
Gremlin: Scheduling Interactions in Vehicular Computing
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

ABSTRACT
Vehicular applications must not demand too much of a driver’s

attention. They often run in the background and initiate interactions

with the driver to deliver important information. We argue that

the vehicular computing system must schedule interactions by

considering their priority, the attention they will demand, and how

much attention the driver currently has to spare. Based on these

considerations, it should either allow a given interaction or defer it.

We describe a prototype called Gremlin that leverages edge com-

puting infrastructure to help schedule interactions initiated by

vehicular applications. It continuously performs four tasks: (1)

monitoring driving conditions to estimate the driver’s available

attention, (2) recording interactions for analysis, (3) generating a

user-specific quantitative model of the attention required for each

distinct interaction, and (4) scheduling new interactions based on

the above data.

Gremlin performs the third task on edge computing infrastruc-

ture. Offload is attractive because the analysis is too computation-

ally demanding to run on vehicular platforms. Since recording size

for each interaction can be large, it is preferable to perform the

offloaded computation at the edge of the network rather than in

the cloud, and thereby conserve wide-area network bandwidth.

We evaluate Gremlin by comparing its decisions to those rec-

ommended by a vehicular UI expert. Gremlin’s decisions agree

with the expert’s over 90% of the time, much more frequently than

the coarse-grained scheduling policies used by current vehicle sys-

tems. Further, we find that offloading of analysis to edge platforms

reduces use of wide-area networks by an average of 15MB per

analyzed interaction.

CCS CONCEPTS
• Human-centered computing → Mobile computing; • General
and reference → Design; • Software and its engineering →

Software system structures;

KEYWORDS
Vehicular applications; Driver distraction; Edge offload

ACM Reference Format:
Kyungmin Lee, Jason Flinn, and Brian D. Noble Univeristy of Michigan. 2017.

Gremlin: Scheduling Interactions in Vehicular Computing. In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5087-7/17/10. . . $15.00

https://doi.org/10.1145/3132211.3134450

of SEC ’17. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3132211.3134450

1 INTRODUCTION
Vehicular computing applications execute in an attention-limited

environment. Unlike desktop applications that typically demand

most of a user’s attention, vehicular applications must require much

less attention so as to avoid distracting their users from the primary

task of driving the vehicle. Consequently, many vehicular applica-

tions such as turn-by-turn directions, location-based reminders, and

messaging middleware run in the background and try to interact

with a driver only when the interaction will be meaningful. Instead

of the user initiating the interaction at a convenient moment, e.g.,

by opening a desktop application, the vehicular application initi-

ates the interaction, e.g., via an audio tone from an in-vehicle HMI

(human-machine interface).

Thus, vehicular computing systems must schedule interactions,
which we define to be a related sequence of user inputs and outputs

that corresponds to performing a single logical task. When an

application wishes to interact with the driver, the system should

consider the priority of the interaction (e.g., is this a critical alert

about an upcoming road hazard?), the complexity of the interaction

(e.g., is this a short audio message or will the interaction involve

navigating several screens on the vehicle touchscreen?), and the

difficulty of driving conditions (e.g., is the user driving in heavy

traffic in icy conditions or in light traffic on a pleasant day?). Based

on such assessments, it should either initiate the interaction with

the driver or defer it until a more appropriate time.

Current vehicular infotainment systems employ simple sched-

uling policies that consider only the high-level interaction type

(e.g., voice-based vs. text-based) and whether or not the vehicle is

moving. For instance, Chevrolet MYLINK [16], Toyota Entune [57],

and Mazda Connect [38] allow voice-based interactions for new

text messages but disallow interactions that require reading from

the touchscreen unless the vehicle is stopped. These coarse-grained

scheduling policies ignore two critical factors: (1) a driver’s avail-

able attention changes significantly as driving conditions vary, and

(2) interactions of the same type can demand different amounts of

attention.

Although these existing scheduling policies assume the driver’s

available attention is unchanging, numerous studies [37, 47, 50, 58]

show wide variability due to speed, traffic volume, and driver ex-

perience. For instance, Senders et al. [50] report a 38% decrease

in available visual attention as speed increases from 30 MPH to

60 MPH, and Patten et al. [47] show a 30% difference in available

cognitive attention due to varying driver experience. This large

variation means that the voice-based interactions allowed in “nor-

mal” driving conditions by current systems are inappropriate for

complex driving situations.

Conservatively disallowing all interactions is not good policy

either. Research has shown that when interactions are disallowed,

https://doi.org/10.1145/3132211.3134450
https://doi.org/10.1145/3132211.3134450
https://doi.org/10.1145/3132211.3134450

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

divers seek alternative, riskier approaches to obtain information.

AT&T [3] reported that 62% of drivers keep their smartphones in

easy reach and 70% engage in smartphone activities (e.g., checking

new text messages) at least some of the time while driving. Survey

participants cited habit, the fear of missing something important,

and the belief that both driving and smartphone interaction can be

done safely as the three main reasons for this behavior. Comments

in a National Highway Traffic Safety Administration report state

that “Consumers have numerous connectivity options, particularly

via portable electronic devices. They will quickly migrate to al-

ternate, and potentially more distracting and less safe, means of

staying connected if the use of in-vehicle or integrated options is

overly curtailed.” [41]. In other words, overly conservative schedul-

ing policies may actually have a negative effect by causing drivers

to bypass safer in-vehicle HMIs and use smartphone UIs.

A second issue with current scheduling policies is that not all

interactions of the same type demand the same amount of atten-

tion. For instance, an audio tone demands less attention than a

complex spoken sentence, and a pop-up requires less attention than

a multi-screen interface with text and graphical elements. Current

guidelines and standards for assessing interaction content and min-

imizing attention demand in a vehicular setting [11, 19, 39, 51, 55]

recognize that such distinctions must be made. Simply ignoring

them can overload the driver or fail to initiate useful interactions.

Based on these observations, we have built Gremlin, system sup-

port for scheduling application-initiated interactions in vehicular

settings. Gremlin continuously performs four tasks: (1) it monitors

driving conditions to estimate the driver’s available attention, (2) it

records interactions for analysis, (3) it uses edge computing infras-

tructure to analyze each interaction’s attention demand and build

a model that predicts attention demand of future interactions, and

(4) it uses interaction priority, its estimate of attention supply, and

its model of attention demand to schedule each new interaction by

either allowing it to proceed or deferring it.

Gremlin quantifies attention demand by breaking each interac-

tion into low-level I/O components such as pressing a button, read-

ing text, and listening to audio. It uses past studies [46, 52–54, 59, 62]

that quantify attention demand for these individual activities to

understand the attention demand of the whole interaction and build

its model. This analysis can be computationally demanding, as it

involves, e.g., using speech recognition to translate audio to text

and processing the text to determine the level of complexity, as

well as identifying individual UI elements from a stream of GUI

dumps and matching these with a video record of the display during

the interaction. As these computational demands are too much for

cellphones and similar mobile devices, Gremlin offloads the anal-

ysis and performs it on a server. However, offloading analysis to

the cloud would consume too much wide-area network bandwidth.

The average recording size for an interaction is 15MB even after

compression, so analyzing only a few interactions a day would be

a drain on cellular data plans. Therefore, Gremlin is designed to

offload analysis to edge computing infrastructure co-located with

network access points.

Gremlin quantifies available attention as the time the driver

can safely spend on a secondary task. It estimates how driving

conditions affect the two dimensions of attention most critical

in driving: visual and cognitive attention. For each dimension, it

computes a separate deadline that represents how long the driver

can safely look away from the road or spend on a non-driving

cognitive task such as listening to a voice message. These values

are derived from both laboratory studies [9, 47, 52, 58] and real-life

crash data [61].

Given these deadlines, Gremlin determines if a proposed interac-

tion can be scheduled based on its priority and predicted completion

time. Most application-initiated interactions have lower priority

than driving and should only be scheduled if they can be serviced

within the deadline. However, some interactions are very high

priority (e.g., road hazard alerts) and should always be delivered.

Thus, this paper makes the following contributions:

• It introduces a method for quantifying a driver’s available

attention based on data from laboratory studies and real-

world crash data.

• It introduces a method for quantifying the attention demand

of interactions based on fine-grained analysis of the I/O

components comprising each interaction.

• It proposes an architecture in which mobile platforms bal-

ance computational and bandwidth concerns by recording

interactions and offloading the analysis of the recording to

nearby edge computing infrastructure.

• It develops a quantitative algorithm for scheduling interac-

tions in vehicular computing that makes better decisions

than current qualitative algorithms.

Gremlin is a research prototype that demonstrates the feasibility

of these ideas. Our evaluation shows that Gremlin makes reasonable

decisions, but a comprehensive evaluation with many hours of

simulator and road testing would be required before deployment.

