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Battery Swapping Assignment for Electric Vehicles: A Bipartite
Matching Approach

Pengcheng You, John Z. F. Pang, Minghua Chen, Steven H. Low, and Youxian Sun

Abstract— This paper formulates an optimal station assign-
ment problem for electric vehicle (EV) battery swapping that
takes into account both temporal and spatial couplings. The
goal is to reduce the total EV cost and station congestion due
to temporary shortage in supply of available batteries. We show
that the problem is reducible to the minimum weight perfect
bipartite matching problem. This leads to an efficient solution
based on the Hungarian algorithm. Numerical results suggest
that the proposed solution provides a significant improvement
over a greedy heuristic that assigns nearest stations to EVs.

I. INTRODUCTION

Transportation emits a large amount of greenhouse gases,
e.g., about a quarter of all greenhouse gases in the US [1],
[2]. Electrification will greatly reduce the carbon footprint of
transportation especially with increasing renewable genera-
tion of electricity. EVs are large loads that can add significant
stress to electricity grids, but they are also flexible loads
that can help mitigate the volatility of renewable generation
through smart charging. There has been a large literature on
the optimization of EV charging, e.g. [3]-[10]. EV charging
however takes a long time. It is not suitable for commercial
vehicles, such as taxis, buses, and ride-sharing cars, that are
on the road most of the time, the opposite of most private
cars.

An alternative EV refueling method is battery swapping
where an EV swaps its depleted battery for a fully-charged
battery at a service station.! This can be done in a few
minutes. Several such electric taxi programs are in pilot in
China [11]. The literature on EV battery swapping is small.
In [12] the operation of a battery charging and swapping
station is modeled as a mixed queuing network, consisting of
an interior closed queue of batteries going through charging
and swapping, and an exterior open queue of EV arrivals.
Using this model, [13] proposes an optimal charging policy.
An optimal assignment problem is formulated in [14], [15]
that assigns to a given set of EVs best stations to swap
their batteries based on their current locations and states of
charge. The assignment aims to minimize a weighted sum
of total travel distance and generation cost over both station
assignments and power flow variables, subject to EV range
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constraints, grid operational constraints and AC power flow
equations. While [14], [15] focus on spatial optimization over
power grid operation within a single time slot, this paper
focuses instead on temporal optimization where EVs arrive
over several time slots.

Specifically, we adopt a discrete time model [16]. In each
time slot, a centralized operator optimally assigns stations to
a set of EVs that need battery swapping. Consider the optimal
station assignment problem at time slot 1 where stations are
assigned in a way that minimizes both the total EVs’ cost to
travel to their assigned stations and the total congestion (bat-
tery shortage) levels at these stations. The current assignment
at time slot 1 will determine the EV arrival processes, and
hence the congestion levels, at the stations in the future and in
turn needs to take into account congestion due to EV arrivals
at these stations that were scheduled before time slot 1. The
problem is a binary program with strong temporal and spatial
couplings. We show that it is polynomial-time solvable by
reducing it to the standard minimum weight perfect bipartite
matching problem. This leads to a solution based on the
Hungarian algorithm for bipartite matching problems. We
present numerical results that demonstrate that the proposed
solution provides a significant benefit over a greedy heuristic
that assigns to each EV its nearest station.

The remainder of this paper is structured as follows.
Section II formulates the optimal station assignment prob-
lem for EV battery swapping, followed by the proposed
polynomial-time solution in Section III. Section TV validates
the theoretical analysis via mumerical results, while Section V
concludes.

II. PROBLEM FORMULATION

Consider a group of EVs, e.g., a fleet of electric taxis,
with swappable batteries that swap their depleted batteries for
fully-charged ones at stations assigned by a central operator.
Time is slotted with a constant length, e.g., 10 minutes.
Without loss of generality, fix the current time slot as time
slot 1 of the time horizon T := {—T+1,...,0,1,..., T},
and let T+ := {1,...,7,,}, which is the segment of T from
the current time slot on. Correspondingly, T\T* refers to
past time slots. 7, is a constant which we will interpret
later. Suppose there is a set J := {1,...,J} of stations
that provide battery swapping service for EVs. Denote the
current number of (fully-charged) batteries that are available
for swapping as n? at station 7.

