Gremlin: Scheduling Interactions in Vehicular Computing

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

ABSTRACT

Vehicular applications must not demand too much of a driver’s
attention. They often run in the background and initiate interactions
with the driver to deliver important information. We argue that
the vehicular computing system must schedule interactions by
considering their priority, the attention they will demand, and how
much attention the driver currently has to spare. Based on these
considerations, it should either allow a given interaction or defer it.

We describe a prototype called Gremlin that leverages edge com-
puting infrastructure to help schedule interactions initiated by
vehicular applications. It continuously performs four tasks: (1)
monitoring driving conditions to estimate the driver’s available
attention, (2) recording interactions for analysis, (3) generating a
user-specific quantitative model of the attention required for each
distinct interaction, and (4) scheduling new interactions based on
the above data.

Gremlin performs the third task on edge computing infrastruc-
ture. Offload is attractive because the analysis is too computation-
ally demanding to run on vehicular platforms. Since recording size
for each interaction can be large, it is preferable to perform the
offloaded computation at the edge of the network rather than in
the cloud, and thereby conserve wide-area network bandwidth.

We evaluate Gremlin by comparing its decisions to those rec-
ommended by a vehicular UI expert. Gremlin’s decisions agree
with the expert’s over 90% of the time, much more frequently than
the coarse-grained scheduling policies used by current vehicle sys-
tems. Further, we find that offloading of analysis to edge platforms
reduces use of wide-area networks by an average of 15MB per
analyzed interaction.

CCS CONCEPTS

« Human-centered computing — Mobile computing; « General
and reference — Design; « Software and its engineering —
Software system structures;

KEYWORDS

Vehicular applications; Driver distraction; Edge offload

ACM Reference Format:
Kyungmin Lee, Jason Flinn, and Brian D. Noble Univeristy of Michigan. 2017.
Gremlin: Scheduling Interactions in Vehicular Computing. In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC 17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5087-7/17/10...$15.00
https://doi.org/10.1145/3132211.3134450

of SEC ’17. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3132211.3134450

1 INTRODUCTION

Vehicular computing applications execute in an attention-limited
environment. Unlike desktop applications that typically demand
most of a user’s attention, vehicular applications must require much
less attention so as to avoid distracting their users from the primary
task of driving the vehicle. Consequently, many vehicular applica-
tions such as turn-by-turn directions, location-based reminders, and
messaging middleware run in the background and try to interact
with a driver only when the interaction will be meaningful. Instead
of the user initiating the interaction at a convenient moment, e.g.,
by opening a desktop application, the vehicular application initi-
ates the interaction, e.g., via an audio tone from an in-vehicle HMI
(human-machine interface).

Thus, vehicular computing systems must schedule interactions,
which we define to be a related sequence of user inputs and outputs
that corresponds to performing a single logical task. When an
application wishes to interact with the driver, the system should
consider the priority of the interaction (e.g., is this a critical alert
about an upcoming road hazard?), the complexity of the interaction
(e.g., is this a short audio message or will the interaction involve
navigating several screens on the vehicle touchscreen?), and the
difficulty of driving conditions (e.g., is the user driving in heavy
traffic in icy conditions or in light traffic on a pleasant day?). Based
on such assessments, it should either initiate the interaction with
the driver or defer it until a more appropriate time.

Current vehicular infotainment systems employ simple sched-
uling policies that consider only the high-level interaction type
(e.g., voice-based vs. text-based) and whether or not the vehicle is
moving. For instance, Chevrolet MYLINK [16], Toyota Entune [57],
and Mazda Connect [38] allow voice-based interactions for new
text messages but disallow interactions that require reading from
the touchscreen unless the vehicle is stopped. These coarse-grained
scheduling policies ignore two critical factors: (1) a driver’s avail-
able attention changes significantly as driving conditions vary, and
(2) interactions of the same type can demand different amounts of
attention.

Although these existing scheduling policies assume the driver’s
available attention is unchanging, numerous studies [37, 47, 50, 58]
show wide variability due to speed, traffic volume, and driver ex-
perience. For instance, Senders et al. [50] report a 38% decrease
in available visual attention as speed increases from 30 MPH to
60 MPH, and Patten et al. [47] show a 30% difference in available
cognitive attention due to varying driver experience. This large
variation means that the voice-based interactions allowed in “nor-
mal” driving conditions by current systems are inappropriate for
complex driving situations.

Conservatively disallowing all interactions is not good policy
either. Research has shown that when interactions are disallowed,

https://doi.org/10.1145/3132211.3134450
https://doi.org/10.1145/3132211.3134450
https://doi.org/10.1145/3132211.3134450

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

divers seek alternative, riskier approaches to obtain information.
AT&T [3] reported that 62% of drivers keep their smartphones in
easy reach and 70% engage in smartphone activities (e.g., checking
new text messages) at least some of the time while driving. Survey
participants cited habit, the fear of missing something important,
and the belief that both driving and smartphone interaction can be
done safely as the three main reasons for this behavior. Comments
in a National Highway Traffic Safety Administration report state
that “Consumers have numerous connectivity options, particularly
via portable electronic devices. They will quickly migrate to al-
ternate, and potentially more distracting and less safe, means of
staying connected if the use of in-vehicle or integrated options is
overly curtailed” [41]. In other words, overly conservative schedul-
ing policies may actually have a negative effect by causing drivers
to bypass safer in-vehicle HMIs and use smartphone Uls.

A second issue with current scheduling policies is that not all
interactions of the same type demand the same amount of atten-
tion. For instance, an audio tone demands less attention than a
complex spoken sentence, and a pop-up requires less attention than
a multi-screen interface with text and graphical elements. Current
guidelines and standards for assessing interaction content and min-
imizing attention demand in a vehicular setting [11, 19, 39, 51, 55]
recognize that such distinctions must be made. Simply ignoring
them can overload the driver or fail to initiate useful interactions.

Based on these observations, we have built Gremlin, system sup-
port for scheduling application-initiated interactions in vehicular
settings. Gremlin continuously performs four tasks: (1) it monitors
driving conditions to estimate the driver’s available attention, (2) it
records interactions for analysis, (3) it uses edge computing infras-
tructure to analyze each interaction’s attention demand and build
a model that predicts attention demand of future interactions, and
(4) it uses interaction priority, its estimate of attention supply, and
its model of attention demand to schedule each new interaction by
either allowing it to proceed or deferring it.

Gremlin quantifies attention demand by breaking each interac-
tion into low-level I/O components such as pressing a button, read-
ing text, and listening to audio. It uses past studies [46, 52-54, 59, 62]
that quantify attention demand for these individual activities to
understand the attention demand of the whole interaction and build
its model. This analysis can be computationally demanding, as it
involves, e.g., using speech recognition to translate audio to text
and processing the text to determine the level of complexity, as
well as identifying individual UI elements from a stream of GUI
dumps and matching these with a video record of the display during
the interaction. As these computational demands are too much for
cellphones and similar mobile devices, Gremlin offloads the anal-
ysis and performs it on a server. However, offloading analysis to
the cloud would consume too much wide-area network bandwidth.
The average recording size for an interaction is 15 MB even after
compression, so analyzing only a few interactions a day would be
a drain on cellular data plans. Therefore, Gremlin is designed to
offload analysis to edge computing infrastructure co-located with
network access points.

Gremlin quantifies available attention as the time the driver
can safely spend on a secondary task. It estimates how driving
conditions affect the two dimensions of attention most critical
in driving: visual and cognitive attention. For each dimension, it

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

computes a separate deadline that represents how long the driver
can safely look away from the road or spend on a non-driving
cognitive task such as listening to a voice message. These values
are derived from both laboratory studies [9, 47, 52, 58] and real-life
crash data [61].

Given these deadlines, Gremlin determines if a proposed interac-
tion can be scheduled based on its priority and predicted completion
time. Most application-initiated interactions have lower priority
than driving and should only be scheduled if they can be serviced
within the deadline. However, some interactions are very high
priority (e.g., road hazard alerts) and should always be delivered.

Thus, this paper makes the following contributions:

o It introduces a method for quantifying a driver’s available
attention based on data from laboratory studies and real-
world crash data.

It introduces a method for quantifying the attention demand
of interactions based on fine-grained analysis of the I/O
components comprising each interaction.

e It proposes an architecture in which mobile platforms bal-
ance computational and bandwidth concerns by recording
interactions and offloading the analysis of the recording to
nearby edge computing infrastructure.

It develops a quantitative algorithm for scheduling interac-
tions in vehicular computing that makes better decisions
than current qualitative algorithms.

Gremlin is a research prototype that demonstrates the feasibility
of these ideas. Our evaluation shows that Gremlin makes reasonable
decisions, but a comprehensive evaluation with many hours of
simulator and road testing would be required before deployment.
Section 5 discuss these and other current limitations of Gremlin.

