge to classification. Furthermore, the previous works were based on converting

a signal into an unweighted and undirected graph. This required using thresholding functions,

which in turn leads to loss of information. In this current work, such a threshold is not required as

the graph constructed is of the weighted and undirected type. A brief overview of the approach is

provided in the forthcoming Sec. 4.2.
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4.2  Overview of the Approach

Before describing the mathematical intricacies of the approach, a high-level overview is provided.
The mathematical convention is to denote matrices and vectors with bold typesets. Suppose a
sequence of sensor data, X (time series or images) is gathered from a process. Further, consider
that the process manifests in n different known process conditions or build states labelled as 3,
84, 8; ++ 8,. In LPBF these states could refer to different process conditions, such as melting of
bulk, overhang, thin sections, etc. This allows the sensor data X associated with each condition ;
to be represented with the symbol x;. The aim is to identify the system state .8; from which an
unlabeled signal y is observed; i.e., if a signal y is observed, the purpose is to find the process
condition 7 to which it belongs. From the LPBF perspective, for instance, the intent is to conclude
from one frame of the high-speed video camera whether there is an impending build failure; or
given a photodetector signal sample, infer if the onset of distortion is imminent. The signal x; can

take various forms depending on the type of sensor data acquired.

e Temporal data [x;]™*%: Each column of x; is type of a sensor, and each row is a measurement
in time t = {1 ... m} for the d sensors; each af is a data point for sensor j = {1 ...d} at time
instant t. In the context of LPBF this matrix could represent multiple photodetector signals
acquired simultaneously, where each column of x; is the data from a photodetector. It is

restated that x; is associated with a specific process state ;.

[a% a% aii]

1 d

%= | a a | (1)
la, ad |
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e Spatiotemporal data, such as from a high-speed visible camera or thermal camera, where each
x! is an image frame captured at time instant t for a state i. The matrix x; must be further
qualified with a time index t because data is acquired in discrete frames. Thermal and video
camera data are in such a format; the signal in this instance is a three dimensional array. Each
x! is an array of image pixels. For a frame of a thermal camera image, each pixel corresponds
to intensity of light converted to a radiant temperature value using the thermal calibration; for

the high-speed video camera each pixel records the intensity of light.

e Purely spatial point cloud data, where x; contains information of coordinate the locations.
Another example is the 3D point cloud data, such as those obtained from a laser or structured

light scanner. This information is obtained as spatial coordinate indexed information [69].

The approach involves the following three broad steps (see Figure 9); the detailed steps and

mathematics are explained later.

Insert Figure 9 here.

Step 1: Transform the signals x; corresponding to each pre-labeled state 8; into an undiected,
weighted network graph G;(V, E,W). Where, V and E are the vertices and edges of the graph and

W is the weight between the edges.

Step 2: The spectral graph Laplacian matrix £; is computed from the graph G;. The first non-zero
mn graph Laplacian Eigenvectors v; are used as an orthogonal basis set corresponding to the

process state .8;.

Step 3: Each x; is decomposed by taking an inner product x;T - v; akin to a Fourier transform into

a set of coefficients c; called graph Fourier coefficients.
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e The graph Fourier coefficients is written in block matrix form as C=
[[e.™] [exT] - [¢;T]- [c,,T]] corresponding to different states &;, 85, 8; *** 8y, . The
matrix C is called the dictionary.

e Given an unlabeled signal y, an inner product p; = yT - v; is taken with each of the n basis
vector sets one at a time; where n are the different states. The matrices p;T are called the
candidate coefficients. Each p;T is compared with the corresponding ¢;T in the dictionary C
in terms of the squared error e;. The comparison resulting in the least error is the designated

state of y.
The advantages of the approach are as follows:

1. The graph Fourier transform eschews intermediate signal filtering steps and accommodates
multi-dimensional signals. It does not require mining statistical features, such as mean,
standard deviation, etc., from the data. Hence the presented approach is feature-free. Given
an unlabeled signal y belonging to an unknown state 8;, a computationally simple inner

product is needed for classification. This is apt for online monitoring applications.

2. The approach does not require a priori defined basis functions akin to the sinusoidal basis for
the Fourier transform; nor does it rely on a predefined probability distribution as in typical
stochastic modeling schemas; and lastly the need for a rigid model structure is eliminated,

e.g., number of hidden layers and nodes in a neural network.
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The disadvantages of this approach are:

1. As with all supervised classification models, a pre-labeled data set is needed.
2. All the sensor data [x;]™*¢, if they are temporal sensors, must have the same sampling rate.
This assumption can be relaxed by signal smoothing steps. Frequent symbols and notations

are noted in Table 3. Each of the three steps of the approach is next described in detail.

Insert Table 3 Here.

