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Spectral Characterization of Controllability and Observability for Frequency
Regulation Dynamics

Lingi Guo and Steven H. Low

Abstract— We give a full characterization using spectral
graph theory of the controllability and observability of the
swing and power flow dynamics in frequency regulation. In
particular, we show that the controllability/observability of
the system depends on two orthogonal conditions: 1) intrinsic
structure of the system graph 2) algebraic coverage of buses
with controllable loads/sensors. Condition 1) encodes informa-
tion on graph symmetry and is shown to hold for almost all
practical systems. Condition 2) captures how buses interact
with each other through the network and can be verified
using the eigenvectors of the graph Laplacian matrix. Based
on this framework, the optimal placement of controllable loads
and sensors in the network can be formulated as a set cover
problem. We demonstrate how our results identify the critical
buses in real systems by performing simulation in the IEEE
39-bus New England interconnection test system. We show that
for this testbed, a single well chosen bus is capable of providing
full controllability/observability.

1. INTRODUCTION

Our energy system is at the cusp of historical transfor-
mation into a more sustainable and intelligent form. On one
hand, the penetration of renewable energies brings increasing
level of flow fluctuations to the grid, which calls for technolo-
gies improving controllability and observability of the grid.
On the other hand, integration of smart devices that arc able
to sense, communicate and control enables more flexible and
decentralized control mechanisms to be implemented. Fre-
quency regulation, for instance, has been revisited recently in
[1]-[4] with focus on load side participation, which exhibits
faster response and more localized deviation compared to
conventional generator side frequency regulation.

This line of work motivated a series of efforts dedicated
to the theoretical understanding of load-side participation
in frequency regulation. For example, a primal-dual based
framework for studying the load control problem is pro-
posed in [5]-[7], based on which a decentralized frequency-
based load control scheme is developed. Later on, a virtual
flow reformulation is proposed in [8] to account for con-
gestion control jointly with frequency regulation. Passivity
approaches are investigated in [9], [10] for primary and
in [11] for secondary frequency regulation with load-side
participation, which often apply more generally to higher
order models compared to Lyapunov based methods in [5]—
[8]. There is also a large body of literature on distributed
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An example network with symmetry.
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frequency control employing other approaches, see [12],
[13], for example.

It is almost always assumed that all buses have con-
trollable generation/loads and sensors in existing work [5]—
[13], which is not practical for structure preserving models
in power systems. Indeed, feasible placements of popular
controllable loads such as electric vehicle charging stations
[14] and aggregated houscholds [3] are typically limited
to certain geographical arcas and the penetration of such
controllable loads takes investment and time. Moreover, the
enormous amount of sensing devices needed for full load-
side participation in a large scale network can be very costly
[14], [15]. Hence we are interested in power network models
where not all nodes have controllable loads or sensing
devices.

When only a subset of buses are controllable, it is less
clear how much controllability we have over the system. As
a motivating example, let us consider the highly symmetric
network shown in Fig. 1, where the nodes 1, 2 and 3 are
assumed to have the same load, damping, inertia, initial
phase etc., and assume we can only control the node with
label G&. Then because of symmetry, no matter how we alter
the mechanical power injection at node G, the power flows
on all transmission lines would be the same and therefore
the system cannot be controllable. This, of course, is a
highly contrived example - nevertheless, it is a manifestation
of an intrinsic network property that leads to a loss of
controllability, as we will show in Section III.

Similarly, when sensors are only installed at a subset of
buses, we lose a certain degree of observability of the system.
Consider again the network shown in Fig. 1 under the same
symmetric setting and assume we can only measure the
frequency deviation at the bus G. For any initial state that
conforms to the system input and output observed, we can
always permute the states among the buses 1, 2 and 3 (which
effectively relabels those buses), and still get a feasible
solution. Intrinsically, there is no way for the observer to
distinguish those initial states because of the symmetry.
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In this work, we develop a theory quantifying the impact
of such limited controllable loads/sensors coverage over the
system controllability/observability in frequency regulation.
In particular, we show that the controllability/observability of
the swing and network dynamics is precisely characterized
by two orthogonal conditions: 1) intrinsic structure of the
system graph; 2) algebraic coverage, which we define in
Section III, of buses with controllable loads/sensors. Con-
dition 1) encodes information on the graph symmetry and
is shown to hold for almost all practical systems. Condition
2) captures how buses interact with each other through the
network and can be verified using the eigenvectors of the
graph Laplacian matrix. We would like to remark that our
results do not explicitly hint on how optimal decentralized
control scheme should be designed. Indeed, the standard
control associated with our results is typically centralized
and open-loop. The focus of this work is more towards a
fundamental understanding on structural properties of our
power system.

