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Abstract

The first law of causal diamonds relates the area deficit of a small ball relative 
to flat space to the matter energy density it contains. At second order in the 
Riemann normal coordinate expansion, this energy density should receive 
contributions from the gravitational field itself. In this work, we study the 
second-order area deficit of the ball in the absence of matter and analyze its 
relation to possible notions of gravitational energy. In the small ball limit, 
a reasonable expectation for any proposed gravitational energy functional is 
that it evaluate to the Bel–Robinson energy density W in vacuum spacetimes. 
A direct calculation of the area deficit reveals a result that is not simply 
proportional to W. We discuss how the deviation from W is related to 
ambiguities in defining the shape of the ball in curved space, and provide 
several proposals for fixing these shape ambiguities.
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1. Introduction

The Einstein field equations describe how the curvature of spacetime is related to the stress-
energy of matter fields. One way to understand this is through the effect that the curvature has 
on the volume of small spatial balls, or on the area of their enclosing boundaries. Curvature 
causes a spatial ball of a given volume to have a smaller surface area than it would in flat 
spacetime, and the Einstein equations state that this area deficit is proportional to the energy 
density at the center of the ball—with respect to the observer at rest with the ball [1–3]. This 
relation between area and energy density follows from an Iyer–Wald first law applied to the 
ball [3–6], which casts the Einstein equations  in a thermodynamic light. In [3] it was fur-
ther proposed that this thermodynamic identity be interpreted as an equilibrium condition for 
the vacuum entanglement entropy, establishing a novel principle for quantum gravitational 
theories.
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A natural question arises: how does the energy of the gravitational field enter this picture? 
In particular, even in the absence of matter, one might expect area deficits arising from purely 
gravitational effects. At lowest order in a Riemann normal coordinate (RNC) expansion about 
the center of the ball, the area deficit is governed by the Einstein tensor at the center of the ball, 
and hence vanishes for a vacuum solution of the field equations. However, since the Einstein 
equations are nonlinear, the gravitational field is itself a source of curvature, and this ‘purely 
gravitational’ curvature will affect the area as well. Given the above relation between energy 
density and area deficit in the presence of matter, a natural guess is that this change in area is 
related, in one way or another, to the gravitational energy density within the ball. For this con-
jecture to hold weight, the area deficit should satisfy a number of properties associated with 
quasilocal gravitational energy. To begin with, the change in area should be negative definite, 
corresponding to a positive gravitational energy. Furthermore, the ball is constructed relative 
to a timelike unit vector uα at its center that defines a particular Lorentz frame in which the 
energy is measured. The energy should transform under a change in this frame as the timelike 
component of some tensor field. This tensor should be quadratic in the curvature at the center 
of the ball to match the first contribution to the area deficit in vacuum. These requirements 
already restrict us to considering four-index tensors tαβγδ that are quadratic in the Weyl tensor 
Cα

βλμ.
An additional desideratum for the underlying tensor tαβγδ is that the putative energy 

tαβγδuαuβuγuδ propagate causally, in the sense that it vanishes in the entire domain of depend-
ence of any region in which it vanishes. This causal propagation is known to follow from a 
bound on the divergence of tαβγδ, together with the dominant property, which states that tαβγδ 
contracted on any four future pointing vectors is non-negative [7, 8]. The dominant property 
also guarantees that the ‘momentum density’ vector pα = −tαβγδuβuγuδ is future-pointing 
timelike or null. This momentum density points in the direction of propagation of the putative 
energy tαβγδuαuβuγuδ. The unique tensor [9] with the dominant property and quadratic in the 
Weyl tensor is the Bel–Robinson tensor, defined in arbitrary dimension by

Tαβμν = CαρμσCβ
ρ
ν
σ + CαρνσCβ

ρ
μ
σ − 1

2
gαβCτρμσCτρ

ν
σ − 1

2
gμνCαρτσCβ

ρτσ +
1
8

gαβgμνCζρτσCζρτσ .

 (1)
Furthermore, the tensor (1) is divergence-free in Einstein spaces. The associated Bel–Robinson 
‘super-energy’ density W = Tαβγδuαuβuγuδ [9] arises often in the context of quasilocal grav-
itational energy [10], particularly when considering small spheres [11, 12], and it vanishes 
if and only if Cαβγδ does. Because of the above properties and its relation to gravitational 
energy, W is a natural guess for the quantity governing the second-order area deficit in the 
RNC expansion.

In this paper, however, we find that the area deficit for geodesic balls of fixed radius does 
not turn out to be proportional to W. On the other hand, although the construction of a geo-
desic ball of constant radius is well-defined in both the flat and curved spacetimes, it may turn 
out that these are the wrong balls to compare when computing the change in local gravitational 
energy. In fact, the question of how to define the area variation appears already at first order in 
the presence of matter, where it is necessary to change the radius of the ball in curved space 
to ensure that its spatial volume is held fixed [3]. The situation is more complicated at second 
order in perturbations, because the area becomes sensitive to shape deformations of the ball 
involving anisotropic deformations of the geodesic radius. We should therefore expect to find 
an area variation proportional to W only for a special class of small balls, and only when com-
paring to the appropriate ball in flat space, which may differ from a sphere.
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Section 4 describes the effect that generic shape deformations have on the area and volume 
of the ball. Most of these deformations yield the same contributions in curved space as they 
do in flat space, so it seems unlikely that they could arise in a natural prescription for fix-
ing the ball shape. However, two types of deformations can yield contributions quadratic in 
the curvature: a spherically symmetric change in the ball radius, and a spin-two deformation 
determined by a symmetric, traceless, spatial tensor Yij, aligned with the electric–electric part 
[9] of the Weyl tensor, Eij—see section 2 for the electric-magnetic decomposition of the Weyl 
tensor in arbitrary dimension. We further argue in section 5 that a particularly natural choice 
for Yij arises by requiring that the domain of dependence of the ball lie in the interior of two 
intersecting lightcones, with caustics only at the apexes. This turns out to be equivalent to 
demanding that the null expansions are constant over the surface of the ball. Having made this 
choice of shape deformation, it is still necessary to determine the change in the overall radius 
of the ball, as well as to determine the ball in flat space with which to compare. Unfortunately, 
we were unable to give a fully satisfactory prescription for fixing these quantities; however, 
we discuss in section 6 some choices that lead to an area deficit proportional to W. We leave it 
as an open problem whether this or some other prescription can be given a natural, geometric 
justification.

Ideally, the prescription for determining which quantities to compare would arise from a 
canonical variational identity, as occurs at first order [3]. Progress in this direction is made 
in section 7 using the Noether charge formalism, which identifies a Hamiltonian associated 
with evolution within the ball. As long as the evolution vector vanishes at the ball’s boundary 
and generates the Cauchy horizon of the ball, the Hamiltonian is equal to the area on-shell, 
and once again differs from the Bel–Robinson energy density W. Again, we are faced with 
the issue of finding the appropriate ball in flat space with which to compare the area. This is 
related to the problem of fixing the overall constant by which the Hamiltonian can be shifted 
without changing the dynamics. One way to do this is by requiring that the Hamiltonian van-
ishes in flat space; however, this necessitates a prescription for determining the appropriate 
reference ball in flat space. A similar issue arises in other definitions of quasilocal energy, 
such as that of Wang and Yau [13], which takes the flat space reference surface be isometric 
to the surface in curved space. Finally, we also note that the Noether charge definition of this 
Hamiltonian is ambiguous [14], and can be modified by terms depending on the extrinsic 
curvature of the surface. We show that there are choices of the ambiguity terms that cause the 
Hamiltonian to be proportional to W, although the necessary coefficient of these terms does 
not appear to have a natural explanation.

In the end, contrary to our initial expectations, the connection between area deficit and W 
was not as simple as we anticipated. Nevertheless, it is our hope that the results and perspec-
tives reported in this paper may contribute to a deeper understanding of gravitational energy 
in the future.

Throughout, we use Greek indices α,β,μ, ν, · · · = 0, 1, . . . , d − 1 for spacetime RNC 
tensor expressions, while lowercase Latin indices i, j, k, · · · = 1, . . . d − 1 are spatial indices 
within the geodesic ball, and capital Latin indices A, B, C, · · · = 2, . . . , d − 1 are coordinate 
indices on the boundary surface of the ball, where d is the spacetime dimension.