1) Step 1: Converting a signal into a Network Graph.

The aim of this step is to represent a sequence X of sensor data (time series, images) as a weighted,
undirected network graph G, i.e., achieve the mapping X = G (V, E, W) with nodes (vertices) V/,
edges (links) E, and edge weights W. The graph G (V, E, W) is a lower dimensional representation
of X. Consider a m-data point long signal x; corresponding to a known state 8;, i = {1...n} as

per the matrix shown in Eqn. (1).

This signal is divided into # windows of length k (= m/h) data points each. Let each window be

represented as a kxd matrix x;, p € {1...h}, x; is written in block matrix form as,

x}
x; = [ sp‘ )
Xi

For each xf the following graph transform procedure is followed. First, pairwise comparison v

are computed using a kernel function Q ; in Eqn. (3), X, and X, are two rows of the signal window

p
X
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wqr = Q(x,, %)V q,r € (1k). 3)

Different types of kernel functions QQ may be used, for instance, the Gaussian (Eqn. (4)) and

Mahalanobis (Eqn. (5)) kernel shown below:

_[Mﬁ—znr 4)
Wor = € ?
wyr = (8 %0 (% %) ©

The weight of an edge connecting a node g with another node r is w,. It is apparent that the
topology of the graph G depends on the kernel Q. In this work, the Mahalanobis kernel, Eqn. (5)
with C as the variance-covariance matrix is used exclusively. The mathematical implication of

using the Mahalanobis kernel are as follows:

.o =0 ®

In other words, given two data points X, and X, the more similar X, and X, are, the weaker is the
connection between the two. The symmetric similarity matrix S¥** = [wqr] represents a weighted
and undirected network graph G; each row and column of §**¥ is the vertex V (or node) of the
graph, the relationship between two nodes is indexed by edges, in terms of its connection status E,
and weight W. The graph is then represented as G = (V, E, W). The following notational additions

are made: S, p and G ,», where xf relates to a specific window x; for the signal p.
L L

An analogy can be drawn between a graph network with an electrical circuit with resistors. Indeed

there is an equivalence in literature between the Laplacian Matrix and the Kirchhoff Matrix of
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electrical circuits [74]. The node V of a graph corresponds to the node or common point in the
circuit; the edge E of the graph is a branch in the circuit; and the resistance on the branch is the
weight W. The smaller the weight of the edge connecting two nodes, the smaller the resistance

between them.

Knowing that the electric current takes the path of shortest resistance, an electrical network can be
characterized in terms of the path taken by the current; if the resistance along a branch changes,
the path taken may also change. Hence, by tracking changes in the path taken by the current, drastic
changes that may have occurred in the circuit can be detected. This very idea carries over to the
presented approach. A signal is redrawn as a graph and the different paths on a graph are tracked

in terms of the Eigenvectors of the Laplacian Matrix.
2) Step 2: Extracting topological information for the graph surface

The aim of this step is to extract topological information from the graph G. Once the data xlp ina

particular window is represented as a graph G », the Laplacian Eigenvectors are computed. This
i

topological information is subsequently used to capture the process dynamics contained in the
signal x;. Going back to xf, the degree d, of anode q, q = {1 ...k} is computed, which is a count
of the number of edges that are incident upon the node. The node degree is the sum of each row in
the similarity matrix S¥*X and the diagonal degree matrix D structured from d, is obtained as

follows,

k
d, =qur Vagr={1.k %)
r=1
DrXF & diag(dy, -+, dy). (8)
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This leads to the normalized Laplacian £, of the graph G, which is defined as,

1 1
L, D 2x(D—-S)xD 2

X oy < 1 1 ) (€))
where, D 2z = diag / L, / )
Vi /Y de
An alternative is the random walk Laplacian £, of the graph G is defined as,
LD Ix(D-Y9), (10)

Simplifying the notation, both Laplacians are represented with the symbol L. Thereafter, the Eigen

spectrum of L is computed as,

Lv = \'v. (11)

At the end of Step 2 a spectral graph transform on a signal X is defined;

G(X) - Ly(A",v). (12)
In other words, the information in the signal X is captured in the form of the Eigenvectors (v) and

Eigenvalues (A*) of the Laplacian matrix.
3) Step 3: Classification of Process States

The aim of this step is to find out or classify the process state 8;, given a signal y. For instance,
given a frame of the thermal image, the intent is to ascertain if there is an impending build fault.
This is a type of a supervised classification approach, where a set a labeled data is assumed to exist
a priori. This presumption of labeled data is one of the disadvantages of this approach, it will be

relaxed with new graph theoretic unsupervised learning approaches in the authors’ future work.