At the current time slot 1, let T := {1,...,1} be the
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such that a weighted sum of aggregate EV cost and station
congestion is minimized. Note that if future information is
somehow available, joint optimization of station assignments
over multiple time slots can be easily accommodated.

A. Decision variables, siates, and constrainis

Let M = (My;,t € I,j < I) represent the station
assignment to EVs,” where

1
M?;j—{ 0

We require that only one station be assigned to each EV, i.e.,

if station j is assigned to EV ¢
otherwise

Z Mij =1, il
el (1)
M;; €{0,1}, ieljel

Note that we also use My;(t), ¢t = —Tn+1, -1 +2,...,0,

to represent past assignments, which are given. They affect
the current assignment and are parameters in the problem
formulation.

Let 7(7,d,t) estimate the arrival time of an EV if it
starts to travel at time slot ¢ from origin ¢ to destination
&; thus 7(o,d,t) = ¢ It captures the time-dependent traffic
conditions and in practice we largely care about 7(c,4d,1)
that captures the real-time traffic information. Meanwhile,
r{c,d,1) also corresponds to an optimal routing based on
the current traffic conditions, thus we can readily obtain the
associated travel distance from & to 4, denoted by d(z,4,1).
Note that the current estimates 7(e,d,1) and d(z,4,1) are
available by resorting to, say, Google Maps. Their explicit
modeling goes beyond the scope of this paper, thus we
assume they are exogenous and given. On this basis, if EV
¢ starts at time slot ¢, by defining its position as o; and
the location of station j as &y, it is expected to travel the
distance of d;;(t) := d(o;, é;,¢) and arrive at a future time
slot 73;(t) = 7(o46;,t) at station 4, thus reducing the
available batteries at time slot 74;(¢) by 1. We also define
Tigl(t) as the inverse function of 7;(t), ie., Tigl(t) is the
time slot when station j was assigned to EV ¢ that arrives at
time slot ¢. For brevity, let 7;; := 7;;(1) and d;; 1= di;(1).
Note that 74; is also the travel time of EV ¢ if it currently
sets off to station ;.

Now we interpret T;, as the maximum travel time of an
EV to reach a station, i.e., Ty, 1= max; ; (735 () —t+1). Tin
is tightly bounded as an EV that requires battery swapping
is running out of energy and its maximum driving range is
limited. The assignments before —T,,, + 1 are summarized
in n?, and the states of stations after 7}, will not be directly

affected by the current assignment.?

Let 7;(#) denote the number of available batteries at
station 4 at the end of time slot ¢, which is the station state.
In particular, n;(0) = n3. Hence n;(t) increases by 1 when

*More precisely, My; should be M;;(1) that denotes a current decision
variable. We drop the notation of the current time slot for brevity.

3As shown later, they are affected through n5{Tm ), which will be
captured.

a battery at station 4§ becomes fully-charged, and decreases
by 1 when a fully-charged battery is removed by an EV:

nj(t) = ”:r( +C:f ZMZJ zg
e N 2)
-3 My -Ut=my), teT
=)

where ¢;(t) is the number of batteries that become fully-
charged at station § in time slot ¢ (which is known a priori),
and [, is the set of all past EVs that were assigned stations
during the time interval [—7}, + 1,0]. 1(z) is an indicator
function for the predicate x. The third and fourth terms on
the right-hand-side of (2) summarize the impacts of past
assignments and the current one, respectively, on the number
of available batteries at station j at time slot ¢. The second
and third terms are both given while the fourth one is to
be decided. Moreover, past assignments have no effect on
n;(Trm) by definition, i.e., My, (75 (L)) =0, €1, s € T.
Note that n;(¢) can be negative. For instance, n,;(t) = 5
means that, at the end of time slot ¢, there will be 5 available
batteries left after serving EVs that arrive at station 7 at time
slot ¢; n;(t) = —3 means there will be no available battery

but 3 waiting EVs.
An BV can only be assigned a station within its driving
range, i.e.,

di; My; <rsy, teljel (3)

where 7 is the driving range per unit state of charge and s;
denotes the state of charge of EV <.