We evaluate Gremlin by comparing its decisions to those recom-
mended by a vehicular Ul expert for seven interactions in three dif-
ferent driving scenarios. Gremlin’s decisions agree with the expert
over 90% of the time, and they match the expert recommendations
significantly more often than any coarse-grained scheduling pol-
icy. We further show that offloading of analysis to edge platforms
reduces use of wide-area networks by an average of 15MB per
analyzed interaction compared to cloud offload.

2 DESIGN CONSIDERATIONS

We begin by discussing three important issues we considered while
designing Gremlin.

2.1 What to schedule

Gremlin defines an interaction to be a related sequence of user
inputs and outputs that corresponds to performing a single log-
ical task. Typically, the interaction will start with a notification;
this often will be an audio tone, e.g., the one used by Android’s
default NotificationManager. Some applications use custom noti-
fications, such as a spoken sentence, a visual pop-up, or some com-
bination of the above. The driver might respond to the notification
and interact with the application via audio and voice commands, or
the interaction may take the form of reading information from the
vehicle touchscreen and responding with button presses or steering
wheel controls. Interactions may be as simple as hearing an audio
tone, reading text on a pop-up, and dismissing the screen, or as

Gremlin: Scheduling Interactions in Vehicular Computing

Touch or Speak| Input events
——>| Vehicle |——>| Mobile
User
-— HMI <« | Computer
Screen update Ul update
Audio output Audio output Vehicular
Application
Vehicle

Interaction recordings

Edge Computing Infrastructure Attention demand estimates

Edge
Server

Offloaded analysis

Figure 1: Overview of Gremlin’s compute environment

complex as a conversation with a digital assistant to find a nearby
restaurant with available seating. For interactions with multiple
steps, the driver may pause between steps to look at the road. The
interaction ends when the logical task is complete, typically when
the notification is dismissed or the application returns to a home
screen.

Some prior systems have scheduled mobile notifications. In con-
trast, Gremlin is designed to schedule the entire interactions that
those notifications initiate. In a complex driving situation, a user
may have sufficient attention available to respond to an audio tone
(the notification). However, that response may initiate a more com-
plex interaction (listening and responding to a text message), for
which the driver cannot spare attention at the moment. This situa-
tion is undesirable. The driver may be implicitly led to perform an
activity for which attention cannot be spared, causing distracted
driving. Alternatively, the driver must decide to abort or pause the
interaction upon realizing that it will be inappropriate; unfortu-
nately, simply remembering that a task is pending places a cognitive
burden on the user. We believe it is far better to only deliver a noti-
fication when the driver is able to perform the interaction that the
notification initiates.

2.2 Where to schedule interactions

Gremlin could be implemented as a library that provides support
for each application to schedule its own interactions. Alternatively,
Gremlin could be implemented as a single system component, either
in the OS or system middleware, that schedules interactions for all
applications. Each design has advantages and disadvantages.

Applications have the most knowledge about the expected con-
tents of the interactions they initiate (e.g., audio that will be output
and screens that will be displayed). This knowledge allows for more
accurate prediction of the attention demand of upcoming interac-
tions. Implementing scheduling at the application layer also makes
deployment easier, since few modifications would be required to
system software.

However, scheduling interactions at the application level jeop-
ardizes driver privacy. Determining available attention requires
understanding current driving conditions, which in turn requires
access to raw vehicle sensor data such as the current location, the
vehicle speed, etc. The driver must trust that each application does

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

not leak such data, even though studies have shown many current
mobile applications sending similar data to the cloud [12]. In con-
trast, system software is already trusted with the privacy of sensor
data, so scheduling at the system layer reduces the risk of leaks.

A second disadvantage of application-level scheduling is that
coordination among independently-developed applications is diffi-
cult [40]. If applications are unaware of each other, one application
may initiate a new interaction while a driver is currently handling
an interaction from another. For instance, exiting a highway may
cause a restaurant application to recommend nearby eating options,
a gas station application to show the lowest-cost fueling option, and
turn-by-turn route directions to inquire whether the route should
be recalculated. Coordinated scheduling by a single entity could
prevent these interactions occurring at the same time.

Based on these considerations, Gremlin schedules interactions at
the system layer. Specifically, we implement Gremlin as an Android
service. Gremlin works for unmodified applications by interposing
on standard Android services such as the NotificationManager
to know when interactions start and end, observe each interaction,
and learn models of attention demand for each type of interaction.
Gremlin further mitigates the lack of application-specific knowl-
edge by providing interfaces that allow applications to optionally
specify which actions comprise an interaction.

2.3 How to quantify attention

Gremlin’s goal is to move from the current qualitative scheduling
approach based on broad application categories (audio vs. visual)
and coarse characterizations of driving conditions (moving vs. not
moving) to a more nuanced, quantitative scheduling algorithm.
This required us to develop a way to express attention supply and
demand with a common numerical value.

Prior studies in the psychology literature [2, 60] find that atten-
tion is best represented with a multi-channel model. These studies
argue that attention should be viewed as a composition of multiple
independent dimensions such as visual, audio, and cognitive atten-
tion rather than as a single value. Furthermore, they find that a per-
son can perform two tasks simultaneously as long as those tasks do
not overload any single dimension of attention (e.g., one can simulta-
neously walk and listen to music). During conversations with vehic-
ular industry usability experts, we learned that visual and cognitive
are the two most important dimensions of attention for driving
because the driver needs to monitor the road carefully (visual atten-
tion) and respond quickly to new events (cognitive attention). Nu-
merous studies of driver distraction [9, 13, 29, 35, 47, 52, 58, 59, 63]
employ the multi-channel model and focus solely on visual or cogni-
tive attention. Therefore, Gremlin adopts the multi-channel model.

Next, we realized that each attention dimension is best quantified
as the time that can be safely spent on a visual or cognitive task
before returning attention to the primary task of driving. Visual
attention supply is the time that the driver can safely look away
from the road, and cognitive attention is the time that the driver
can spend on a discrete cognitive task. Gremlin views these values
as real-time deadline constraints, Ve a41ine a0d Cgeadline-

Gremlin quantifies the visual attention demand of an interaction
as Veompletion_time by summing the time needed by a driver to
perform low level I/O tasks that comprise the interaction such

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

Vehicle sensor data

Monitoring y——
. ‘ehicular
Attention Level Application
o) —
e Scheduling
\\0"‘ Interactions . —
?’ ‘ Attention demand predlctlonsJ
Defer delivery
Recording Analyzing
Interactions ‘ — : - : Interactions
Audio / video recordings of mteractlonsj

Figure 2: Gremlin performs three tasks continuously to schedule interactions

as reading text from the screen and pushing a response button.
Similarly, the cognitive attention demand, Ceompletion_times 1S
quantified by measuring the additional delay in driver response
time as a result of performing secondary tasks [43, 52, 53, 56]. For
example, Ceompletion_time captures the cognitive demand imposed
by audio-based interactions based on type (sound or speech) and
complexity.

Quantification of attention enables the use of simple real-time
scheduling algorithms. If the initiated interaction has lower pri-
ority than driving (as is commonly the case), then the interac-
tion should be allowed if Veompietion_time < Vdeadline and
Ceompletion_time < Cdeadline; otherwise it should be deferred
until the condition is satisfied.

3 IMPLEMENTATION

We first present an overview of Gremlin, and then we describe each
of its main components in detail.

3.1 Overview

Figure 1 shows the computational environment Gremlin targets. Ve-
hicular applications execute on a mobile device such as a cellphone.
The mobile computer is linked via Bluetooth to the vehicular HMI
which provides I/O capabilities. Current vehicular platforms such
as Ford’s AppLink and the MirrorLink standard allow applications
on a cellphone to display on a dashboard touchscreen, receive UL
events from the touchscreen and steering wheel controls, and per-
form audio I/O through the vehicular HMI. The cellphone links to
nearby edge computing infrastructure through one-hop or local-
area wireless connections. The infrastructure supports offloading of
stateless computation from the mobile phone to the edge platform.
Edge offloading enables the execution of computation too demand-
ing for the cellphone without incurring the cost of sending large
amounts of data to the cloud over expensive wide-area networks.
The analysis required by Gremlin has high computational de-
mand; our evaluation shows that it requires an average of 12.7
seconds per interaction on a well-provisioned server. Currently,
both in-vehicle compute platforms and modern smartphones lack

sufficient resources to run Gremlin’s analysis. Offload of analysis is
thus the only workable option.

We also note that sufficiently powerful compute resources are
unlikely to be included in future vehicles for several reasons. First,
most vehicles are commodity products, and manufacturers opti-
mize designs to save pennies; adding substantial general-purpose
compute power is too expensive. Second, it takes several years to
bring a vehicle from concept to market; once manufactured, vehi-
cle components are designed to last for at least ten years. Even a
leading-edge processor installed in a new vehicle will be woefully
inadequate a decade layer. Finally, reliability is very important in
consumer rankings of vehicles, and the challenge of debugging
and patching software in general-purpose vehicular computers is
daunting. For these reasons, the industry trend is for the vehicle
to provide input/output capability and sensors, while smartphones
brought into the vehicle execute applications.