Step 3.1: This step applies the graph transform from Eqn. (12) to the signal x; corresponding to a

state .8;, as follows, where % is the number of windows in the signal,
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Gx;))=]| i | (13)
L n

X

This means that the signal xf corresponding to a state .8;, at window p 1is associated with a

Laplacian Eigenvector basis v, p through the spectral graph transform. Each v » is a k-long column
L l
vector.

Step 3.2: Next, the aim is to learn a single universal basis V,, for a system 8; as data is

continuously acquired (consider that the signal x; arrives in discrete chunks as a window). This is
done through a simple update schema, akin to the delta update rule frequently used in machine

learning [75]. For each window, the basis vectors are updated as follows,

ng,ﬂ = vx? + A (vx?+1 — vxf) ,p={1..h} (14)

Initialized with inl =V, with A set to a small value (A = 0.01 in this work). To make the process

computationally simpler a smaller subset of the Laplacian Eigenvalues is updated; typically, the

first 10 non-zero Eigenvectors of the Laplacian £ » were found to be adequate. Hence, the
l
universal basis V;, kX7 is the matrix obtained when V,, converges, thatis V,, =V _n, where 7 is
v
the number of non-zero Eigenvectors updated.

Step 3.3: The spectral graph Fourier transform, which is analogous to the discrete Fourier
transform is now defined. A spectral graph Fourier transform G (+) on a signal XN** (consider d =
1 for simplicity) can be defined assuming that the Laplacian matrix (£) is not defective, i.e., the

graph has no isolated nodes as follows,
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G(X) = [XT.Vl =c; - xT.VN:CN]
i=n (15)
X=)GX) V;
i=0

T
Applying this analogy to the signal x; across each of the # windows by taking the product (xf) .

V,, Vp = {1..h}leads to the coefficient matrix G(x;).

C(xi) = [[(xll)T(Véi ) = Cl,sidxn] [(x? )T(Vai ) = Ch,&” (16)

Essentially, each term ¢, ,; is a matrix that is d X 7 long, where 7 are the number of Eigenvectors
in the universal basis V; selected for analysis; the universal basis YV, has dimensions k X 7. If
this procedure is repeated for all n systems 8; -+ .8,,, then a dictionary of coefficients can be formed,

written in block matrix form € ®*™ and partitioned by ¢, 5iT each of which has dimensions 7 X

d:
T T T
[(Cl,sl Cl,éi Cl,én ] (17)
T T T
c (hxn) — |CZ,51 " Cos vt Copy
T T T
lch,él Ch,éi Ch,én

Step 3.4: Given an unknown signal y, with k x d data points an inner product (y)T -V s; 18 taken

with each of the n universal basis vector sets V;, one at a time. This gives a candidate set populated

by block matrices [p 5i]dxn, as follows,

P=[lp,"] - lo,"1]. (18)
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Step 3.5: The next step is to compare each of the candidate block matrices p,, with the dictionary
of coefficients ¢, ,, in Eqn. (17) having the corresponding label ;. In other words, find the error

between p,; and corresponding ¢, 5, V p. This is done by taking the sum of square errors,

- 2
esy = Zp=ill(cps " = 2Dl (1)

The label assigned to y is the one which has the minimum sum of square errors, i.e., argmine, .
8i

Having described the mechanics of the approach, in the forthcoming section (Sec. 4.3) the
underlying mathematical intuition is elucidated.

4.3 Mathematical Rationale for the Spectral Graph Theoretic Approach

Two mathematical justifications as to why the Laplacian Eigenvectors are appropriate quantifiers

for monitoring the process states are tendered:

(a) An analogy with the Fourier transform from the statistical signal processing is proffered.

(b) An explanation is given from the network topology perspective.
1) A Justification from the Signal Processing Viewpoint

The following properties of the normalized Laplacian matrix £, are important. Because £, is a
diagonally dominant symmetric matrix with non-positive off-diagonal elements (called Steiltjes

matrix) [76] it leads to the following properties,

1. L is symmetric positive semi-definite, i.e., £ = 0.
2. The Eigenvectors of £ are orthonormal to each other, i.e.,try L v, -+ L - vry; (vp, vq) =
0; (/v'p,/lrp) = 1, where v, is an individual Eigenvector. The first eigenvector 44 is an

identity vector.
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Although, these properties do not hold for the random walk Laplacian £, the Eigenvectors of £,
can be orthogonalized using the Gram-Schmidt process[77] . Based on the orthogonality of the
Laplacian Eigenvectors, a link between the Graph transform Ly (A*,v) and the fast Fourier
transform (FFT) can be made. From Eqn. (15) it is apparent that the Eigenvectors of the Laplacian
are essentially akin to a Fourier basis, with coefficients a; (a; € R, because XT, v € R).