Section 5 discuss these and other current limitations of Gremlin.

We evaluate Gremlin by comparing its decisions to those recom-

mended by a vehicular UI expert for seven interactions in three dif-

ferent driving scenarios. Gremlin’s decisions agree with the expert

over 90% of the time, and they match the expert recommendations

significantly more often than any coarse-grained scheduling pol-

icy. We further show that offloading of analysis to edge platforms

reduces use of wide-area networks by an average of 15MB per

analyzed interaction compared to cloud offload.

2 DESIGN CONSIDERATIONS
We begin by discussing three important issues we considered while

designing Gremlin.

2.1 What to schedule
Gremlin defines an interaction to be a related sequence of user

inputs and outputs that corresponds to performing a single log-

ical task. Typically, the interaction will start with a notification;
this often will be an audio tone, e.g., the one used by Android’s

default NotificationManager. Some applications use custom noti-

fications, such as a spoken sentence, a visual pop-up, or some com-

bination of the above. The driver might respond to the notification

and interact with the application via audio and voice commands, or

the interaction may take the form of reading information from the

vehicle touchscreen and responding with button presses or steering

wheel controls. Interactions may be as simple as hearing an audio

tone, reading text on a pop-up, and dismissing the screen, or as

Gremlin: Scheduling Interactions in Vehicular Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

Figure 1: Overview of Gremlin’s compute environment

complex as a conversation with a digital assistant to find a nearby

restaurant with available seating. For interactions with multiple

steps, the driver may pause between steps to look at the road. The

interaction ends when the logical task is complete, typically when

the notification is dismissed or the application returns to a home

screen.

Some prior systems have scheduled mobile notifications. In con-

trast, Gremlin is designed to schedule the entire interactions that

those notifications initiate. In a complex driving situation, a user

may have sufficient attention available to respond to an audio tone

(the notification). However, that response may initiate a more com-

plex interaction (listening and responding to a text message), for

which the driver cannot spare attention at the moment. This situa-

tion is undesirable. The driver may be implicitly led to perform an

activity for which attention cannot be spared, causing distracted

driving. Alternatively, the driver must decide to abort or pause the

interaction upon realizing that it will be inappropriate; unfortu-

nately, simply remembering that a task is pending places a cognitive

burden on the user. We believe it is far better to only deliver a noti-

fication when the driver is able to perform the interaction that the

notification initiates.

2.2 Where to schedule interactions
Gremlin could be implemented as a library that provides support

for each application to schedule its own interactions. Alternatively,

Gremlin could be implemented as a single system component, either

in the OS or system middleware, that schedules interactions for all

applications. Each design has advantages and disadvantages.

Applications have the most knowledge about the expected con-

tents of the interactions they initiate (e.g., audio that will be output

and screens that will be displayed). This knowledge allows for more

accurate prediction of the attention demand of upcoming interac-

tions. Implementing scheduling at the application layer also makes

deployment easier, since few modifications would be required to

system software.

However, scheduling interactions at the application level jeop-

ardizes driver privacy. Determining available attention requires

understanding current driving conditions, which in turn requires

access to raw vehicle sensor data such as the current location, the

vehicle speed, etc. The driver must trust that each application does

not leak such data, even though studies have shown many current

mobile applications sending similar data to the cloud [12]. In con-

trast, system software is already trusted with the privacy of sensor

data, so scheduling at the system layer reduces the risk of leaks.

A second disadvantage of application-level scheduling is that

coordination among independently-developed applications is diffi-

cult [40]. If applications are unaware of each other, one application

may initiate a new interaction while a driver is currently handling

an interaction from another. For instance, exiting a highway may

cause a restaurant application to recommend nearby eating options,

a gas station application to show the lowest-cost fueling option, and

turn-by-turn route directions to inquire whether the route should

be recalculated. Coordinated scheduling by a single entity could

prevent these interactions occurring at the same time.

Based on these considerations, Gremlin schedules interactions at

the system layer. Specifically, we implement Gremlin as an Android

service. Gremlin works for unmodified applications by interposing

on standard Android services such as the NotificationManager
to know when interactions start and end, observe each interaction,

and learn models of attention demand for each type of interaction.

Gremlin further mitigates the lack of application-specific knowl-

edge by providing interfaces that allow applications to optionally

specify which actions comprise an interaction.

2.3 How to quantify attention
Gremlin’s goal is to move from the current qualitative scheduling

approach based on broad application categories (audio vs. visual)

and coarse characterizations of driving conditions (moving vs. not

moving) to a more nuanced, quantitative scheduling algorithm.

This required us to develop a way to express attention supply and

demand with a common numerical value.

Prior studies in the psychology literature [2, 60] find that atten-

tion is best represented with a multi-channel model. These studies

argue that attention should be viewed as a composition of multiple

independent dimensions such as visual, audio, and cognitive atten-

tion rather than as a single value. Furthermore, they find that a per-

son can perform two tasks simultaneously as long as those tasks do

not overload any single dimension of attention (e.g., one can simulta-

neously walk and listen to music). During conversations with vehic-

ular industry usability experts, we learned that visual and cognitive

are the two most important dimensions of attention for driving

because the driver needs to monitor the road carefully (visual atten-

tion) and respond quickly to new events (cognitive attention). Nu-

merous studies of driver distraction [9, 13, 29, 35, 47, 52, 58, 59, 63]

employ the multi-channel model and focus solely on visual or cogni-

tive attention. Therefore, Gremlin adopts the multi-channel model.

Next, we realized that each attention dimension is best quantified

as the time that can be safely spent on a visual or cognitive task

before returning attention to the primary task of driving. Visual

attention supply is the time that the driver can safely look away

from the road, and cognitive attention is the time that the driver

can spend on a discrete cognitive task. Gremlin views these values

as real-time deadline constraints, Vdeadline and Cdeadline .
Gremlin quantifies the visual attention demand of an interaction

as Vcompletion_t ime by summing the time needed by a driver to

perform low level I/O tasks that comprise the interaction such

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

Figure 2: Gremlin performs three tasks continuously to schedule interactions

as reading text from the screen and pushing a response button.

Similarly, the cognitive attention demand, Ccompletion_t ime , is

quantified by measuring the additional delay in driver response

time as a result of performing secondary tasks [43, 52, 53, 56]. For

example,Ccompletion_t ime captures the cognitive demand imposed

by audio-based interactions based on type (sound or speech) and

complexity.

Quantification of attention enables the use of simple real-time

scheduling algorithms. If the initiated interaction has lower pri-

ority than driving (as is commonly the case), then the interac-

tion should be allowed if Vcompletion_t ime < Vdeadline and

Ccompletion_t ime < Cdeadline ; otherwise it should be deferred

until the condition is satisfied.

3 IMPLEMENTATION
We first present an overview of Gremlin, and then we describe each

of its main components in detail.

3.1 Overview
Figure 1 shows the computational environment Gremlin targets. Ve-

hicular applications execute on a mobile device such as a cellphone.

The mobile computer is linked via Bluetooth to the vehicular HMI

which provides I/O capabilities. Current vehicular platforms such

as Ford’s AppLink and the MirrorLink standard allow applications

on a cellphone to display on a dashboard touchscreen, receive UI

events from the touchscreen and steering wheel controls, and per-

form audio I/O through the vehicular HMI. The cellphone links to

nearby edge computing infrastructure through one-hop or local-

area wireless connections. The infrastructure supports offloading of

stateless computation from the mobile phone to the edge platform.

Edge offloading enables the execution of computation too demand-

ing for the cellphone without incurring the cost of sending large

amounts of data to the cloud over expensive wide-area networks.

The analysis required by Gremlin has high computational de-

mand; our evaluation shows that it requires an average of 12.7

seconds per interaction on a well-provisioned server. Currently,

both in-vehicle compute platforms and modern smartphones lack

sufficient resources to run Gremlin’s analysis. Offload of analysis is

thus the only workable option.

We also note that sufficiently powerful compute resources are

unlikely to be included in future vehicles for several reasons. First,

most vehicles are commodity products, and manufacturers opti-

mize designs to save pennies; adding substantial general-purpose

compute power is too expensive. Second, it takes several years to

bring a vehicle from concept to market; once manufactured, vehi-

cle components are designed to last for at least ten years. Even a

leading-edge processor installed in a new vehicle will be woefully

inadequate a decade layer. Finally, reliability is very important in

consumer rankings of vehicles, and the challenge of debugging

and patching software in general-purpose vehicular computers is

daunting. For these reasons, the industry trend is for the vehicle

to provide input/output capability and sensors, while smartphones

brought into the vehicle execute applications.