As shown in Figure 2, Gremlin continuously performs four tasks:
(1) it monitors driving conditions to estimate the driver’s available
attention, (2) it records interactions with the user initiated by appli-
cations, (3) it analyzes the recorded interactions to generate a model
of attention demand for each interaction type, and (4) it combines
those models with estimates of the driver’s available attention to
schedule new interactions. Tasks 1, 2, and 4 execute on the mobile
computer in the vehicle, while task 3 is offloaded to edge servers.

When the driver interacts with an application for the first time,
Gremlin can immediately estimate the driver’s available visual and
cognitive attention (Vy.qdrine and Cgeqdiine) based on vehicle
speed, road curvature, driver experience, etc. However, it cannot
estimate visual and cognitive attention demand (Veompietion_time
and Ceompletion_time)s Since it has not yet seen any interactions to
generate an attention model. Thus, for previously unseen interac-
tions, Gremlin uses the default, conservative scheduling approach
of current vehicle HMIs: it allow unknown interactions if the vehi-
cle is stopped or if such interactions are solely audio-based. Once
Gremlin has generated a model of demand for an interaction type,
it uses that model to decide whether to allow or defer interactions
of that type as described below.

Gremlin: Scheduling Interactions in Vehicular Computing

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Function

Arguments and return values

gremlin_begin_notify

(IN application, IN id, IN priority) -> OUT success

gremlin_finish_notify

(IN application, IN id) -> OUT success

gremlin_cancel_notify

(IN application, IN id) -> OUT success

Table 1: API for applications with custom interactions

During the second task, which begins whenever Gremlin allows
an interaction, Gremlin captures audio and video of the input and
output for that interaction. This includes commands spoken by the
driver, audio output to the driver, information displayed on the
touchscreen, etc. This data is encoded and offloaded to a nearby
edge computer for analysis. Most Android applications use the
NotificationManager to initiate interactions; Gremlin modifies
this service to schedule interactions, as well as to learn when inter-
actions start and end. Some applications use custom methods for
interactions; Gremlin provides an API so that these applications
can provide similar information and receive scheduling decisions.
Gremlin infers that an application ends when the user dismisses
the notification or leaves the application screen (i.e., returns to a
home screen). Section 3.2 details how Gremlin records interactions.

In the third task, Gremlin analyzes recorded interactions to gen-
erate attention demand models for each interaction type. Grem-
lin determines Veompletion_time Dy analyzing each screen’s word
count, text contrast ratio, and button sizes. Gremlin computes
Ceompletion_time by analyzing the content and complexity of each
audio input and output. These computed values are then returned
back to the mobile computer to be incorporated into the attention
model. An attention model is a distribution of Veompierion_time
and Ceompletion_time for interactions of the same type. Section 3.3
describes in more detail how Gremlin analyzes interactions.

The final task, scheduling, occurs when an application wishes to
initiate a new interaction. Scheduling is done entirely on the phone
based on a local model generated from offline analysis; it is done
immediately when an application tries to initiate an interaction, and
the scheduling decision does not wait for any offloaded operation
to complete. Thus, if recently recorded interactions have yet to be
analyzed when an application initiates a new interaction, Gremlin
will make a decision based on a slightly stale model. This preserves
good response time and still improves over current practice, which
uses no model at all.

If Gremlin entirely lacks a model of attention for a given interac-
tion type, it uses the default coarse-grained HMI scheduling policy.
If the interaction type has higher priority than driving, it is allowed
immediately. High-priority interactions are rare (e.g., a road haz-
ard warning). Designating an interaction type as high-priority is
a privileged operation; we envision that this will be done by the
vehicle manufacturer.

Most interactions have lower priority than driving. For these,
Gremlin continuously updates its estimates of the driver’s avail-
able attention, Cy,udiine and Vjeadiine- It allows an interac-
tion if Vcompletionitime < Vieadline and Ccompletionitime <
Cleadline- Otherwise, it defers the interaction. Section 3.4 describes
how Gremlin estimates available attention and schedules interac-
tions.

3.2 Recording interactions

Gremlin records interactions in order to gather information suf-
ficient to determine attention demand (Veompietion_time and
Ceompletion_time) @t @ later time. An interaction starts with a noti-
fication or other application-initiated output and continues until
the logical task associated with that output is done. For instance,
an interaction can be as simple as a single audio message or a more
complex sequence of audio outputs and spoken responses. A visual
interaction may be a single screen, in which case it ends when the
user dismisses that screen, or it may be a sequence of screens and
touchscreen events.

Gremlin determines the start of interactions that use Android’s
default NotificationManager by interposing on its notify()
method. It determines that the interaction has ended when either
the application calls the NotificationManager cancel() method,
dismissing the interaction, or when the display returns to a home
screen. A few applications bypass Android and use custom meth-
ods for initiating interactions; Gremlin provides the API in Table 1
for such applications. Applications call gremlin_begin_notify()
to start an interaction and gremlin_finish_notify() when the
interaction is done. Gremlin uses these cues to determine when to
start and stop its recording of the interaction.

Gremlin uniquely identifies each type of interaction by an
(application, id) tuple, where application is the Android package
name and id specifies different interactions for the same application.
These values are provided directly as part of the API in Table 1 or
determined from the parameters passed into the notify() method.

Gremlin uses Android’s screenrecord binary to capture a video
of the screen content encoded in H.264 format. It also dumps the GUI
composition of the screen once per second to extract button size,
text, and other information. We modified Android’s ViewServer
and HierarchyViewer to write this data to a single file. Grem-
lin uses Android’s AudioFlinger to record all audio output, and
it records audio input via Android’s AudioRecord object. Audio
recordings use a WAV encoding.

Because edge computing resources may not always be nearby,
recorded interactions may be stored temporarily on the mobile
computer until they can be analyzed. Storing many recordings for
a long time is undesirable. First, mobile storage is limited and the
recordings are large. If storage space is exhausted, Gremlin must
delete older recording without analyzing them. Second, although
there are not strict deadlines for completing analysis, timeliness
does matter. If recordings are analyzed promptly, Gremlin reacts
faster when it observes new interactions or sees changes in user
or application behavior. Section 4.4 shows that recording imposes
little performance and storage overhead on the vehicular computing
system.

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

3.3 Analyzing interactions

We have developed a Java tool to analyze recorded interactions.
Gremlin offloads this compute-intensive analysis by running it on
an edge compute server. In this paper, we do not specifically address
the trust and management issues of hosting offloaded computation,
as the research community is exploring these issues in depth [5, 6,
24, 36].

Our design makes offload simpler by structuring the model gen-
eration as a series of stateless computations. Each interaction is
analyzed individually based solely on the audio, video, and GUI
recordings. The output of the computation, i.e., estimates of visual
and cognitive demand for that interaction, are shipped back to
the mobile computer, which incorporates those new values into
a model. If an analysis fails to complete, it is simply restarted on
another edge computer by shipping the recordings to that host.

We first show how Gremlin determines Veompietion_time and
Ceompletion_time for each recorded interaction. Our general ap-
proach is to first break an interaction into discrete input and output
events, and then use studies of human performance with various
interface types to quantify the time it takes to interact with each
element. Summing the individual element times gives the total
interaction time.

There are many factors that influence visual and cognitive de-
mand. Our approach in Gremlin is twofold: we include the most
important factors in our current analysis, but we also develop a
framework and methodology which makes it easy to include addi-
tional factors in the future.

3.3.1 Computing visual attention demand. To compute
Veompletion_time> Gremlin first determines the attention demanded
by each unique screen that comprises the interaction. It finds all
unique screens by scanning the GUI dump stream and matching
each screen with a corresponding video frame using timestamps in
the recorded data.

A screen’s visual demand is currently determined to be the sum
of the two components: text and buttons. To interact with a vehicle
touchscreen, the driver uses visual attention to both read the infor-
mation displayed on the screen and also to direct a finger to touch
the appropriate screen location.

Gremlin determines the time to read text from the word count
and text contrast ratio. The word count is determined from the
GUI dump, and the contrast ratio comes from the screen dump.
The average adult reads approximately 300 words per minute in
normal conditions [62]. However, several studies have highlighted
the importance of contrast ratio on visual performance [35, 59, 63].
For instance, Wang et al. [59] report up to a 38% difference in visual
performance depending on the contrast ratio. From linear inter-
polation of the results of that study, Gremlin defines a function,
Mcontrast, that specifies how much the contrast ratio affects read-
ing speed. Thus, for each screen the visual demand in seconds is:
(word_count/5) * Mcontrast(contrast_ratio).