The rest of the paper is organized as follows. We first
review the system model and relevant spectral graph theory
concepts in Section 1. In Section III, we present the exact
conditions for the system to be controllable. The practical
interpretations of these conditions are discussed in Section
IV. The parallel results in the system observability are given
in Section V. We present two applications of our character-
izations in Section VI. The first application as presented in
Section VI-A is more analytical, which reduces the problem
of optimal placement for controllable loads and sensors to
a set cover problem. The second application as presented
in Section VI-B is an evaluation in the IEEE 39-bus New
England interconnection test system, showing how a single
well chosen critical bus based on our theory is capable of
regulating the frequency of the whole grid. We conclude in
Section VIL

II. MODEL AND PROBLEM SETUP

In this section, we present the system model as adopted
in [5]-[8] and review relevant concepts from spectral graph
theory. We also refine the existing models to include the
limited coverage of controllable loads and sensors.

Let R denote the set of real numbers. For a set A, its
cardinality is denoted as |A/|. We reserve caligraphic symbols
like F,l{,O for sets related to the physical system (for
instance buses with controllable loads). Uppercase symbols
like A, B, usually refer to matrices, but can also refer to
a vector space or a set in the proofs. For two matrices 4, B
with proper dimensions, [4 B] means the concatenation of
A, B in a row, and [4; B] means the concatenation of 4, B
in a column. A variable without subscript usually denotes
a vector with appropriate components, e.g., w = (w;,7 €
NY € R For a matrix A, we denote AT, A1 A-1/2
and Al as its transpose, inverse, inverse of square root and
Moore-Penrose pseudo-inverse respectively, provided they
are properly defined. For a time-dependent signal w(t), we
use w to denote its time derivative ‘fi—f. For any vector =, we
use diag(z) to denote the diagonal matrix with entries from
z as the main diagonal.

We use the graph G = (N, &) to describe the power
transmission network, where A" = {1,...,n} is the set of
buses and £ < N x A denotes the set of transmission lines.
The terms bus/node and line/edge are used interchangeably
in this paper. We assume without loss of generality that G
is connected and simple. An edge in £ is denoted either as
e or (i,7). We further assign an arbitrary orientation over
£ so that if (¢,7) € £ then (5,4) ¢ £. For any subset of
buses § £ A, we denote its characteristic function using
the corresponding symbol 1s. Let n = |N],m = |£] be the
number of buses and transmission lines, respectively. The
incidence matrix of G is a n X m matrix C defined as

1 if node ¢ is the source of e
Che = < —1
0 otherwise

if node ¢ is the target of e

For each bus § € A/, we denoate the frequency deviation as
w; and denote the inertia constant as Mj; > 0. The symbel
P} is overloaded to denote the mechanical power injection
if 4 is a generator bus and denote the aggregate change in
uncontrollable load if 7 is a load bus. For each transmission
line (¢,7) € £, we denote as [ the branch flow deviation
and denote as B;; the link susceptance.

At each bus, there are three types of additional components
which affect the system dynamics.

1) Controllable Load. Such component incurs extra load
denoted by d; and the level of d; is controllable. The
set of buses with controllable loads is denoted as 4.

2) Frequency Sensitive Load. Such component is sensi-
tive to local frequency deviations and incurs additional
load of czj = D;wy. We do not allow direct control to
such loads and denote the set of buses with frequency
sensitive loads as .

3) Sensor. Such component measures the local frequency
deviation w;. The set of buses equipped with sensors
is denoted as S.

Summarizing the above different components, the swing and
network dynamics is given by

~Mjis; = 17()ds + lu(i)dy — PP+ > ChePey jEN

ecE
Bij = By(wi —wy), ()€€
and the system state is observed through
v =ls(lwsy  FEN

Readers are referred to [6] for more detailed justification and
derivation of this model.