B. Optimal stafion assignment problem

The system cost has two components. First, a cost a;; is
incurred if station 7 is assigned to EV <, thus the cost of EV
i 18 EjeﬂaijMij. For example, o;; can be a weighted sum
of EV ¢'s travel distance and time from its current location
to station j. Second, as explained above, (—n;(#)}T is the
number of waiting EVs at the end of time slot £, where
(23T 1= max{z, 0}

Let n := (n;(¢),7 € J,t € TT) be the vector of station

states. We are interested in the following opfimal station
assignment problem:

IIBELEED IO

icl jel jel teTt

st (1),@2)0)

which minimizes the weighted sum of aggregate EV cost and
station congestion, subject to EVs’ driving ranges.

min
M,n

—ns () 4)

I1I. POLYNOMIAL-TIME SOLUTION

The optimal station assignment problem (4) is a binary
program with temporal couplings in (2) and spatial couplings
implied in station congestion. It can however be solved
efficiently.

Theorem 1: The optimal station assignment problem (4)
is polynomial-time solvable.

We prove the theorem in two steps. We first reformulate
problem (4) in Section ITI-A into a more convenient mixed
integer linear program (MILP), and then show in Section
[I-B that it is reducible to the problem of minimum weight
perfect bipartite matching.
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A. Reformulation as MILP

Note that all the constraints in (4) are linear in the variables
(M,n). The only nonlinearity is {(—n;(t)}™, which can be
removed by introducing an auxiliary variable v;(#) to replace
aggregate station congestion by ., >, v;(?) and requiring
v;(t) to satisfy the linear constraints v;(¢) > 0 and v;(Z) >
—n;(t). Hence (4) is an MILP.

To reformulate it into a more convenient form, dencte the
number of available batteries at station j over TT observed
at time slot 1 before the current decision M is made by:

¢

As(t) = ns(O)+ > (e5(k) — > My(ri5(w), teTF
r=1 il

It is a known constant determined by past assignments. The

evolution of n;(t) in (2) then reduces to

ny(t)=fy(t) = > My -1t > 7;), teTt (5)
iel
which is decoupled across time slots, because 72,(t) and the
indicator function in (5) remove the dependency of n;(t) on
ng (t — 1)

The interpretation of M;; - 1{(t > 7;) in (5) is as follows.
If station 4 is assigned to EV ¢ at time slot 1, then it will
arrive there at time slot 7y, thus removing one available
battery from station j for time slot 7;; and every time slot
afterwards. For each station § € J, define an arrival matrix
A e {0,151 guch that its (t,¢) entry is

At d) = 1t > 7y)

For example, if the i** column of 4, is [0 01 1], it means
EV ¢ will arrive at station ;7 at time slot 7; = 3, thus
removing an available battery for time slots ¢ = 3, 4. Finally,
let IT denote the set of M with M; = 0 if station j is outside
EV 4's driving range, i.e., ds; > rs;.

Putting the above together, (4) is then equivalent to the
following MILP:

BB, DD auMy+ ) D w() ©
o iel iel jel teT+
s.t. ZMij:la icl
jel
v(t) = =Ry (t)+ > Ay, )My, jelteTt
el

To gain some intuition, consider the case where every
station § faces heavy congestion, ie. 72;{¢) < 0. Then the
inequality in the MILP will be tight in optimality. An optimal
assignment is: for each i & T,

ag+ > At

teT+

1, §=4%:=arg min
* Fudi; <rs,
My, = 7
0, jel\{5*}
(7

Note that 7* may not be unique, and ties are broken
arbitrarily. Minimizing «;; favors a nearest station, while
minimizing »,.p+ A;(#,4) favors a station with the latest
time of arrival to avoid further congestion. Hence (7) strikes
a compromise.

=1

[d

Fig. 1. An example of a perfect bipartite matching between the set of EVs
and the set of batteries. The eventual assignment from the perfect bipartite
matching is based on the subset of matches between real EVs and certain
batteries. As the figure illustrates, dummy EVs can never have priority over
real EVs for matching real batteries.

B. Reducrion to Bipartite Matching

We now show that the MILP (6) can be further reduced
to the minimum weight perfect bipartite matching problem,
which is well known to be polynomial-time solvable. The
intuition is that we let the EVs and individual batteries (not
stations) be vertices on each bipartition, respectively, and
assign a weight to each pair based on the contribution of the

pair’s matching to the objective value of (6).