For each button pressed during the interaction, Gremlin esti-
mates the visual demand required to locate and press the correct
region of the touchscreen. We use the results of a study by Sun
et al. that measures the reaction time of users touching one of a
set of buttons with different sizes, spacing, and contents [54]. The

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

dominant factor is button size; e.g., users require 1.7 seconds to
touch a 20x20 button but only 1.2 seconds to touch a 50x50 button.

Gremlin sums these elements to estimate the visual demand of a
screen. For instance, reading a screen with five words with contrast
ratio of 5:1 and touching a 40x40 button requires 1.9 seconds of
visual attention. Gremlin applies this analysis to each unique screen.
It sets Veompletion_time to the maximum of the demand values of
all screens that comprise an interaction. The reason we calculate
each screen individually is that drivers can return their eyes to the
road between screens (as long as there are no timeouts or other time-
based elements forbidden by vehicle UI guidelines [33]). The reason
we use the maximum value is that Gremlin should not begin an
interaction if the driver does not have sufficient attention available
to finish it.

3.3.2 Computing cognitive attention demand. Cognitive
demand, represented as Ccompletion_time iS the time that the dri-
ver needs to understand and respond to an interaction. Unlike
visual attention, this value is difficult to quantify directly from
low-level elements. Instead, Gremlin uses studies that indirectly
assess cognitive load by measuring the peripheral detection task
(PDT) response time [20, 28, 47]. PDT response time is measured by
initiating a signal in the peripheral vision of the driver every 3-5
seconds. PDT studies measure how long it takes the driver to notice
the signal. Intuitively, this could correspond to the time needed
to apply the brakes in an emergency. Higher cognitive workload
results in higher PDT response times. For instance, one study [52]
measured average PDT response time to be 900 ms when talking
to a passenger as compared to 700 ms in a baseline case without
any secondary activities. Based on these results, Gremlin would
consider Ceompletion_time for talking to a passenger to be 200 ms.

Gremlin uses the results of multiple studies [37, 46, 47, 52, 53]
that measure PDT response time while the driver performs sec-
ondary activities (e.g., giving a voice-based command, listening to
music, etc.). Each study reports a slightly different baseline PDT
response time for driving without any secondary activities. Thus,
Gremlin considers Ceomplerion_time Of the activity to be the delta
over baseline reported in each individual study. If multiple stud-
ies measure the same activity, Gremlin uses the average across all
such studies. Gremlin omits visual activities from its computation
of cognitive attention since their demand is already captured by
Vcompletion_tim@

For audio-only interactions, Gremlin currently categorizes the
interaction as belonging to one of four categories: listening only
(no speech), listening only (with speech), verbal commands only,
and listening with verbal responses. It determines whether or not
the recording contains speech by performing speech recognition
on the captured audio using PocketSphinx [8]. If the recording is
found to contain speech, Gremlin determines the complexity of the
speech by computing the Flesch reading-ease score (FRES) [32] on
the recognized utterance. This allows Gremlin to refine its estimate
of cognitive demand by leveraging results from studies that differ-
entiate PDT response time according to the complexity of the verbal
interaction [46, 52]. Comparing results in these studies shows that
the complexity of the speech can increase cognitive load by up to
48%. If an interaction consists of multiple activities, Gremlin uses
the maximum demand of any such activity as Ccompletion_time-

Gremlin: Scheduling Interactions in Vehicular Computing

3.3.3 Generating a model. After the offloaded analysis cal-
culates Vcompletion_time and Ccompletion_time for each interac-
tion, Gremlin deletes the recordings and incorporates the calcu-
lated values into its model. Gremlin maintains distributions of
Vcompletion_time and Ccompletion_time for each unique interac-
tion type it has recorded, indexed by the type’s (application, id)
tuple. Some interaction types (e.g., displaying a pop-up warning)
have the same content each time and, thus, have distributions with
very similar values. Other interactions may have different branches
the user may take (e.g., a hierarchy of dialogs) or vary widely in con-
tent (e.g., reading text messages). In such cases, the distributions will
have significantly different values. We wish to handle variance con-
servatively. Thus, Gremlin estimates visual and cognitive demand
by calculating the 95% confidence interval; it sets Veompietion_time
and Ceompletion_time to the upper interval value.

3.4 Scheduling interactions

We first describe how Gremlin continuously updates its estimates
of the driver’s currently available visual and cognitive attention.
We then show how these value are combined with demand models
to schedule new interactions.

3.4.1 Determining available visual attention. Gremlin de-
fines Vyoqdline as time that drivers can safely take their eyes off
the road to perform a secondary task. Gremlin estimates Vjeqdiine
based on data from controlled studies that measure how long a
driver’s vision can be safely occluded in different driving condi-
tions. In this paper, we present a general method for calculating
Vdeadline from such studies, and we develop an implementation
that currently considers three important factors: vehicle speed, road
curvature, and lane width. All factors are easily obtainable from
in-vehicle or cloud sources: speed can be read from the vehicle’s
OBD2 port, while curvature and lane width can be obtained by com-
bining GPS location with information from OpenStreetMap [44] or
an equivalent database.

Occlusion testing is a standard methodology for measuring the
effect of road conditions on visual demand. Such studies [9, 50,
58] simulate various driving conditions by outfitting drivers with
occlusion glasses that prevent them from viewing the road. During
the study, drivers activate a switch to receive a clear view for 0.5
seconds. By measuring the time between activations, the study
determines how long drivers can look away from the road in the
particular driving conditions being simulated. This value is precisely
the Vjeadiine that Gremlin needs to determine.

The studies we consider measure the effect of only a single
driving condition at a time. However, they all use a common metric:
the duration that a driver’s view can be occluded after 0.5 seconds of
a clear view. Thus, we combine the results of studies that measure
different factors by considering the relative impact each factor
has on the common metric. More specifically, Gremlin currently
calculates:

Vaeadline = Vdeadline(speed) = Pe(r) + Pe(w)
(Pe(r)=Curve radius penalty, Pe(w)=Lane width penalty) (1)

Vieadline(speed) gives available visual attention based solely on
the speed of the vehicle. We generate this function by performing a
linear regression over the study results of Senders et al. [50]. Linear

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

regression gives a good fit (R? coefficient of determination=0.96),
Given speed expressed in MPH, this yields:

Vieadline(speed) = 4.056 — 0.041 * speed (2)

Gremlin calculates the relative effect of road curvature, Pe(r), from
the results of Tsimhoni et al. [58]:
0.5
Pe(r) = 0.252+34.5%1/r
1.984

(r=radius of curve in meters) (3)

Based on the above study, Pe(w) decreases Vy,,41ine Py 2% as the
lane width, w, decreases by each foot from the standard width of
12 feet.

Note that while Gremlin currently considers many important
factors in estimated visual demand, there are more factors that we
would ideally add to our model such as frequency of intersections
and street directionality (one-way vs. two-way). We currently do
not use these factors because we lack the controlled studies that
measure them in isolation. However, our methodology makes it
easy to add such data as new studies are performed.

34.2 Determining available cognitive attention. Gremlin
defines Cy,q41ine as the time that the driver can safely spare for
a cognitive task such as voice-based interactions. It currently es-
timates this value based on surrounding traffic volume and the
driver’s experience level. Traffic volume is already obtained from
the cloud by turn-by-turn direction applications. A driver’s experi-
ence must be set manually, but it changes extremely rarely.

Studies that assess the impact of driving conditions on cognitive
attention commonly use PDT response time as a figure of merit. Un-
fortunately, these studies only measure how response time changes
as conditions vary; they do not specify how higher response times
negatively impact driving safety. Gremlin must determine how
much cognitive attention is available for secondary tasks. This
means that it must (1) understand how secondary tasks affect PDT
response time, and (2) set a threshold value beyond which higher
PDT response times are unacceptable for safe driving.

We first consider how to set the threshold. One method would
be to ask usability experts to choose a value. We believe a better
approach is to use actual road safety data.

For this purpose, we use a large-scale study of actual driving that
recorded crashes and near crashes (CNC) and correlated them with
secondary tasks being performed by the drivers of the vehicles [61].
The study calculates an odds ratio for each secondary task that
estimates the likelihood of a CNC occurring while performing the
task in comparison to driving without performing that task. An
odds ratio greater than 1 indicates that the task has a positive
correlation with CNC occurrences; e.g., reading has an odds ratio
of 1.34.