2. Electric-magnetic decomposition of the Weyl tensor

Before presenting the calculations of the area and volume deficits, we briefly review the 
decomposition of the Weyl tensor and its relation to the Bel–Robinson energy density W. 
Given a spatial hypersurface with unit normal uμ, the Weyl tensor Cαβμν may be decomposed 
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into its electric and magnetic parts, which are defined as spatial tensors on the hypersurface. 
In adapted coordinates where the surface lies at x0  =  0 and the unit normal is uμ = δμ0 , the 
electric-magnetic decomposition is given in terms of the following tensors:

Eij = C0i0j (2)

Hijk = C0ijk (3)

Dijkl = Cijkl = Fijkl +
1

d − 3
(Eikhjl − Ejkhil − Eilhjk + Ejlhik), (4)

where hij is the spatial metric. Up to dualization on anti-symmetric pairs of spatial indices, Eij 
is the electric–electric part, Hijk gives the electric-magnetic part and Dijkl gives the magnetic-
magnetic part [9, 15]. Under time reversal, Hijk changes sign, while Eij and Dijkl are invariant 
[16]. Actually, since the Weyl tensor is traceless, the spatial trace of Dijkl contains Eij:

hijDikjl = Ekl, (5)

so that Fijkl defined in (4) is spatially traceless. Note that Fijkl vanishes in d  =  4, in which case 
Dijkl is equivalent to Eij, and Eij and Bij ≡ 1

2εjklHi
kl are simply referred to as the electric and 

magnetic parts relative to uμ.
The Bel–Robinson super-energy density is given by the totally timelike component of the 

Bel–Robinson tensor (1), W  =  T0000. In terms of the electric-magnetic decomposition of the 
Weyl tensor, W satisfies the simple relation [9]

W =
1
2

[
E2 + H2 +

1
4

D2
]
=

1
2

[
d − 2
d − 3

E2 + H2 +
1
4

F2
]

 (6)

where E2 = EijEij, and similarly for H, D and F. Observe that this can also be written, in any 
orthonormal basis containing uμ as the timelike vector, as the sum of the squares of all comp-
onents of the Weyl tensor

W =
1
8

d−1∑
α,β,μ,ν=0

|Cαβμν |2. (7)

Note that W is manifestly non-negative, and that W  =  0 if and only if the Weyl tensor van-
ishes, making it a good candidate for the small-sphere quasilocal energy in vacuum. The 
Bel–Robinson tensor is covariantly conserved in Einstein spaces,

∇αTα
βμν = 0, (8)

and has a number of other important properties [9] that were mentioned in the introduction.
In d  =  4, using the 4-dimensional identity CαγρσCβγρσ = 1

4δ
β
αCμγρσCμγρσ the  

Bel–Robinson tensor (1) can be written in the more familiar forms

Tαβμν = CαρμσCβ
ρ
ν
σ + CαρνσCβ

ρ
μ
σ − 1

8
gαβgμνCζρτσCζρτσ

= CαρμσCβ
ρ
ν
σ + ∗Cαρμσ ∗ Cβ

ρ
ν
σ(only in d = 4)

 

(9)
where ∗C is the Hodge dual of Weyl C, while the above expression (6) reduces to the well-
known formula W = E2 + B2. The tensor (9) is fully symmetric and traceless. Actually, 
(1) is fully symmetric also in d  =  5, but not in higher d [9]. Notice, however, that W—and  
pμ—is defined only from the fully symmetric part of Tαβμν and thus we could always restrict 
ourselves to the fully symmetric part of (1).
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In the following calculations, we will look for contributions to the area and volume deficits 
proportional to W, in an attempt to relate these deficits to gravitational energy.

3. Variations of the area and volume

We are interested in how the volumes and areas of small, geodesic balls in curved space differ 
from those in flat space. A geodesic ball is constructed around a point p by first choosing a 
timelike unit vector uμ at p, and shooting out spacelike geodesics orthogonal to uμ. The ball is 
defined as the hypersurface generated by this congruence of spacelike geodesics, cut off at a 
fixed value � of the affine parameter, which corresponds to the ball’s radius.

We choose Riemannian normal coordinates (RNC) {xμ} based at p := {xμ = 0}, so 
that the line-element at p is the d-dimensional Minkowski metric ημν = diag(−1, 1, . . . , 1). 
In RNC, the geodesics emanating from p take the form xμ = rnμ where r is affine param-
eter and nμ is the (unit) initial tangent vector at p. Adapting the coordinate system such that 
uμ = δμ0 , the spacelike geodesics generating the ball have initial tangent vectors nμ = niδμi  
(hence n0|p = 0). Then, along these geodesics their tangent vector fields are simply

dxμ

dr
= nμ = niδμi (10)

on the entire geodesic ball. The ball is spacelike, its points having coordinates xμ = nμr = rniδμi , 
so that it is locally defined by t ≡ x0 = 0 and {xi} can then be used as coordinates on the ball. 
The unit normal to the ball uμ is thus proportional ∇μt, and we also have uμnμ = 0 for all the 
above ‘radial’ geodesics.

The deviations away from flatness near the point p may be characterized by the curvature 
at p via the standard RNC expansion (see e.g. [17])

gαβ(x) = ηαβ − 1
3

xμxνRαμβν − 1
6

xμxνxρ∇μRανβρ + xμxνxρxσ
(

2
45

Rγ
μανRγρβσ − 1

20
∇μ∇νRαρβσ

)
,

 

(11)

plus terms involving five or more powers of xμ. Here, Rαμβν , ∇μRανβρ, and ∇μ∇νRαρβσ 
are constants defined by the components of the curvature and its covariant derivatives at p. 
Terms involving two factors of the curvature are needed since the first-order changes in area 
and volume are governed by the Ricci tensor [3], which vanishes for the vacuum spacetimes 
that are the focus of this paper.

In these coordinates, the induced metric hij on the ball is

hij(x) = δij − 1
3

xkxlRikjl − 1
6

xkxlxm∇kRiljm

+ xkxlxmxn
(
− 2

45
R0kilR0mjn +

2
45

R p
kilRpmjn − 1

20
∇k∇lRimjn

)
.

 

(12)
Note that this expression differs from the RNC expansion using the intrinsic hypersurface 
metric and curvature. The Riemann tensors and covariant derivative ∇k appearing in (12) cor-
respond to the full spacetime metric gαβ, with components projected onto the hypersurface. 
The reason for using the above form of the spatial metric is that it is easier to identify the 
contribution from the magnetic part of the Weyl tensor, appearing in the R0kil terms. If instead 
one used the intrinsic RNC expansion, the magnetic Weyl terms would be hidden in the piece 
involving two intrinsic covariant derivatives of the intrinsic Riemann tensor.
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The ball volume may be computed by integrating the volume form 
√

hdx1 ∧ · · · ∧ dxd−1 
over the spatial ball. When the metric is expressed as a perturbation about a background, 
hij = h0

ij + γij , the volume density to second order in perturbations is

√
h =

√
h0

(
1 +

1
2

hij
0γij +

1
8
(hij

0γij)
2 − 1

4
hij

0hkl
0 γikγjl + . . .

)
. (13)

To integrate this quantity over the ball, it is convenient to use spherical coordinates {r, θA}, 
where {θA} are coordinates on the (d − 2)-sphere. The 

√
h0  factor takes care of the Jacobian 

when transforming to these coordinates, so the volume is given by

V =

∫
dd−1x

√
h =

∫
dΩd−2

∫ �

0
dr rd−2

(
1 +

1
2
δijγij +

1
8
(δijγij)

2 − 1
4
δijδklγikγjl + . . .

)
.

 (14)
The spatial metric perturbation γij  defined by (12) involves terms with two, three, or four 
factors of xk. Observe that xk = rnk, where nk(θA) describe the usual embedding of the unit 
(d − 2)-sphere in Euclidean space (δijnin j = 1). When integrated over the sphere, only the 
spherically symmetric pieces of these factors survive. This amounts to making the following 
replacements for the spherical integrals,∫

dΩd−2 xkxl =
r2Ωd−2

d − 1
δkl, (15)

∫
dΩd−2 xkxlxm = 0, (16)

∫
dΩd−2 xkxlxmxn =

r4Ωd−2

d2 − 1
(δklδmn + δkmδln + δknδlm) ≡ r4Ωd−2

d2 − 1
δklmn, (17)

where Ωn = 2π(n+1)/2

Γ( n+1
2 )

 is the volume of the unit n-sphere.

Using these replacements, we can immediately see that various parts of the δijγij  term in 
(14) vanish for a Ricci-flat metric Rαβ = 0 that we assume throughout. The two curvature cor-
rections from the first line of (12) both vanish when integrated, the first being proportional to 
only Ricci tensor components, and the second because xkxlxm integrates to zero over the ball. 
The final term in (12) involving two covariant derivatives of the Riemann tensor also vanishes, 
because on using that the projector to the ball at p is simply

hαβ ≡ ηαβ + uαuβ = δijδαi δ
β
j , hαβ = δijδ

i
αδ

j
β , (18)

one easily gets

δijδklmn∇k∇lRimjn = δklmn∇k∇lRmn + uαuβ(hμνηρσ + ημρηνσ + ημσηνρ)∇μ∇νRαρβσ,
 (19)

and by the Bianchi identity,

∇νRαρβν = ∇ρRαβ −∇αRρβ , (20)

we see that all of the above terms are constructed solely from derivatives of the Ricci tensor.
The remaining terms are all quadratic in the Weyl tensor, and arise from the first two terms 

in the second line of (12), as well as from the terms in (14) that are quadratic in γij . Using 
the electric-magnetic decomposition of the Weyl tensor from equations (2)–(4), the curvature 
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squared contributions to the volume (14) after performing the angular and radial integrals 
become

δV =
Ωd−2�

d+3

9(d2 − 1)(d + 3)
δklmn

[
−1

5
Hk

i
lHmin +

(
1
5
− 1

4

)
D p

k
i
lDpmin +

1
8

EklEmn

]

=
Ωd−2�

d+3

15(d2 − 1)(d + 3)

[
−D2

8
− H2

2
+

E2

3

]
.

