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1 Introduction

Bilevel programming is a two-level optimization framework—introduced by Bracken and
McGill (1973, 1974, 1978)—for modeling sequential decision-making by two indepen-
dent (collaborative or adversarial) participants: the leader and the follower. The leader ini-
tially solves the first-level optimization problem, and the follower subsequently solves the
second-level optimization problem, where both problems involve the leader’s and follower’s
decision variables (i.e., in the objective functions and constraints). Thus, solving bilevel
programs entails the leader making a (feasible) decision to induce a rational reactive deci-
sion from the follower (i.e., solving the second-level problem given the leader’s decision)
that results in an optimal first-level objective function value. An optimistic or pessimistic
bilevel program is modeled whenever the follower is assumed to choose a reaction that is
collaborative or adversarial, respectively, with respect to the leader’s objective function.

Bilevel programming has applications in a number of diverse areas, including network
design, revenue management, and economics, among others. Solving even the simplest of
bilevel programs, where both first- and second-level programs are linear, is strongly NP-
hard (Ben-Ayed and Blair 1990; Jeroslow 1985; Hansen et al. 1992). Numerical approaches
for solving bilevel programs, include extreme-point, branch-and-bound, descent, penalty-
function, and trust-region methods (cf. Candler and Townsley 1982; Bard and Falk 1982;
Vicente et al. 1994; Aiyoshi and Shimizu 1981; Colson et al. 2005, respectively). Some
classes of bilevel programs—in particular, those that do not involve integrality restrictions
at the lower level—admit single-level linear mixed-integer programming reformulations,
which can be solved by optimization software packages, such as CPLEX (IBM Corp. 2017);
see, examples in Audet et al. (1997); Zare et al. (2017); Stozhkov et al. (2017). We refer the
reader to the survey by Colson et al. (2007) for a more-thorough discussion.

Various researchers considered bilevel programs with special structures to develop
exact-solution approaches, which they demonstrated to perform sufficiently well in practice.
In particular, Brotcorne et al. (2009, 2013) developed dynamic programs (DPs) to solve
the bilevel knapsack problem (BKP; Dempe and Richter 2000). Beheshti et al. (2015)
developed a branch-and-backtrack approach (Özaltın et al. 2010) to solve BKP problems,
where the leader’s objective function is nonlinear (e.g., quadratic and fractional), while
the follower’s problem is a linear 0–1 knapsack problem as in the aforementioned studies
of BKP. Beheshti et al. (2016) developed a combinatorial branch-and-bound algorithm to
solve bilevel assignment problems.

In this note, we consider the bilevel quadratic knapsack problem (BQKP), where the
second-level problem is a quadratic 0–1 knapsack problem (QKP). Thus, BQKP is a gener-
alization of the BKP as in the latter the follower solves a linear 0–1 knapsack problem (cf.
Dempe and Richter 2000). We note that since BKP is NP-hard (Brotcorne et al. 2009), then
BQKP, as its generalization, is also NP-hard.

QKPs have a variety of applications in transportation networks (e.g., Rhys 1970) and
telecommunications (e.g., Witzgall 1975), among others (cf. Kellerer et al. 2004; Pisinger
2007). Thus, an example BQKP is finding the optimal budget to enable the construction of a
subset of potential facilities: a principal (i.e., leader) appropriates a budget to an agent (i.e.,
follower) to construct a network of facilities (e.g., airports). It is assumed that the agent
obtains revenues from each facility and the paired connections between them (the latter
assumption is responsible for appearance of the nonlinear terms in the follower’s objective),
while the principal obtains a return on investment from each facility.

We use results from the bilevel optimization, BKP and QKP literature to provide an
exact-solution approach to BQKP. Specifically, we develop an exact-solution approach for
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BQKP based on DP and the branch-and-backtrack algorithm. We compare our approach
against a two-phase method computed using a commercial state-of-the-art solver in both
phases: it first computes the follower’s value function for all feasible leader’s decisions,
and then solves a single-level, value-function reformulation of BQKP as a mixed-integer
quadratically constrained program (MIQCP). Our computational experiments show that our
approach for solving BQKP outperforms the two-phase method computed by the commer-
cial state-of-the-art solver.