In order to use this data, we found secondary tasks reported in the
study that match well with tasks in existing PDT studies [43, 52, 56];
e.g., changing the radio station and talking on a cell phone. This
yields a set of (odds_ratio, response_time) tuples. By performing
a linear regression on these tuples (R? coefficient of determina-
tion=0.88), we find that a PDT response time of 940 ms corresponds
to an odds ratio of 1.0; in other words, any combination of activ-
ities (e.g., driving plus performing a secondary task) with a PDT

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Novice driver | Experienced driver
Light traffic 73 ms 274 ms
Medium traffic 0ms 253 ms
Heavy traffic 0ms 152 ms

Table 2: Cj.,41ine Values based on the driver’s experience
and traffic conditions.

response time higher than 940 ms is projected to increase the base
probability of crashes and near crashes. To isolate the effect of the
secondary task, we subtract the average response time measured
across all studies for driving without performing a secondary task.
This results in Cjeg41ine (the secondary task threshold) of 274 ms;
any secondary task that adds more than this value to PDT response
time should not be allowed while driving.

The above threshold represents a best-case scenario because the
baseline is an experienced driver operating the vehicle in light traffic
conditions. Patten et al. [47] show that PDT response times increase
for less-experienced drivers and under heavier traffic conditions.
As shown in Table 2, Gremlin uses the experience definition of
Patten et al. and refines its Cy.,47ine values to reflect the delta
in response times measured in this study. As might be expected,
novice drivers have no attention to spare for any secondary task
under medium and heavy traffic conditions and almost none under
light conditions. Even experienced drivers have much less attention
to spare in heavy traffic.

Gremlin further considers how specific driving situations impact
Cjeadline based on a study by Martens et al [37]. For instance,
driving around a sharp curve decreases Cy,qdiine by 113 ms and
stopping at a stop sign decreases Cjeqd1ine by 184 ms. Both situa-
tions can be determined by combining vehicle location and road
data. Interestingly, these results indicate that interactions should
rarely be initiated while the vehicle is at a stop sign, presumably
because considerable attention is needed to determine when to en-
ter the intersection. This contradicts recent proposals and deployed
systems that allow interactions when the vehicle is not moving [49].

3.4.3 Allowing or deferring interactions. Unmodified ap-
plications attempt to initiate an interaction by calling the notify()
method of Android’s NotificationManager.If an application uses
its own custom method for notifications, it must be modified to call
gremlin_begin_notify() as shown in Table 1.

Gremlin maintains a white list of interaction types
((application,id) tuples) that are high priority. Updating
this list is a privileged operation; we envision that the list is
set by the vehicle manufacturer and maintained via software
updates. Interactions on this list are considered to be critical and
are delivered immediately.

Otherwise, Gremlin Ceompletion_time and
Veompletion_time for the interaction type from the models
generated offline. If it does not have a model yet for a new
interaction type, it applies the default HMI scheduling policy.
Gremlin updates Cgeqdiine and Vjeadiine continuously when
information about vehicle location, traffic conditions, etc. changes.
Updating the values has low overhead, requiring only a table
lookup.

retrieves

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

Next, Gremlin allows the interaction to proceed if
Vcompletion_time < Vdeadline and ccompletion_time <
Cgeadline- For unmodified applications, NotificationManager
simply delivers the requested notification. For custom applications,
gremlin_begin_notify() returns 1 (success), informing the
application that it should initiate its interaction.

If Gremlin decides to defer the notification, it continually
checks if Vcompletion_time < Vdeadline and Ccompletion_time <
Cdeadline as both Vgeqgiine and Cgeqdrine change. The notify
methods block until this condition is satisfied. Afterward, the
notification is initiated as above. An application whose interac-
tion has been deferred may cancel its request by either invok-
ing the appropriate method on the NotificationManager or call-
ing gremlin_cancel_notify(). Calling the latter method causes
gremlin_begin_notify() to return 0, informing the application
that it should not perform the interaction.

Note that Gremlin can only enforce its scheduling decisions for
applications that use the NotificationManager API; other appli-
cations must voluntarily decide to use and respect the results of
calling the Gremlin API. To enforce behavior for all applications,
vehicle manufacturers could potentially require all installed appli-
cations to interact with the driver through a standard service such
as NotificationManager.

4 EVALUATION

Our evaluation answers the following questions:

e How well do Gremlin’s scheduling decisions match those
of a vehicular interface expert across a range of interaction
types and driving scenarios?

e What are the computation and bandwidth requirements of
offloaded analysis?

e How much overhead does Gremlin add?

4.1 Setup

We used a Nexus 9 tablet running Android 5.0.1 with Gremlin to run
vehicular applications and emulate a vehicular HMI touchscreen.
We selected the seven representative interactions shown in Table 3
for our evaluation. These include a mixture of vehicular and mobile
applications, high-priority and low-priority interactions, audio-only
and visual interactions, and simple and complex interactions.

We first used Gremlin to record five different interactions for
each of the seven types. We used simulated driving traces to gen-
erate the interactions; for instance, the traces emulate changes in
location for a moving vehicle that cause location-based alerts to
pop-up and changes in speed that cause excessive speed warnings
to be displayed. We explored a range of user actions for each in-
teraction type by varying messages, locations, reminders, etc. for
each observation. The last two columns in Table 3 show Gremlin’s
results for analyzing the recorded interactions. Veompietion_time
is visual attention demand, and Ccompletion_time iS cognitive at-
tention demand.

We evaluated each interaction in the three driving scenarios
shown in Table 4; the scenarios differ substantially in attention
demand. The last two columns of the table show the values Gremlin
calculated for V. s41ine and Cyeadline-

Gremlin: Scheduling Interactions in Vehicular Computing

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Interaction Priority Description Veompletion_time | Ccompletion_time
Waze alerts the driver about an upcoming road hazard with an audio
Waze-Hazard | High A peoming 1787 ms 66 ms
message and a visual pop-up.
Waze alerts the driver about an upcoming speed camera with an audio
Waze-Camera Low . 1136 ms 4ms
tone and a visual pop-up.
. Google Hangouts alerts the driver about a new message with an audio
Hangouts-Visual Low - . . 18645 ms 4ms
tone. The driver selects the message, displays it, and responds.
Hangouts-Voice Low Same as above, but all interactions are voice-based. 0ms 212ms
GeoTask plays an audio tone and displays a pre-set reminder when the
GeoTask Low . P2y . SPays ap 2227 ms 4ms
driver passes by a designated location.
Speed Cameras warns the driver with an audio “speed limit exceeded”
Speed Cameras High | message. The screen shows the driver’s current speed and the speed 706 ms 66 ms
limit.
Foursquare produces an audio tone and a notification to show nearby
Foursquare Low restaurants when the driver enters a new city. The driver clicks on the 22773 ms 4ms
notification to display the list of restaurants.

Table 3: Interactions used to evaluate Gremlin. For each interaction, the table shows the Veompierion_time and Ceompletion_time

values calculated by Gremlin over 5 observations.

Driving scenario Description Vieadline | Cdeadline
L ttention d d Experienced driver traveling at 20 MPH on a straight rural 3243 274
oW attention deman road with standard lane width and light traffic. s ms
Experienced driver traveling at 35 MPH on a slightly curving
Medium attention demand | road (curve radius of 592 meters) with 11 foot lane width and 2229 ms 152 ms
heavy traffic.
Novice driver traveling at 50 MPH on a sharply curving road
High attention demand | (curve radius of 60 meters) with standard lane width and light 615ms 73 ms
traffic.

Table 4: Driving scenarios used to evaluate Gremlin. For each scenario, the table shows the V. 47ine and Cgeud1ine values

calculated by Gremlin.

4.2 Decision quality

We evaluated Gremlin’s scheduling decisions by comparing them
to the decisions recommended by a vehicular interface expert from
the University of Michigan Transportation Research Institute. The
expert we recruited is not a member of our project team and was
not aware of our work prior to this study.

We first explained the three driving scenarios, and we showed
the expert a typical interaction for each of the seven types in Table 3
(the first recorded interaction in each case). We asked the expert to
decide whether or not he would allow each interaction in each of
the three driving scenarios. We did not share Gremlin’s assessments
until after the expert completed this task.

Table 5 compares Gremlin’s decisions with those of the expert.
A check indicates a decision to allow the interaction, and an x
indicates a decision to disallow or defer the interaction. Overall,
Gremlin’s decisions matched those of the expert in 19 out of 21
cases (90.4%).

In the opinion of the expert, Gremlin had one false positive in
which it allowed an interaction that it should not have allowed.
Gremlin allowed the Waze-Camera interaction during the medium
demand scenario. The expert felt that this interaction should have

been disallowed since the driver must look at the screen to under-
stand the reason for the audio output tone; the tone itself conveys
no useful information.

In the opinion of the expert, Gremlin also had one false negative.
The expert felt that the GeoTask interaction should be allowed in all
scenarios, including the high-demand scenario in which Gremlin
disallowed it, because the driver expects this output to occur at the
given location. Since the driver has previously set this reminder, the
activation should not come as a surprise. Gremlin lacks the context
to make this type of inference.

Stepping back from direct comparisons, this study also confirms
Gremlin’s general approach of initiating interactions based on cur-
rent driving conditions. For three of the seven interactions, the
expert allowed the interaction in the low demand scenario and dis-
allowed the same interaction in the high demand scenario. Simply
denying all interactions would match the expert’s opinion in only
10 of the 21 cases.