 
(21)

We can obtain the change in area from this expression due to the following observation. 
The radial coordinate r =

√
xkxlδkl  foliates the ball by surfaces orthogonal to the geodesics 

emanating from the center. The unit normal to constant r surfaces is equal to the covariant 
tangent vector for the geodesics, na = ∇ar, and hence the volume form η of the hypersurface 
is related to the area form μ on the constant r surfaces via

η = n ∧ μ. (22)

This means our volume integral may be expressed as

V(�) =

∫ �

0
dr A(r), (23)

so that A(�) = ∂
∂�V(�). Applying this formula to equation (21) immediately gives

δA =
Ωd−2�

d+2

15(d2 − 1)

[
−D2

8
− H2

2
+

E2

3

]
. (24)

From the calculation in non-vacuum spacetimes [3], where δA is proportional to  −G00 
(Gαβ being the Einstein tensor), and thereby, via the Einstein field equations, proportional 
to  −T00 (Tαβ being the energy-momentum tensor), we were expecting several obvious proper-
ties for δA: it should be proportional to the timelike component of a tensor field, and it should 
have sign properties. For instance, one would expect it to be negative definite, and this is true 
in d  =  4, but not in general for other dimensions d. But even in d  =  4, where the above expres-
sion reduces to

δA =
Ω2�

6

225

[
−B2 − E2

6

]
(only in d = 4), (25)

the area deficit fails to satisfy all the desired properties of the quasilocal energy listed in the 
introduction. In particular, although it is proportional to the timelike component of the four-
index tensor

tαβμν = CαρμσCβ
ρ
ν
σ + 6 ∗ Cαρμσ ∗ Cβ

ρ
ν
σ, (26)

the factor of 6 in the second term makes it impossible that the momentum vector 
pα = −tαβμνuβuμuν  be future pointing for generic uμ [9]. Choose for instance a case (in 
an orthonormal basis including uμ = δμ0 ) with E1i = B1i = 0, E22 = −E33 = −7B23/2, and 
B22 = −B33 = 2E23/7, then contracting pμ with the future null vector δμ0 + δμ1  one gets 
25B2/4 which is strictly positive, proving that pμ is not future pointing. This failure occurs 
to any tensor with different weights between the C2 and the ∗C2 summands. The only tensor 
(up to prefactors) quadratic in the Weyl tensor and having the required dominant property is 
the generalized Bel–Robinson tensor, given in arbitrary spacetime dimension by equation (1) 
[9]. Its total timelike component, the Bel–Robinson super-energy density W  =  T0000, may be 
expressed in terms of the electric and magnetic parts of the Weyl tensor according to (6).

T Jacobson et alClass. Quantum Grav.  ( ) 085005



8

There is no unique way to write our result (24) in terms of W; some possibilities would be

δA =
Ωd−2�

d+2

15(d2 − 1)

[
−W +

5
6

E2
]
=

2Ωd−2�
d+2

45(d2 − 1)

[
W − 5

4
H2 − 5

16
D2

]
 (27)

but there are of course many others. This is a little puzzling, as the expected result (something 
proportional to W) is not what arises at first.

At this point, it is necessary to remark that we are actually trying to compare two fully dif-
ferent spacetimes locally—a generally curved one with flat spacetime—and this is intricate. 
One cannot be certain of what is exactly the analogue of a given flat-spacetime geodesic ball 
in the curved spacetime. For instance, in the first order calculation in the presence of matter, 
the natural prescription seems to be to vary the geodesic radius of the ball such that the volume 
is held fixed [3]. At second order, there is the additional possibility of varying the shape of 
the ball in a way that depends on the local gravitational field (the first order contribution of 
these shape deformations to the area vanishes). These possibilities will be analyzed in what 
follows, with a goal of finding a prescription that yields an area variation proportional to W, in 
accordance with the criteria presented in the introduction for quasilocal gravitational energy.

4. Ball deformations

We now allow for variations of the ball radius and compute the volume and area variations 
under these circumstances. Instead of formula (14) we now have

V =

∫
dΩd−2

∫ �+δ�

0
dr rd−2

(
1 +

1
2
δijγij +

1
8
(δijγij)

2 − 1
4
δijδklγikγjl + . . .

)
 

(28)

where δ� is the deformation of the ball radius which we assume may depend on the direction, 
taking the following form

δ� = δ�1 + δ̃�1︸ ︷︷ ︸
O(1)

+ X︸︷︷︸
O(2)

.
 (29)

Here δ�1 and X are the spherically symmetric pieces of the first- and second-order perturba-
tions, respectively, while δ̃�1 is the part of the first-order perturbation depending on the direc-
tion. It was proven in [3] that δ�1 can be chosen to keep the volume fixed at first order (the 
same as the volume in flat space). In the Ricci flat case such a choice requires δ�1 = 0, that we 
assume from now on unless otherwise stated. Then, (28) becomes

V = V�(�) + δV +ΔV (30)

where V�(�) denotes the volume of a radius � round ball in flat space, δV  is the volume varia-
tion purely due to curvature, given in (21), and

ΔV = �d−2
∫

dΩd−2

(
X +

1
2
δijγijδ̃�1 +

d − 2
2�

(δ̃�1)
2
)

= �d−2
[
Ωd−2X +

∫
dΩd−2

(
d − 2

2�
(δ̃�1)

2 − �2

6
Eijnin j δ̃�1

)]
.

 

(31)

As a function defined on the (d − 2)-sphere, δ̃�1 can be expanded in spherical harmonics. 
Letting s denote the ‘spin’, we have
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δ̃�1 =

∞∑
s=1

Yi1...is n
i1 . . . nis (32)

where Yi1...is are totally symmetric and traceless for all s  >  1. Formula (31) can then be explic-
itly computed. The second term in (31) contributes like

Ωd−2�
d−3(d − 2)

∞∑
s=1

csY2
[s] (33)

where Y2
[s] ≡ Yi1...is Y

i1...is  and cs are some constant factors—depending on s and the dimension 
d—whose explicit expression will not be needed in what follows except for

c2 =
1

d2 − 1
. (34)

Concerning the last term in (31), all the integrals evaluate to zero (due to either an odd number 
of n’s or to the tracelessness of Eij and Yi1...is) except for the spin-2 piece of the deformation 
that couples to Eij to give

−Ωd−2�
d 1

3(d2 − 1)
YijEij. (35)

Putting everything together we arrive at

ΔV = Ωd−2�
d−3

[
X�+ (d − 2)

∞∑
s=1

csY2
[s] −

�3

3(d2 − 1)
YijEij

]
 (36)

so that

V = V�(�) + δV +Ωd−2�
d−3

[
X�+ (d − 2)

∞∑
s=1

csY2
[s] −

�3

3(d2 − 1)
YijEij

]
 (37)

with δV  given in (21).
In order to compute the area of the surface limiting the deformed geodesic ball, we note 

that the embedding of such a surface into the hypersurface x0  =  0 containing the ball is given 
by

xi = ni
(
�+ δ̃�1 + X

)
 (38)

where ni(θA) were introduced after equation (14) as functions of the intrinsic coordinates {θA} 
in the (d − 2)-sphere. Taking into account that

δijni ∂n j

∂θA = 0, δij
∂ni

∂θA

∂n j

∂θB = ΩAB (39)

where ΩAB is the standard metric on the round (d − 2)-sphere, a straightforward calculation 
using (12) gives, for the first fundamental form qAB inherited on the limiting surface,
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qAB = �2ΩAB︸ ︷︷ ︸
q0

AB

+

[
2� δ̃�1ΩAB − �4

3
nknlDikjl

∂ni

∂θA

∂n j

∂θB

]
︸ ︷︷ ︸

δq1
AB

− 1
6
�5nknlnm∇kRiljm

∂ni

∂θA

∂n j

∂θB︸ ︷︷ ︸
δq3/2

AB

+ΩAB

[
2�X + (δ̃�1)

2
]
+

∂ni

∂θA

∂n j

∂θB

( ∞∑
s,̂s=1

sŝYii2...is Yjj2...ĵs n
i2 . . . nis n j2 . . . n ĵs − 4�3

3
δ̃�1nknlDikjl

)
︸ ︷︷ ︸

δq2
AB

+ �6nknlnmn p
(
− 2

45
HkilHmjp +

2
45

Dq
kilDqmjp − 1

20
∇k∇lRimjp

)
∂ni

∂θA

∂n j

∂θB︸ ︷︷ ︸
δq2

AB

.