Moreover, because all the Laplacian Eigenvalues are real, the following holds,

(XT,vi) =C = kl')\i,Vl' >1 (20)

In other words, the so-called graph Fourier coefficients c; are multiples of the Eigenvalues A™ of
the Laplacian. In summary, a mapping X ~ Ly (A", v) can be achieved whose dynamics are
characterized using the Laplacian Eigenvectors (v). Instead of tracking statistical features of the
signal in the time and frequency domain, the proposed graph theoretic approach entails monitoring

the topology of the network graph (G) in terms of the Laplacian Eigenvectors (v).
2) A Justification from the Network Topology Viewpoint

This section provides the mathematical rationale from the geometric topology viewpoint for using
the Laplacian Eigenspectrum(A*, v). The first justification in the literature is due to Belkin and
Niyogi [64, 65] who substantiate the intuition that the graph Laplacian indeed captures the complex
spatio-temporal dynamics of high dimensional data in a low dimension space, namely, the graph
G(V,E,W) based on the theory of Laplace-Beltrami operators on Riemannian manifolds.

Elucidating this justification is beyond the scope of the current work.

The second justification is motivated from spectral graph segmentation area. It is based on the
normalized Laplacian, and was proved by Shi and Malik [78]. Shi and Malik show that the
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Laplacian Eigenvector v, (Fiedler vector) is the most efficient means to partition a graph G =
(V,E,W). Partitioning a graph is analogous to the number of edges that must be broken to cut a
graph into two. The Eigenvector v, is the shortest way to partition a graph (sever the least amount
of edges); the Eigenvector 15 is longer, and so on (14 is merely a vector of ones, and corresponds
to a eigenvalue of 1). In other words, the Laplacian Eigenvectors and Eigenvalues are not merely
statistics, but are fopological invariants that are representative of the signal structure in the graph

space.

The specific mathematical implication Shi and Malik’s work is that the graph segmentation (or
cutting) problem has an efficient discrete solution in the Rayleigh quotient of the Laplacian matrix
L [78]. Consequently, on using the Courant-Fischer theorem (see Ref. [79]), which gives min and
max bounds on the Rayleigh quotient, Shi and Malik arrive at the following solution to a
discretized modification of the graph segmentation problem, where X is a vector in the span of L,

and the left hand side terms are Rayleigh quotients of the Laplacian.

T T
L X Lx; . X LXx;
argmin-—— = v,, min-——2=2,; and
Xj X Xj Xj  Xj X
]
21)
X]'TL:X]' X]'TLX]'
argmax——— = ¥, max——.— = A
i X]' X]' X]' X]' X]'

X;

Therefore, the Fiedler vector (v5) solves the graph segmentation (cutting) problem, with Fiedler
number (A,) as the minimum attained [78]. The highest Eigenvalue (Ay) is the maxima. Thus, the

Laplacian Eigenvectors are linked to the inherent structure in the signal.
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4.4  Application of the Approach to Synthetically Generated Signals.

The aim of this section is to test the efficacy of the spectral graph approach in classifying signals
from a nonlinear deterministic Rossler time series [80]. The Rossler system ¢(t; a, b, ¢) shown
below in Eq. (22) and plotted in Figure 10 are a set of interlinked nonlinear differential equations,
whose behavior is governed by three constants: a, b, and c. A slight change in these constants
leads to markedly different behavior of the system. It is an archetypical nonlinear dynamic system,
which shows sensitivity to initial conditions. Four types of systems are generated by setting the
constant a to four different values, namely, a =0.16; 0.17; 0.19; and 0.21. These four systems are
labelled &4, 8,, 83, and 8, (see also Figure 10). The generated signals are 20,000 data points long
for each x(t), y(t), and z(t), which are initialized at {0,0,0}. Each x(t), y(t) and z(t) is
considered a signal, each of which occupies one column in Eqn. (1). Different values of the

constant a leads to different ¢(t).

( d
X0 = —(y(®©) +2(1))
o(t:a,b,c) = 1 % YO = x(©) +ay(®) (22)
L%Z(t) =b+x(t)-z(t) — cz(t)J

Insert Figure 10 Here.

The following procedure is used: four different levels of Gaussian white noise (1)) are added to the
system; 1= {0,5%, 10%, 20%} From each of the four systems 125 samples each 20,000 data points
long are selected. Referring to Eqn. (1), the dimensions d = 3 for the Rossler system, and
m = 20,000. Three different window sizes of length £ = 500, 750, and 1000 data points are
evaluated. The classification fidelity on applying the graph theoretic approach in terms of the F-
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score is recorded. The F-score is an aggregate measure of the statistical Type I (false alarm) and
Type II (failing to detect) error. The higher the F-score the better. The process is repeated 5 times,
i.e., five-fold replication study. The result from this analysis is shown in terms of the F-score

contingent on the noise level () and window size is presented in Table 4.