Now using z to denote the system state = = [w; P], and
putting F, U, 5§, M, D and B to be the diagonal matrices
with 17(7), 1u(4), 1s(4), M;, D; and B;; as diagonal
entries respectively, we can rewrite the system dynamics in
the state-space form

(1a)
(Ib)

) M- M-
I—AI{ 0 }dJr{ 0

|
y=[8 0]z
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where
—MYFD MO

dos | gt 0

and is referred to as the system matrix of (1) in the sequel.
In our characterizations, the scaled graph Laplacian matrix

defined as L = M~1/2CBCTM~1/2 plays a key role. It is
more explicitly given by

B, e ..
=T i efor (Gi)el
Lij = 7 Vene By 1=
0 otherwise

where N (¢) is the set of neighbors of 4. For any vector z
R"™, we have

2
.’L‘TL.’L‘ = Bz’j (i — Ij ) Z 0
This implies that L is a positive semidefinite matrix and thus
diagonalizable. It is well-known that rank{l) = n—1 for a
connected graph [16] and therefore 0 is a simple eigenvalue
of L. We denote 0 = Ay < Ag < --- < A, as its eigenvalues
and put 8 := {f1.82, -, Bn} to be an orthonormal set of
its eigenvectors with 3, affording A,. The notation A =
{1,2,...,n} is abused to also denote the index set of j.
Whether A denotes the set of buses or denotes an index set
for 8 will be clear from the context. The following property
of the spectrum of I turns out to be particularly useful in
this work.

Definition 2.1: The matrix I is said to have simple spec-
trum if all the eigenvalues of I are distinct.

We recommend the readers totake M =1, and B = I,
in first reading, under which our results are significantly
cleaner yet all key points (except Proposition 4.1) are
captured. Throughout the analysis, we make the following
assumption:

Sensitive Load Frequency sensitive components only exist
at buses with controllable loads. That is, we assume - C I{.

III. CONTROLLABILITY

In this section, we analyze the state-space dynamics given
in (1) and characterize its controllability using the spectrum
of the scaled Laplacian matrix L.

Before presenting our characterization, we first clarify
what we mean by the controllability of (1). The classical
definition of controllability requires the whole state space
R™**+™ being reachable from any initial point. This turns
out to be too strong and is not svitable for our application.
Indeed, from the branch flow dynamics

P=BCTy
we see that

B (P@) — P(0)) = /0 z CTw(s)ds € range(CT)

If we assume the system is in the nominal state at time ¢ = 0,
that is #(0) = [w(0); P(0)] = 0, then we know B~1P(z) <
range(C7) for any ¢. In other words, the scaled branch flow

vector is confined in the range of C'T because of the system
physics. This motivates the following definition.

Definition 3.1: The dynamics (1) is said to be P-
controllable or controllable in power system sense, if for
any ¢ > 0, initial state x(0) = [w(0); P(0)] and target state
z(t) = [w(t); P(#)] satisfying

B7Y{(P(t) — P(0)) € range(CT)
there exists a control « such that

$(t) = ¢($(0)a U, t)

where ¢{z(0),,t) is the system state at time ¢ given initial
state z(0) and control input w.

Our first result generalizes the classical Kalman criteria to
the context of P-controllability. It shows that to determine the
system P-controllability, it suffices to form the controllability
matrix with the scaled Laplacian matrix I (instead of the full
system matrix 4) and we can ignore the drift term P™ (even
when it is time-variant) in (la).

Proposition 3.2: The dynamics (1) is P-controllable if and
only if the matrix

W= [M-Y20 _ER=5%

has full row rank.

The proof of this proposition is presented in Appendix L
This result tells us that to decide the P-controllability of (1),
it amounts to compute the rank of W. Recall 0 = Ay < Ag <
-+« < Ay, are the eigenvalues of L and {51, A2,..., 8.} isan
orthonormal set of corresponding eigenvectors. Let () be the
matrix with 4;’s as columns and A be the diagonal matrix
with A;’s as diagonal entries, i.e. L = QAQT. We introduce
the concept of algebraic coverage.

Definition 3.3: With all previous notations, the algebraic
coverage of a bus 7 € A, denoted as cov(y), is defined to
be the set

(—L)n_lM_lng}

cov(j) i =4{se N: 8. ; #0}

where 3, ; is the j-th entry of 3,.

Now we are ready to give the spectral characterization for
the P-controllability of (1).