 

(40)

Having chosen vanishing volume variation at first order, the first-order variation of area is also 

vanishing; furthermore, the term qAB
0 δq3/2

AB  will not contribute upon integration, because

qAB
0

(
�
∂ni

∂θA

)(
�
∂n j

∂θB

)
= δij − nin j (41)

so that this term contains an odd number of n’s. We can thus concentrate on the second-order 
variation of area. The formula for this is

�d−2

2

∫
dΩd−2

(
qAB

0 δq2
AB +

1
4
(qAB

0 δq1
AB)

2 − 1
2

qAC
0 qBD

0 δq1
ABδq1

CD

)
 (42)

so that a somewhat long but direct calculation leads to

A = A�(�) + δA +ΔA, (43)

where A�(�) is the area of a radius � round sphere in flat space, δA given in (24) involves cur-
vature squared terms, and

ΔA = Ωd−2�
d−4

[
X�(d − 2) +

∞∑
s=1

bsY2
[s] −

�3d
3(d2 − 1)

YijEij

]
 (44)

where bs are constant factors—depending on s and d—whose explicit expression is unimport-
ant for our purposes excepting

b2 =
d2 − 3d + 4

d2 − 1
. (45)

Here we note that of all the shape deformations parameterized by Y[s], only the spin-2 
deformation gives a different contribution to the area in curved space than in flat space. This 
difference is given by the YijEij term in (44). In fact, it is only the component of Yij that is 
aligned with Eij that contributes differently than in flat space. To see this in more detail, note 
that the set of spatial (relative to uμ) 2-covariant symmetric and trace-free tensors at p is a 
vector space of dimension (d + 1)(d − 2)/2 with a natural positive definite scalar product 
given by YijŶ ij . Thus, given Eij as data, Yij will have a component along Eij and another part 
Zij orthogonal to Eij:

Yij = �3 (γEij + Zij) . (46)

Here, Zij is symmetric, traceless and orthogonal to Eij (EijZij = 0) while γ is a shorthand for 
YijEij/(�3E2) . Since all shape deformations with s �= 2 and the component of Yij orthogonal 
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to Eij make the same contribution to the area in flat space as in any curved space, they cannot 
be fixed in terms of the local gravitational field at this order in perturbations. We therefore 
assume that the only shape deformation is given by Yij aligned with Eij.

With this in mind, we can rewrite the area of ball’s boundary as

A = A�(�) +
Ωd−2�

d+2

(d2 − 1)

[
−W

15
+ E2

(
γ2(d2 − 3d + 4)− γd

3
+

1
18

)
+ X

(d − 2)(d2 − 1)
�5

]
.

 (47)
The remaining freedom encoded in γ and X is obviously enough to get something propor-
tional to W, and generically the radius variation X has to be nonzero for this to occur. This is 
because the coefficient multiplying the E2 term has a minimum at γ0 = d/[6(d2 − 3d + 4)], 
in which case the coefficient becomes (d  −  2)(d  −  4)/[36(d2  −  3d  +  4)], which is positive for 
d  >  4. Oddly enough, precisely when d  =  4 and γ = γ0 = 1/12, we find that this coefficient 
vanishes, leaving only  −W/15 in the area variation if the radius is held constant. However, in 
the higher dimensional case, there must be a radius variation, and this, along with the shape 
deformation, should be determined by independent arguments. There are several routes that 
can be pursued, with no clear preference for one in principle. We discuss this in the following 
sections.

5. Fixing the deformation by independent arguments

As seen in formula (47), there are two parameters to be fixed by independent arguments: the 
‘amount’ of spin-2 deformation along the electric–electric part of the Weyl curvature, encoded 
in γ; and the total spherically symmetric size of the ball, encoded in the second-order variation 
of its radius X. We start with the former, which is the more intriguing one, and takes care of the 
non-isotropic, basically quadrupolar, nature of the gravitational field at the center of the ball p.

5.1. Causal diamond deformations

A particularly natural way to define the ball deformation is to choose its shape to ensure that 
the boundary of its causal development takes the form of two intersecting cones, and does not 
develop caustics except at the apexes of the future and past cones. This statement of course 
is perturbative in the curvature at the center of the ball p, and we will only need to work to 
first order in the curvature at p to see the first effect of the shape deformation. We continue to 
assume that the spacetime geometry is Ricci flat.

The strategy is to follow the timelike geodesic defining the frame at the center of the ball 
a fixed proper time to the future and past to define the apexes of the cones, and then send 
out null geodesics to define the cone null hypersurface. A straightforward way to find such a 
hypersurface is to assume these null geodesics are simply the gradient of a scalar, kμ = ∇μφ, 
and then we need only impose that ∇μφ is null to ensure that kμ is tangent to affinely param-
eterized geodesics.

We start with the future null cone. In flat space, this surface is defined by t + r = � for a 
ball of radius �. So we take φ = t + r +O(R). The first order in curvature correction to φ we 
could guess needs to be of the form β(r, t)xix jEij, since there are no other terms that can be 
formed that are linear in the electric/magnetic parts of the Weyl tensor where all the indices 
are contracted with xk. Another way to see that this is the correct type of term to add is to 
calculate how the norm of ∇μ(t + r) changes at first order in the RNC expansion. Using that 
∇μr = 1

r δμjx j we have
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gαβ∇α(t + r)∇β(t + r) = (δ0
α +

1
r
δαixi)(δ0

β +
1
r
δβjx j)(

1
3

xγxδRα
γ
β
δ)

=
1
3

xix jEij

(
1 + 2

t
r
+

t2

r2

)
,

 

(48)

so it is clear that we should be able to cancel this by choosing φ = t + r + βxix jEij. The norm 
of φ is corrected by a contribution

2∇α(βxix jEij)(∇β t +∇βr)ηαβ = xix jEij

(
−2∂tβ + 2∂rβ +

4β
r

)
. (49)

The sum of (48) and (49) must vanish for ∇μφ to be null at this order in RNC. Switching to 
null coordinates u  =  t  −  r, v  =  t  +  r, the condition becomes

∂uβ +
2β

u− v
− v2

3(u− v)2 = 0. (50)

This has the general solution

(u− v)2β =
v2u
3

+ C(v) =⇒ φ = t + r +
1
4

(
1
3
(t − r)(t + r)2 + C(t + r)

)
Eijnin j.

 (51)
To fix the arbitrary function C, we require that φ coincides with t as r → 0. This immediately 
implies

C(v) =
−v3

3
, (52)

and hence

φ = t + r − 1
6

r(t + r)2Eijnin j. (53)

An analogous calculation can be done for the past null cone, which turns out to be a level 
set of the function

ψ = t − r +
1
6

r(t − r)2Eijnin j. (54)

Our ball should lie at the intersection of the two null hypersurfaces defined by φ = �, 
ψ = −�, where here � can be seen as the proper time elapsed between p and the apexes of the 
cones along the timelike geodesic tangent to uμ. Hence we should look for the values of t and 
r that solve the equations

t + r − 1
6

r(t + r)2Eijnin j = � (55)

t − r +
1
6

r(t − r)2Eijnin j = −�. (56)

Adding these two gives

t
(

1− 1
3

xix jEij

)
= 0 (57)
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which is solved by t  =  0. Hence, at this order in the expansion, the intersection of the two null 
cones lies on the chosen spatial hypersurface t  =  0; there is no bending in the time direction. 
Concerning the coordinate r, we set t  =  0 in either of (55) or (56) to get

r = �+
1
6

r3nin jEij, (58)

and, since we are working only to first order in Eij, this gives the solution for r as

r = �

(
1 +

1
6
�2nin jEij

)
, (59)

or equivalently the shape deformation

δ̃�1 = nin jYij =
1
6
�3nin jEij. (60)

This implies that all non-spin-2 deformations vanish and sets γ = 1/6 and Zij  =  0 in (46). 
Therefore, if our geodesic spatial ball is to be the base of a small causal diamond, its shape in 
a vacuum spacetime is fully specified by the electric–electric part of the Weyl tensor, in such 
a way that the spin-2 deformation Yij must be aligned with Eij a fixed amount γ = 1/6. We 
are going to see that this spin-2-only deformation agrees with the one deduced by fixing the 
null expansions of the boundary, or the trace of its second fundamental form, to be constant.

This procedure can be carried out to higher order in the curvature expansion. However, the 
only effect on the area due to the next order shape deformation will come from the overall 
change in radius that they produce, and hence is degenerate with the X deformation. This is 
actually just an ambiguity in how to define the size of the ball, and could be compensated by 
changing the value � of the proper time corresponding to the apexes of the cones.