From Table 4 it is evident that window k = 750 gives a consistently higher F-score. Remarkably,
addition of noise to the system does not lead to significant changes in F-score, which underscores
the robustness of the proposed approach to noise. The reason a window of size of k =750 leads to
the best results is because it is neither too short to be afflicted with temporal correlation, nor too
large to affected by noise. The so-called confusion matrix for k£ = 750 is shown in Table 5 along
with a sample calculation for the F-score. The approach is compared against seven other popular

classifiers in Table 6.

The inputs to these classifiers are eight statistical moments: mean, median, standard deviation,
skewness, kurtosis, minimum, maximum, and inter-quartile range. These features are extracted for
each of the three components, x(t), y(t), and z(t), of the Rossler system, and principal
components (capturing 99% of the variation) are used within the seven different machine learning
approaches. The results, presented in Table 6, indicate that the proposed approach with Laplacian

Eigenvectors outperforms these other approaches.

Insert Table 4 Here.

Insert Table 5 Here.

Insert Table 6 Here.
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5 Results and Discussions - Application of Spectral Graph Theory to LPBF

The aim of this section is to apply the spectral graph approach described in Sec. 4 to discriminate
between the overhang and bulk build conditions. Data from each of the three type of signals,
thermal images, high-speed video frames and the photodetector time traces are analyzed, and their
ability to distinguish between the two build conditions (overhang and bulk) is statistically assessed
in terms of the F-score. A critical parameter that needs to be determined a priori is the window
length k. In the thermal video and IR images the window size is 1 frame; for the photodetector, the
window size was selected to be 555 data points (acquired over a time interval of 555 ps) long to

correspond to one thermal image frame, as explained before.

For the thermal and video images, each pixel row corresponds to a row on the matrix x;, shown in
Eqn. (1). Whereas, the photodetector signal is a column vector. Using Eqn. (5), the weight matrix
Wy, 1s obtained, and the steps in Eqn. (7) — Eqn. (9) are followed. This gives the Eigen spectrum

(A%, v). The Eigenvalues A" are plotted to illustrate visually the manner in which the signals for
different build conditions, namely, melting of overhang and bulk features, are distinguishable in
the spectral graph domain. These plots are shown in Figure 11, based on which the following

inferences are drawn:

e  Figure 11(a) traces the second Eigenvalue (1,), also called the Fiedler number across 5000
thermal camera frames for one layer (9.70 mm layer height) of the process. Distinctive peaks
are evident in the plot where the overhang sections are built. The smoothed trend line in the
figure obtained using a seventh order Savitzky-Golay filter taken over a window size 101

data points to accentuate the patterns in the data.
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e Corresponding to the same 5,000 frames in Figure 11(a), in Figure 11(b) is the L? norm of
the Eigenvalues (1) given by ||/122, A3, e, A || for the photodetector signal. This is because
the Fiedler number alone failed to show any clear peaks. The trends are not as visually
prominent as those obtained from the thermal camera, indeed some of the peaks in the
photodetector signal do not seem to align with those of the thermal camera. This is most
likely due to the sensitivity of photodetector to the direction of the scan. As the laser melts
material, nearer to the photodetector higher amplitude peaks are observed, compared to the
instances where the laser is farther away. A count of the (periodic) peaks in Figure 11(b)
reveal that they correspond to the number of hatches. Given this variation in the signal
characteristics it is reasonable to expect a lower detection fidelity for the photodetector signal

compared to the thermal camera.

Continuing with the analysis, the approach is applied to the data acquired by the three sensors for
distinguishing between the overhang and bulk build conditions. The approach is compared against
seven other popular machine learning approaches following the procedure described in Sec. 4.4.

For brevity, the parameter settings are encapsulated in the Appendix.

Insert Figure 11 Here.

Noting that for the photodetector signal the random walk Laplacian for Eqn. (11) is used. Table 7
represents the performance of the spectral analysis algorithm for all three types of sensor signals

in terms of F-score value. Based on Table 7 and Table 8 the following inferences are tendered:

1) The proposed spectral graph theoretic approach outperforms all the other approaches tested,

this holds for all sensing scenarios (Table 7). An F-score in the range of 80-95% is possible
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with the proposed approach. While it is at best 60% with the other approaches, i.e., little better
than a random guess.

2) The prediction results from the photodetector signal are inferior for spectral graph theoretic
approach compared to the same approach applied to other sensor signals. Nonetheless, the
F-score results are within 20% of the highest resolution sensor, i.e., the thermal camera. The
confusion matrix, based on 250 randomly selected samples — a sample is a frame for the
thermal and video images and 555 ps of data for the photodetector — is shown in Table 8.