Theorem 3.4: With all the previous notations, the dynam-
ics (1) is P-controllable if and only if

1) The scaled Laplacian matrix I has simple spectrum

2) The algebraic coverage from controllable loads is full

N = U cov(j) (2)

jeut
Proof: Recall U is the diagonal matrix encoding the
placement of controllable loads. Let V be the Vandermonde
matrix

1 *)\1 )\% (*)\1)“71
o et B
1 -2, A2 (—an)"1

and
w; = QTM Y20, VieN

where Uj is the 4-th column of U.
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Since (7 is orthogonal, we know (—L)* = Q(—A)*Q7T
and as a result

W = Q {QTM—l/QU (7A)n—1QTM—1/2U] (3)

For any integer p, g, we denote as r{p, ¢) the unique number

re{1,2,--- ,q} such that p = gk + r for some integer k.
5 : 2 2 i

Define a permutation matrix 1T € R™ *"" given by

I = {1 = () — Tt L= 1] +1

0 otherwise

Intuitively, multiplying II on the right hand side of W
collects columns corresponding to each w; together. With
such notations, we have

[QTMT . (CAPQTM T
= [dlag(ul) dlag(un)} (Iﬂ & V) “4)

where ® means the tensor multiplication and (4) can be
checked by directly comparing each component. Now note
both ¢ and II are invertible, from (3) we know the rank of
W is the same as the rank of (4). Therefore by Proposition
3.2, we see the dynamics (1) is P-controllable if and only if
{4) has full rank. It is well known that the determinant of
the Vandermonde matrix V' is given by

det(V) = [T [(=2) = (=Ay)]
i<
and therefore V' is invertible if and only if the tuple
(As : s € N) has distinct entries. Also it is easy to see that
I, ® V has full rank if and only if V' has full rank, thus

I, ®V ig invertible if and only if I has simple spectrum.
Next, it can be checked that the nonzero rows of

[diag(ul) diag(usg) diag(un)} (5

are independent because their nonzero eniries appear in
“orthogonal” positions. Therefore (5) has full row rank if
and only if all the rows have nonzero entries, or in other

words
N = U supp(u;)
JEN

where supp(u;) is the support of w;.
From u; = QT M ~'/20; we can compute

from which we see

s G =Vl
supp(uj)_{é EN: 855 #0} ;;u

But this implies

L supp(u) = | {s € Nz By # 0} = | covls)

JEN Jjeu Jeld
As a result, (4) has full rank if and only if L has simple
spectrum and (2). This completes the proof. |

IV. INTERPRETATIONS

The characterization given in Theorem 3.4 is purely alge-
braic. In this section, we explain the practical meanings of
our controllability criteria.

A. L should have simple spectrum

Recall we mentioned in the introductory section that for
the graph in Fig. 1, the system (1) cannot be controllable
because of the network symmetry. It turns out that I having
simple spectrum roughly means the associated graph has
few symmetries and this condition can be interpreted as a
general criteria on whether the network topology has too
much symmetry so it loses certain controllability. Indeed,
it is proven in [17] that if [ has simple spectrum, then
any nontrivial automorphism of G has order twol. This
specifically rules out star graphs with more than three nodes
and symmetric weights (that is M;’s are the same for all ¢ <
N and B,’s are the same for all e € &), including the graph
in Fig. 1, from having simple spectrum. As another example,
it can be shown that the Laplacian matrices associated with
line graphs (under arbitrary B and M) always have simple
spectrum [18]. For more results relating properties of the
graph automorphism group to the spectrum of I, we refer
the readers to [16]-[18].

This condition is much less restrictive than one would
expect. In fact, one can check that the associated [ matrix for
all test cases coming with the Matpower 6.0 package [19]
(including almost all ITEEE and RTE testbeds) has simple
spectrum. We now establish a density result to explain such
abundance of practical systems with simple spectrum.

Consider a fixed transmission network G = (A, £) with
line susceptance matrix B and inertia matrix M. Let

Q= ][(-Be,00)

egf

be the space of feasible perturbations to B (so that we have
positive line susceptances). We add a random perturbation
w € £ drawn according to certain probability measure
p to the line susceptances, which can come from either
measurement noise or manufacturing error, and consider the
resulting scaled Laplacian matrix

L(w) = M~Y2C(B + diag(w))Cr M—1/2

The following result shows that for a large family of pertur-
bation distributions, L{w) has simple spectrum almost surely.