The remainder of this note is organized as follows. Section 2 presents the BQKP for-
mulation and its single-level, value-function reformulation. Section 3 describes our exact-
solution approach to BQKP. Section 4 shows the results of our computational experiments.
Finally, Section 5 concludes the note.

2 Mathematical Model and Value-function Reformulation

We consider a set of n ∈ Z1
+ items where each item i ∈ {1, . . . ,n} has an associ-

ated weight ai ∈ Z1
+ and two revenues: the leader’s revenue, di ∈ R1

+, and the fol-
lower’s revenues: qii ∈ R1

+ and qi j ∈ R1
+, where the latter is the joint revenue with

item j ∈ {1, . . . ,n}, j 6= i. The follower must solve a QKP to maximize its own objective
subject to the capacity set by the leader, y ∈ R1

+. This yields the following BQKP:

(BQKP) max ty+d>x(y)
s.t. y≤ y≤ y

x(y) ∈R(y),

where t ∈ R1 and d ∈ Rn are the leader’s objective function coefficients, y ∈ R1
+ and y ∈ R1

+

are lower and upper bounds on the leader’s decision variable y ∈ R1
+, respectively, and,

R(y) = argmax
x∈{0,1}n

{x>Qx : a>x≤ y}

is the follower’s rational reaction set.
For 0–1 variables, we have x2

i = xi. Thus, QKP reduces to the 0–1 knapsack problem
whenever Q is a diagonal matrix. Consequently, in this case, BQKP also reduces to BKP
from Dempe and Richter (2000).

In the remainder of this note, we make the following assumptions:

(A1) Optimistic case;
(A2) Nonnegative integer parameters:

y ∈ Z1
+, y ∈ Z1

+, d ∈ Zn
+, Q ∈ Zn×n

+ and a ∈ Zn
+;

(A3) Symmetric follower’s revenue matrix: qi j = q ji, and;
(A4) Feasible and non-trivial knapsack capacities:

maxi∈{1,...,n} ai < y and y <
n

∑
i=1

ai.

Considering only the optimistic case in Assumption (A1) is common in the hierarchical
optimization literature (e.g., Audet et al. 1997; Migdalas et al. 1998). Nonnegativity and in-
tegrality restrictions in Assumption (A2) are typical in the literature for knapsack problems
and BKPs (e.g., Brotcorne et al. 2009; Martello and Toth 1990). Using symmetric revenue
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matrices in Assumption (A3) along with feasible and non-trivial knapsack capacities in As-
sumption (A4) can be assumed without loss of generality (cf. Pisinger 2007).

For any β ∈ R1
+, we define the leader’s value function for the follower’s decisions as:

λ
n(β )≡ max

x∈{0,1}n

{
n

∑
i=1

dixi :
n

∑
i=1

(
qiixi +2

n

∑
j=i+1

qi jxix j

)
≥ φ

n(β ),
n

∑
i=1

aixi ≤ β

}
,

where φ k(β ), for any k∈ {1, . . . ,n}, is the follower’s value function for the QKP considering
only the first k items defined as:

φ
k(β )≡ max

x∈{0,1}k

{
k

∑
i=1

(
qiixi +2

k

∑
j=i+1

qi jxix j

)
:

k

∑
i=1

aixi ≤ β

}
.

The following proposition follows immediately from Theorem 3 of Dempe and Richter
(2000) for BKP since φ n(β ) is piecewise constant, right-continuous, and monotonically
nondecreasing in β ∈ [y,y].

Proposition 1 If t ≤ 0, then BQKP has a solution. If t > 0, then either the optimal solution
to BQKP is (y,x) for some x ∈R(y) or BQKP has no solution.