Define a bipartite graph & = (A UR,E), where & and B
are the bipartition of the vertex set and £ C A x [} is the set
of edges that are endowed with given weights w 1= (wgp,a €
Ak e B,(a,b) € E), as shown in Fig. 1. Without loss of
generality, we assume (& is complete and balanced as we can
add infinite-weight edges and dummy vertices as necessary.
Let N := |A| = |B|. The standard minimum weight perfect
matching problem defined on & is

min Z Wab Lab (8)
’ (e el
s.t. Zzab =1, ach
b
Zxab =1, belh
zap € 10,1}, acAbeR
where z 1= (zs,a € A, b € B). Hence an instance of the

bipartite matching problem (8) is specified by nodes &, B
and the weights w.

Given an instance of the MILP (6), we now construct an
instance of the bipartite matching problem (8) such that an
optimal solution to (8) vields an optimal solution to (6).

o A:=TUTUT? Tis the set of EVs that were previously
assigned stations, but have yet to have their batteries
swapped (either on the way or waiting at stations), I¢
is the set of dummy EVs if necessary to make A and
B balanced.

o Bi=1J;yB; UB® B; is the set of available batteries
at station 4, including not only the currently available
batteries, but also those that will become available in
T*. The time slot when battery & € B; becomes
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available is denoted as gy, and pp = 0 for the currently
available batteries. B® is the set of dummy batteries if
necessary to make A and B balanced.

Remark 1: It is necessary to include T, which comes from
past assignments. Each EV a T, while previously matched
with a battery, currently only has a target station but no target
battery. This is because battery matching is artificial for the
purpose of an efficient solution to (6), and our original model
still implies first-come, first-served. Consequently, EVs in T
that arrive earlier will snatch batteries and may cause EVs
in I to wait. This is captured in (6). To maintain consistency,
we include T in A, but restrict these EVs’ matchings only
with batteries at their originally assigned stations.

Remark 2: 1% and B¢ are introduced to balance the bipar-
tite graph. Note that n;(¢) can be negative in (6). We have
to make up the shortfall when [T > |B;| for station j
by adding dummy batteries. More precisely, B := | ;. BS,
where [BY| = max{|TUT| — [B;|,0}. Then T¢ with [T¢| =
| Usep(B; UB?) |—|TUT] is added to maintain balance between
A and B.

The nonnegative weight w,, of the match (e, b) corre-
sponds to the incremental cost added to the objective of (6)
if station j§ which battery b belongs to is assigned to EV a.
To determine w3, the main idea is to translate the congestion
of stations to the waiting time each EV suffers.

1) a e Lb e By Set wap 1= @gp + max{py — 7ab, 0}
Here, e is the cost of EV o and max{p — 74,0} is
the time length for which it has to wait until battery &
becomes available, If d.p > 784, then wep i= co.

aclbce B?. Dummy batteries exist when there is
a deficit in batteries to match all real EVs perfectly at
station 7. EVs matched with dummy batteries will wait
until the end of T+ after their arrivals. Hence w,, 1=
agh + (L + 1 — 70p). If diop > rs,, then wyp 1= co.

Haeclbe B;. We require that EVs a I stick to their
original stations. To this end, if station j is originally
assigned to BV a, wgp := maxd py — 7o, 0}; otherwise,
Weap = 0. The EV cost is excluded since it does not
contribute to the objective of (6).

$Haeclbe B?. Likewise, EVs o & I are required to
match dummy batteries at their original stations. Hence
if station § is originally assigned to EV a, wgp := T +
1 — 7,1; otherwise, w,) 1= co.

5) a € I%,b € B;. Dummy EVs do not really exist, and
should have no impact on the match result. Thus we
have wgp 1= 0.

6) a €T, b € BY. Likewise, wap 1= 0.

From above, the parameters of (8) including N and

(Wap,a € A,b € B) can be computed in time of O(N?)
given an instance of (6). On the other hand, if we have

an optimal matching =* for (8), an optimal assignment is
straightforward:

Mj= % b, ieljel )

d
beB,; UB?

4gab;dab;’rab and ogq,dag, Tas ate used interchangeably when a €
TULbeB; UBL

which is obtainable in time of G(N).

Hence the optimal station assignment problem (4) is
reduced to the minimum weight perfect bipartite matching
problem (8). This proves Theorem 1.

