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ABSTRACT 
In this paper, we demonstrate bursting behavior in a nonlinear 

microelectromechanical (MEMS) resonator that creates a 
frequency comb in the corresponding spectral response. The 
bursting behavior occurs for a single driving tone applied to the 
resonator. The bursting behavior arises from the non-linear analog 
of “level anti-crossing” in a 1:3 internal resonance that can 
efficiently transfer energy between two modes of a resonator at 
low excitation amplitudes. The internal resonance creates a region 
in parameter space where stable oscillations do not exist, resulting 
in a forbidden zone of operation. 

 
INTRODUCTION 

Mode coupling generates many interesting and novel 
behaviors in mechanical [1], optical [2], quantum information [3], 
and biological [4] systems. When the frequencies of two modes are 
integer multiples of each other, an internal resonance can be 
achieved, resulting in efficient inter-modal energy transfer. 
Resonant mode coupling in closed loop applications has led to 
novel system behaviors including increased frequency stabilization 
[5] and the appearance of coherence energy transfer between 
modes, where the amplitude of the oscillations does not decay for a 
given period of time after the system drive has been turned off [6]. 

In this paper, we study resonant mode coupling in a non-
linear microelectromechanical (MEMS) resonator using an open 
loop configuration with a single drive frequency. Open loop 
driving allows us to explore the dynamic response of the system at 
and near internal resonance at different levels of the drive. We 
identified two new dynamic behaviors: a bursting type behavior, 
where the response of the resonator changes drastically on a 
timescale 5 orders of magnitude greater than the period of a single 
oscillation, and a “forbidden zone”, where the resonator does not 
exhibit stable operations due to the continual exchange of energy 
between modes. The bursting behavior results from a bifurcation in 
the response caused by the internal resonance. We demonstrate 
control over the bursting period and associated spectrum with a 
single parameter, the detuning of the drive frequency from the 
internal resonance frequency.  

 
EXPERIMENT AND RESULTS 
We study the non-linear dynamic of a MEMS resonator fabricated 
from an SOI wafer using the SOIMUMPS process from 
MEMSCAP. The resonator consists of three clamped-clamped 
single crystal silicon beams connected in the center to two comb 
drives (Fig. 1a). The resonator is actuated electrostatically through 
the output of a Zurich UHFLI lock-in amplifier through one comb 
drive while the movement is sensed via the displacement current 
generated in the opposing comb drive that is converted into a 
voltage through a transimpedance amplifier (FEMTO 
DHPCAǦ200) and recorded using the lock-in amplifier. 

  

 
 
Figure 1 (a) Scanning electron micrograph of the MEMS 
resonator showing three single crystal silicon beams connected at 
their center. The device is actuated using one of the comb drive 
actuators while the motion is sensed through the generation of a 
motional current by the other comb. (b) Graph of the amplitude 
response of the flexural mode as a function of drive frequency 
offset from the peak response. (c) Graph of the amplitude response 
of the torsional mode as a function of drive frequency offset from 
the peak response. 
 

The frequency response of the MEMS is recorded for various 
drive voltages. Using the lock-in, the drive amplitude is fixed and 
the frequency of the drive signal is increased from below the linear 
resonance frequency of the flexural mode to well above it. The 
response of the resonator to an applied voltage of 100 PV can be 
seen in Fig. 1b and corresponds to the fundamental in-plane 
flexural mode [5]. The response is fit to a Lorentz function and the 
frequency is measured to be 64580 Hz and the spectral linewidth 
of the resonator at half power is 0.6 Hz. Similarly, the response of 
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Figure 2 Amplitude of the first harmonic of the response, i.e., the 
flexural mode, of the resonator plotted versus the drive frequency. 
a) As the drive amplitude is increased, the frequency at which the 
resonator falls to the lower response branch increases until 
reaching the internal resonance frequency, at which the transitions 
to the lower branch accumulate. b) For large enough drive 
amplitudes, the response does not fall to the lower branch, but 
becomes modulated until resuming normal Duffing behavior. c) 
Magnified response near internal resonance showing deviation 
from Duffing behavior that leads to lower average amplitude, but 
does not transition to the lower branch. 

 
Figure 3 Bifurcation conditions for which the resonator response 
changes from Duffing behavior shown in the applied drive voltage 
versus the drive frequency plane. The squares and triangles are the 
experimental data while the solid lines are predictions from a 
model [7, 8]. 
 
a high frequency mode, corresponding to an out-of-plane  torsional 
oscillation [5], is measured (Fig. 1c) at an applied voltage of 500 
mV and the frequency found to be 199599 Hz with a spectral line 
width of 1.6 Hz. The drive amplitude required to actuate the 
torsional mode is significantly higher than that of the flexural 
mode due to the inefficient coupling of the drive signal to the 
torsional degree of freedom using comb drive actuators [5]. 