5.2. Using the geometry of the ball boundary

The above prescription for choosing the shape of the ball turns out to be equivalent to impos-
ing a condition on the extrinsic geometry of the boundary. We need to compute the second 
fundamental form characterizing this extrinsic geometry. Using spherical coordinates {r, θA} 
based at the center p the embedding (38) into the ball reads simply as

r = �+

∞∑
i=1

Yi1...is n
i1 . . . nis + X, (61)

hence a normal to the boundary is

N = dr −
( ∞∑

s=1

s Yi1...is n
i2 . . . nis

)
∂ni1

∂θA dθA (62)

which is of unit length at the required order, while the tangent vector fields are

�eA =

( ∞∑
s=1

s Yi1...is n
i2 . . . nis

)
∂ni1

∂θA ∂r + ∂θA . (63)

The second fundamental form can be computed from the formula

KAB = −Nie
j
A∇̃jei

B (64)
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where ∇̃ is the covariant derivative on the hypersurface x0  =  0. Using that

0
Γr

Ar= 0,
1

Γr
AB=

2
3

r3nknl ∂ni

∂θA

∂n j

∂θB Dikjl (65)

and that the functions ni(θA) satisfy on the unit round sphere (here ∇ is the covariant derivative 
on the unit sphere)

∇A∇Bni = −ΩABni (66)

we get for the second fundamental form the following expression including terms linear in the 
curvature (keeping the Ricci flat condition)

KAB =

(
�+

∞∑
s=1

s Yi1...is n
i1 . . . nis

)
ΩAB −

( ∞∑
s=2

s(s− 1)Yiji3...is n
i3 . . . nis +

2
3
�3nknlDikjl

)
∂ni

∂θA

∂n j

∂θB .

 (67)
In particular, its trace K = qABKAB reads at this order

K =
d − 2
�

+
1
�2

∞∑
s=1

[(d − 2)(s− 2) + s(s− 1)] Yi1...is n
i1 . . . nis − �

3
Eijnin j

 (68)
which can be conveniently rewritten as

K =
d − 2
�

+
1
�2

∑
s�=2

[(d − 2)(s− 2) + s(s− 1)] Yi1...is n
i1 . . . nis + nin j

(
2
�2 Yij − �

3
Eij

)
.

 (69)
In other words, the trace of the second fundamental form of the boundary within the hyper-
surface t  =  0 is affected by the gravitational field only through a term proportional to Eijnin j . 
This trace is constant on the entire surface only if all non-spin-2 deformations vanish and the 
spin-2 deformation is aligned with the electric–electric part

Yij =
�3

6
Eij . (70)

This again requires γ = 1/6 and Zij  =  0 in (46), for arbitrary d, in full agreement with the 
previous causal diamond calculation. Observe that the requirement K  =  constant turns out to 
be equivalent to keeping K stationary with respect to its flat-space sphere value at this order.

5.3. Null expansions on the ball’s boundary

An equivalent way of defining the ball’s boundary shape is to keep its null expansions constant 
on the entire boundary. This is again equivalent to keeping them stationary with respect to flat 
spacetime. In order to see this, we compute the null expansions on the (d − 2)-dimensional 
deformed sphere which bounds the geodesic ball. Given that we already know the trace K 
given in (68), we only need to know the second fundamental form of the hypersurface t  =  0 
around p. This can be obtained by using that the unit normal is uμ = −δ0

μ as (at first non-trivial 
order in vacuum)

Kij = Γ0
ij =

1
3

xδ
(
R0

iδj + R0
jδi
)
=

1
3
(Hijk + Hjik) xk. (71)

This could also be easily derived by using the Gauss and Codazzi equations of the ball.
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On the ball’s boundary at this order we must use xk = �nk, and pulling back Kij we obtain 
the second fundamental form κAB  of the boundary with respect to the timelike future-pointing 
unit normal  −dt. This reads

κAB =
�

3
(Hijk + Hjik) nk ∂ni

∂θA

∂n j

∂θB . (72)

Its trace κ ≡ qAB
κAB therefore vanishes at this order

κ = qAB
0 κAB =

1
�2 Ω

AB
κAB =

1
3�

(Hijk + Hjik) nk(δij − nin j) = 0. (73)

The two future null normals to the boundary are k± ≡ −dt ± N  and thus the null expansions 
are simply given by θ± = κ ± K = ±K . In conclusion, at this order in the RNC expansion 
for vacuum spacetimes, these null expansions are constant over the whole ball’s boundary if, 
and only if, K is, and this was previously demonstrated to hold only if the ball is deformed in a 
spin-2 manner exclusively, aligned with Eij an amount given by γ = 1/6. In that case, the null 
expansions coincide with their flat spacetime analogues too.

6. Volume control

In the presence of matter, the first law of causal diamonds relates the area variation to the 
energy density inside the ball when the Einstein field equations hold [3]. This proportionality 
between area and energy density variations holds for arbitrary linearized perturbations of a 
finite-sized ball in flat space, provided that the volume of the perturbed ball is the same as in 
flat space. This provides a motivation for considering variations at fixed volume at first order. 
A second motivation comes from considering small balls in an arbitrary curved spacetime. 
In this small ball limit, one may interpret the curvature terms in the RNC expansion (11) as 
a perturbation of the locally flat metric at the center of the ball. In this case, both the area 
and volume variations are determined by the Einstein tensor component G00, so that the area 
deficit remains proportional to the energy density even if the volume fluctuates, albeit with 
a proportionality factor depending on the volume variation. However, when the first law is 
interpreted as a maximality condition for the entanglement entropy of the ball, the constant 
of proportionality is meaningful, since it determines the Newton constant G appearing in the 
field equations and the Bekenstein–Hawking entropy, SBH = A/4�G . Since this latter quanti ty 
is closely related to area terms in entanglement entropy, the entire maximal entanglement 
picture is consistent only when the volume is held fixed [3].

The above arguments for holding the volume fixed apply only at first order in perturbations 
away from flat space. Here, we will investigate the area variation holding the volume fixed at 
second order, and find that for no choice of the shape deformation Yij do we obtain an answer 
proportional to W. This motivates us to consider other prescriptions. One possibility is that 
the ball in flat space to which we should compare does not correspond to the round sphere, 
and we discuss how a flat space comparison ball can be chosen to produce the desired answer. 
Unfortunately, this procedure is somewhat ad hoc, and we leave the problem of finding a bet-
ter justification for this prescription to future work.

Keeping only the Eij-aligned, spin-2 shape deformation Yij = γ�3Eij , the total volume (37) 
of the ball reads

V = V�(�) +
Ωd−2�

d+3

d2 − 1

[
− W

15(d + 3)
+ E2

(
γ2(d − 2)− γ

3
+

1
18(d + 3)

)]
+Ωd−2�

d−2X.

 (74)
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Choosing X such that V − V�(�) vanishes, and substituting into equation  (47) for the area 
variation, we find the expression for the area variation at fixed volume to second order,

δA
∣∣
V =

Ωd−2�
d+2

3(d + 3)(d2 − 1)

[
−W + E2

(
3d(d + 3)γ2 − 2(d + 3)γ +

5
6

)]
.

 (75)
The coefficient of the E2 takes its minimal value of (d − 2)/2d > 0 when the shape deforma-
tion is chosen with γ = γm = 1/3d . Hence, for no choice of shape deformation will the area 
change at fixed volume be proportional to W.

There are some remaining options to consider. First, we could relax the condition of fixing 
the volume of the ball, and merely choose X to ensure the area variation is proportional to W. 
This could still be consistent with the first law of causal diamonds, because we are considering 
second order variations, whereas the fixed volume constraint was only derived at first order. 
A downside of this approach is that we can obtain any coefficient of W in the area variation, 
simply by choosing X to be (here α is an arbitrary constant)

X =
�5

(d − 2)(d2 − 1)

[
−E2

(
γ2(d2 − 3d + 4)− γd

3
+

1
18

)
+ αW

]
. (76)

The ability to shift X by an arbitrary amount proportional to W leads to a similar ambiguity 
in the area variation, and underlies the need to find an independent justification for fixing the 
overall size of the ball.