Thus, we make the following additional assumption:

(A5) The coefficient to the leader’s decision variable is nonpositive: t ≤ 0.

Consequently, the following proposition follows immediately from Proposition 3 of Brot-
corne et al. (2009).

Proposition 2 If t ≤ 0, then BQKP have integral solutions (y∗,x∗) ∈ Z+×{0,1}n.

Henceforth, without loss of generality, we consider only integral knapsack capaci-
ties β ∈ Z+, and hence DP algorithms can be used.

Value functions have been reported in the literature to afford the reformulation of BKPs
and special-structured two-stage stochastic programs that enabled the development of ef-
ficient solution approaches. Brotcorne et al. (2013) used value functions to reformulate
BKP as single-level mixed-integer program solvable by commercial software. Beheshti et al.
(2015) used a value-function reformulation of BKPs with quadratic and fractional leader ob-
jective functions to develop their exact-solution approach. Özaltın et al. (2010) used value
functions to reformulate and solve BKP as a two-stage stochastic program. Kong et al.
(2006); Trapp et al. (2013); Trapp and Prokopyev (2015) and Özaltın et al. (2012) used
value-function reformulations to solve two-stage linear and quadratic integer programs with
stochastic right-hand sides, respectively, using superadditive-dual approaches.

BQKP admits a single-level, value-function based reformulation given by:

(VF–BQKP) max ty+d>x
s.t. y≤ y≤ y

x>Qx≥ φ
n(y)

a>x≤ y

x ∈ {0,1}n

y ∈ Z+,

and, under Assumption (A1), the following proposition follows immediately.
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Proposition 3 A solution (y∗,x∗) ∈ Z+×{0,1}n is optimal to VF–BQKP if and only if it is
optimal to BQKP.

Similar to Brotcorne et al. (2013), VF–BQKP can be solved by standard software pack-
ages in the following two-phase method. Specifically, in the first phase we precompute (i.e.,
independently) all the value functions φ n(β ), for all β ∈ {y, . . . ,y}, which are 0–1 quadratic
programs (QPs) solvable by commercial state-of-the-art software packages after some sim-
ple manipulations (cf. Billionnet and Elloumi 2007). In the second phase, using these QPs
as right-hand sides (RHSs), VF–BQKP can be encoded by using auxiliary indicator vari-
ables (cf. Brotcorne et al. 2013), as an MIQCP, also computable by commercial solvers:

x>Qx≥ φ
n(y) ⇔



x>Qx ≥
y

∑
β=y

φ
n(β ) · z

β

y =
y

∑
β=y

β · z
β

y

∑
β=y

z
β
= 1

z
β
∈ {0,1}, ∀β ∈ {y, . . . ,y}

In the next section, we present an alternative exact-solution approach, which is the
main contribution of this note. Our approach extends the branch-and-backtrack algorithm
of Özaltın et al. (2010). Specifically, it prunes the branch-and-bound tree using the solutions
to the QKP lower- and upper-bounding value functions, which can be computed using DP.
The increased computational burden for solving BQKP over BKP results from having only
the bounds to the QKPs—that is, not having their exact solutions.

3 Algorithms

Our exact-solution approach for solving BQKPs is comprised of three computing tasks,
which we discuss in the following subsections. Subsection 3.1 describes the compu-
tation of the QKP lower bounds φφ k(β ) in Algorithm 1, where φφ k(β ) ≤ φ k(β ), for
all k ∈ {1, . . . ,n} and β ∈ {0, . . . ,y}. Subsection 3.2 describes the computation of the QKP
upper bounds φφ k(β ) in Algorithms 2, 3 and 4, where φφ k(β ) ≥ φ k(β ), for all k ∈ {1, . . . ,n}
and β ∈ {0, . . . ,y}. Subsection 3.3 establishes the theoretical results afforded by the QKP
lower and upper bounds and, subsequently, describes the procedure using those results for
solving BQKP in Algorithm 5. Algorithms 1–3 are DP-based approaches and Algorithm 5
is a variant of the branch-and-backtrack algorithm of Özaltın et al. (2010).