As the frequency is swept around the flexural mode resonance 
at increasingly larger drive voltages, the response of the resonator 
deviates from Lorentzian and begins to exhibit asymmetries, 
indicative of a hardening Duffing response [5]. With further 
increase in drive amplitude, the response curve becomes bistable at 
larger frequencies, where the resonator response will ultimately 
fall from the upper branch of the stable response curve to the lower 
branch. As seen in Fig 2a, the frequency at which this occurs (Fig. 
2a green arrows) continues to increase with driving amplitude, 
until it saturates when it reaches a value around 1/3 of the 
resonance frequency of the torsional mode, as indicated by a black 
arrow in Fig. 2a. This behavior is indicative of an internal 
resonance, where the frequency of one mode corresponds with an 
integer multiple of the frequency of another mode. As the drive 
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amplitude is increased, the frequency at which the response falls to 
the lower branch remains constant at the beginning of internal 
resonance. However, for even larger drive amplitudes, the response 
of the resonator can pass through the internal resonance frequency 
without falling to the lower branch (Fig. 2b black arrow) and 
finally resume expected Duffing behavior (Fig. 2b blue arrow) 
after a finite frequency interval. Fig. 2c shows that for this finite 
frequency interval, the time averaged amplitude is below the 
expected response from the Duffing model. As the drive amplitude 
is increased, the range of frequencies over which this reduced 
mean amplitude behavior occurs, increases. Instead of showing 
multiple response plots of the data in Fig. 2, it is convenient to plot 
the frequencies where the resonator response bifurcates, or changes 
significantly, as a function of the drive amplitude. This mapping 
from the behavior depicted in Fig. 2 to a bifurcation diagram is 
shown in Fig. 3. The black squares in Fig. 3a represent the 
frequencies at which the saddle node bifurcation (Duffing 
bifurcation) is observed. When the drive amplitude is insufficient 
to achieve the internal resonance frequency (Fig. 2a green arrows), 
the resonator response changes from the upper branch to the lower 
branch at the saddle node bifurcations resulting from the Duffing 
response as indicated by the vertical lines. For larger drive 
amplitudes, the resonator response deviates from Duffing behavior 
and shows a reduced mean behavior starting at the onset of internal 
resonance (Fig. 2c black arrow) and resumes Duffing behavior 
again (Fig. 2c blue arrow) at higher frequencies, marked by dark 
blue triangles in Fig. 3a. The creation of the bifurcation diagram in 
Fig 3a via frequency sweeps at varying drive levels identifies the 
locations of many of the system bifurcations. In order to further 
characterize the bifurcation diagram and determine the resonator 
response on the right hand side, the resonator was first driven with 
large enough amplitude to achieve frequencies greater than the 
internal resonance condition and resume normal Duffing behavior. 
The drive amplitude was then reduced and the drive frequency 
decreased toward the internal resonance. When the resonator 
approaches internal resonance, it transitions to the lower branch as 
shown in Fig. 3a as light blue triangles. Using this method, the 
hysteretic frequency response of the resonator is characterized for 
all frequencies around the internal resonance. 

The graph in Fig. 3b shows a zoomed-in region of the 
parameter space shown in Fig. 3a. The resonator response shows 
Duffing behavior for much of the operating space, as indicated by 
the labels “Duffing.” When the resonator is driven to those regions 
of operation, the internal resonance condition is not evident, only 
the Duffing behavior is measured. However, for the region of 
internal resonance and low drive levels, the resonator does not 
have stable oscillations. There is a region of parameter space that is 
“forbidden”, where the resonator transitions to the lower branch of 
operation and no stable oscillation can be maintained. For driving 
amplitudes larger than the forbidden region (shaded area in Fig. 
3b), the mean amplitude of the resonator is smaller than the 
expected Duffing response, as shown in Fig. 2c. 

A novel dynamic behavior is observed for large driving 
amplitudes above the forbidden zone. Fig. 4a shows the response 
of the resonator as a function of time when driven by a single 
frequency drive. It can be seen from the graph (Fig. 4a blue line) 
that the response of the first harmonic does not have a constant 
amplitude: it shows bursting behavior, i.e. it oscillates with a non-
sinusoidal pattern which repeats in time with a period several 
orders of magnitude longer than the relaxation time of either mode. 
Simultaneous measurement of the third harmonic of the response 
shows similar periodic behavior. 

 
Figure 4 a) Amplitude of the first harmonic (blue) and third 
harmonic (green) components of the response of the resonator to a 
harmonic drive inside the internal resonance region. b) Fast 
Fourier Transform of the first harmonic of the response in (a) 
showing the generation of a frequency comb with consistent 
spacing between the combs. c) Position of the first comb in the 
FFT as a function of offset frequency from the internal resonance 
showing cubic scaling (red line). 
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At internal resonance, the modes typically associated with the 
first harmonic (flexural) and third harmonic (torsional) undergo a 
hybridization [9] and no longer can be described by purely flexural 
or purely torsional motion in the degrees of freedom. An FFT 
analysis of the first harmonic component of the response can be 
seen in Fig. 4b. The bursting nature of the response creates a 
frequency comb in the spectrum with equally spaced combs in 
spite of the fact that the resonator is driven with a single frequency 
drive. As the drive frequency is increased across the internal 
resonance, the period of the bursting (Fig. 4a) decreases and the 
spacing of the combs increases. A similar result is obtained from 
the third harmonic. A graph of the comb spacing versus offset 
frequency from the internal resonance can be seen in Fig. 4c. A fit 
of the data to the log-log plot has a slope of 1/3, indicating a cubic 
relationship between the comb spacing and the driving frequency. 
The measured response is repeatable with respect to the drive 
frequency. Also, the response does not show any hysteresis with 
regards to the frequency; the period of motion and subsequent 
frequency comb spacing is completely determined by the 
frequency offset from the onset of internal resonance. 
 
CONCLUSIONS 

In this paper, we demonstrate a non-linear MEMS resonator 
whose primary flexural mode can be detuned through large 
amplitude driving to achieve mode coupling with the primary 
torsional mode at an internal resonance. We build a bifurcation 
diagram of the response of the resonator in the plane of the drive 
parameters. Near the internal resonance, our measurements 
demonstrate a region of phase space where the resonator does not 
show stable oscillations, creating a “forbidden zone” where stable 
operation is not possible. For single frequency driving signals with   
amplitudes greater than the forbidden zone, the resonator dynamics 
is characterized by bursting behavior resulting in the generation of 
a frequency comb. We speculate that the bifurcation causing the 
bursting behavior demonstrated here is similar to the mechanism 
for spiking in neuron models, making this resonator structure a 
possible candidate to study the mechanical analog of interacting 
neurons [10].  
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