Proposition 4.1: Let v be the Lebesgue measure over R™.
Assume the probability measure ;1 : @ — [0, 1] is absolutely
continuous with respect to v and is Borel®. Let

£ ={w e Q: L(w) has simple spectrum }
Then F is Borel and 4 (F) = 1.

1The regult in [17] requires the assumption M = [,. One can, however,
prove similar results for general A by assigning Ad; as node weights and
requiring an automorphism to preserve both line and node weights.

TFor two measures 2 and © on the same measurable space O, y is said to
be absolutely continuous with respect to » if and only if for any measurable
set 2 C , »(E) = 0 implies u(E) = 0. A measure p is said to be a
Borel measure if all Borel sets are measurable with respect to p. See [20]
for more details.
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The proof of this result is presented in Appendix 1. Since
a probability Borel measure is absolutely continuous with
respect to the Lebesgue measure if and only if it affords a
probability density function®, for almost all practical proba-
bility models of such perturbation (e.g. truncated Gaussian
noise with arbitrary covariance, bounded uniform distri-
bution, truncated Laplace distribution), L(w) has simple
spectrum almost surely. Similar perturbation results on M
also hold.

Therefore, under mild assumptions on perturbations to the
system parameters, the [ matrix associated with a practical
system almost always has simple spectrum.

B. The algebraic coverage of controllable loads should be
Sull

Intuitively, the algebraic coverage of a bus j reflects the
set of eigenvectors of L (which are usually interpreted as the
spectra of the network graph G in spectral graph theory) that
the bus 7 can “interact” with. When the algebraic coverage
of controllable loads is full, the control signals can interact
with the entire spectra of the network and thus are able
to drive the system to any state. As an illustration to this
intuitive meaning of the algebraic coverage, we present an
alternative interpretation for entries in the pseudo-inverse of
L (which is denoted as X := L) and demonstrate that
such interpretation is natural in certain scenarios. Fix two
buses 4,7 € A, For each s € N, we put &f; = f; ;8. k,
which can be interpreted as the “mutval influence” between
¢ and j through the spectrum s. We have &j; = 0 if and
only if s € cov(i) M cov{j), and when this holds, s lies in
the common coverage of ¢ and j and thus is a “bridging”
spectrum. Recall L = QAQT and therefore X = QATQY,
which then implies

5 Rij
A

sCoovit)Neov(s),s£1  °

Xt'j =

In other words, X;; can be interpreted as the weighted
average ol “mutual influence” between ¢ and 7 over all
“bridging” spectra.

When M = [, the “mutual influence” interpretation
of entries of X turns out to be natural for some useful
quantities in contingency analysis. For instance, under the
DC power flow model, when we shift power generation of
Ap;; from bus ¢ € A to bus 5 € AV, the power flow on a link
(k,0) e & would change accordingly, say by AFy;. The ratio
between APy and Ap;; is defined to be the generation-shift
sensitivity factor [21] and is given as *

WM B (Xat X Xa - X)) ©
Dig
One can note that the “mutual influence” terms among the
involved buses ¢, §, &, appear naturally in (6). Such “mutual
influence” terms in fact also encode very detailed information
on the spanning tree distributions of §. We refer the readers
to [22] for more detailed discussion.

3This is a result of the Radon-Nikodym Theorem. See [20] for example.

4In [21], the bus 7 is taken to be the slack bus and X is defined in a
slight different way. One can however follow the same derivation in [21] to
derive (6).

V. OBSERVABILITY

In this section, we present our characterization in the
observability of (1). The development in this section is in
parallel to Section IIT and thus we omit all proofs.

As in the case of controllability, the classical definition
of observability is too strong. A more suitable notion of
observability in our applications is given as follows.

Definirion 5.1: The dynamics (1) is said to be P-
observable or observable in power system sense if for any
¢t >0, an initial state z(0) = [w(0); P(0)] such that

B71(P(@t) — P(0)) € range(CT)

can be uniquely determined from the system input d(s) and
output y(s) over 0 < s < ¢.
We can then give the spectral characterization for the P-
observability as follows.
Theorem 5.2: The dynamics (1) is P-observable if and
only if
1) The scaled Laplacian matrix L has simple spectrum
2) The algebraic coverage from sensors is full

N = U cov(7j)
JES
The second item in this criteria for observability again
confirms our intuition that algebraic coverage encodes infor-
mation on how buses interact with each other through the
network.