One way to remedy this overall radius problem is to consider variations of well-defined 
geometric quantities that are equivalent to varying the area while keeping something fixed 
(such as the volume say), but are insensitive to the overall radius of the ball. This was implic-
itly done in [3], where the variation of area at first order keeping the volume fixed was shown 
to be equivalent to the variation

δ(1)A− d − 2
�

δ(1)V . (77)

Here the superindex (1) refers to the lowest order variation, linear in the curvature, when the 
Ricci tensor is not vanishing. One can wonder if the previous variation corresponds to the first-
order variation of some geometrical invariant intrinsic to the ball and its boundary. The answer 
is actually yes, as we can for instance use the following invariant

I ≡ A− (d − 1)V
d−2
d−1

(
Ωd−2

d − 1

) 1
d−1

. (78)

Due to the classical isoperimetric inequality [18], I  is non-negative in (d − 1)-dimensional 
Euclidean space, providing a lower bound for the area A of any surface enclosing a given 
volume V (alternatively, the maximum volume enclosed by a given area). And I  vanishes 
only for round spheres enclosing a round ball. Therefore, in our case, at zero order (in flat 
spacetime) we have for the geodesic ball

I� = 0 (79)

and this is independent of the radius of the ball. The first-order variation of I , linear in the 
curvature, can be easily computed, leading to

δ(1)I = δ(1)A− d − 2
�

δ(1)V (80)
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which coincides with (77) and therefore with the first-order variation of area at fixed volume. 
We know this is proportional to the energy density of matter at the center of the ball. Hence, 
δ(1)I  vanishes in Ricci-flat spacetimes, and this statement is independent of the ball radius 
too. In other words, this holds including a non-zero term δ�1 in (29). We can thus consider the 
second-order variation of I , including terms quadratic in the curvature. A direct calculation 
provides

δ(2)I = δ(2)A− d − 2
�

δ(2)V +
d − 2

2Ωd−2�d (δ
(1)V)2. (81)

Bearing in mind that δ�1 is free, from [3] we have δ(1)V = Ωd−2�
d−2δ�1 in Ricci flat space-

times. The second-order variations of area and volume have been already computed for 
δ�1 = 0. For non-zero δ�1, they receive corrections proportional to δ�2

1 according to

δ(2)V = δV +ΔV +
d − 2

2
Ωd−2�

d−3δ�2
1, (82)

δ(2)A = δA +ΔA +
(d − 2)(d − 3)

2
Ωd−2�

d−4δ�2
1 (83)

where δV , ΔV , δA and ΔA are given in (21), (31), (24) and (44), respectively. Inserting this 
into the previous formula for δ(2)I , all dependencies in X and δ�1 cancel out, leaving an 
expression which is again insensitive to the overall radius of the ball, given explicitly by

δ(2)I = δA|V , (84)

with δA|V  given in (75). In other words, the second order variation of I  coincides exactly with 
the second-order variation of area at fixed volume, and they are independent of the radius of 
the ball. This has a positive side, as one does not have to care about fixing the total size of the 
ball but, of course, it does not provide the desired answer because, as argued above, such a 
variation can never be proportional to W. We can speculate about the existence of invariants 
other than I  which can have the property of independence of the ball radius, and perhaps are 
also insensitive to the choice of shape deformation, that evaluate to the Bel–Robinson super-
energy density W at second order in perturbations.

There is a final open possibility that we can contemplate: one could argue that the round 
ball in flat space is the wrong ball to which to compare when considering second order varia-
tions. This occurs in other quasilocal energy prescriptions, such as that of Wang and Yau [13], 
which chooses a comparison ball in flat space via an isometric embedding3. Allowing for 
deformations of the flat space ball yields even more freedom, since now we can choose Yij and 

X in the curved space independently of their flat-space analogs, Y�
ij and X�. Since only X − X� 

will be relevant in the comparisons, we now have three free parameters defining the two balls, 
which gives enough freedom to fix the volume and find an area variation proportional to W. 
Actually, in order to avoid the problem with the overall radius we can again use the invariant 
(78), which gets rid of the freedom encoded in X and X�. By doing so, we can compare the 
values of I  in the curved spacetime with respect to a deformed ball in flat space at second 
order in perturbations. In this fashion, the deficit

δ(2)I − δ(2)I� (85)

can always be made proportional to W by simply choosing for instance

3 Although in our case, the flat space ball should not be isometric to the curved space one, since then the area  
variation would vanish.
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(Y�)2 = �6E2
(
γ2 − 2

3d
γ +

5
18d(d + 3)

)
 (86)

whose value for γ = 1/6 becomes

(Y�)2 = �6E2 (d + 1)(d − 2)
36d(d + 3)

. (87)

Unfortunately, what is missing from this procedure is an independent justification for 
choosing the deformations. Moreover, the fact that the deformed ball in flat spacetime will 
no longer be the base of a small causal diamond casts some doubts about the entire argument.

7. Relation to the Noether charge

This section seeks to interpret the area of the ball in terms of a Hamiltonian associated with 
evolution within the ball’s domain of dependence, using the Noether charge formalism [4, 5]. 
The ambiguity in finding a reference ball to which to compare the area will manifest itself 
in this section in an ambiguity in the zero value of this Hamiltonian. Furthermore, we will 
argue that the additional pieces beside the Bel–Robinson density W arising in the area can be 
compensated using ambiguity terms in the Noether charge [14] depending on the extrinsic 
curvature of the ball’s surface.

7.1. Second variation of the Noether charge

We want to demonstrate that the Hamiltonian associated with the spatial ball may be identified 
with the Noether charge. For this we must construct a phase space for describing evolution 
within the region. Starting with a Lagrangian L[φ], taken as a spacetime d-form depending on 
the dynamical fields φ, the equations of motion are obtained by varying the Lagrangian with 
respect to the fields. We find then that

δL = E · δφ+ dθ[δφ], (88)

where E  =  0 are the dynamical field equations. The additional term in this variation defines 
the symplectic potential (d − 1)-form θ. Taking an antisymmetric variation of θ defines the 
symplectic current,

ω[δ1φ, δ2φ] = δ2θ[δ1φ]− δ1θ[δ2φ], (89)

and integrating this over the ball gives the symplectic form for the phase space,

Ω =

∫
Σ

ω[δ1φ, δ2φ]. (90)

Given a vector field ζα, the evolution of the dynamical fields along this vector field is gener-
ated by a Hamiltonian Hζ whose variation satisfies

δHζ =

∫
Σ

ω[δφ,£ζφ]. (91)

In a diffeomorphism-invariant theory, this Hamiltonian may be written as a boundary int-
egral when the equations of motion are satisfied. Assuming ζα vanishes on the boundary ∂Σ, 
the variation of the Hamiltonian is simply
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δHζ =

∫
∂Σ

δQζ , (92)

where the Noether charge Qζ is determined by the Lagrangian and symplectic potential for 
the theory. In the case of general relativity, the Lagrangian, symplectic potential, and Noether 
charge are given by

L =
1

16πG
Rε (93)

θ =
1

32πG
(gαγ∇βδgβγ −∇αgβγδgβγ)εα (94)

Qζ = − 1
16πG

∇αζβεαβ , (95)

where ε, εα and εαβ all denote the spacetime volume form, with all but the displayed indices sup-
pressed. Because ζα vanishes on ∂Σ, its covariant derivative there satisfies ∇αζβ = gβγ∂αζγ , 
and the integral of Qζ over the boundary of the ball can then be expressed as∫

∂Σ

Qζ = − 1
16πG

∫
∂Σ

μ nγ
α∂αζ

γ , (96)

where μ is the induced volume form on ∂Σ, and nαβ is the two-form or binormal associated 
to space normal to ∂Σ, defined in terms of a future-pointing, timelike unit normal uα and an 
orthorgonal, outward-pointing spacelike unit normal Nβ as

nαβ = 2u[αNβ]. (97)

The geometry under consideration will be taken to be a perturbation of a spatial ball in 
flat space. The vector ζα in the flat background is chosen to be the conformal Killing vec-
tor generating a flow within the causal development of the ball, given in the usual Mikowski 
coordinates (t,xi) by

ζα =
�2 − r2 − t2

�2 ∂α
t −

2t
�2 xi∂α

i . (98)

At the boundary of the ball r = �, ζα vanishes, and its derivative satisfies

∂αζ
γ = κ nαγ , (99)

where κ = 2/� is the surface gravity of the conformal Killing vector [19]. Using this, we see 
that the integrated Noether charge (96) is simply proportional to the area when evaluated in 
the background,∫

∂Σ

Qζ =
−κ
8πG

A. (100)

Next we consider perturbations of the Noether charge. The perturbations only act on the 
metric, so that ζα and its partial derivative remain fixed, as does the coordinate position of the 
surface. The unit normals will also change under the variation in order to remain normalized. 
Their perturbations are thus given by

δuα = −1
2

uαuβuγδgβγ , (101)
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δNα =
1
2

NαNβNγδgβγ . (102)

This also means that the perturbation of the binormal is

δnαβ =
1
2

nαβsμνδgμν , (103)

where sμν ≡ −uμuν + NμNν  is the projector orthogonal to ∂Σ (the spacetime version of the 
inverse metric on the normal bundle). Additionally, from the fact that the mixed index binor-
mal satisfies nα

βnβα = 2, we see that the perturbations of nα
β  satisfy

nαβδnβ
α = 0 (104)

δnα
βδnβα = −2nαβδ(2)nβα, (105)

where δ(2)nβα denotes the change in nβ
α at second order in δgμν.