Many current vehicle HMIs allow voiced-based interactions and
disallow any interactions that use the touchscreen when the vehicle
is moving [16, 38, 57]. Both our results and the expert’s opinions
show that this approach works poorly. This default policy would

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

Low demand Medium demand High demand
Interaction Gremlin | Expert || Gremlin | Expert || Gremlin | Expert
Waze-Hazard v v v v v v
Waze-Camera v v v X X X
Hangouts-Visual X X X X X X
Hangouts-Voice v v X X X X
GeoTask v v v v X v
Speed Cameras v v v v v v
Foursquare X X X X X X

Table 5: This table compares Gremlin’s scheduling decisions with those of a vehicular Ul expert. We show results for each
combination of interaction type and driving scenario. A X mark indicates a decision to allow the interaction, and a v' mark
indicates a decision to defer/disallow the interaction. Cases where Gremlin and the expert disagreed are highlighted in gray.

Interaction Analysis time (seconds) | Unique video frames | Audio I/Os | Compressed size (MB)
Waze-Hazard 15.6 13.2 1 29.1
Waze-Camera 27.2 24.6 1 27.9

Hangouts-Visual 16.2 20.2 1 7.3
Hangouts-Voice 12.6 0 8 13.0
GeoTask 4.8 2.8 1 4.5
Speed Cameras 4.6 2.8 1.4 12.4
Foursquare 8.4 7.6 1 12.3

Table 6: The second column shows the average time to analyze each type of interaction. The next two columns show the
average number of unique video frames and audio I/Os per recorded interaction. The final column shows the average size of

the compressed recordings.

Application Baseline | Recording | Overhead
Google Hangouts 20ms 24 ms 4ms
Waze 122 ms 148 ms 26 ms

Table 7: Overhead of Gremlin recording interactions as mea-
sured by GUI response time for two applications

match the expert opinion in only 9 of the 21 cases. For the voiced-
based Google Hangouts interaction, the expert and Gremlin both
find that the interaction should be disallowed in the medium de-
mand and high demand scenarios, meaning that the driver is likely
to be cognitively overloaded by the default policy in many driving
conditions. On the other hand, both the expert and Gremlin identify
many visual interactions that should be allowed while the vehicle is
moving, either because they are high-priority such as road hazard
alerts, or because they do not demand much attention, e.g., GeoTask
reminders.

We also asked the expert for qualitative feedback about Gremlin.
The expert agreed with Gremlin’s approach of managing driver’s
attention but felt strongly that, in order for Gremlin to be practical,
it should consider more factors, such as the driver’s familiarity with
the current road, the familiarity with the interaction, street condi-
tions, and weather. We agree with assessment and view Gremlin as
a prototype that can be extended to consider such factors.

4.3 Offloaded analysis

We measured both the computational and network demands of
offloading analysis to edge infrastructure. We used a workstation
with 4 3.1 GHz Xeon E5-2687W cores and 16 GB of RAM to repre-
sent a typical edge compute node. The second column in Table 6
shows the average time required to analyze each type of recorded
interaction on this platform. The third and forth columns show, for
each interaction type, the average number of unique video frames
and audio I/Os analyzed.

Gremlin takes an average of 12.7 seconds to analyze an interac-
tion on a workstation, but there is considerable variation across
different types. For each second of recorded interaction, the ana-
lyzer takes approximately 1.1 seconds to perform visual analysis
and 1.6 seconds to analyze audio. These results demonstrate the
benefit of offloading analysis of recorded interactions; this work-
load is simply too compute-intensive to run on a typical mobile
computer.

The final column in Table 6 shows the average size of the com-
pressed recordings for each interaction type. The average size varies
from 4.5 MB (GeoTask) to 29.1 MB (Waze-Hazard), with an average
of 15.2 MB across all recorded interactions. At this size, recording
2-3 interactions per day and analyzing them in the cloud could
consume approximately 1 GB per month of wide-area bandwidth.
By offloading to the edge rather than the cloud, this data need only
be sent over local-area network connections, potentially providing
a considerable cost savings.

Gremlin: Scheduling Interactions in Vehicular Computing

4.4 Overhead

We next measured Gremlin’s overhead by comparing interactive
application performance when Gremlin is recording with perfor-
mance when Gremlin is not running. For this experiment, we replay
touch events using RERAN [17] and measure the response time
for each event in an interaction as the time between the user click-
ing on the screen and the application rendering the resulting UI
elements. We measured Waze and Google Hangouts for this experi-
ment. Google Hangout is highly interactive but does not contain
complex graphical elements. Waze is one of the least interactive
of our applications, but it has some of the most complex graphical
elements.

Table 7 shows that Gremlin recording adds very little per-
formance overhead. This overhead occurs rarely—only during
application-initiated interactions. GUI response time for Google
Hangouts and Waze is slowed by 4 ms and 26 ms, respectively. These
values are well below the commonly-cited 50 ms threshold at which
users perceive differences in GUI response times [15]. The overhead
for Waze is larger due to an increase in the size of the captured
video; larger portions of the screen are changed more often in this
interaction.

We also attempted to measure the overhead of Gremlin schedul-
ing on application performance. However, the overhead was not
measurable within experimental error.

5 DISCUSSION

Gremlin is a promising prototype. Our evaluation shows that it
makes reasonable decisions and imposes only a small performance
overhead on the vehicular HMI. However, there are many chal-
lenges that need to be addressed before a Gremlin-like system can
be deployed in vehicles.

As noted in the evaluation, the attention model needs to be ex-
panded. We consider many important factors in assessing available
attention and attention demand, but there are several other factors
we would like to include. For assessing attention demand, we would
like to include graphical Ul elements and other controls beyond
touchscreen buttons (e.g., haptic steering wheel controls). For as-
sessing available attention, we would like to include factors such
as the time of day, road familiarity, fatigue or other physical condi-
tions of the driver, and how familiar a driver is with a particular
interaction. Detection of roadside hazards and pedestrians could
also inform scheduling decisions. We provide a methodology for
incorporating standard PDT and road studies into Gremlin’s model.
However, such studies would still need to be performed in order to
generate the model parameters.

Gremlin assumes that reducing the amount of data sent over
wide-area networks between the edge and the cloud will result
in significant cost savings. However, specific costs models will
only become clear once significant compute capacity is deployed
at the edge. Currently, this motivation holds in restricted edge
deployments. For instance, when the phone stores recordings, then
offloads computation to a server co-located with a home access
point, no data is used for the back-haul connection to the cloud or
for a cellular plan. We believe it is reasonable to think that edge
infrastructure could evolve to include similar network/compute
co-location at roadside and related locations.

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Gremlin currently relies on a privileged user such as the vehicle
manufacturer to specify which interactions are high priority, and it
does not have a mechanism to enforce its decisions for all applica-
tions. Current vehicle HMIs must already deal with these issues, so
industry standards for deciding which applications can be installed
and enforcing interface restrictions would help both current HMIs
and Gremlin.

Our comparison of Gremlin’s decisions with expert opinion is
an end-to-end check that Gremlin is making reasonable decisions.
However, different experts could express different opinions. Ulti-
mately, extensive user testing is required to deploy a system like
Gremlin in a vehicle.

6 RELATED WORK

It has long been recognized that user attention is limited in mo-
bile computing. Consequently, there has been much past work to
understand the impact of notifications and to schedule when such
interruptions occur. Gremlin differs significantly from this past
work in that it attempts to schedule not just a notification, but
rather the entire interaction that is initiated by that notification.
This leads to its unique approach of quantifying attention demand
and building models to predict the demand of future interactions,
then comparing these predictions to dynamic estimates of attention
supply.

Many researchers have studied the detrimental effect of poorly-
timed notifications in desktop environments [4, 10, 26]. Subsequent
work [27] has found that importance matters: users are willing
to tolerate some disruption in return for receiving valuable no-
tifications. Although these studies target a different computing
environment, they support Gremlin’s decision to schedule based
on priority, as well as on attention supply and demand.

Other researchers have attempted to determine the best time to
interrupt users to deliver notifications [1, 22, 23, 25]. For instance,
PRIORITIES [23] is a desktop e-mail notification system that uses
a Bayesian model to infer the user’s available attention level and
compute the expected cost of interruption and deferring alerts.
Instead of inferring user activity, Gremlin observes it directly using
vehicle sensors. Gremlin also employs controlled user studies and
road data to quantify how sensor data correlates with attention
supply.