3) The detection fidelity is contingent on the analytical approach used. Even a sensor with the
highest spatial resolution, such as a thermal camera, when integrated with an ill-suited
analytical approach will lead to poor results. For instance, the thermal camera when combined
with a linear discriminant classifier, has poor F-score (36%) compared to the visible camera

(58%) and photodetector (59%).

Insert Table 7 Here.

Insert Table & Here.

6 Conclusions and Future Work

This work proposed a spectral graph theoretic approach for monitoring the build condition in laser
powder bed fusion (LPBF) additive manufacturing (AM) process via a sensing array consisting of
a photodetector, SWIR thermal camera, and high-speed video camera. The central idea of the
approach is to convert the sensor data into a lower dimensional manifold, specifically, a weighted

and undirected network graph. Specific conclusions are as follows:
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An LPBF part with a steep overhang feature (40.5°) is built without supports. The build is
monitored continuously with the aforementioned sensor suite with the intent to detect the
difference in signal patterns when the bulk and overhang sections are sintered. Extracting and
detecting the difference in sensor signatures for such a simple case is the first-step towards
in-situ defect detection in AM. The analysis was extended to more sophisticated machine
learning approaches, such as neural networks and support vector machines, among others
(Sec. 5). These approaches had a fidelity (F-score) for distinguishing between the overhang
and bulk states in the vicinity of 40-60%.

The proposed graph theoretic approach was applied to the sensor data with the intent to
distinguish between the overhang and bulk build states, the F-score obtained is in the region
of 80 to 95%, contingent on the type of sensors: F-score ~ 95% from the short wave infrared
thermal camera; F-score ~ 83% for the high-speed video camera, and F-score ~ 79% for the

photodetector sensor.

These results lead to the following inferences:

To monitor the LPBF process, in-process sensing must be integrated with new and advanced
analytical approaches capable of combining data from multiple sensors. Existing approaches,
such as neural networks are ineffective probably due to their inability to discern the subtle and
short-lived indications of an incipient fault, and limitations with accommodating
heterogeneous sensors.

A low fidelity sensor, such as photodetector, although not as capable in discriminating between
build conditions as a high-fidelity sensor, its detection capability is still within 20% of the
thermal camera. This limitation may be overcome by using multiple photodetector sensors

together.
37



Accepted Manuscript MANU-18-1023

This work exposes the following unanswered, open research questions, which the authors will

endeavor to address in their forthcoming work:

i.  What other different types and more relevant microstructure-level defects, such as powder
contamination, poor fusion, porosity delamination, etc., may be detected?

ii.  What is the link between specific defects and sensor signal patterns? In other words, is there
a one-to-one link between a type of defect and its severity, and the sensor signature it
manifests?

iii.  What is the detection lag; does the detection accuracy improve with sensor redundancy?
What is the effect of sensor noise and position on the detection accuracy?

iv.  How does the approach translate into more complicated geometries, and different types of

defects, and eventually design rules in AM?

In closure, while this research proposes an approach for monitoring of process states and the
detection of incipient defects, thus laying the conceptual ground work for a qualify-as-you-build
paradigm in AM, nevertheless, it does not provide an avenue to repair or correct impending defects
through closed loop feedback control. Prompt defect correction is important in AM, because, once
a defect is created in a layer it is liable to be permanently sealed in by subsequent layers.
Accordingly, the next-step for the authors, apart from addressing the four questions posed
heretofore, is to build a mechanism for defect correction within the AM process. To realize this
need for process correction, the authors have access to three hybrid additive-subtractive AM
systems at their home institution — University of Nebraska-Lincoln, namely, two Matsuura Lumex
Avance 25 hybrid LPBF systems, and one Optomec hybrid directed energy deposition system.

These hybrid AM systems have a subtractive machining head inside the machine, which can be
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used for removal of an entire defect-prone layer. Moreover, these machines allow complete control
over the process parameters; this freedom to alter parameters, which is absent in most commercial
AM systems, engenders a means to correct defects. For instance, if porosity formation due to lack
of fusion is detected from in-process sensor data, the laser power may be increased to an
appropriate level to fuse the un-melted powder particles. On the other hand, if pinhole porosity
due to overly high input laser power were to occur in a particular layer, the subtractive machining
head may be used to remove such a layer, and the process commenced with changed parameters
(e.g., lowering the laser power). Hence, this work is the critical first-step towards transcending
the qualify-as-you-build concept and usher a new correct-as-you-build paradigm in AM leading

to parts with zero defects.
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Table 1: The information related to all sensors used in the LPBF process

Sensor Type Location Details
Stirling cooled, e Frame rate: 1,800 frames per
extended range second.
Short Indium Behind the machine e Wavelength: 1,350 nm — 1,600 nm.
Wave Infrared | Antimonide door, inclined at an o Shutter speed/Integration time: 40
Thermal (InSb) detector angle of 43.7° with us.
camera with Cameralink | the build plane. e Calibration range: [500, 1025]°C.
connection. 1 e Instantaneous field of view (iFoV):
megapixel. 36 um per pixel.
High Speed Silicon-based Inside the build
.=, array. 1.2 chamber Frame rate: 4,000 frames per second.
Visible Camera . .
megapixel. (Upper right corner).
. Spectral response: 300 nm to
Lensed, silicon- Parallel with the 1,200 nm.