Applying these identities to the expression for the integrated Noether charge (96), we find 
that ∫

∂Σ

δQζ = − 1
16πG

∫
∂Σ

∂αζ
γ(nγαδμ+ μδnγα) =

−κ
8πG

δ(1)A, (106)

so that the Noether charge remains proportional to the area at first order in perturbations. For 
the vacuum case we are interested in, this variation actually vanishes at this order.

The second order calculation yields∫
∂Σ

δ(2)Qζ = − 1
16πG

∫
∂Σ

∂αζ
γ(nγαδ(2)μ+ δnγ

αδμ+ δ(2)nγαμ)

= − κ

8πG
δA +

κ

32πG

∫
∂Σ

μδnαγδnγ
α,

 

(107)

where δA is the expression given in (24). Equation (107) shows that the Noether charge devi-
ates from the area at second order by a term proportional to the integrated norm of δnα

γ. We 
can evaluate this term using the form of the binormal perturbation (103), which leads to

δnαγδnγ
α = −sαβsμνδgαμδgβν +

1
2
(sαβδgαβ)

2. (108)

This can be further simplified by noting that the unit normals are orthogonal even after per-
turbing the metric, uαNβgαβ = 0. Since the perturbations to the unit normals given in (101) 
and (102) are each proportional to the original normal, it must be that uαNβδgαβ = 0, leading 
to

δnα
γδnγ

α = −1
2
(uαuβδgαβ + nαnβδgαβ)

2. (109)

Finally, we would like to evaluate this contribution in the gauge set by using Riemann nor-
mal coordinates, with the first order metric perturbation given by

δgαβ = −1
3

xγxδRαγβδ . (110)

These coordinates have the useful property that Nαδgαβ = 0, so that the correction to the area 
term in the Noether charge becomes
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− κ

64πG

∫
∂Σ

μ(uαuβδgαβ)
2 = − κ

8πG
Ωd−2�

d+2

d2 − 1
E2

36
, (111)

and the final expression for the second variation of the Noether charge is∫
∂Σ

δ(2)Qζ =
κ

8πG
Ωd−2�

d+2

d2 − 1

(
W
15
− E2

12

)
. (112)

This result shows that the notion of energy provided by the integrated Noether charge dif-
fers from just the area when working to second order in perturbations; however, it still does 
not produce a quantity proportional to the Bel–Robinson energy density W at second order in 
the Riemann normal coordinate expansion. In fact, equation (109) shows that the correction 
to the area must be nonpositive, which is precisely the opposite of what is needed to cancel 
the unwanted E2 term in the area variation. Note also that the correction to the area term pro-
vided by (109) depends only on how the metric in the normal directions varies. In particular, 
we could change this term with an active diffeomorphism gαβ → gαβ +£ξgαβ that fixes 
the geometry of the surface, and one can always find such a transformation that causes the 
metric perturbations in the normal direction appearing in (109) to vanish4. In such a gauge, 
ζα remains tangent to the null normal surfaces emanating from ∂Σ, unlike in the Riemann 
normal coordinate gauge. This is consistent with the result that the Noether charge will be pro-
portional to the area as long as ζα remains tangent to the null hypersurfaces in the perturbed 
geometry, which holds at all orders in perturbation theory [20]. In particular, if the geometry 
of the ball is such that ∂Σ remains at the intersection of two light cones as described in sec-
tion 5.1, the Noether charge will simply be given by the area of the ball.

Finally, note equation (92) determines the Hamiltonian to be given by the Noether charge 
up to an overall constant, Hζ =

∫
∂Σ

Qζ − H0. It is natural to think of this constant as the 
area of the ball in flat space, so that the Hamiltonian vanishes when there are no gravitational 
fields. Of course, this necessitates a choice of the flat space ball to which we are comparing. 
The round sphere in flat space for whom ζα is a conformal Killing vector appears to be a 
natural choice; however, other choices certainly are possible. We thus again face the issue 
encounter ed in section 6 of needing to determine an appropriate ball in flat space to compare 
to, and unfortunately our Noether charge arguments do not shed any light on this issue.

7.2. Extrinsic curvature ambiguities

There is one loophole that may be exploited to make the integrated Noether charge coincide 
with the Bel–Robinson energy density in the small ball limit. The Noether charge is subject 
to a number of ambiguities [14], one of which arises from an ambiguity in the symplectic 
potential θ. As is apparent from equation (88), θ is defined only up to the addition of a closed 
(d − 1)-form, dβ[δφ]. Adding such a term to θ also changes the Noether charge by

Qζ → Qζ + β[£ζφ]. (113)

As explained in [6, 21, 22], since ζα acts like a boost at ∂Σ (i.e. ζα  =  0 and ∂αζβ ∝ nαβ), 
β[£ζφ] will consist of a sum of boost-invariant products of the form B(−m) · C(m), where 
m �= 0 denotes the boost weight of the tensor. When a tensor is decomposed into components 
tangent to the surface and those parallel to the null normals kα±, the boost weight is simply the 
number of kα+ components minus the number of kα− components.

4 The reason that δ(2)Qζ is not completely diffeomorphism-invariant is that it is defined with respect to the fixed 
vector ζα, which does not transform under diffeomorphisms.
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Invariants formed from the extrinsic curvature of ∂Σ provide an example of this type of 
ambiguity. The extrinsic curvature tensor, usually called the shape tensor or second fundamen-
tal form vector, can be defined in our case as

Kα
AB = KABNα − κABuα (114)

where the second fundamental forms KAB along Nα and κAB  along uα were introduced in 
sections 5.2 and 5.3, respectively. Observe that the α index is purely normal, so it will lead to 
pieces that have boost weights of  ±1. Hence, the contraction Kγ

ABKγCD gives a boost-invariant  
tensor composed of terms with nonzero boost weight, and once the remaining tangential indi-
ces are contracted it gives the required form for a Noether charge ambiguity. The shape tensor 
(114) can be decomposed into its trace, the mean curvature vector

Kα := qABKα
AB = KNα − κuα (115)

and its traceless part, which is conformally invariant and is called the total shear tensor [23]

K̃α
AB := Kα

AB −
1

d − 2
KαqAB, qABK̃α

AB = 0.

Therefore, we can build two independent contractions by

KγKγ , K̃α
ABK̃AB

α . (116)

Additional ambiguities involving more factors of extrinsic curvature also arise in this fashion, 
but we will restrict attention to the quadratic invariants (116).

In principle, this would require us to know KAB and κAB  to second order in the curvature. 
However, we already know that κAB  vanishes in the flat background, which implies that we 
only need to know it at first order, and this was already given in (72). In particular, its trace κ  
vanishes at this order as shown in (73).

The situation is different for KAB, whose first order expansion is already known (set Y[s]  =  0 
for all s in (67)). But given that its flat space value does not vanish we need to go to next 
order in the computation. This can be done by noticing—as in section 5.2—that KAB = −Γr

AB, 
where Γ are the Christoffel symbols of the t  =  0 hypersurface in spherical coordinates, leading 
after a simple calculation to

KAB =�ΩAB − 2
3
�3nknlDikjl

∂ni

∂θA

∂n j

∂θB +
5

12
�4nknlnm∇kRiljm

∂ni

∂θA

∂n j

∂θB

+ 3�5nknlnmn p
(
− 2

45
HkilHmjp +

2
45

Dq
kilDqmjp − 1

20
∇k∇lRimjp

)
∂ni

∂θA

∂n j

∂θB .

 

(117)

Concerning the ambiguity term KγKγ  in (116), on using (115) we immediately get

KγKγ = −κ2 + K2 (118)

and given that κ  vanishes at order 1 (and order zero) we only need to compute K up to second 
order. This can be done from (117) and from (40) (with all Y[s]  =  0) leading to

K =
d − 2
�

− �

3
Eijnin j +

5
12

�2nknlnm∇kR0l0m − �3

45
nin jnknl(Di

m
j
nDkmln + 4Hi

m
jHkml).

 (119)
The contribution to the Noether charge will be the integral of this expression over the ball. 

Since the volume element 
√

q contains corrections A1 and A2 at first and second order in the 
curvature, the full result at second order consists of
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∫
∂Σ

μKγKγ =

∫
∂Σ

dΩd−2
(
2K2K0 + K2

1 + 2K0K1A1 + K2
0A2

)
, (120)

where K0,1,2 denote the value of K at zeroth, first and second order—the order-3
2 term does not 

contribute upon integration due to the odd number of n’s. Note that the first order term van-
ishes since it would involve the trace of Eij after integrating over the ball, and the background 
value is just Ωd−2�

d−4(d − 2)2. Once the integral over the ball is performed, (120) evaluates to∫
∂Σ

μKγKγ =
Ωd−2�

d

15(d2 − 1)

[
− (d + 6)(d − 2)

8
(D2 + 4H2) +

d2 + 4d − 2
3

E2
]

=
Ωd−2�

d

15(d2 − 1)

[
−(d + 6)(d − 2)W +

5
6
(d2 + 4d − 8)E2

]
.