For ease of exposition, we repeat the explicit DP pseudo-code in Algorithms 1–3; in
our implementation, however, we define a common DP procedure reusable by those algo-
rithms. In each of the DPs, γ0 and γ1 represent the profits for leaving and taking the kth item,
respectively (i.e., line 6 in Algorithm 1 and line 8 in Algorithms 2–3).

3.1 Computing the QKP Lower Bounds

Fomeni and Letchford (2014) reported a DP heuristic for computing a lower bound to QKPs
based on the classical DP approach for solving the linear 0–1 knapsack problem. They use
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a greedy approach that considers the QKP with the first k ∈ {1, . . . ,n−1} items and bud-
gets β ∈ {0, . . . ,y} to inform solving the QKP with the first k+1 items via DP. In their first
algorithm (cf. Fomeni and Letchford 2014, Algorithm 2), they compute an item-index set of
the greedily selected items among the first k ∈ {1, . . . ,n} items, for all β ∈ {0, . . . ,y}.

Our extension of their first algorithm is given by Algorithm 1, where the key difference
is that we use the leader objective function coefficients d∈Zn

+ to break item-selection ties in
the optimistic sense (cf. Assumption A1) in lines 13–18. We note that this tie-breaking step is
afforded by lines 9, 11 and 13, where we store in δ k(β ) the leader’s k-item objective function
value corresponding to the follower’s item-selection decisions, for all β ∈ {0, . . . ,y}. Tie-
breaking steps based on the leader’s objective function are commonly used in algorithms for
bilevel problems (e.g., Brotcorne et al. 2009; Özaltın et al. 2010; Beheshti et al. 2015).

The item-index set χχk(β ) contains the greedily selected items among the
first k ∈ {1, . . . ,n} items, for all capacities β ∈ {0, . . . ,y}. We note that χχk(β ) induces a
feasible (lower-bounding) solution:

x = [xi ∈ {0,1} : xi = 1⇔ i ∈ χχ
k(β )] ∈ {0,1}k

to the k-item, β -capacitated QKP corresponding to φ k(β ).

Algorithm 1 DP to compute the lower-bounding value functions φφ •(·) and item sets χχ•(·)
1: procedure LB(d, Q, a)
2: Initialize, for every β ∈ {0, . . . ,y},(

φφ 1(β ),δ 1(β ),χχ1(β )
)
←

{
(0,0, /0), if β ∈ {0, . . . ,a1−1}
(q11,d1,{1}), otherwise

3: for k← 2, . . . ,n do
4: for β ← 0, . . . ,y do
5: if β ≥ ak then
6: Let γ0← φφ k−1(β ) and γ1← φφ k−1(β −ak)+qkk +2∑i∈χk−1(β−ak)

qik

7: Update φφ k(β )←max {γ0,γ1}
8: if γ0 > γ1 then
9: Update δ k(β )← δ k−1(β ) and χχk(β )← χχk−1(β )

10: else if γ0 < γ1 then
11: Update δ k(β )← δ k−1(β −ak)+dk and χχk(β )← χχk−1(β −ak)∪{k}
12: else
13: Update δ k(β )←max {δ k−1(β ),δ k−1(β −ak)+dk} // Optimistic case
14: if δ k(β ) = δ k−1(β ) then
15: Update χχk(β )← χχk−1(β )
16: else
17: Update χχk(β )← χχk−1(β −ak)∪{k}
18: end if
19: end if
20: else
21: Update φφ k(β )← φφ k−1(β ), δ k(β )← δ k−1(β ), and χχk(β )← χχk−1(β )
22: end if
23: end for
24: end for
25: return (φφ•(·),χχ•(·))
26: end procedure
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3.2 Computing the QKP Upper Bounds

Let Q[k] denote the kth-order leading principal submatrix of Q. We note the following equal-
ities on the objective function for the k-item, β -capacitated QKP corresponding to φ k(β ),
for any k ∈ {1, . . . ,n} and β ∈ {0, . . . ,y}:

x>Q[k]x =
k

∑
i=1

k

∑
j=1

qi jxix j =
k

∑
i=1

qii +
k

∑
j=1
j 6=i

qi jx j

xi.