Photodetector

based
photodiode.

thermal camera.

Cutoff frequency: 141.5 kHz.
Sampling rate: 1 MHz.
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Table 2: Scanning parameters used for fabrication of overhanging structure shown in Figure 5.

Print Parameter Value

Hatch distance (spacing) 0.1 mm

Stripe width 4 mm

Stripe overlap 0.1 mm

Layer thickness 20 um

Scan speed 800 mm/s
195 W (infill)

Laser power 100 W (pre-contour)
120 W (post-contour)
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Table 3: List of major mathematic symbols and notations used in this work.

Symbol Description
X Sequence of sensor data (time series or images)
81, 89, 8; +++ | Process conditions or build states
'57’1
X Sensor data X associated for each state 5;
p € {1...h} | Number of windows
q € {1...k} | Length of windows
JTq) , Xy Two rows of the signal window xip
Wor Pairwise comparison of X, and x;
G;(V,E,W) | Undirected, weighted graph with, nodes V, edges E and weights W
S Symmetric similarity matrix
D Diagonal degree matrix
L; Spectral graph Laplacian matrix for each state .8;
v; Graph Laplacian Eigenvectors
Vs, Single universal basis for a system 3;
n The number of Eigenvectors in the universal basis
G(X) Spectral graph transform on a signal X
C Graph Fourier coefficients
P Candidate coefficients
€s, Sum of square errors for classification of a system 3;
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Table 4: Evaluation of the proposed approach for the Rossler system depicted in Percentage F-
score results (higher the better) for distinguishing between the four Rossler systems, the numbers
in parenthesis are the standard deviations from a five-fold classification study.

Noise Level Window Sizes (k in Eq. (2))

(M%) k=500 k=750 k=1000
n = 0% 0.8 (0.05) ]0.83(0.04) |0.81(0.04)
n =10% 0.77 (0.02) |0.83(0.05) |0.84(0.03)
n=15% 0.77 (0.05) | 0.83(0.04) | 0.81(0.04)
n=20% 0.74 (0.04) |0.83(0.03) |0.79(0.05)
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Table 5: The confusion matrix for distinguishing between the four Rossler systems.

Predicted Process Condition

False Negative Rate
(FNR, Type II error)

81 82 83 4

=] & 122 3 0 0 3/125 =2.4%
ER LI 26 93 6 0 32/125 =25.6%
3 £ I 5 11 99 10 26/125 = 20.8%

Ol s 0 23 102 23/125 = 18.4%

Avg. FNR (B)
False Positive Rate | 31/375 | 14/125 | 29/125 | 10/125 =16.8%
(FPR, Type L error) | =82% | =11.2% | =23.2% =8% | Avg. FPR
a= 12.5%

F-score =1 — 2258 = 0.821 (82.1%)
axf3
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Table 6: Comparing the graph theoretic approach against six other popular machine learning
approaches. The numbers in table are the F-scores (larger is better) along with the standard
deviation over five replications in the parenthesis.

Noise Classifier
Level Linear K-Nearest .. Support Boosted Neural Qua.drgtw Proposed
M | Discrimi . Decision Vector Discriminant Graph
iscriminant | Neighbors . Trees Network . )
(LD) (KNN) Tree Machines (BT) (NN) Analysis Theoretic
(SVM) (QDA) Approach
0% 0.81(0.01) 0.79(0.02) | 0.76(0.03) | 0.83(0.02) | 0.80(0.02) | 0.79 (0.01) | 0.81(0.01) 0.83 (0.04)
10% | 0.74(0.01) 0.63(0.02) | 0.72(0.03) | 0.75(0.03) | 0.78 (0.02) | 0.75(0.02) | 0.78 (0.02) | 0.83 (0.05)
15% 0.73(0.02) 0.6 (0.03) | 0.77(0.02) | 0.72(0.03) | 0.78(0.02) | 0.73(0.02) | 0.75(0.02) | 0.83 (0.04)
20% 0.72(0.03) 0.58(0.04) | 0.7(0.04) | 0.7(0.04) | 0.75(0.02) | 0.72(0.03) | 0.75(0.02) | 0.83 (0.03)

53




Accepted Manuscript MANU-18-1023

Table 7: F-score results from applying the proposed approach to each of the three types of sensor
signals. (a) The percentage F-score results for detecting the two process conditions in thermal
camera, visible camera and photodetector, the numbers in parenthesis represents the standard
deviation from a five-fold replication (data from three layers). Acronyms are as follows: LD:
Linear Discriminant, KNN: K-Nearest Neighbors, Tree: Decision Tree, SVM: Support Vector
Machines, BT: Boosted Trees, NN: Neural Network, QDA: Quadratic Discriminant Analysis.