Kim et al. [31] use body-worn sensors and vehicular data to
determine the opportune moment to interrupt the driver. Their
work assumes that the drivers are the best judge of when they
should be interrupted, and so learns from their past behavior. In
contrast, Gremlin quantifies attention demand and supply from
the sensor data and observations of past interactions. Unlike the
work of Kim et al., Gremlin considers the entire interaction that
follows the interruption in its scheduling decision, rather than just
the interruption itself. Other recent studies have focused on mea-
suring changes in driver’s workload based on measurable factors,
such as pupil dilation [48], heart-rate variability [45], and driver
movement changes on a seat [7]. However, these studies do not
quantify available attention or match it to the demand of secondary
tasks as Gremlin does.

Similarly, recent research attempts to determine proper task
break points for mobile devices in non-vehicular settings. Fischer

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

et al. [14] determine the end of mobile device interactions to deliver
notifications at such instances. Okoshi et al. [42] determine accurate
application-specific break points, during which the user can be
interrupted while using an application. Ho et al. [21] determine
when the user is transitioning from one physical activity to another.
Kern et al. [30] sense the user’s context to use socially acceptable
notifications modalities.

AMC [33] checks vehicular applications to determine whether
they conform to best practice guidelines. AMC performs static
checking of screens and task lengths, whereas Gremlin schedules
dynamic behavior (i.e., interactions). AMC determines only whether
an interface is acceptable or not in standard driving conditions,
whereas Gremlin considers the changing availability of the driver’s
attention.

Green [18] originally pointed out the need for a workload man-
ager that regulates the flow of information to drivers. In a workshop
paper [34], we previously made the case for managing user atten-
tion in the operating system. Although our design agrees with
the general approach in these papers, neither of these proposals
included a specific implementation such as Gremlin.

7 CONCLUSION

We have described a methodology for scheduling interactions initi-
ated by vehicular applications and a prototype, called Gremlin, that
demonstrates this methodology. In the future, we hope to extend
our work to other attention-limited situations, such as when a user
is walking, working at the office, or engaging in social activities.
Scheduling in these situations is more complex. In vehicular com-
puting, Gremlin knows that the primary task of driving is very
important. The complexity of this task has been measured in nu-
merous studies. Further, the vehicle has a wide array of sensors
that can assess the context in which the driver is operating. Other
attention-limited situations have a wider range of primary activi-
ties with varying importance, and they have a comparative lack of
sensors. We believe Gremlin is an important first step toward sched-
uling interactions in more general attention-limited situations, and
we look forward to tackling the research challenges that remain.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful comments.
This work has been partially supported by the National Science
Foundation under grant CNS-1717064 and by Ford Motor Company.
Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation, Ford, or the
University of Michigan.

REFERENCES

[1] Apamczyk, P. D., AND BaAILEY, B. P. If not now, when?: The effects of interrup-

tion at different moments within task execution. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (Vienna, Austria, April 2004),

CHI 04, pp. 271-278.

ALLPORT, D. A., ANTONTs, B., AND REYNOLDs, P. On the division of attention:

A disproof of the single channel hypothesis. Quarterly Journal of Experimental

Psychology 24, 2 (1972), 225-235.

[3] Smartphone use behind the wheel survey. http://about.att.com/content/dam/
snrdocs/2015%201t%20Can%20Wait%20Report_Smartphone%20Use%20Behind%
20the%20Wheel%20.pdf.

N,

Kyungmin Lee, Jason Flinn, and Brian D. Noble
Univeristy of Michigan

[4] BaiLey, B. P., AND KONsTAN, J. A. On the need for attention-aware systems:
Measuring effects of interruption on task performance, error rate, and affective
state. Computers in Human Behavior 22, 4 (2006), 685-708.

[5] BaumaNN, A., PEINADO, M., AND HUNT, G. Shielding applications from an
untrusted cloud with haven. In Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (Broomfield, CO, October 2014).

[6] BuArRDWAJ, K., SHIH, M.-W., AGARWAL, P., Kim, T., AND ScHWAN, K. Fast, scalable,
and secure onloading of edge functions using airbox. In Proceedings of the First
IEEE/ACM Symposium on Edge Computing (Washington, DC, October 2016).

[7] Braun, A, FRANK, S., MAJEWSKI, M., AND WANG, X. Capseat: Capacitive proximity
sensing for automotive activity recognition. In Proceedings of the 7th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications
(Nottingham, United Kingdom, 2015), pp. 225-232.

[8] CMU SpHINX. PocketSphinx. http://cmusphinx.sourceforge.net/.

[9] Courage, C., MILGRAM, P., AND SMILEY, A. An investigation of attentional
demand in a simulated driving environment. In Proceedings of the Human Factors
and Ergonomics Society Annual Meeting (San Diego, CA, July 2000).

[10] CzerwiNski, M., HOrvITZ, E., AND WILHITE, S. A diary study of task switching

and interruptions. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (Vienna, Austria, April 2004), CHI °04, pp. 175-182.

DRIvER Focus-TELEMATICS WORKING GROUP. Statement of principles, criteria

and verification procedures on driver interactions with advanced in-vehicle

information and communication systems. Tech. rep., Alliance of Automobile

Manufacturers, June 2003.

Enck, W., GILBERT, P., con CHUN, B., Cox, L. P., JuNg, J., McDANIEL, P., AND

SHETH, A. N. TaintDroid: An information-flow tracking system for realtime

privacy monitoring on smartphones. In Proceedings of the 9th Symposium on

Operating Systems Design and Implementation (Vancouver, BC, October 2010).

ENGSTROM, J., JOHANSSON, E., AND OSTLUND, J. Effects of visual and cognitive

load in real and simulated motorway driving. Transportation Research Part F:

Traffic Psychology and Behaviour 8, 2 (2005), 97-120.

FISCHER, J. E., GREENHALGH, C., AND BENFORD, S. Investigating episodes of mobile

phone activity as indicators of opportune moments to deliver notifications. In

Proceedings of the 13th International Conference on Human Computer Interaction

with Mobile Devices and Services (Stockholm, Sweden, August 2011), pp. 181-190.

[15] FLAUTNER, K., AND MUDGE, T. Vertigo: Automatic performance-setting for Linux.
In Proceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation (Boston, MA, December 2002), pp. 105-116.

[16] GENERAL MoToRrs LLC. 2015 Chevrolet MyLink details book. https://my.gm.com/.

[17] Gowmez, L., NEAMTIU, I, Azim, T., AND MILLSTEIN, T. Reran: Timing- and touch-
sensitive record and replay for android. In Proceedings of the 2013 International
Conference on Software Engineering (San Francisco, CA, May 2013), pp. 72-81.

[18] GrEEN, P. Driver distraction, telematics design, and workload managers: Safety

issues and solutions. In SAE Convergence (2004), Society of Automotive Engineers.

GREEN, P., LEVISON, W., PAELKE, G., AND SERAFIN, C. Suggested human factors

design guidelines for driver information systems. Tech. rep., The University of

Michigan Transportation Research Institute (UMTRI), August 1994.

[20] Harwms, L., AND PATTEN, C. Peripheral detection as a measure of driver distraction.

a study of memory-based versus system-based navigation in a built-up area.

Transportation Research Part F: Traffic Psychology and Behaviour 6, 1 (2003), 23—

36.

Ho, J., AND INTILLE, S. S. Using context-aware computing to reduce the perceived

burden of interruptions from mobile devices. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (Portland, Oregon, April 2005),

CHI 05, pp. 909-918.

HorviTz, E., AND APACIBLE, J. Learning and reasoning about interruption. In Pro-

ceedings of the 5th International Conference on Multimodal Interfaces (Vancouver,

Canada, November 2003), ICMI 03, pp. 20-27.

HorviTtz, E., Jacoss, A., AND HovEL, D. Attention-sensitive alerting. In Proceed-

ings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (Stockholm,

Sweden, July 1999), UAT'99, pp. 305-313.

[24] Hunr, T, Zuu, Z., Xu, Y., PETER, S., AND WITCHEL, E. Ryoan: A distributed

sandbox for untrusted computation on secret data. In Proceedings of the 12th

Symposium on Operating Systems Design and Implementation (Savannah, GA,

November 2016).

IoBAL, S. T., AND BAILEY, B. P. Understanding and developing models for detecting

and differentiating breakpoints during interactive tasks. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (San Jose, California,

April 2007), CHI 07, pp. 697-706.

IgBAL, S. T., AND HorviTz, E. Disruption and recovery of computing tasks:

Field study, analysis, and directions. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (San Jose, California, April 2007), CHI 07,

pp. 677-686.

[27] IoBaAL, S. T., AND HorviTz, E. Notifications and awareness: A field study of alert
usage and preferences. In Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work (Savannah, GA, February 2010), CSCW °10, pp. 27-30.