VI. APPLICATIONS

In this section, we present two applications of our results.
The first application is on the optimal placement of con-
trollable loads/sensors so that controllability/observability of
{1} is achieved. We show this problem can be reduced to a
set cover problem. The second application is over the ITEEE
39-bus New HEngland interconnection test system, where we
demonstrate a single critical bus chosen based on our theory
is capable of regulating the frequency of the whole grid.

A. Optimal placement of controllable loads and sensors

Given a power transmission network G, if the associated
L matrix does not have simple spectrum, then by Theorem
3.4 and Theorem 5.2, such intrinsic deficiency of G forbids
the dynamics (1) from being controllable/observable, no
matter how many controllable loads or sensors we install.
Fortunately, as Proposition 4.1 suggests, such deficiency
usually does not occur for practical systems.

Now assume G has simple spectrum. By Theorem 3.4, the
dvnamics (1) is P-controllable if and only if the union of
algebraic coverage from controllable loads is full. Therefore
the problem of choosing the minimum set of buses to place
controllable loads such that (1) is P-controllable can be
formulated as

min  |J] (7a)
st | Jeov(y) =N (7b)
JeJ

This is an instance of the well-studied set cover problem,
one of Karp’s 21 NP-complete problems [23]. Although
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Fig. 2. Line diagram of the IEEE 39-bus New England interconnection
test system.

Theorem 3.4 does not completely resolve (7), it shows that
approximation algorithms devised for set cover problems can
be readily applied to our setting to obtain placements with
good quality.

A similar argument applied to the P-observability of (1)
leads to the same optimization problem as (7). Therefore
we are led to the following corollary, which is intuitive but
non-trivial without Theorem 3.4 and Theorem 5.2.

Corollary 6.1: For the dynamics (1), the set of optimal
placements of controllable loads and the set of optimal
placement of sensors are the same.

This result tells us that, in practice, we should always
install sensors at the buses with controllable loads, and vice
versa.

B. Secondary frequency regulation with a single bus

We now demonstrate how our results can identify critical
buses for controllability by evaluating over the IEEE 39-bus
New England interconnection test system, as shown in Fig. 2.
There are 10 generators and 29 load nodes in the system, and
in contrast to our linearized model for theoretical study, the
simulation adopts more realistic nonlinear dynamics.

One can check that the L matrix associated with this
network has simple spectrum (which is as expected according
to Proposition 4.1) and that the bus 35 has full algebraic
coverage, i.e. all the eigenvectors 3; of L have nonzero
entry at position 35. Therefore Theorem 3.4 implies that
even if we can only inject control at bus 35, the system
is still P-controllable. Thus we should be able to drive
the whole system back to the nominal state after arbitrary
disturbance. In order to verify this, we add a step increase
of 1 pu to the generation at bus 30, and compare the system
evolution with or without control at bus 35. In contrast to the
standard control associated with the controllability Gramian,
the control we adopt here utilizes only local frequency
deviation. Details about the control scheme design can be
found in [24]. The simulation results are shown in Fig. 3.

As one can see from the figure, despite the geograph-
ical distance between the disturbance and the controllable
node, the control scheme successfully drives the grid back
to nominal state within 5 seconds. In contrast, when no

60.05

o
@ =}
= =
- o

= N
L, &,
> >
g 60 £60.05
=] 3
g g
i & 60

59.95 59.95

0 5 10 0 5 10 15 20
Time (sec) Time (sec)
(a) With control. (b) Without control.
Fig. 3. Comparison of the system evolution with and without control at

bus 35 after adding a step increase of 1 pu to the generation at bus 30.

control is posed, the bus frequencies still stabilize because of
governor dynamics, but not to the nominal state. Moreover,
the stabilization process takes considerably longer time. Such
difference demonstrates that with a single bus 35 chosen
based on our theory, frequency regulation over the grid can
actually be achieved.

VII. CONCLUSION

In this work, we develop full characterizations on the im-
pact of limited controllable loads/sensors coverage over the
controllability/observability for the swing and power flow dy-
namics in frequency regulation. We present two applications
of our theoretical results: 1) an analytical application which
reduces the problem of optimal placement of controllable
loads and sensors to a set cover problem; 2) an evaluation
over the IEEE 39-bus New England interconnection test
system where secondary frequency control over the whole
network can be achieved by a single critical bus chosen based
on our theory.