We also note that qii +∑
k
j=1, j 6=i qi jx j is bounded above by the k-item, β -capacitated QKP

upper plane:

π
k
i (β )≡ qii +max


k

∑
j=1
j 6=i

qi jx j :
k

∑
j=1
j 6=i

a jx j ≤ β −ai;x j ∈ {0,1},∀ j ∈ {1, . . . ,k}\{i}

 ,

for all i ∈ {1, . . . ,k}. Consequently, for all k ∈ {1, . . . ,n} and β ∈ {0, . . . ,y}, upper bounds
to φ k(β ) are obtained by:

φφ
k(β )≡ max

x∈{0,1}k

{
k

∑
i=1

π
k
i (β ) · xi :

k

∑
i=1

aixi ≤ β

}
,

since each item i ∈ {1, . . . ,k} selected in solving φφ k(β ) assumes the selection of additional
items in {1, . . . ,n}\{i} corresponding to πk

i (β ), the union of which may be infeasible
to φφ k(β ). We observe that φφ k(β ), for all k ∈ {1, . . . ,n}, and β ∈ {0, . . . ,y} are knapsack
problems, which can be solved using classical DP.

Upper planes were first introduced by Gallo et al. (1980) and later refined by Caprara
et al. (1999) that afforded effective approaches for computing upper bounds to QKP with n
items with fixed capacity c ∈ Z+. A comprehensive overview of these and other bounds are
surveyed by Pisinger (2007). Using our notation, the upper planes of the fourth kind (i.e.,
using 0–1 variables and knapsack constraints) of Caprara et al. (1999) is expressed as πn

i (c),
for all i ∈ {1, . . . ,n}.

The quality of the upper bounds induced by upper planes, however, highly depends on
the order of the items. Rodrigues et al. (2012) described a procedure for enumerating a subset
of item-index permutations to generate valid inequalities using upper planes1 (i.e., induced
by the item-order) to approximate the convex hull of the feasible region to a reformulation of
QKP (i.e., linearization using a single variable and an exponential number of constraints).
We refer to this procedure by Rodrigues et al. (2012) as cutting upper planes for brevity.
Additionally, Lagrangian-based approaches were reported to strengthen QKP upper bounds,
including those of Caprara et al. (1999) and Billionnet et al. (1999), both of which are
discussed by Pisinger et al. (2007).

Straightforward computations of upper planes πk
i (β ) and upper bounds φφ k(β ), for

all i ∈ {1, . . . ,k}, k ∈ {1, . . . ,n}, and β ∈ {0, . . . ,y} are afforded by DP Algorithms 2 then 3,
respectively, which are explained below. Furthermore, cutting upper planes for strengthen-
ing the QKP upper bounds can be computed by iterating through Algorithms 2 and 3 for

1 Rodrigues et al. (2012) presented valid inequalities using three types of upper planes: a variant of the
first kind of upper planes of Gallo et al. (1980) and those of the third and fourth kind of Caprara et al. (1999).
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different item-orders as induced by the last solution returned by Algorithm 3 (cf. Rodrigues
et al. 2012, Algorithm 1), which we express as Algorithm 4.

Recall, however, that QKP upper bounds are used for solving BQKP. Thus, there ex-
ists a tradeoff in computation times between strengthening QKP upper bounds and solving
BQKP itself. We investigate the computational tradeoff in solving the QKP upper bounds
using straightforward upper-planes approach versus the cutting upper-planes approach in
Section 4. We defer Lagrangian-based enhancements (e.g., Billionnet and Soutif 2004; Chen
et al. 2018) for future studies.