 

(121)

This contains the same quadratic Weyl tensor invariants as does the area variation (24) and 
the Noether charge (112), and hence it is possible to choose a combination such that only a 
term proportional to W survives. Such a combination is given by

Hζ =

∫
∂Σ

Qζ +
3κ�2

16πG(d2 + 4d − 8)

∫
∂Σ

μKγKγ , (122)

which at second order in the curvature expansion evaluates to

δ(2)Hζ =
−κ
8πG

Ωd−2�
d+2

15(d2 − 1)
d2 + 4d − 20

2(d2 + 4d − 8)
W. (123)

Finally, concerning the other possible ambiguity term K̃α
ABK̃AB

α , first of all we notice that

K̃α
AB = K̃ABNα − κ̃ABuα (124)

where K̃AB  and κ̃AB  are the corresponding shear tensors or trace-free second fundamental 
forms, so that

K̃α
ABK̃AB

α = K̃ABK̃AB − κ̃ABκ̃
AB. (125)

We already know that κAB  is traceless to this order, and thus κ̃AB = κAB is already given in 
(72). On the other hand, from (117) one easily sees that K̃AB  vanishes at order zero, meaning 
that, in flat spacetime, the boundary surface of the geodesic ball is always totally umbilical; for 
our calculation now this implies that we only need to know K̃AB  up to first order. Now, using 
equations (40), (67) and (68) we readily obtain

K̃AB = −�3

3
∂ni

∂θA

∂n j

∂θB nknl
(

Dikjl +
1

d − 2
(δij − ninj)Ekl

)
. (126)

From this expression together with (72) it seems that the ambiguity term K̃α
ABK̃AB

α  will not 
produce helpful curvature invariants when integrated over the ball to give only W when added 
to the area variation. This can be deduced from the opposite signs in the squared terms on the 
righthand side of (125), indicating that the coefficients of H2 and D2 will appear in the inte-
grated expression with opposite signs.

8. Discussion

This paper has sought to extend the connection between the areas of small spheres and energy 
density to the case of vacuum general relativity where the matter stress tensor vanishes. Since 
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gravity gravitates, we expected a contribution to the area proportional to the quasilocal grav-
itational energy associated with the sphere, the natural candidate being the Bel–Robinson 
super-energy density W. However, as exhibited in equation (27), the area variation for a geo-
desic ball depends on other quadratic curvature invariants besides W. We further noted that 
there is considerable ambiguity in defining the shape of the ball in curved space, and each 
prescription for this shape can lead to a different value for the area variation.

In section 4, we explored the effect that a general shape deformation has on the area, and 
argued that choices of these deformations exist that cause the area variation to be proportional 
to W. Sections 5 and 6 were devoted to exploring various ways of fixing the the shape defor-

mations. A particularly natural choice for the spin-2 deformation was given by Yij =
�3

6 Eij, 
which coincides with keeping the ball surface at the intersection of two lightcones, or, equiva-
lently, keeping its null expansions constant over the surface. We also discussed how to vary 
the radius of the ball, and found that the most natural prescription, holding the spatial volume 
fixed, precludes an area variation proportional to W. We put forward some ideas on how to 
make progress on the issue of fixing the volume variation in section 6.

We also connected the area variation to the Hamiltonian associated with the ball in sec-
tion 7 using the Noether charge formalism. We showed that there exists a gauge choice for 
which the Noether charge of the ball coincides with the area, consistent with the results of 
[20]. This Noether charge has an interpretation as the Hamiltonian generating a flow within the 
ball’s domain of dependence, which justifies associating the area with the quasilocal energy. 
Furthermore, there exist ambiguities in defining the symplectic form for the ball, which trans-
late to ambiguities in Noether charge and Hamiltonian. Invariants formed from the extrinsic 
curvature of the ball are one type of ambiguity, and for a specific choice (122) involving KγKγ  
one can get the second variation of the Hamiltonian to coincide with W. Unfortunately, this 
choice does not appear particularly natural, since it involves a coefficient that depends explic-
itly on the background radius of the ball.

Despite much effort, we were unable to make a fully satisfactory connection between the 
area and the Bel–Robinson superenergy density. However, our investigations were by no 
means exhaustive, and we leave open the possibility that a natural prescription exists for fix-
ing the shape of the ball that yields W as the first correction to the area. We have developed 
a geometric framework for computing area, volume, and extrinsic curvatures perturbatively 
in Riemann normal coordinates with generic shape deformations, which will be of use when 
investigating other ways of fixing the shape of the ball. These geometric calculations also 
complement other investigations of small causal diamonds [24–26], and may be relevant to 
ideas in the theory of causal sets [27].

There are several future directions to investigate. The calculation of the shape deformation 
that ensures that the boundary of the ball lies at the intersection of two light cones was done to 
first order in the curvature at the center of the ball. One could carry this calculation out to the next 
order, computing the quadratic curvature corrections to the functions φ and ψ in (53) and (54). 
One can argue that these corrections will be a combination of four terms of the form xix jEk

i Ejk, 
xix jxkEl

iHjlk, xix jxkxlEijEkl and xix jxkxlHi
m

jHkml. The first, third and fourth of these affect the 
area by changing the average value of the radius of the ball, and hence have a similar effect as does 
X from equation (44). These contributions can be thought of as coming from the focusing of light 
rays due to the quasilocal gravitational energy within the ball. Working out these contributions 
could be a step in the right direction toward getting W in the area variation, although there is still 
an overall ambiguity in choosing the size of the ball in the curved manifold via the choice of X.

In the first law of causal diamonds, this ambiguity in the ball radius is resolved by fixing 
the volume of the ball. To arrive at the fixed volume constraint, one compares variations of the 
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off-shell Hamiltonian, given by the symplectic flux through the ball, to its on-shell value, given 
by the area. It is possible a similar relation fixes the overall size ambiguity at second order in cur-
vature, but this requires evaluating the second variation of the off-shell Hamiltonian, similar to 
the analysis of Hollands and Wald [20]. The calculation in the present case is further complicated 
by the fact that we are perturbing a causal diamond with a conformal Killing vector, while the 
Hollands and Wald calculation involves a true Killing vector. Another possibly useful construct 
in fixing the ball shape is to introduce edge mode fields as in [28, 29], since these tend to param-
eterize all possible ways of deforming the boundary of a local subregion. It is possible that these 
could lead to a combination of geometric invariants that are independent of the way the shape of 
the ball is chosen. This would be similar to how the ‘isoperimetric’ invariant (78) is independent, 
at zero, first, and second order at least, of changes in the overall radius, as argued in section 6.

Since the conformal Killing vector vanishes at the boundary of the ball, the Hamiltonian 
we are computing corresponds to a flow that remains within the domain of dependence of the 
ball. It may be that the quasilocal energy corresponding to W should be conjugate to a flow 
that is not vanishing at the boundary of the ball, such as the usual time translation vector. In 
the Noether charge formalism, this produces an additional boundary term in the Hamiltonian 
depending on ξ · θ, where ξ is the nonvanishing vector field for the flow, and θ is the symplectic 
potential (94). However, identifying this with a Hamiltonian is subtle because ξ · θ is in general 
not integrable, i.e. it cannot be written as δB for some covariant (d − 2)-form B. The issue is 
that symplectic flux can leak out through the region when evolving along the flow if ζ does not 
vanish at the boundary [30], unless boundary conditions are imposed on the dynamical fields. 
Thus, it remains to be seen whether this gives a useful notion of energy in the small ball limit.

Finally, we note that all of these calculations were performed for arbitrary spacetime 
dimension. Much of the work on quasilocal mass has focused on d  =  4, where the Weyl ten-
sor is simpler than in higher dimension. This is because the traceless magnetic-magnetic part 
of the Weyl tensor, Fijkl, vanishes identically in 4 dimensions. Thus, there are only two inde-
pendent quadratic invariants formed from the electric and magnetic parts that can appear in the 
calculations, and so it is easier to find a prescription for the quasilocal energy and the shape 
that produces the Bel–Robinson superenergy density. Using the machinery developed in this 
paper, one could investigate various prescriptions for the quasilocal mass in higher dimen-
sions, where their ability to reproduce W in the small ball limit would be more nontrivial. It 
is worth noting that some prescriptions for quasilocal mass are not even extendible to higher 
dimension, e.g. the isometric embeddings into flat space used for the Wang–Yau quasilocal 
mass [13] will generically not be possible for codimension-2 surfaces in higher dimension. 
Since gravity in higher dimensions has many interesting applications, a dimension-independ-
ent notion of quasilocal gravitational energy is worth pursuing.
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