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ABSTRACT

In this paper, we demonstrate bursting behavior in a nonlinear
microelectromechanical (MEMS) resonator that creates a
frequency comb in the corresponding spectral response. The
bursting behavior occurs for a single driving tone applied to the
resonator. The bursting behavior arises from the non-linear analog
of “level anti-crossing” in a 1:3 internal resonance that can
efficiently transfer energy between two modes of a resonator at
low excitation amplitudes. The internal resonance creates a region
in parameter space where stable oscillations do not exist, resulting
in a forbidden zone of operation.

INTRODUCTION

Mode coupling generates many interesting and novel
behaviors in mechanical [1], optical [2], quantum information [3],
and biological [4] systems. When the frequencies of two modes are
integer multiples of each other, an internal resonance can be
achieved, resulting in efficient inter-modal energy transfer.
Resonant mode coupling in closed loop applications has led to
novel system behaviors including increased frequency stabilization
[5] and the appearance of coherence energy transfer between
modes, where the amplitude of the oscillations does not decay for a
given period of time after the system drive has been turned off [6].

In this paper, we study resonant mode coupling in a non-
linear microelectromechanical (MEMS) resonator using an open
loop configuration with a single drive frequency. Open loop
driving allows us to explore the dynamic response of the system at
and near internal resonance at different levels of the drive. We
identified two new dynamic behaviors: a bursting type behavior,
where the response of the resonator changes drastically on a
timescale 5 orders of magnitude greater than the period of a single
oscillation, and a “forbidden zone”, where the resonator does not
exhibit stable operations due to the continual exchange of energy
between modes. The bursting behavior results from a bifurcation in
the response caused by the internal resonance. We demonstrate
control over the bursting period and associated spectrum with a
single parameter, the detuning of the drive frequency from the
internal resonance frequency.

EXPERIMENT AND RESULTS

We study the non-linear dynamic of a MEMS resonator fabricated
from an SOI wafer using the SOIMUMPS process from
MEMSCAP. The resonator consists of three clamped-clamped
single crystal silicon beams connected in the center to two comb
drives (Fig. 1a). The resonator is actuated electrostatically through
the output of a Zurich UHFLI lock-in amplifier through one comb
drive while the movement is sensed via the displacement current
generated in the opposing comb drive that is converted into a
voltage through a transimpedance amplifier (FEMTO
DHPCA-200) and recorded using the lock-in amplifier.
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Figure 1 (a) Scanning electron micrograph of the MEMS
resonator showing three single crystal silicon beams connected at
their center. The device is actuated using one of the comb drive
actuators while the motion is sensed through the generation of a
motional current by the other comb. (b) Graph of the amplitude
response of the flexural mode as a function of drive frequency
offset from the peak response. (c) Graph of the amplitude response
of the torsional mode as a function of drive frequency offset from
the peak response.

The frequency response of the MEMS is recorded for various
drive voltages. Using the lock-in, the drive amplitude is fixed and
the frequency of the drive signal is increased from below the linear
resonance frequency of the flexural mode to well above it. The
response of the resonator to an applied voltage of 100 uV can be
seen in Fig. 1b and corresponds to the fundamental in-plane
flexural mode [5]. The response is fit to a Lorentz function and the
frequency is measured to be 64580 Hz and the spectral linewidth
of the resonator at half power is 0.6 Hz. Similarly, the response of
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Figure 2 Amplitude of the first harmonic of the response, i.e., the
[flexural mode, of the resonator plotted versus the drive frequency.
a) As the drive amplitude is increased, the frequency at which the
resonator falls to the lower response branch increases until
reaching the internal resonance frequency, at which the transitions
to the lower branch accumulate. b) For large enough drive
amplitudes, the response does not fall to the lower branch, but
becomes modulated until resuming normal Duffing behavior. c)
Magnified response near internal resonance showing deviation
from Duffing behavior that leads to lower average amplitude, but
does not transition to the lower branch.
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Figure 3 Bifurcation conditions for which the resonator response
changes from Duffing behavior shown in the applied drive voltage
versus the drive frequency plane. The squares and triangles are the
experimental data while the solid lines are predictions from a
model [7, 8].

a high frequency mode, corresponding to an out-of-plane torsional
oscillation [5], is measured (Fig. 1c) at an applied voltage of 500
mV and the frequency found to be 199599 Hz with a spectral line
width of 1.6 Hz. The drive amplitude required to actuate the
torsional mode is significantly higher than that of the flexural
mode due to the inefficient coupling of the drive signal to the
torsional degree of freedom using comb drive actuators [5].

As the frequency is swept around the flexural mode resonance
at increasingly larger drive voltages, the response of the resonator
deviates from Lorentzian and begins to exhibit asymmetries,
indicative of a hardening Duffing response [5]. With further
increase in drive amplitude, the response curve becomes bistable at
larger frequencies, where the resonator response will ultimately
fall from the upper branch of the stable response curve to the lower
branch. As seen in Fig 2a, the frequency at which this occurs (Fig.
2a green arrows) continues to increase with driving amplitude,
until it saturates when it reaches a value around 1/3 of the
resonance frequency of the torsional mode, as indicated by a black
arrow in Fig. 2a. This behavior is indicative of an internal
resonance, where the frequency of one mode corresponds with an
integer multiple of the frequency of another mode. As the drive