Algorithm 2 DP to compute the upper planes π•(·) and item sets ξ •(·)
1: procedure UPPERPLANES(d, Q, a)
2: for i← 1, . . . ,n do
3: Let d̂← [d1, . . . ,di−1,di+1, . . . ,dn]

>, q̂← [qi,1, . . . ,qi,i−1,qi,i+1, . . . ,qi,n]
>, and

â← [a1, . . . ,ai−1,ai+1, . . . ,an]
>

4: Initialize, for every β ∈ {0, . . . ,y−ai},(
φ̂φ 1(β ), δ̂δ 1(β ), χ̂χ1(β )

)
←


(0,0, /0), if β ∈ {0, . . . , â1−1}
(q̂1, d̂1,{1}), if i > 1 and β ≥ â1

(q̂1, d̂1,{2}), otherwise
5: for j← 2, . . . ,n−1 do
6: for β ← 0, . . . ,y−ai do
7: if β ≥ â j then
8: Let γ0← φ̂φ j−1(β ) and γ1← φ̂φ j−1(β − â j)+ q̂ j

9: Update φ̂φ j(β )←max {γ0,γ1}

10: Let ĵ←

{
j, if j < i
j+1, otherwise

11: if γ0 > γ1 then
12: Update δ̂δ j(β )← δ̂δ j−1(β ) and χ̂χ j(β )← χ̂χ j−1(β )
13: else if γ0 < γ1 then
14: Update δ̂δ j(β )← δ̂δ j−1(β − â j)+ d̂ j and χ̂χ j(β )← χ̂χ j−1(β − â j)∪{ ĵ}
15: else
16: Update δ̂δ j(β )←max {δ̂δ j−1(β ), δ̂δ j−1(β − â j)+ d̂ j} // Optimistic case
17: if δ̂δ j(β ) = δ̂δ j−1(β ) then
18: Update χ̂χ j(β )← χ̂χ j−1(β )
19: else
20: Update χ̂χ j(β )← χ̂χ j−1(β − â j)∪{ ĵ}
21: end if
22: end if
23: else
24: Update φ̂φ j(β )← φ̂φ j−1(β )
25: end if
26: end for
27: end for
28: Initialize, for every k← i, . . . ,n and β ← 0, . . . ,y,(

πk
i (β ),ξ

k
i (β )

)
←


(q11,{1}), if k = 1
(qii,{i}), if k > 1 and β ∈ {0, . . . ,ai}
(qii + φ̂φ k−1(β −ai),{i}∪ χ̂χk−1(β −ai)), otherwise

29: end for
30: return (π•(·),ξ •(·))
31: end procedure

Algorithm 2 extends the classical DP for computing the upper planes of Caprara et al.
(1999) to compute all upper planes πk

i (β ), for all QKPs with the first k ∈ {1, . . . ,n} items,
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capacities β ∈ {0, . . . ,y}, and i ∈ {1, . . . ,k}. Additionally, Algorithm 2 computes item-index
sets ξ k

i (β ) that correspond to the solutions to πk
i (β ). We observe that lines 4–27 excluding

line 10 describe a DP for an (n−1)-item knapsack problem that excludes the ith item, for
each i ∈ {1, . . . ,n} as iterated in line 2. Lines 13–18 breaks solution ties using the leader’s
objective function coefficients similar to Algorithm 1. Line 3 prepares the parameters to a
knapsack DP without item i, and line 10 adjusts the item index to include it in ξ k

i (β ) in
lines 14 and 20. Line 28 stores the upper planes and corresponding item-index set computed
in lines 4–27.