Our results can be extended in several directions. First,
the linearized model (1) is usually accurate near the nominal
operation point, but may incur noticeable error when the
system is far away from the equilibrium. Such scenarios
may arise after a system failure. It is thus interesting to see
how our results can be generalized to nonlinear dynamics.
Second, the control suggested by our result can be very
costly. It is of interest to understand what the cheapest control
should be if we already know the system is controllable, and
how the placement of controllable loads affects this optimal
cost. Third, in applications, we usually only focus on the
controllability over a subset of transmission lines that are
subject to congestion. We should understand whether we can
refine the theory so that the results can be tailored for such
partial controllability.
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APPENDIX I
PROOF OF PROPOSITION 3.2

Consider the vector space Z := R"™ x range(BCT) <
R™+™, Then from the very definition we see that (1) is P-
controllable if and only if the affine space

7 +10; PO)] = Z + 2(0)

is reachable from z(0) (the equality is because [w(0);0] €
Z). Denote the set of Lebesgue integrable functions from
0,¢] to B™ as Ijp,. Now for any control input d & Ifg 4,
the solution to (la) is given by

¢ 1
z(t) = —/ glt—aA MO U} d(s)ds
0
¢
+/ e(tfs)A
0

M—l
o
We will show Proposition 3.2 by inspecting each term in (8).
Lemma 1.1: Let

& —1
Ro={ [eeon MV dyas: a1, |

be the set of possible values of the first term in (8). Then
R is a subspace of Z and R; = Z if and only if

W ==Y LR « Y

P (s)ds + et ta(0)  (8)

has full row rank.

Progf: Since the set of buses with frequency sensitive
components is contained in the set of buses with controllable
loads, we can absarb the D);w; term into d; for all j € 7
without affecting the system controllability. Therefore we can

assume F' = 0 in (1). Now by induction, we can compute
ABR) 1o be

M*l/Q(,L)le/Q 0
0 (—BCTM-LO)*

and compute A+ to be

0 ~M-1C(-BCTM-1C)
BCTM~12(— L)k pM1/2 0

Put B := [M~0/;0]. It is a classical result that R; is the
same as the range of the controllability matrix of (1) given
as
W=[B AB ...A"'B]
Multiplying B to the powers of A and discarding the zero
columns, we see the range of W is equal to the range of
MU 0 -MLU .. 0 i
0 BCTMU 0 BCTM(—- Ly U
} . &)
where M := M~1/2 and U7 := M~'/2U. Since BCT is a
common factor for the last m rows, we see the range of (9)
and thus R, is a subspace of Z.
Ome can check that the dimension of Z is 2rn — 1. Since
Ry is a subspace of 7, we know F; = Z if and only if the
rank of (9) is 2n — 1. Now define

W = [ﬁ: _Lﬁ: Lgﬁ: T (_L)nilﬁ]

Since both M and B are invertible, it is easy to see that the
rank of (9) is given by rank(W) + rank(C7TW). Moreover,
from rank(W) < n and rank(CTW) < rank(C?) < n—1,
we know the matrix in (9) has rank 2n — 1 if and only if

rank(W) = n, rank(CTW) =n— 1
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Finally note rank(CTW) = n — 1 is equivalent to having

rank{WW) = n. We thus see rank(W) = 2n — 1 if and only

if rank(W) = n, or in other words, Ry = Z if and only if

W has full row rank. ]
Lemma 1.2: For arbitrary P™ € I 4, we have

t =i
=04 | M 7l pmigyds ¢ 7

Proof: Tﬁe proof is similar to the part where we show
Ri1 C 7 in Lemma 1.1 and we omit the details here. [ |
Lemma 1.3: For arbitrary z(0) € R*T™, we have

eAz(0) —x(0) e Z
Proof: Tt is easy to check that the convergence radius
. 2 ; ;
of g(z) := > ;" %5 is infinite and thus the matrix series

ey
g(4) = Ei:l Az’!

note
e —T =2 = =Ag(4)
i=1

converges and is well-defined. Now

thus "4z (0) — z(0) = Ag(A)z(0) < range(A). It is easy to
check range(A) C Z, which then implies e?4z(0) — 2(0) €
7. ]
Now put

R:= {¢(x(0),d,t) : d € I g}

to be the set of reachable states from x({0) according to (8).
From the above lemmas, we see that for any control d, we
have