As shown in Figure 2, Gremlin continuously performs four tasks:

(1) it monitors driving conditions to estimate the driver’s available

attention, (2) it records interactions with the user initiated by appli-

cations, (3) it analyzes the recorded interactions to generate a model

of attention demand for each interaction type, and (4) it combines

those models with estimates of the driver’s available attention to

schedule new interactions. Tasks 1, 2, and 4 execute on the mobile

computer in the vehicle, while task 3 is offloaded to edge servers.

When the driver interacts with an application for the first time,

Gremlin can immediately estimate the driver’s available visual and

cognitive attention (Vdeadline and Cdeadline) based on vehicle

speed, road curvature, driver experience, etc. However, it cannot

estimate visual and cognitive attention demand (Vcompletion_t ime
andCcompletion_t ime), since it has not yet seen any interactions to

generate an attention model. Thus, for previously unseen interac-

tions, Gremlin uses the default, conservative scheduling approach

of current vehicle HMIs: it allow unknown interactions if the vehi-

cle is stopped or if such interactions are solely audio-based. Once

Gremlin has generated a model of demand for an interaction type,

it uses that model to decide whether to allow or defer interactions

of that type as described below.

Gremlin: Scheduling Interactions in Vehicular Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

Function Arguments and return values

gremlin_begin_notify (IN application, IN id, IN priority) -> OUT success

gremlin_finish_notify (IN application, IN id) -> OUT success

gremlin_cancel_notify (IN application, IN id) -> OUT success

Table 1: API for applications with custom interactions

During the second task, which begins whenever Gremlin allows

an interaction, Gremlin captures audio and video of the input and

output for that interaction. This includes commands spoken by the

driver, audio output to the driver, information displayed on the

touchscreen, etc. This data is encoded and offloaded to a nearby

edge computer for analysis. Most Android applications use the

NotificationManager to initiate interactions; Gremlin modifies

this service to schedule interactions, as well as to learn when inter-

actions start and end. Some applications use custom methods for

interactions; Gremlin provides an API so that these applications

can provide similar information and receive scheduling decisions.

Gremlin infers that an application ends when the user dismisses

the notification or leaves the application screen (i.e., returns to a

home screen). Section 3.2 details how Gremlin records interactions.

In the third task, Gremlin analyzes recorded interactions to gen-

erate attention demand models for each interaction type. Grem-

lin determines Vcompletion_t ime by analyzing each screen’s word

count, text contrast ratio, and button sizes. Gremlin computes

Ccompletion_t ime by analyzing the content and complexity of each

audio input and output. These computed values are then returned

back to the mobile computer to be incorporated into the attention

model. An attention model is a distribution of Vcompletion_t ime
andCcompletion_t ime for interactions of the same type. Section 3.3

describes in more detail how Gremlin analyzes interactions.

The final task, scheduling, occurs when an application wishes to

initiate a new interaction. Scheduling is done entirely on the phone

based on a local model generated from offline analysis; it is done

immediately when an application tries to initiate an interaction, and

the scheduling decision does not wait for any offloaded operation

to complete. Thus, if recently recorded interactions have yet to be

analyzed when an application initiates a new interaction, Gremlin

will make a decision based on a slightly stale model. This preserves

good response time and still improves over current practice, which

uses no model at all.

If Gremlin entirely lacks a model of attention for a given interac-

tion type, it uses the default coarse-grained HMI scheduling policy.

If the interaction type has higher priority than driving, it is allowed

immediately. High-priority interactions are rare (e.g., a road haz-

ard warning). Designating an interaction type as high-priority is

a privileged operation; we envision that this will be done by the

vehicle manufacturer.

Most interactions have lower priority than driving. For these,

Gremlin continuously updates its estimates of the driver’s avail-

able attention, Cdeadline and Vdeadline . It allows an interac-

tion if Vcompletion_t ime < Vdeadline and Ccompletion_t ime <

Cdeadline . Otherwise, it defers the interaction. Section 3.4 describes
how Gremlin estimates available attention and schedules interac-

tions.

3.2 Recording interactions
Gremlin records interactions in order to gather information suf-

ficient to determine attention demand (Vcompletion_t ime and

Ccompletion_t ime) at a later time. An interaction starts with a noti-

fication or other application-initiated output and continues until

the logical task associated with that output is done. For instance,

an interaction can be as simple as a single audio message or a more

complex sequence of audio outputs and spoken responses. A visual

interaction may be a single screen, in which case it ends when the

user dismisses that screen, or it may be a sequence of screens and

touchscreen events.

Gremlin determines the start of interactions that use Android’s

default NotificationManager by interposing on its notify()
method. It determines that the interaction has ended when either

the application calls the NotificationManager cancel()method,

dismissing the interaction, or when the display returns to a home

screen. A few applications bypass Android and use custom meth-

ods for initiating interactions; Gremlin provides the API in Table 1

for such applications. Applications call gremlin_begin_notify()
to start an interaction and gremlin_finish_notify() when the

interaction is done. Gremlin uses these cues to determine when to

start and stop its recording of the interaction.

Gremlin uniquely identifies each type of interaction by an

⟨application, id⟩ tuple, where application is the Android package

name and id specifies different interactions for the same application.

These values are provided directly as part of the API in Table 1 or

determined from the parameters passed into the notify() method.

Gremlin uses Android’s screenrecord binary to capture a video
of the screen content encoded inH.264 format. It also dumps the GUI

composition of the screen once per second to extract button size,

text, and other information. We modified Android’s ViewServer
and HierarchyViewer to write this data to a single file. Grem-

lin uses Android’s AudioFlinger to record all audio output, and

it records audio input via Android’s AudioRecord object. Audio

recordings use a WAV encoding.

Because edge computing resources may not always be nearby,

recorded interactions may be stored temporarily on the mobile

computer until they can be analyzed. Storing many recordings for

a long time is undesirable. First, mobile storage is limited and the

recordings are large. If storage space is exhausted, Gremlin must

delete older recording without analyzing them. Second, although

there are not strict deadlines for completing analysis, timeliness

does matter. If recordings are analyzed promptly, Gremlin reacts

faster when it observes new interactions or sees changes in user

or application behavior. Section 4.4 shows that recording imposes

little performance and storage overhead on the vehicular computing

system.

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

3.3 Analyzing interactions
We have developed a Java tool to analyze recorded interactions.

Gremlin offloads this compute-intensive analysis by running it on

an edge compute server. In this paper, we do not specifically address

the trust and management issues of hosting offloaded computation,

as the research community is exploring these issues in depth [5, 6,

24, 36].

Our design makes offload simpler by structuring the model gen-

eration as a series of stateless computations. Each interaction is

analyzed individually based solely on the audio, video, and GUI

recordings. The output of the computation, i.e., estimates of visual

and cognitive demand for that interaction, are shipped back to

the mobile computer, which incorporates those new values into

a model. If an analysis fails to complete, it is simply restarted on

another edge computer by shipping the recordings to that host.

We first show how Gremlin determines Vcompletion_t ime and

Ccompletion_t ime for each recorded interaction. Our general ap-

proach is to first break an interaction into discrete input and output

events, and then use studies of human performance with various

interface types to quantify the time it takes to interact with each

element. Summing the individual element times gives the total

interaction time.

There are many factors that influence visual and cognitive de-

mand. Our approach in Gremlin is twofold: we include the most

important factors in our current analysis, but we also develop a

framework and methodology which makes it easy to include addi-

tional factors in the future.

3.3.1 Computing visual attention demand. To compute

Vcompletion_t ime , Gremlin first determines the attention demanded

by each unique screen that comprises the interaction. It finds all

unique screens by scanning the GUI dump stream and matching

each screen with a corresponding video frame using timestamps in

the recorded data.

A screen’s visual demand is currently determined to be the sum

of the two components: text and buttons. To interact with a vehicle

touchscreen, the driver uses visual attention to both read the infor-

mation displayed on the screen and also to direct a finger to touch

the appropriate screen location.

Gremlin determines the time to read text from the word count

and text contrast ratio. The word count is determined from the

GUI dump, and the contrast ratio comes from the screen dump.

The average adult reads approximately 300 words per minute in

normal conditions [62]. However, several studies have highlighted

the importance of contrast ratio on visual performance [35, 59, 63].

For instance, Wang et al. [59] report up to a 38% difference in visual

performance depending on the contrast ratio. From linear inter-

polation of the results of that study, Gremlin defines a function,

Mcontrast , that specifies how much the contrast ratio affects read-

ing speed. Thus, for each screen the visual demand in seconds is:

(word_count/5) ∗Mcontrast (contrast_ratio).
For each button pressed during the interaction, Gremlin esti-

mates the visual demand required to locate and press the correct

region of the touchscreen. We use the results of a study by Sun

et al. that measures the reaction time of users touching one of a

set of buttons with different sizes, spacing, and contents [54]. The

dominant factor is button size; e.g., users require 1.7 seconds to

touch a 20x20 button but only 1.2 seconds to touch a 50x50 button.