amplitude is increased, the frequency at which the response falls to
the lower branch remains constant at the beginning of internal
resonance. However, for even larger drive amplitudes, the response
of the resonator can pass through the internal resonance frequency
without falling to the lower branch (Fig. 2b black arrow) and
finally resume expected Duffing behavior (Fig. 2b blue arrow)
after a finite frequency interval. Fig. 2c shows that for this finite
frequency interval, the time averaged amplitude is below the
expected response from the Duffing model. As the drive amplitude
is increased, the range of frequencies over which this reduced
mean amplitude behavior occurs, increases. Instead of showing
multiple response plots of the data in Fig. 2, it is convenient to plot
the frequencies where the resonator response bifurcates, or changes
significantly, as a function of the drive amplitude. This mapping
from the behavior depicted in Fig. 2 to a bifurcation diagram is
shown in Fig. 3. The black squares in Fig. 3a represent the
frequencies at which the saddle node bifurcation (Duffing
bifurcation) is observed. When the drive amplitude is insufficient
to achieve the internal resonance frequency (Fig. 2a green arrows),
the resonator response changes from the upper branch to the lower
branch at the saddle node bifurcations resulting from the Duffing
response as indicated by the vertical lines. For larger drive
amplitudes, the resonator response deviates from Duffing behavior
and shows a reduced mean behavior starting at the onset of internal
resonance (Fig. 2c¢ black arrow) and resumes Duffing behavior
again (Fig. 2c blue arrow) at higher frequencies, marked by dark
blue triangles in Fig. 3a. The creation of the bifurcation diagram in
Fig 3a via frequency sweeps at varying drive levels identifies the
locations of many of the system bifurcations. In order to further
characterize the bifurcation diagram and determine the resonator
response on the right hand side, the resonator was first driven with
large enough amplitude to achieve frequencies greater than the
internal resonance condition and resume normal Duffing behavior.
The drive amplitude was then reduced and the drive frequency
decreased toward the internal resonance. When the resonator
approaches internal resonance, it transitions to the lower branch as
shown in Fig. 3a as light blue triangles. Using this method, the
hysteretic frequency response of the resonator is characterized for
all frequencies around the internal resonance.

The graph in Fig. 3b shows a zoomed-in region of the
parameter space shown in Fig. 3a. The resonator response shows
Duffing behavior for much of the operating space, as indicated by
the labels “Duffing.” When the resonator is driven to those regions
of operation, the internal resonance condition is not evident, only
the Duffing behavior is measured. However, for the region of
internal resonance and low drive levels, the resonator does not
have stable oscillations. There is a region of parameter space that is
“forbidden”, where the resonator transitions to the lower branch of
operation and no stable oscillation can be maintained. For driving
amplitudes larger than the forbidden region (shaded area in Fig.
3b), the mean amplitude of the resonator is smaller than the
expected Duffing response, as shown in Fig. 2c.

A novel dynamic behavior is observed for large driving
amplitudes above the forbidden zone. Fig. 4a shows the response
of the resonator as a function of time when driven by a single
frequency drive. It can be seen from the graph (Fig. 4a blue line)
that the response of the first harmonic does not have a constant
amplitude: it shows bursting behavior, i.e. it oscillates with a non-
sinusoidal pattern which repeats in time with a period several
orders of magnitude longer than the relaxation time of either mode.
Simultaneous measurement of the third harmonic of the response
shows similar periodic behavior.
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Figure 4 a) Amplitude of the first harmonic (blue) and third
harmonic (green) components of the response of the resonator to a
harmonic drive inside the internal resonance region. b) Fast
Fourier Transform of the first harmonic of the response in (a)
showing the generation of a frequency comb with consistent
spacing between the combs. c) Position of the first comb in the
FFT as a function of offset frequency from the internal resonance
showing cubic scaling (red line).



At internal resonance, the modes typically associated with the
first harmonic (flexural) and third harmonic (torsional) undergo a
hybridization [9] and no longer can be described by purely flexural
or purely torsional motion in the degrees of freedom. An FFT
analysis of the first harmonic component of the response can be
seen in Fig. 4b. The bursting nature of the response creates a
frequency comb in the spectrum with equally spaced combs in
spite of the fact that the resonator is driven with a single frequency
drive. As the drive frequency is increased across the internal
resonance, the period of the bursting (Fig. 4a) decreases and the
spacing of the combs increases. A similar result is obtained from
the third harmonic. A graph of the comb spacing versus offset
frequency from the internal resonance can be seen in Fig. 4c. A fit
of the data to the log-log plot has a slope of 1/3, indicating a cubic
relationship between the comb spacing and the driving frequency.
The measured response is repeatable with respect to the drive
frequency. Also, the response does not show any hysteresis with
regards to the frequency; the period of motion and subsequent
frequency comb spacing is completely determined by the
frequency offset from the onset of internal resonance.

CONCLUSIONS

In this paper, we demonstrate a non-linear MEMS resonator
whose primary flexural mode can be detuned through large
amplitude driving to achieve mode coupling with the primary
torsional mode at an internal resonance. We build a bifurcation
diagram of the response of the resonator in the plane of the drive
parameters. Near the internal resonance, our measurements
demonstrate a region of phase space where the resonator does not
show stable oscillations, creating a “forbidden zone” where stable
operation is not possible. For single frequency driving signals with
amplitudes greater than the forbidden zone, the resonator dynamics
is characterized by bursting behavior resulting in the generation of
a frequency comb. We speculate that the bifurcation causing the
bursting behavior demonstrated here is similar to the mechanism
for spiking in neuron models, making this resonator structure a
possible candidate to study the mechanical analog of interacting
neurons [10].
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