[28] Jann, G., OEHME, A., KrREMS, J. F., AND GELAU, C. Peripheral detection as a
workload measure in driving: Effects of traffic complexity and route guidance

[11

[12

(13

[14

[19

[21

[22

[23

~
2

[26

http://about.att.com/content/dam/snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%20the%20Wheel%20.pdf
http://about.att.com/content/dam/snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%20the%20Wheel%20.pdf
http://about.att.com/content/dam/snrdocs/2015%20It%20Can%20Wait%20Report_Smartphone%20Use%20Behind%20the%20Wheel%20.pdf
http://cmusphinx.sourceforge.net/
https://my.gm.com/

Gremlin: Scheduling Interactions in Vehicular Computing

[29]

[30]

[31]

[32

[33]

[34]

[35

[36]

[37

[38]

[39]

[40]

[41]

[42

[43]

[44
[45]

[46]

[47

[48]

[49

[50]

[51

[52

[53]

system use in a driving study. Transportation Research Part F: Traffic Psychology
and Behaviour 8, 3 (2005), 255-275.

JamsoN, A. H., AND MERAT, N. Surrogate in-vehicle information systems and
driver behaviour: Effects of visual and cognitive load in simulated rural driving.
Transportation Research Part F: Traffic Psychology and Behaviour 8, 2 (2005), 79-96.
KERN, N., AND ScHIELE, B. Context-aware notification for wearable computing.
In Proceedings of the 7th IEEE International Symposium on Wearable Computers
(Washington, DC, October 2003), pp. 223-230.

Kim, S., CHUN, J., AND DEY, A. K. Sensors know when to interrupt you in the car:
Detecting driver interruptibility through monitoring of peripheral interactions.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI) (Seoul, Republic of Korea, April 2015), pp. 487-496.

KincaID,]. P., FISHBURNE JR, R. P., RoGERS, R. L., AND CHissoMm, B. S. Derivation
of new readability formulas (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel. Tech. rep., DTIC Document,
Feb 1975.

LeE, K., FLINN, J., Gruiy, T., NoBLE, B., AND PEPLIN, C. AMC: Verifying user inter-
face properties for vehicular applications. In Proceedings of the 11th International
Conference on Mobile Systems, Applications and Services (Taipei, Taiwan, June
2013), pp. 1-12.

LEE, K., FLINN, J., AND NOBLE, B. The case for operating system management
of user attention. In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications (HotMobile) (Santa Fe, NM, February 2015).
Lin, C.-C. Effects of contrast ratio and text color on visual performance with
tft-led. International Journal of Industrial Ergonomics 31, 2 (2003), 65-72.

Liu, P, WiLL1s, D., AND BANERJEE, S. Paradrop: Enabling lightweight multi-
tenancy at the network’s extreme edge. In Proceedings of the First IEEE/ACM
Symposium on Edge Computing (Washington, DC, October 2016).

MARTENS, M., AND VAN WINsum, W. Measuring distraction: the peripheral
detection task. Tech. rep., National Highway Traffic Safety Administration, Jun
2000.

Mazpa MoTor CoMPANY. MZD Connect. http://infotainment.mazdahandsfree.
com/communication-sms?language=en-RW.

NAKAMURA, Y. JAMA guideline for in-vehicle display systems. Tech. rep., Japan
Automobile Manufacturers Association, Oct 2008.

NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D., TiLTON, J. E., FLINN,]J., AND
WALKER, K. R. Agile application-aware adaptation for mobility. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles (Saint-Malo, France,
October 1997), pp. 276-287.

OF AUTOMOBILE MANUFACTURERS, A. Comments received from the alliance of
automobile manufacturers. Accessed at www.regulations.gov, Docket NHTSA-
2010-0053, Document Number 0104.

OxosHl, T., TokuDA, H., AND NAKAZAWA, J. Attelia: Sensing user’s attention
status on smart phones. In 16th International Conference on Ubiquitous Computing
(Seattle, Washington, September 2014), pp. 139-142.

OLssON, S., AND BURNS, P. Measuring driver visual distraction with a peripheral
detection task. Tech. rep., National Highway Traffic Safety Administration, Feb
2008.

https://www.openstreetmap.org.

PARK, J. W.,K1Mm, S., AND DEY, A. Integrated driving aware system in the real-world:
Sensing, computing and feedback. In Proceedings of the 2016 CHI Conference:
Extended Abstracts on Human Factors in Computing Systems (Santa Clara, CA,
2016), pp. 1591-1597.

PATTEN, C. J., KIRCHER, A., OSTLUND, J., AND NILSSON, L. Using mobile telephones:
cognitive workload and attention resource allocation. Accident Analysis and
Prevention 36, 3 (2004), 341-350.

PATTEN, C. J., KIRCHER, A., OSTLUND, J., NILSSON, L., AND OLA, S. Driver experi-
ence and cognitive workload in different traffic environments. Accident Analysis
and Prevention 38, 5 (2006), 887-894.

RAJAN, R., SELKER, T., AND LANE, I. Task load estimation and mediation using
psycho-physiological measures. In Proceedings of the 21st International Conference
on Intelligent User Interfaces (Sonoma, CA, 2016), pp. 48-59.

RicHTEL, M. Phone makers could cut off drivers. so why don’t they? The New
York Times (2016).

SENDERS, J., KRISTOFFERSON, A., LEVIsOoN, W., DIeTRrICH, C., AND J.L., W. The
attentional demand of automobile driving. Highway Research Record, 195 (1967),
15-33.

STEVENS, A., QUIMBY, A., BOARD, A., KERsLoOT, T., AND BUrNs, P. Design
guidelines for safety of in-vehicle information systems. Tech. rep., Transport
Research Laboratory, Feb 2002.

STRAYER, D. L., COOPER, J. M., TURRILL, J., COLEMAN,]., MEDEIROSWARD, N., AND
Bronpr, F. Measuring cognitive distraction in the automobile. Tech. rep., AAA
Foundation for Traffic Safety, Jun 2013.

STRAYER, D. L., TURRILL, J., COLEMAN, J. R., OrTIzZ, E. V., AND COOPER, J. M.
Measuring cognitive distraction in the automobile ii: Assessing in-vehicle voice-
based interactive technologies. Tech. rep., AAA Foundation for Traffic Safety,
Oct 2014.

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

[54]

[55]

[56

[57]

(58]

[59]

[60

[61

[62

[63]

Sun, X., PLOCHER, T., AND Qu, W. An empirical study on the smallest comfortable
button/icon size on touch screen. In Proceedings of the 2nd International Conference
on Usability and Internationalizationi (UI-HCII) (Beijing, China, July 2007), pp. 615-
621.

Task Force HML European statement of principles on human machine interface
for in-vehicle information and communication systems. Tech. rep., Commission
of the European Communities, December 1998.

ToRrNROS, J. E., AND BOLLING, A. K. Mobile phone usedATeffects of handheld and
handsfree phones on driving performance. Accident Analysis & Prevention 37,5
(2005), 902-909.

TovyoTa MoTOoR CoMPANY. Entune system quick reference guide. http://www.
toyota.com/t3Portal/document/om-s/OM16QTQRG/pdf/OM16QTQRG.pdf.
TsimuONTI, O., Yoo, H., AND GREEN, P. Effects of visual demand and in-vehicle task
complexity on driving and task performance as assessed by visual occlusion. Tech.
rep., The University of Michigan Transportation Research Institute (UMTRI),
December 1999.

WANG, A.-H., AND CHEN, M.-T. Effects of polarity and luminance contrast on
visual performance and vdt display quality. International Journal of Industrial
Ergonomics 25, 4 (2000), 415-421.

WIckENs, C. D. Processing resources and attention. Multiple-task performance
(1991), 3-34.

Young, R. Revised odds ratio estimates of secondary tasks: A re-analysis of the
100-car naturalistic driving study data. Tech. rep., SAE Technical Paper, Jan 2015.
Z1EFLE, M. Effects of display resolution on visual performance. Human Factors:
The Journal of the Human Factors and Ergonomics Society 40, 4 (1998), 554-568.
ZUFFL, S., BRAMBILLA, C., BERETTA, G., AND SCALA, P. Human computer interac-
tion: Legibility and contrast. In 14th International Conference on Image Analysis
and Processing (ICIAP) (Modena, Italy, September 2007), pp. 241-246.

http://infotainment.mazdahandsfree.com/communication-sms?language=en-RW
http://infotainment.mazdahandsfree.com/communication-sms?language=en-RW
http://www.toyota.com/t3Portal/document/om-s/OM16QTQRG/pdf/OM16QTQRG.pdf
http://www.toyota.com/t3Portal/document/om-s/OM16QTQRG/pdf/OM16QTQRG.pdf

	Abstract
	1 Introduction
	2 Design considerations
	2.1 What to schedule
	2.2 Where to schedule interactions
	2.3 How to quantify attention

	3 Implementation
	3.1 Overview
	3.2 Recording interactions
	3.3 Analyzing interactions
	3.4 Scheduling interactions

	4 Evaluation
	4.1 Setup
	4.2 Decision quality
	4.3 Offloaded analysis
	4.4 Overhead

	5 Discussion
	6 Related work
	7 Conclusion
	References