Gremlin sums these elements to estimate the visual demand of a

screen. For instance, reading a screen with five words with contrast

ratio of 5:1 and touching a 40x40 button requires 1.9 seconds of

visual attention. Gremlin applies this analysis to each unique screen.

It sets Vcompletion_t ime to the maximum of the demand values of

all screens that comprise an interaction. The reason we calculate

each screen individually is that drivers can return their eyes to the

road between screens (as long as there are no timeouts or other time-

based elements forbidden by vehicle UI guidelines [33]). The reason

we use the maximum value is that Gremlin should not begin an

interaction if the driver does not have sufficient attention available

to finish it.

3.3.2 Computing cognitive attention demand. Cognitive
demand, represented as Ccompletion_t ime , is the time that the dri-

ver needs to understand and respond to an interaction. Unlike

visual attention, this value is difficult to quantify directly from

low-level elements. Instead, Gremlin uses studies that indirectly

assess cognitive load by measuring the peripheral detection task

(PDT) response time [20, 28, 47]. PDT response time is measured by

initiating a signal in the peripheral vision of the driver every 3–5

seconds. PDT studies measure how long it takes the driver to notice

the signal. Intuitively, this could correspond to the time needed

to apply the brakes in an emergency. Higher cognitive workload

results in higher PDT response times. For instance, one study [52]

measured average PDT response time to be 900ms when talking

to a passenger as compared to 700ms in a baseline case without

any secondary activities. Based on these results, Gremlin would

consider Ccompletion_t ime for talking to a passenger to be 200ms.

Gremlin uses the results of multiple studies [37, 46, 47, 52, 53]

that measure PDT response time while the driver performs sec-

ondary activities (e.g., giving a voice-based command, listening to

music, etc.). Each study reports a slightly different baseline PDT

response time for driving without any secondary activities. Thus,

Gremlin considers Ccompletion_t ime of the activity to be the delta

over baseline reported in each individual study. If multiple stud-

ies measure the same activity, Gremlin uses the average across all

such studies. Gremlin omits visual activities from its computation

of cognitive attention since their demand is already captured by

Vcompletion_t ime .

For audio-only interactions, Gremlin currently categorizes the

interaction as belonging to one of four categories: listening only

(no speech), listening only (with speech), verbal commands only,

and listening with verbal responses. It determines whether or not

the recording contains speech by performing speech recognition

on the captured audio using PocketSphinx [8]. If the recording is

found to contain speech, Gremlin determines the complexity of the

speech by computing the Flesch reading-ease score (FRES) [32] on

the recognized utterance. This allows Gremlin to refine its estimate

of cognitive demand by leveraging results from studies that differ-

entiate PDT response time according to the complexity of the verbal

interaction [46, 52]. Comparing results in these studies shows that

the complexity of the speech can increase cognitive load by up to

48%. If an interaction consists of multiple activities, Gremlin uses

the maximum demand of any such activity as Ccompletion_t ime .

Gremlin: Scheduling Interactions in Vehicular Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

3.3.3 Generating a model. After the offloaded analysis cal-

culates Vcompletion_t ime and Ccompletion_t ime for each interac-

tion, Gremlin deletes the recordings and incorporates the calcu-

lated values into its model. Gremlin maintains distributions of

Vcompletion_t ime and Ccompletion_t ime for each unique interac-

tion type it has recorded, indexed by the type’s ⟨application, id⟩
tuple. Some interaction types (e.g., displaying a pop-up warning)

have the same content each time and, thus, have distributions with

very similar values. Other interactions may have different branches

the user may take (e.g., a hierarchy of dialogs) or vary widely in con-

tent (e.g., reading text messages). In such cases, the distributions will

have significantly different values. We wish to handle variance con-

servatively. Thus, Gremlin estimates visual and cognitive demand

by calculating the 95% confidence interval; it setsVcompletion_t ime
and Ccompletion_t ime to the upper interval value.

3.4 Scheduling interactions
We first describe how Gremlin continuously updates its estimates

of the driver’s currently available visual and cognitive attention.

We then show how these value are combined with demand models

to schedule new interactions.

3.4.1 Determining available visual attention. Gremlin de-

fines Vdeadline as time that drivers can safely take their eyes off

the road to perform a secondary task. Gremlin estimates Vdeadline
based on data from controlled studies that measure how long a

driver’s vision can be safely occluded in different driving condi-

tions. In this paper, we present a general method for calculating

Vdeadline from such studies, and we develop an implementation

that currently considers three important factors: vehicle speed, road

curvature, and lane width. All factors are easily obtainable from

in-vehicle or cloud sources: speed can be read from the vehicle’s

OBD2 port, while curvature and lane width can be obtained by com-

bining GPS location with information from OpenStreetMap [44] or

an equivalent database.

Occlusion testing is a standard methodology for measuring the

effect of road conditions on visual demand. Such studies [9, 50,

58] simulate various driving conditions by outfitting drivers with

occlusion glasses that prevent them from viewing the road. During

the study, drivers activate a switch to receive a clear view for 0.5

seconds. By measuring the time between activations, the study

determines how long drivers can look away from the road in the

particular driving conditions being simulated. This value is precisely

the Vdeadline that Gremlin needs to determine.

The studies we consider measure the effect of only a single

driving condition at a time. However, they all use a common metric:

the duration that a driver’s view can be occluded after 0.5 seconds of

a clear view. Thus, we combine the results of studies that measure

different factors by considering the relative impact each factor

has on the common metric. More specifically, Gremlin currently

calculates:

Vdeadline = Vdeadline (speed) ∗ Pe(r) ∗ Pe(w)

(Pe(r)=Curve radius penalty, Pe(w)=Lane width penalty) (1)

Vdeadline (speed) gives available visual attention based solely on

the speed of the vehicle. We generate this function by performing a

linear regression over the study results of Senders et al. [50]. Linear

regression gives a good fit (R2 coefficient of determination=0.96),

Given speed expressed in MPH, this yields:

Vdeadline (speed) = 4.056 − 0.041 ∗ speed (2)

Gremlin calculates the relative effect of road curvature, Pe(r), from
the results of Tsimhoni et al. [58]:

Pe(r) =

0.5
0.252+34.5∗1/r

1.984
(r=radius of curve in meters) (3)

Based on the above study, Pe(w) decreases Vdeadline by 2% as the

lane width,w , decreases by each foot from the standard width of

12 feet.

Note that while Gremlin currently considers many important

factors in estimated visual demand, there are more factors that we

would ideally add to our model such as frequency of intersections

and street directionality (one-way vs. two-way). We currently do

not use these factors because we lack the controlled studies that

measure them in isolation. However, our methodology makes it

easy to add such data as new studies are performed.

3.4.2 Determining available cognitive attention. Gremlin

defines Cdeadline as the time that the driver can safely spare for

a cognitive task such as voice-based interactions. It currently es-

timates this value based on surrounding traffic volume and the

driver’s experience level. Traffic volume is already obtained from

the cloud by turn-by-turn direction applications. A driver’s experi-

ence must be set manually, but it changes extremely rarely.

Studies that assess the impact of driving conditions on cognitive

attention commonly use PDT response time as a figure of merit. Un-

fortunately, these studies only measure how response time changes

as conditions vary; they do not specify how higher response times

negatively impact driving safety. Gremlin must determine how

much cognitive attention is available for secondary tasks. This

means that it must (1) understand how secondary tasks affect PDT

response time, and (2) set a threshold value beyond which higher

PDT response times are unacceptable for safe driving.

We first consider how to set the threshold. One method would

be to ask usability experts to choose a value. We believe a better

approach is to use actual road safety data.

For this purpose, we use a large-scale study of actual driving that

recorded crashes and near crashes (CNC) and correlated them with

secondary tasks being performed by the drivers of the vehicles [61].

The study calculates an odds ratio for each secondary task that

estimates the likelihood of a CNC occurring while performing the

task in comparison to driving without performing that task. An

odds ratio greater than 1 indicates that the task has a positive

correlation with CNC occurrences; e.g., reading has an odds ratio

of 1.34.