C. Hungarian algorithm

The minimum weight bipartite matching problem (8) can
be solved efficiently. For completeness, we sketch one ver-
sion of the Hungarian algorithm as its solution [17].

For each edge (a,b) € E, define the reduced weight by
why = wWap — Pg — Py, Where pi= (py,v € AUR) is called
a price vector indexed by vertices.

Sufficient condition of optimality: If = is a perfect
matching in G, and both the following hold:

why =0, ¥(a,b) e G
wh, =10, Ya,byex

(10a)
(10b)

then z is a minimum weight perfect matching.’

See [18] for its proof. The condition suggests two invari-
ants that we will maintain to compute an optimal solution.
We initialize a matching x = @ and a price vector p with
py =0, v € AUR, which satisfy (10).

Definition 1: Given a matching x and a price vector p,
define a path P from o € A to b € B as a goed path if

1) both endpoints a and b have not been matched in z;
2) P alternates edges out of z with those in z;
3) every edge in P is tight, i.e., has zero reduced weight.

According to the definition of a good path, it must include
an odd number of edges with the first and last ones out of
xz. The significance of good paths lies in that they enable
us to increase the cardinality of = while maintaining both
invariants.

Step 1: Matching augmentation:

Given a good path P, x =x & P.

Here ¢ denotes the symmetric difference, ie., z @ P =
(z\P) U (P\z). To see how the matching augmentation
works, we can consider it as removing from x the edges that
also belong to P and adding in the ones from P that are not
in z. Recall that a good path is z-alternating with the first and
last edges out of z by definition, thus |P\z| = |P nz| + 1,
i.e., the path augmentation increases the cardinality of x by
1. The two invariants still hold since no reduced weight has
changed and all edges in F are tight. After at most NV such
augmentations, a perfect matching can be attained.

In order to search for a good path efficiently, breadth-
first search (BES) with the enforcement of z-alternation is
applied. Given the current matching x, we start a graph
search from the first unmatched vertex of A, which is defined
as layer 0 of the search tree. Recall the definition of a good
path, only tight edges are considered to compose P. Hence
we obtain layer 1 of vertices in B from layer O by BFS.
Note that if any vertex in layer 1 is unmatched in z, we are
done and have an one-edge good path. Otherwise, instead
of BFS, in layer 2 we include only vertices matched with
those in layer 1 since P has to be z-alternating. Then in any

SWe abuse z to denote the set of edges that link the matches in z.
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Fig. 2. An illustrative example of searching for a good path.

odd layer we switch back to BFS, and in any even layer we
enforce z-alternation, until either we attain a good path in
an odd layer or we are stuck in an even layer. See Fig. 2 for
an illustrative example.

There is a possibility that the search fails to return a good
path of odd length that links two unmatched vertices and
gets stuck in an even layer. Under this circumstance, we
will maintain the current matching = and update the price
vector p in a way that gives rise to a good path. First define
S C A as the set of vertices that appear in the even layers
of the search tree and N({S) C B as the set of neighbors of
vertices in S only via tight edges. N(S) also means the set
of vertices that appear in the odd layers of the search tree,
since every verlex in an odd layer found by BES belongs to
B(S) by definition and every vertex in N(S) is bound to be
reached in the search tree, which is only stuck in an even
layer when BFS has no tight edge to explore.

Definition 2: S is defined as a good set for two features:

1) S has an unmatched vertex, i.e. the vertex in layer 0;
2) Each vertex in N(S) is matched with one in S by z.

Step 2: Price update:
Given a good set 5, as well as N(S),

_ p”U+Aa
o= p”U_Aa

vES
v e N(S)

where A is the largest possible value subject to invariants,
as explained later.
It can be verified that

1) wl, remains constant for edge {o,b) with @ ¢ S and
h & M(S);

2) w), remains constant for edge (a,b) with a € S and
h e MN(S);

3) w}, increases by A for edge (a,b) with o ¢ S and
h e N(S);

4) w?, decreases by A for edge (a,b) with ¢ € S and
b & N(S).