$(2(0),d.1) — 2(0) € Z

and therefore R — 2(0) C Z. Moreover, since
t M_l
f et—s)A { 0 } P (s)ds +et‘4$(0) -z e Z
0

B —2(0) = Z if and only if Ry = Z, which in turn is
equivalent to W having full row rank. As a result, we see
(1) is P-controllable if and only if W has full row rank. W

APPENDIX [I
PROOF OF PROPOSITION 4.1

Fix a network G and the associated B, M matrices. For
any w e {1, let

(b w) 1= det (M—1/20(B + ding(@))CTM Y2 _ ¢ I)

be the characteristic polynomial of the perturbed Laplacian
matrix L(w) and let disc(w) 1= disc (x(#;w)) be the discrim-
inant of x. Recall disc(w) is a polynomial in the coefficients
of x and therefore is a polynomial of the entries in w.
Moreover, disc(w) = 0 if and only if x has multiple roots,
or equivalently L{w) does not have simple spectrum. Put

£ ={w e Q: L{w) has simple spectrum }

We then have £ = O\ disc™*(0). Since disc is a polynomial,
we see £ is Borel.
Lemma 2.1: The polynomial disc(w) is not identically
zZero.
Proof: To show disc{w) is not identically zero, it
suffices to show that we can find w €  such that disc(w) =

0, which is equivalent to the existence of a link susceptance
matrix By such that Ly = M Y20B,CTM Y2 has
simple spectrum. We use mathematical induction to prove
the existence of such By. To facilitate the discussion, for any
subgraph G’ = (N, £') of G with line susceptance matrix
B’ we refer to the matrix

L= M/—l/?cr!Bl(Crl)TMl—l/Q

as the Laplacian matrix of §’, where M’ is the square
submatrix of M corresponding to the nodes in A/, and C”
is the incidence matrix of G’

First we pick a random link ey in & and assign arbitrary
susceptarice to e;. The subgraph §; generated by e; has
only one connected component (which is formed by e; itself)
and therefore the Laplacian matrix L; of &y has one zero
eigenvalue and one nonzero eigenvalue, which are distinct.

Next, consider any subgraph Gp = (N, &) of G with
k < m many links and let e, = (i, 7z ) € E\& be a link of
G not in Gg. Assume Gy, has simple spectrum. We claim that
by choosing the susceptarnce for e, properly, the graph Gy 4
obtained by adjoining e, (and possibly one of the vertices
ik, ) to Gy still has simple spectrum. Indeed, for the case
where both ¢, and g are in A%, we know the Laplacian
matrix Lz for Gy is given as

By
L1 = Ly + (* ——=2__ (Ey,5 + Era)

M; M;,
B . B, .
+=E B+ =22 B ) = L + ALy (10)
B oo+ 52 B

where for any ¢, 4, F; is the matrix with 1 at the intersection
of i-th row and j-th column and Q otherwise. Let 8z be
the minimum gap between the eigenvalues of L. Choose
B, ;, small enough so that the spectral norm of ALy is less
than /2. Then by Weyl’s inequality, we know that each
eigenvalue of Ly is perturbed by at most /2 from adding
ALy, As a result, the eigenvalues of Ly are still distinet,

If iy is not in N, then Lgy1 = Lg + ALy, where Ly
is the malrix obtained from Lz by appending a row and a
column of zeros and ALy is the same as in (10). It is easy
to see that L, and L, share the same nonzero eigenvalues
and L, has two zero eigenvalues. Similar to the previous
case, by choosing Bj, ;, small enough, we can ensure the
distinct nonzero eigenvalues of Ly, after perturbation of A Ly
are still distinet and nonzero. Note Lz has only one zero
eigenvalue, thus by choosing B;, ;, even smaller if necessary,
the new nonzero eigenvalue coming from the perturbation of
ALy can be made arbitrarily small and thus distinct from
other eigenvalues. We have thus justified our claim.

Now by induction, we see that we can always pick the
line susceptances properly so that the resulting I has simple
spectrum. This completes the proof. |
It is well-known from algebraic geomelry that the root set
of a polynomial which is not identically zero has Lebesgue
measure zero [25]. In particular, for the polynomial disc(cw)
which is not identically zero, we have v (disc™(0)) = 0.
Since p is absolutely continuous with respect to v, we see
i {disc™ ' (0)) = O or equivalently, L has simple spectrum
with probability 1 as £ = )\ disc™1(0). |
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