In order to use this data, we found secondary tasks reported in the

study that match well with tasks in existing PDT studies [43, 52, 56];

e.g., changing the radio station and talking on a cell phone. This

yields a set of ⟨odds_ratio, response_time⟩ tuples. By performing

a linear regression on these tuples (R2 coefficient of determina-

tion=0.88), we find that a PDT response time of 940ms corresponds

to an odds ratio of 1.0; in other words, any combination of activ-

ities (e.g., driving plus performing a secondary task) with a PDT

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

Novice driver Experienced driver

Light traffic 73ms 274ms

Medium traffic 0ms 253ms

Heavy traffic 0ms 152ms

Table 2: Cdeadline values based on the driver’s experience
and traffic conditions.

response time higher than 940ms is projected to increase the base

probability of crashes and near crashes. To isolate the effect of the

secondary task, we subtract the average response time measured

across all studies for driving without performing a secondary task.

This results in Cdeadline (the secondary task threshold) of 274ms;

any secondary task that adds more than this value to PDT response

time should not be allowed while driving.

The above threshold represents a best-case scenario because the

baseline is an experienced driver operating the vehicle in light traffic

conditions. Patten et al. [47] show that PDT response times increase

for less-experienced drivers and under heavier traffic conditions.

As shown in Table 2, Gremlin uses the experience definition of

Patten et al. and refines its Cdeadline values to reflect the delta

in response times measured in this study. As might be expected,

novice drivers have no attention to spare for any secondary task

under medium and heavy traffic conditions and almost none under

light conditions. Even experienced drivers have much less attention

to spare in heavy traffic.

Gremlin further considers how specific driving situations impact

Cdeadline based on a study by Martens et al [37]. For instance,

driving around a sharp curve decreases Cdeadline by 113ms and

stopping at a stop sign decreases Cdeadline by 184ms. Both situa-

tions can be determined by combining vehicle location and road

data. Interestingly, these results indicate that interactions should

rarely be initiated while the vehicle is at a stop sign, presumably

because considerable attention is needed to determine when to en-

ter the intersection. This contradicts recent proposals and deployed

systems that allow interactions when the vehicle is not moving [49].

3.4.3 Allowing or deferring interactions. Unmodified ap-

plications attempt to initiate an interaction by calling the notify()
method of Android’s NotificationManager. If an application uses

its own custom method for notifications, it must be modified to call

gremlin_begin_notify() as shown in Table 1.

Gremlin maintains a white list of interaction types

(⟨application, id⟩ tuples) that are high priority. Updating

this list is a privileged operation; we envision that the list is

set by the vehicle manufacturer and maintained via software

updates. Interactions on this list are considered to be critical and

are delivered immediately.

Otherwise, Gremlin retrieves Ccompletion_t ime and

Vcompletion_t ime for the interaction type from the models

generated offline. If it does not have a model yet for a new

interaction type, it applies the default HMI scheduling policy.

Gremlin updates Cdeadline and Vdeadline continuously when

information about vehicle location, traffic conditions, etc. changes.

Updating the values has low overhead, requiring only a table

lookup.

Next, Gremlin allows the interaction to proceed if

Vcompletion_t ime < Vdeadline and Ccompletion_t ime <

Cdeadline . For unmodified applications, Noti f icationManaдer
simply delivers the requested notification. For custom applications,

gremlin_begin_notify() returns 1 (success), informing the

application that it should initiate its interaction.

If Gremlin decides to defer the notification, it continually

checks if Vcompletion_t ime < Vdeadline and Ccompletion_t ime <

Cdeadline as both Vdeadline and Cdeadline change. The notify

methods block until this condition is satisfied. Afterward, the

notification is initiated as above. An application whose interac-

tion has been deferred may cancel its request by either invok-

ing the appropriate method on the NotificationManager or call-

ing gremlin_cancel_notify(). Calling the latter method causes

gremlin_begin_notify() to return 0, informing the application

that it should not perform the interaction.

Note that Gremlin can only enforce its scheduling decisions for

applications that use the NotificationManager API; other appli-
cations must voluntarily decide to use and respect the results of

calling the Gremlin API. To enforce behavior for all applications,

vehicle manufacturers could potentially require all installed appli-

cations to interact with the driver through a standard service such

as NotificationManager.

4 EVALUATION
Our evaluation answers the following questions:

• How well do Gremlin’s scheduling decisions match those

of a vehicular interface expert across a range of interaction

types and driving scenarios?

• What are the computation and bandwidth requirements of

offloaded analysis?

• How much overhead does Gremlin add?

4.1 Setup
We used a Nexus 9 tablet running Android 5.0.1 with Gremlin to run

vehicular applications and emulate a vehicular HMI touchscreen.

We selected the seven representative interactions shown in Table 3

for our evaluation. These include a mixture of vehicular and mobile

applications, high-priority and low-priority interactions, audio-only

and visual interactions, and simple and complex interactions.

We first used Gremlin to record five different interactions for

each of the seven types. We used simulated driving traces to gen-

erate the interactions; for instance, the traces emulate changes in

location for a moving vehicle that cause location-based alerts to

pop-up and changes in speed that cause excessive speed warnings

to be displayed. We explored a range of user actions for each in-

teraction type by varying messages, locations, reminders, etc. for

each observation. The last two columns in Table 3 show Gremlin’s

results for analyzing the recorded interactions. Vcompletion_t ime
is visual attention demand, and Ccompletion_t ime is cognitive at-

tention demand.

We evaluated each interaction in the three driving scenarios

shown in Table 4; the scenarios differ substantially in attention

demand. The last two columns of the table show the values Gremlin

calculated for Vdeadline and Cdeadline .

Gremlin: Scheduling Interactions in Vehicular Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

Interaction Priority Description Vcomplet ion_t ime Ccomplet ion_t ime

Waze-Hazard High

Waze alerts the driver about an upcoming road hazard with an audio

message and a visual pop-up.

1787ms 66ms

Waze-Camera Low

Waze alerts the driver about an upcoming speed camera with an audio

tone and a visual pop-up.

1136ms 4ms

Hangouts-Visual Low

Google Hangouts alerts the driver about a new message with an audio

tone. The driver selects the message, displays it, and responds.

18645ms 4ms

Hangouts-Voice Low Same as above, but all interactions are voice-based. 0ms 212ms

GeoTask Low

GeoTask plays an audio tone and displays a pre-set reminder when the

driver passes by a designated location.

2227ms 4ms

Speed Cameras High

Speed Cameras warns the driver with an audio “speed limit exceeded”

message. The screen shows the driver’s current speed and the speed

limit.

706ms 66ms

Foursquare Low

Foursquare produces an audio tone and a notification to show nearby

restaurants when the driver enters a new city. The driver clicks on the

notification to display the list of restaurants.

22773ms 4ms

Table 3: Interactions used to evaluate Gremlin. For each interaction, the table shows theVcompletion_t ime andCcompletion_t ime
values calculated by Gremlin over 5 observations.

Driving scenario Description Vdeadline Cdeadline

Low attention demand

Experienced driver traveling at 20MPH on a straight rural

road with standard lane width and light traffic.

3243ms 274ms

Medium attention demand

Experienced driver traveling at 35MPH on a slightly curving

road (curve radius of 592 meters) with 11 foot lane width and

heavy traffic.

2229ms 152ms

High attention demand

Novice driver traveling at 50MPH on a sharply curving road

(curve radius of 60 meters) with standard lane width and light

traffic.

615ms 73ms

Table 4: Driving scenarios used to evaluate Gremlin. For each scenario, the table shows the Vdeadline and Cdeadline values
calculated by Gremlin.

4.2 Decision quality
We evaluated Gremlin’s scheduling decisions by comparing them

to the decisions recommended by a vehicular interface expert from

the University of Michigan Transportation Research Institute. The

expert we recruited is not a member of our project team and was

not aware of our work prior to this study.

We first explained the three driving scenarios, and we showed

the expert a typical interaction for each of the seven types in Table 3

(the first recorded interaction in each case). We asked the expert to

decide whether or not he would allow each interaction in each of

the three driving scenarios. We did not share Gremlin’s assessments

until after the expert completed this task.

Table 5 compares Gremlin’s decisions with those of the expert.

A check indicates a decision to allow the interaction, and an x

indicates a decision to disallow or defer the interaction. Overall,

Gremlin’s decisions matched those of the expert in 19 out of 21

cases (90.4%).

In the opinion of the expert, Gremlin had one false positive in

which it allowed an interaction that it should not have allowed.

Gremlin allowed the Waze-Camera interaction during the medium

demand scenario. The expert felt that this interaction should have

been disallowed since the driver must look at the screen to under-

stand the reason for the audio output tone; the tone itself conveys

no useful information.

In the opinion of the expert, Gremlin also had one false negative.

The expert felt that the GeoTask interaction should be allowed in all

scenarios, including the high-demand scenario in which Gremlin

disallowed it, because the driver expects this output to occur at the

given location. Since the driver has previously set this reminder, the

activation should not come as a surprise. Gremlin lacks the context

to make this type of inference.