Data Proposed | LD [ KNN | Tree | SVM |Boosted] NN [QDA

Sensor

Dimension | Approach Trees
Thermal Camera 2D 0.95 036 05 | 038 | 042 | 0.43 |040] 0.6
(128%360) (0.01) ](0.02)](0.02)](0.03)[(0.03)| (0.03) |(0.02)[(0.02)
2D 0.83 0.58 1 0.57 | 0.61 | 0.63 | 0.62 |0.54] 0.5

Visible Camera | 556.956) | (0.02) [(0.02)](0.03)] 0.01)] 0.02)| 0.01) [(0.00)|(0.01)

079 ] 059 06 | 0.62] 061 ] 061 | 06|05
Photodetector | 1D (355 < 1) o1y {(0.02) [ (0.02) | 0.01)| (0.01)| (0.02) |0.00)|0.01)
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Table 8: The confusion matrix for detecting the two conditions (overhang and bulk) from the
thermal camera, high-speed camera and photodetector. The data is for 250 randomly chosen

sequences from each build condition.

Predicted Build Condition
Overhang Bulk

§ : Thermal Camera nglrlgling 22542 2% 5

far it

% E Visible Camera nglﬁling 853 67

<QC) Photodetector OV];rlHing L ;7 2%431
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Appendix

Classification Method

Input type

Setting

Laplacian
Basis

Eigenvector

Thermal camera

No. of Eigenvectors: 10
Laplacian matrix: weighted symmetric

Kernel Function: Mahalanobis distance.

Visible camera

No. of Eigenvectors: 1
Laplacian matrix: weighted symmetric

Kernel Function: Mahalanobis distance.

Photodetector

No. of Eigenvectors: 5

Laplacian matrix: weighted random walk (orthogonalized
using Gram Schmidt )

Kernel Function: Mahalanobis distance.

Linear Discriminant

(LD)

K-Nearest Neighbors
(KNN)

Decision Tree

Support Vector Machines
(SVM)

Boosted Trees

(BT)

Neural Network

(NN)

Quadratic Discriminant
Analysis

(QDA)

8 Statistical Features
for each dimension/
column:

Mean,

Standard Deviation
Range,

Skewness,
Kurtosis,
Interquartile range,
Min,

Max

Linear boundaries between classes

numbers of neighbors: 1

maximum number of splits: 100

Gaussian scale: \/number of predictors / 4

an ensemble of decision trees (maximum number of splits
set to 20) using the AdaBoost algorithm

number of hidden neurons: 2

Elliptical, parabolic and hyperbolic boundaries between
classes
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List of Figures

Figure Number

Figure Caption

Figure 1 The schematic diagram of the laser-based powder bed fusion (LPBF) process.
Fioure 2 An LPBF knee implant with an overhang feature shows poor surface finish and
& coarse microstructure.
Figure 3 Schematic layout of sensors installed on the LPBF 3D printer
) close up and schematic layout of the thermal camera and high-speed video
Figure 4
camera.
(a) The part schematic (all dimensions in mm, drawings are not to scale)
Fioure 5 measuring 16 mm on all sides with 40.5° overhang angle, (b) as-built without
& supports, (c and d) Side-view and top views of the stripe pattern at the build
height of 7.9 mm in the context of the thermal camera position.
Fioure 6 Distinctive meltpool shape for bulk (a) and overhang (b) areas. Note the
& residual heat for the overhang area resulting from the previously scanned stripe.
Fioure 7 Two representative high-speed video images for (a) bulk build conditions (b)
& overhang build condition corresponding to the frames in Figure 6.
Photodetector signal windows for the overhang and bulk features (a) intensity,
Figure 8 (b) Fourier transform, and (c) empirical cumulative distribution function
(ECDF) for three consecutive layers.
Figure 9 The three steps in the proposed spectral graph theoretic approach
Figure 10 The four different Rossler systems used for testing the approach.
. Fiedler number pattern for one frame of thermal camera (b) Second norm of
Figure 11

graph Fourier coefficients of photodetector.
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