Recall that if either endpoint of an edge in x is reached in

the search tree, both endpoeints are reached. Thus each edge

in z can only be categorized to either the first or second

case, and its reduced weight sticks to 0, which guarantees

(10a). In terms of (10b), the third case has no effect, but
the fourth one is potentially hazardous in that the reduced
weights of some edges may be negative after going down
by A. To maintain (10b), A is therefore set to the largest
possible value that zeros out the reduced weight of an edge
belonging to the fourth case while keeping those of others
nonnegative. Note that A > 0 since in this case none of the
edges is tight.

The search tree regrows as a newly tight edge from the
price update is added. Suppose edge (a,b) is the newly tight
edge, when we search again from the same unmatched ver-
tex, same branches are still explored since edges along them
are still tight. Thus the search tree will remain unchanged
until vertex a is reached. Then the originally stuck path that
ended at vertex a can be now extended, since a new branch
linked by edge (a,bd) is additionally found by BES. In this
sense, each price update makes progress towards a good path,
and such progress required is finite, i.e., at most N price
updates for the N vertices in B.

The Hungarian algorithm is summarized in Algorithm 1.
We just need to augment x N times from @ to a perfect
matching, and in each augmentation there are at most N
price updates to include all vertices of B in the search tree.
Since each iteration mainly consists of BFS and computing
A, both of which can be implemented within time of O(N?),
the Hungarian algorithm has a time complexity of O(N%).

Algorithm 1: Hungarian algorithm

1 Input: G = (AUE,E), and w;

2 Output: z;

3 Initialization: © «+ @, and p,, + O, v € AU B;
4 while = is not perfect do

H start a search tree with the first unmatched vertex ¢ € A, and mark layer
k+ 0O

6 while the tree is not stuck and no other unmatched vertex is found do

7 if & is even then

8 attain layer & 4+ 1 via tight edges by BFS;

[ E+—k+1;

10 else

1 attain layer & 4+ 1 via matches i #;

12 ‘ ke k+1;

13 end if

14 end while

15 if an unmatched vertex b € B is found then

16 the path P from a to b is good;

17 z+zdP;

18 else

19 Dy 4— Do + A for vertices © in the even layers;

20 Py 4 Py — A for vertices v n the odd layers;

21 (the largest possible A subject to nvariants)

22 end if

23 end while

24 return z,

IV. NUMERICAL RESULTS

We illustrate with a case study. Suppose currently there
are I = 25 EVs that require battery swapping and J = 3
stations as assignment candidates. Fix T,, = 6, i.e., we
only look at 6 time slots ahead. Other parameters are ran-
domly generated. For instance, 7;;s arbitrarily take discrete
values between 1 and T, then d;;’s are random with an
average 5 times the corresponding 7;,;. We then let oy =
0.02ds; + 0.17y. For simplicity, set all EVs’ driving ranges
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Fig. 3. Optimal assignment of our test case.

sufficiently large to reach each station. The parameters of
stations, including n’s, ¢;(¢)’s and >, er, My (Tigl(t))’s,
are all randomly picked within certain ranges. Given that,
(7 (t),t = 1,2,...,6,7 = 1,2,3) is attainable, as the red
dash lines show in Fig. 3.

The proposed approach efficiently computes an optimal
assignment; see Fig. 3 for how the number of available
batteries at each station evolves after the assignment. Bat-
teries at station 1 in the first half of the time horizon are
almost fully utilized to avoid unduly congesting stations 2
and 3. In the second half all stations run out of batteries.
Then (7) provides the optimal assignment. For this test case,
the proposed approach achieves a minimal cost of 49.00
with 22.00 total EV cost and 27 total station congestion.
In contrast, a heuristic that assigns to each EV its nearest
station incurs a cost of 96.46, including 9.46 total EV cost
and 87 total station congestion. Hence an optimal assignment
achieves a 49.20% improvement for this case.

We check the computational efficiency of the proposed
approach by scaling up the number of EVs that require
battery swapping while fixing other parameters with the
number of stations .J = 10. The computation time required
to run our algorithm on a normal laptop PC (Intel Core i7-
36320M CPU@2.20GHz, 8GB RAM, and 64-bit Windows
10 OS) is shown in Fig. 4.

V. CONCLUSION

We formulate the problem of optimal station assignment
for EV battery swapping that takes into account both tem-
poral and spatial couplings. We show that the problem can
be reduced to the minimal weight perfect bipartite matching
problem. This leads to an efficient polynomial-time solution.
Numerical examples suggest that the proposed approach
performs much better than greedy heuristics.