Stepping back from direct comparisons, this study also confirms

Gremlin’s general approach of initiating interactions based on cur-

rent driving conditions. For three of the seven interactions, the

expert allowed the interaction in the low demand scenario and dis-

allowed the same interaction in the high demand scenario. Simply

denying all interactions would match the expert’s opinion in only

10 of the 21 cases.

Many current vehicle HMIs allow voiced-based interactions and

disallow any interactions that use the touchscreen when the vehicle

is moving [16, 38, 57]. Both our results and the expert’s opinions

show that this approach works poorly. This default policy would

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

Low demand Medium demand High demand

Interaction Gremlin Expert Gremlin Expert Gremlin Expert

Waze-Hazard ✓ ✓ ✓ ✓ ✓ ✓
Waze-Camera ✓ ✓ ✓ × × ×

Hangouts-Visual × × × × × ×

Hangouts-Voice ✓ ✓ × × × ×

GeoTask ✓ ✓ ✓ ✓ × ✓
Speed Cameras ✓ ✓ ✓ ✓ ✓ ✓
Foursquare × × × × × ×

Table 5: This table compares Gremlin’s scheduling decisions with those of a vehicular UI expert. We show results for each
combination of interaction type and driving scenario. A × mark indicates a decision to allow the interaction, and a ✓ mark
indicates a decision to defer/disallow the interaction. Cases where Gremlin and the expert disagreed are highlighted in gray.

Interaction Analysis time (seconds) Unique video frames Audio I/Os Compressed size (MB)

Waze-Hazard 15.6 13.2 1 29.1

Waze-Camera 27.2 24.6 1 27.9

Hangouts-Visual 16.2 20.2 1 7.3

Hangouts-Voice 12.6 0 8 13.0

GeoTask 4.8 2.8 1 4.5

Speed Cameras 4.6 2.8 1.4 12.4

Foursquare 8.4 7.6 1 12.3

Table 6: The second column shows the average time to analyze each type of interaction. The next two columns show the
average number of unique video frames and audio I/Os per recorded interaction. The final column shows the average size of
the compressed recordings.

Application Baseline Recording Overhead

Google Hangouts 20ms 24ms 4ms

Waze 122ms 148ms 26ms

Table 7: Overhead of Gremlin recording interactions as mea-
sured by GUI response time for two applications

match the expert opinion in only 9 of the 21 cases. For the voiced-

based Google Hangouts interaction, the expert and Gremlin both

find that the interaction should be disallowed in the medium de-

mand and high demand scenarios, meaning that the driver is likely

to be cognitively overloaded by the default policy in many driving

conditions. On the other hand, both the expert and Gremlin identify

many visual interactions that should be allowed while the vehicle is

moving, either because they are high-priority such as road hazard

alerts, or because they do not demand much attention, e.g., GeoTask

reminders.

We also asked the expert for qualitative feedback about Gremlin.

The expert agreed with Gremlin’s approach of managing driver’s

attention but felt strongly that, in order for Gremlin to be practical,

it should consider more factors, such as the driver’s familiarity with

the current road, the familiarity with the interaction, street condi-

tions, and weather. We agree with assessment and view Gremlin as

a prototype that can be extended to consider such factors.

4.3 Offloaded analysis
We measured both the computational and network demands of

offloading analysis to edge infrastructure. We used a workstation

with 4 3.1 GHz Xeon E5-2687W cores and 16GB of RAM to repre-

sent a typical edge compute node. The second column in Table 6

shows the average time required to analyze each type of recorded

interaction on this platform. The third and forth columns show, for

each interaction type, the average number of unique video frames

and audio I/Os analyzed.

Gremlin takes an average of 12.7 seconds to analyze an interac-

tion on a workstation, but there is considerable variation across

different types. For each second of recorded interaction, the ana-

lyzer takes approximately 1.1 seconds to perform visual analysis

and 1.6 seconds to analyze audio. These results demonstrate the

benefit of offloading analysis of recorded interactions; this work-

load is simply too compute-intensive to run on a typical mobile

computer.

The final column in Table 6 shows the average size of the com-

pressed recordings for each interaction type. The average size varies

from 4.5MB (GeoTask) to 29.1MB (Waze-Hazard), with an average

of 15.2MB across all recorded interactions. At this size, recording

2-3 interactions per day and analyzing them in the cloud could

consume approximately 1GB per month of wide-area bandwidth.

By offloading to the edge rather than the cloud, this data need only

be sent over local-area network connections, potentially providing

a considerable cost savings.

Gremlin: Scheduling Interactions in Vehicular Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

4.4 Overhead
We next measured Gremlin’s overhead by comparing interactive

application performance when Gremlin is recording with perfor-

mance when Gremlin is not running. For this experiment, we replay

touch events using RERAN [17] and measure the response time

for each event in an interaction as the time between the user click-

ing on the screen and the application rendering the resulting UI

elements. We measured Waze and Google Hangouts for this experi-

ment. Google Hangout is highly interactive but does not contain

complex graphical elements. Waze is one of the least interactive

of our applications, but it has some of the most complex graphical

elements.

Table 7 shows that Gremlin recording adds very little per-

formance overhead. This overhead occurs rarely—only during

application-initiated interactions. GUI response time for Google

Hangouts andWaze is slowed by 4ms and 26ms, respectively. These

values are well below the commonly-cited 50ms threshold at which

users perceive differences in GUI response times [15]. The overhead

for Waze is larger due to an increase in the size of the captured

video; larger portions of the screen are changed more often in this

interaction.

We also attempted to measure the overhead of Gremlin schedul-

ing on application performance. However, the overhead was not

measurable within experimental error.

5 DISCUSSION
Gremlin is a promising prototype. Our evaluation shows that it

makes reasonable decisions and imposes only a small performance

overhead on the vehicular HMI. However, there are many chal-

lenges that need to be addressed before a Gremlin-like system can

be deployed in vehicles.

As noted in the evaluation, the attention model needs to be ex-

panded. We consider many important factors in assessing available

attention and attention demand, but there are several other factors

we would like to include. For assessing attention demand, we would

like to include graphical UI elements and other controls beyond

touchscreen buttons (e.g., haptic steering wheel controls). For as-

sessing available attention, we would like to include factors such

as the time of day, road familiarity, fatigue or other physical condi-

tions of the driver, and how familiar a driver is with a particular

interaction. Detection of roadside hazards and pedestrians could

also inform scheduling decisions. We provide a methodology for

incorporating standard PDT and road studies into Gremlin’s model.

However, such studies would still need to be performed in order to

generate the model parameters.

Gremlin assumes that reducing the amount of data sent over

wide-area networks between the edge and the cloud will result

in significant cost savings. However, specific costs models will

only become clear once significant compute capacity is deployed

at the edge. Currently, this motivation holds in restricted edge

deployments. For instance, when the phone stores recordings, then

offloads computation to a server co-located with a home access

point, no data is used for the back-haul connection to the cloud or

for a cellular plan. We believe it is reasonable to think that edge

infrastructure could evolve to include similar network/compute

co-location at roadside and related locations.

Gremlin currently relies on a privileged user such as the vehicle

manufacturer to specify which interactions are high priority, and it

does not have a mechanism to enforce its decisions for all applica-

tions. Current vehicle HMIs must already deal with these issues, so

industry standards for deciding which applications can be installed

and enforcing interface restrictions would help both current HMIs

and Gremlin.

Our comparison of Gremlin’s decisions with expert opinion is

an end-to-end check that Gremlin is making reasonable decisions.

However, different experts could express different opinions. Ulti-

mately, extensive user testing is required to deploy a system like

Gremlin in a vehicle.

6 RELATEDWORK
It has long been recognized that user attention is limited in mo-

bile computing. Consequently, there has been much past work to

understand the impact of notifications and to schedule when such

interruptions occur. Gremlin differs significantly from this past

work in that it attempts to schedule not just a notification, but

rather the entire interaction that is initiated by that notification.

This leads to its unique approach of quantifying attention demand

and building models to predict the demand of future interactions,

then comparing these predictions to dynamic estimates of attention

supply.

Many researchers have studied the detrimental effect of poorly-

timed notifications in desktop environments [4, 10, 26]. Subsequent

work [27] has found that importance matters: users are willing

to tolerate some disruption in return for receiving valuable no-

tifications. Although these studies target a different computing

environment, they support Gremlin’s decision to schedule based

on priority, as well as on attention supply and demand.

Other researchers have attempted to determine the best time to

interrupt users to deliver notifications [1, 22, 23, 25]. For instance,

PRIORITIES [23] is a desktop e-mail notification system that uses

a Bayesian model to infer the user’s available attention level and

compute the expected cost of interruption and deferring alerts.

Instead of inferring user activity, Gremlin observes it directly using

vehicle sensors. Gremlin also employs controlled user studies and

road data to quantify how sensor data correlates with attention

supply.

Kim et al. [31] use body-worn sensors and vehicular data to

determine the opportune moment to interrupt the driver. Their

work assumes that the drivers are the best judge of when they

should be interrupted, and so learns from their past behavior. In

contrast, Gremlin quantifies attention demand and supply from

the sensor data and observations of past interactions. Unlike the

work of Kim et al., Gremlin considers the entire interaction that

follows the interruption in its scheduling decision, rather than just

the interruption itself. Other recent studies have focused on mea-

suring changes in driver’s workload based on measurable factors,

such as pupil dilation [48], heart-rate variability [45], and driver

movement changes on a seat [7]. However, these studies do not

quantify available attention or match it to the demand of secondary

tasks as Gremlin does.

Similarly, recent research attempts to determine proper task

break points for mobile devices in non-vehicular settings. Fischer

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA
Kyungmin Lee, Jason Flinn, and Brian D. Noble

Univeristy of Michigan

et al. [14] determine the end of mobile device interactions to deliver

notifications at such instances. Okoshi et al. [42] determine accurate

application-specific break points, during which the user can be

interrupted while using an application. Ho et al. [21] determine

when the user is transitioning from one physical activity to another.

Kern et al. [30] sense the user’s context to use socially acceptable

notifications modalities.

AMC [33] checks vehicular applications to determine whether

they conform to best practice guidelines. AMC performs static

checking of screens and task lengths, whereas Gremlin schedules

dynamic behavior (i.e., interactions). AMC determines only whether

an interface is acceptable or not in standard driving conditions,

whereas Gremlin considers the changing availability of the driver’s

attention.

Green [18] originally pointed out the need for a workload man-

ager that regulates the flow of information to drivers. In a workshop

paper [34], we previously made the case for managing user atten-

tion in the operating system. Although our design agrees with

the general approach in these papers, neither of these proposals

included a specific implementation such as Gremlin.

7 CONCLUSION
We have described a methodology for scheduling interactions initi-

ated by vehicular applications and a prototype, called Gremlin, that

demonstrates this methodology. In the future, we hope to extend

our work to other attention-limited situations, such as when a user

is walking, working at the office, or engaging in social activities.

Scheduling in these situations is more complex. In vehicular com-

puting, Gremlin knows that the primary task of driving is very

important. The complexity of this task has been measured in nu-

merous studies. Further, the vehicle has a wide array of sensors

that can assess the context in which the driver is operating. Other

attention-limited situations have a wider range of primary activi-

ties with varying importance, and they have a comparative lack of

sensors. We believe Gremlin is an important first step toward sched-

uling interactions in more general attention-limited situations, and

we look forward to tackling the research challenges that remain.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful comments.

This work has been partially supported by the National Science

Foundation under grant CNS-1717064 and by Ford Motor Company.

Any opinions, findings, conclusions, or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation, Ford, or the

University of Michigan.

REFERENCES
[1] Adamczyk, P. D., and Bailey, B. P. If not now, when?: The effects of interrup-

tion at different moments within task execution. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vienna, Austria, April 2004),
CHI ’04, pp. 271–278.

[2] Allport, D. A., Antonis, B., and Reynolds, P. On the division of attention:

A disproof of the single channel hypothesis. Quarterly Journal of Experimental
Psychology 24, 2 (1972), 225–235.

[3] Smartphone use behind the wheel survey. http://about.att.com/content/dam/

snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%

20the%20Wheel%20.pdf.

[4] Bailey, B. P., and Konstan, J. A. On the need for attention-aware systems:

Measuring effects of interruption on task performance, error rate, and affective

state. Computers in Human Behavior 22, 4 (2006), 685–708.
[5] Baumann, A., Peinado, M., and Hunt, G. Shielding applications from an

untrusted cloud with haven. In Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (Broomfield, CO, October 2014).

[6] Bhardwaj, K., Shih, M.-W., Agarwal, P., Kim, T., and Schwan, K. Fast, scalable,

and secure onloading of edge functions using airbox. In Proceedings of the First
IEEE/ACM Symposium on Edge Computing (Washington, DC, October 2016).

[7] Braun, A., Frank, S., Majewski, M., andWang, X. Capseat: Capacitive proximity

sensing for automotive activity recognition. In Proceedings of the 7th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications
(Nottingham, United Kingdom, 2015), pp. 225–232.

[8] CMU Sphinx. PocketSphinx. http://cmusphinx.sourceforge.net/.

[9] Courage, C., Milgram, P., and Smiley, A. An investigation of attentional

demand in a simulated driving environment. In Proceedings of the Human Factors
and Ergonomics Society Annual Meeting (San Diego, CA, July 2000).

[10] Czerwinski, M., Horvitz, E., and Wilhite, S. A diary study of task switching

and interruptions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Vienna, Austria, April 2004), CHI ’04, pp. 175–182.

[11] Driver Focus-Telematics Working Group. Statement of principles, criteria

and verification procedures on driver interactions with advanced in-vehicle

information and communication systems. Tech. rep., Alliance of Automobile

Manufacturers, June 2003.

[12] Enck, W., Gilbert, P., gon Chun, B., Cox, L. P., Jung, J., McDaniel, P., and

Sheth, A. N. TaintDroid: An information-flow tracking system for realtime

privacy monitoring on smartphones. In Proceedings of the 9th Symposium on
Operating Systems Design and Implementation (Vancouver, BC, October 2010).

[13] Engstrom, J., Johansson, E., and Ostlund, J. Effects of visual and cognitive

load in real and simulated motorway driving. Transportation Research Part F:
Traffic Psychology and Behaviour 8, 2 (2005), 97–120.

[14] Fischer, J. E., Greenhalgh, C., and Benford, S. Investigating episodes of mobile

phone activity as indicators of opportune moments to deliver notifications. In

Proceedings of the 13th International Conference on Human Computer Interaction
with Mobile Devices and Services (Stockholm, Sweden, August 2011), pp. 181–190.

[15] Flautner, K., and Mudge, T. Vertigo: Automatic performance-setting for Linux.

In Proceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation (Boston, MA, December 2002), pp. 105–116.

[16] General Motors LLC. 2015 Chevrolet MyLink details book. https://my.gm.com/.

[17] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. Reran: Timing- and touch-

sensitive record and replay for android. In Proceedings of the 2013 International
Conference on Software Engineering (San Francisco, CA, May 2013), pp. 72–81.

[18] Green, P. Driver distraction, telematics design, and workload managers: Safety

issues and solutions. In SAE Convergence (2004), Society of Automotive Engineers.

[19] Green, P., Levison, W., Paelke, G., and Serafin, C. Suggested human factors

design guidelines for driver information systems. Tech. rep., The University of

Michigan Transportation Research Institute (UMTRI), August 1994.

[20] Harms, L., and Patten, C. Peripheral detection as a measure of driver distraction.

a study of memory-based versus system-based navigation in a built-up area.

Transportation Research Part F: Traffic Psychology and Behaviour 6, 1 (2003), 23–
36.

[21] Ho, J., and Intille, S. S. Using context-aware computing to reduce the perceived

burden of interruptions from mobile devices. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (Portland, Oregon, April 2005),
CHI ’05, pp. 909–918.

[22] Horvitz, E., and Apacible, J. Learning and reasoning about interruption. In Pro-
ceedings of the 5th International Conference on Multimodal Interfaces (Vancouver,
Canada, November 2003), ICMI ’03, pp. 20–27.

[23] Horvitz, E., Jacobs, A., and Hovel, D. Attention-sensitive alerting. In Proceed-
ings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (Stockholm,

Sweden, July 1999), UAI’99, pp. 305–313.

[24] Hunt, T., Zhu, Z., Xu, Y., Peter, S., and Witchel, E. Ryoan: A distributed

sandbox for untrusted computation on secret data. In Proceedings of the 12th
Symposium on Operating Systems Design and Implementation (Savannah, GA,

November 2016).

[25] Iqbal, S. T., and Bailey, B. P. Understanding and developing models for detecting

and differentiating breakpoints during interactive tasks. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (San Jose, California,

April 2007), CHI ’07, pp. 697–706.

[26] Iqbal, S. T., and Horvitz, E. Disruption and recovery of computing tasks:

Field study, analysis, and directions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (San Jose, California, April 2007), CHI ’07,

pp. 677–686.

[27] Iqbal, S. T., and Horvitz, E. Notifications and awareness: A field study of alert

usage and preferences. In Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work (Savannah, GA, February 2010), CSCW ’10, pp. 27–30.