REFERENCES

[1] C2ES, “Climate TechBook,” Center for Climate and Energy Solutions,
US: www.c2es.org/energy/use/fransp ortation, 2016.

[2]

[3]

[#]

[5]

[6]

[71

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

1426

100

801

60

401

computation time (s)

201

0 20 40 80 80
#EVs

100

Fig. 4. Scalability (#stations=10).

EIA, “Monthly energy review,” Energy Information Administration,
US Department of Energy. www.eia.gov/fotalenergy/data/monthly/,
2015.

R. Li, Q. Wu, and S. S. Oren, “Distribution locational marginal pricing
for optimal electric vehicle charging management,” IEEE Transactions
on Power Systems, vol, 29, no. 1, pp. 203-211, 2014.

P. You, Z. Yang, M.-Y. Chow, and Y. Sun, “Optimal cooperative
charging strategy for a smart charging station of electric vehicles,”
IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 2946-2936,
2016.

L. Gan, U. Topecu, and S. H. Low, “Optimal decentralized protocel
for electric vehicle charging,” JEEE Transactions on Power Systems,
vol. 28, no. 2, pp. 940-951, 2013,

Z. Yang, L. Sun, J. Chen, Q. Yang, X. Chen, and K. Xing, “Profit
maximization for plug-in electric taxi with uncertain future electricity
prices,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 3058—
3068, 2014,

N. Chen, C. W. Tan, and T. Q. Quek, “Electric vehicle charging in
smart grid: Optimality and valley-filling algorithms.” IEEE Journal of
Selected Topics in Signal Processing, vol. 8, no. 6, pp. 1073-1083,
2014,

L. Zhang, V. Kekatos, and G. B. Giannakis, “Scalable electric vehicle
charging protocols,” IEEE Transactions on Power Systems, vol. 32,
no. 2, pp. 1451-1462, 2017,

R. Deng and H. Liang, “Whether to charge an electric vehicle or not?
A near-optimal online approach,” in Proc. of IEEE Power and Energy
Society General Meeting (PESGM), pp. 1-5, 2016.

P. You, Z. Yang, Y. Zhang, S. H. Low, and Y. Sun, “Optimal charging
schedule for a battery switching station serving electric buses,” IEEE
Transactions on Power Systems, vol. 31, no. 5, pp. 3473-3483, 2016.
Y. Li, C. Zhan, M. de Jong, and Z. Lukszo, “Business innovation
and government regulation for the promotion of electric vehicle use:
lessons from Shenzhen, China,” Journal of Cleaner Production, 2015.
X. Tan, B. Sun, and D. H. Tsang, “Queueing network models for
electric vehicle charging station with battery swapping,” in Proc
of IEEE Infernational Conference on Smarf Grid Commaunicafions
(SmartGridComm), pp. 1-6, 2014,

B. Sun, X. Tan, and D. H. Tsang, “Optimal charging operation of
battery swapping stations with QoS guarantee” in Prec. of IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), pp. 13-18, 2014,

P. You, 8. H. Low, W. Tushar, G. Geng, C. Yuen, Z. Yang, and Y. Sun,
“Scheduling of EV battery swapping, I: centralized solution,” arXiv
preprint arXiv:1611.07943, 2016.

P. You, S. H. Low, L. Zhang, R. Deng, G. B. Giannakis, Y. Sun,
and Z. Yang, “Scheduling of EV battery swapping, II: distributed
solutions,” arXiv preprint arXiv:-1611.10296, 2016.

P. You, 8. H. Low, Z. Yang, Y. Zhang, and L. Fu, “Realtime
recommendation algorithm of battery swapping stations for electric
taxis,” in Proc. of IEEE Power and Energy Society General Meeting
(PESGM), pp. 1-5, 2016,

H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.
T. Roughgarden, “Minimum-cost bipartite matching,” A second course
in algorithms-Lecture 5. hifp:/ftheory.stanford.edu/ tim/wl6/A/I5.pdf.



	103 - 08263853_Page_1
	103 - 08263853_Page_2
	103 - 08263853_Page_3
	103 - 08263853_Page_4
	103 - 08263853_Page_5
	103 - 08263853_Page_6