[28] Jahn, G., Oehme, A., Krems, J. F., and Gelau, C. Peripheral detection as a

workload measure in driving: Effects of traffic complexity and route guidance

http://about.att.com/content/dam/snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%20the%20Wheel%20.pdf
http://about.att.com/content/dam/snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%20the%20Wheel%20.pdf
http://about.att.com/content/dam/snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%20the%20Wheel%20.pdf
http://cmusphinx.sourceforge.net/
https://my.gm.com/

Gremlin: Scheduling Interactions in Vehicular Computing SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

system use in a driving study. Transportation Research Part F: Traffic Psychology
and Behaviour 8, 3 (2005), 255–275.

[29] Jamson, A. H., and Merat, N. Surrogate in-vehicle information systems and

driver behaviour: Effects of visual and cognitive load in simulated rural driving.

Transportation Research Part F: Traffic Psychology and Behaviour 8, 2 (2005), 79–96.
[30] Kern, N., and Schiele, B. Context-aware notification for wearable computing.

In Proceedings of the 7th IEEE International Symposium on Wearable Computers
(Washington, DC, October 2003), pp. 223–230.

[31] Kim, S., Chun, J., and Dey, A. K. Sensors know when to interrupt you in the car:

Detecting driver interruptibility through monitoring of peripheral interactions.

In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI) (Seoul, Republic of Korea, April 2015), pp. 487–496.

[32] Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., and Chissom, B. S. Derivation

of new readability formulas (automated readability index, fog count and flesch

reading ease formula) for navy enlisted personnel. Tech. rep., DTIC Document,

Feb 1975.

[33] Lee, K., Flinn, J., Giuli, T., Noble, B., and Peplin, C. AMC: Verifying user inter-

face properties for vehicular applications. In Proceedings of the 11th International
Conference on Mobile Systems, Applications and Services (Taipei, Taiwan, June
2013), pp. 1–12.

[34] Lee, K., Flinn, J., and Noble, B. The case for operating system management

of user attention. In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications (HotMobile) (Santa Fe, NM, February 2015).

[35] Lin, C.-C. Effects of contrast ratio and text color on visual performance with

tft-lcd. International Journal of Industrial Ergonomics 31, 2 (2003), 65–72.
[36] Liu, P., Willis, D., and Banerjee, S. Paradrop: Enabling lightweight multi-

tenancy at the network’s extreme edge. In Proceedings of the First IEEE/ACM
Symposium on Edge Computing (Washington, DC, October 2016).

[37] Martens, M., and van Winsum, W. Measuring distraction: the peripheral

detection task. Tech. rep., National Highway Traffic Safety Administration, Jun

2000.

[38] Mazda Motor Company. MZD Connect. http://infotainment.mazdahandsfree.

com/communication-sms?language=en-RW.

[39] Nakamura, Y. JAMA guideline for in-vehicle display systems. Tech. rep., Japan

Automobile Manufacturers Association, Oct 2008.

[40] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., and

Walker, K. R. Agile application-aware adaptation for mobility. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles (Saint-Malo, France,

October 1997), pp. 276–287.

[41] of Automobile Manufacturers, A. Comments received from the alliance of

automobile manufacturers. Accessed at www.regulations.gov, Docket NHTSA-

2010-0053, Document Number 0104.

[42] Okoshi, T., Tokuda, H., and Nakazawa, J. Attelia: Sensing user’s attention

status on smart phones. In 16th International Conference on Ubiquitous Computing
(Seattle, Washington, September 2014), pp. 139–142.

[43] Olsson, S., and Burns, P. Measuring driver visual distraction with a peripheral

detection task. Tech. rep., National Highway Traffic Safety Administration, Feb

2008.

[44] https://www.openstreetmap.org.

[45] Park, J.W., Kim, S., andDey, A. Integrated driving aware system in the real-world:

Sensing, computing and feedback. In Proceedings of the 2016 CHI Conference:
Extended Abstracts on Human Factors in Computing Systems (Santa Clara, CA,
2016), pp. 1591–1597.

[46] Patten, C. J., Kircher, A., Ostlund, J., and Nilsson, L. Using mobile telephones:

cognitive workload and attention resource allocation. Accident Analysis and
Prevention 36, 3 (2004), 341–350.

[47] Patten, C. J., Kircher, A., Ostlund, J., Nilsson, L., and Ola, S. Driver experi-

ence and cognitive workload in different traffic environments. Accident Analysis
and Prevention 38, 5 (2006), 887–894.

[48] Rajan, R., Selker, T., and Lane, I. Task load estimation and mediation using

psycho-physiological measures. In Proceedings of the 21st International Conference
on Intelligent User Interfaces (Sonoma, CA, 2016), pp. 48–59.

[49] Richtel, M. Phone makers could cut off drivers. so why don’t they? The New
York Times (2016).

[50] Senders, J., Kristofferson, A., Levison, W., Dietrich, C., and J.L., W. The

attentional demand of automobile driving. Highway Research Record, 195 (1967),
15–33.

[51] Stevens, A., Quimby, A., Board, A., Kersloot, T., and Burns, P. Design

guidelines for safety of in-vehicle information systems. Tech. rep., Transport

Research Laboratory, Feb 2002.

[52] Strayer, D. L., Cooper, J. M., Turrill, J., Coleman, J., MedeirosWard, N., and

Biondi, F. Measuring cognitive distraction in the automobile. Tech. rep., AAA

Foundation for Traffic Safety, Jun 2013.

[53] Strayer, D. L., Turrill, J., Coleman, J. R., Ortiz, E. V., and Cooper, J. M.

Measuring cognitive distraction in the automobile ii: Assessing in-vehicle voice-

based interactive technologies. Tech. rep., AAA Foundation for Traffic Safety,

Oct 2014.

[54] Sun, X., Plocher, T., andQu,W. An empirical study on the smallest comfortable

button/icon size on touch screen. In Proceedings of the 2nd International Conference
on Usability and Internationalizationi (UI-HCII) (Beijing, China, July 2007), pp. 615–
621.

[55] Task Force HMI. European statement of principles on human machine interface

for in-vehicle information and communication systems. Tech. rep., Commission

of the European Communities, December 1998.

[56] Tornros, J. E., and Bolling, A. K. Mobile phone useâĂŤeffects of handheld and

handsfree phones on driving performance. Accident Analysis & Prevention 37, 5
(2005), 902–909.

[57] Toyota Motor Company. Entune system quick reference guide. http://www.

toyota.com/t3Portal/document/om-s/OM16QTQRG/pdf/OM16QTQRG.pdf.

[58] Tsimhoni, O., Yoo, H., and Green, P. Effects of visual demand and in-vehicle task

complexity on driving and task performance as assessed by visual occlusion. Tech.

rep., The University of Michigan Transportation Research Institute (UMTRI),

December 1999.

[59] Wang, A.-H., and Chen, M.-T. Effects of polarity and luminance contrast on

visual performance and vdt display quality. International Journal of Industrial
Ergonomics 25, 4 (2000), 415–421.

[60] Wickens, C. D. Processing resources and attention. Multiple-task performance
(1991), 3–34.

[61] Young, R. Revised odds ratio estimates of secondary tasks: A re-analysis of the

100-car naturalistic driving study data. Tech. rep., SAE Technical Paper, Jan 2015.

[62] Ziefle, M. Effects of display resolution on visual performance. Human Factors:
The Journal of the Human Factors and Ergonomics Society 40, 4 (1998), 554–568.

[63] Zuffi, S., Brambilla, C., Beretta, G., and Scala, P. Human computer interac-

tion: Legibility and contrast. In 14th International Conference on Image Analysis
and Processing (ICIAP) (Modena, Italy, September 2007), pp. 241–246.

http://infotainment.mazdahandsfree.com/communication-sms?language=en-RW
http://infotainment.mazdahandsfree.com/communication-sms?language=en-RW
http://www.toyota.com/t3Portal/document/om-s/OM16QTQRG/pdf/OM16QTQRG.pdf
http://www.toyota.com/t3Portal/document/om-s/OM16QTQRG/pdf/OM16QTQRG.pdf

	Abstract
	1 Introduction
	2 Design considerations
	2.1 What to schedule
	2.2 Where to schedule interactions
	2.3 How to quantify attention

	3 Implementation
	3.1 Overview
	3.2 Recording interactions
	3.3 Analyzing interactions
	3.4 Scheduling interactions

	4 Evaluation
	4.1 Setup
	4.2 Decision quality
	4.3 Offloaded analysis
	4.4 Overhead

	5 Discussion
	6 Related work
	7 Conclusion
	References