Algorithm 3 DP to compute the upper-bounding value functions φφ •(·) and item sets χχ•(·)
1: procedure UB(d, Q, a)
2: (π,ξ ) = UpperPlanes(d,Q,a)
3: for `← n, . . . ,1 step −1 do
4: Initialize, for every β ∈ {0, . . . ,y},(

φφ 1(β ),δ 1(β ),χχ1(β )
)
←

{
(0,0, /0), if β ∈ {0, . . . ,a1−1}
(π`

1(β ),d1,ξ
`
1 (β )), otherwise

5: for k← 2, . . . , ` do
6: for β ← 0, . . . ,y do
7: if β ≥ ak then
8: Let γ0← φφ k−1(β ) and γ1← φφ k−1(β −ak)+π`

k (β )

9: Update φφ k(β )←max {γ0,γ1}
10: if γ0 > γ1 then
11: Update δ k(β )← δ k−1(β ) and χχk(β )← χχk−1(β )
12: else if γ0 < γ1 then
13: Update δ k(β )← δ k−1(β −ak)+dk and χχk(β )← χχk−1(β −ak)∪ξ `

k (β )
14: else
15: Update δ k(β )←max {δ k−1(β ),δ k−1(β −ak)+dk} // Optimistic case
16: if δ k(β ) = δ k−1(β ) then
17: Update χχk(β )← χχk−1(β )
18: else
19: Update χχk(β )← χχk−1(β −ak)∪ξ `

k (β )
20: end if
21: end if
22: else
23: Update φφ k(β )← φφ k−1(β ), δ k(β )← δ k−1(β ), and χχk(β )← χχk−1(β )
24: end if
25: end for
26: end for
27: end for
28: return (φφ•(·),χχ•(·))
29: end procedure

Algorithm 3 describes our DP for computing φφ k(β ), for all k ∈ {1, . . . ,n}
and β ∈ {0, . . . ,y}, along with item-index sets χχk(β ) of the greedily selected items
among the first k items and their accompanying items greedily selected for the corre-
sponding upper planes (i.e., the union of ξ k

i (β ) over all selected items i ∈ {1, . . . ,k})
computed by Algorithm 2. We observe that lines 4–26 describes an `-item knapsack DP,
for each ` ∈ {1, . . . ,n}, as back-iterated in line 3. Lines 15–20 breaks solution ties using the
leader’s objective function coefficients.

Algorithm 4 describes the iterative strengthening of QKP upper bounds through item-
reordering (cf. Rodrigues et al. 2012, Algorithm 1). Line 6, in particular, reorders the items
such that the first components of parameters d̂, Q̂, and â correspond to the selected items
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Algorithm 4 Strengthening the upper-bounding value functions φφ •(·) and item sets χχ•(·)
1: procedure UB+(d, Q, a)
2: Let d̂← d, Q̂← Q, and â← a
3: (φφ ,χχ) = UB(d̂, Q̂, â)
4: Let ϕ0← ∞, ϕ1← φφ n(y)
5: while ϕ0 > ϕ1 do
6: Reorder (d̂, Q̂, â) such that the first |χχn(y)| components correspond to items in χχn(y)
7: (φφ ,χχ) = UB(d̂, Q̂, â)
8: Update ϕ0← ϕ1 and ϕ1← φφ n(y)
9: end while

10: return (φφ•(·),χχ•(·)) in terms of the original item-order
11: end procedure

under the previous reordering. The iterations terminate whenever the upper bounds do not
improve (cf. Line 3). The procedure returns the value functions φφ k(β ), for all k ∈ {1, . . . ,n}
and β ∈ {0, . . . ,y}, along with item-index sets χχk(β ) in the original item-order.

3.3 Solving BQKP

The following proposition summarizes the results established in the previous two subsec-
tions, and its corollary provides the basis for pruning our branch-and-backtrack solution
search tree.

Proposition 4 For every k ∈ {1, . . . ,n} and β ∈ {y, . . . ,y},

φφ
k(β )≤ φ

k(β )≤ φφ
k(β ).

The proof of this result is rather straightforward from Fomeni and Letchford (2014); Caprara
et al. (1999); Gallo et al. (1980); Pisinger et al. (2007).

Corollary 1 Let x = [xi ∈ {0,1} : xi = 1⇔ i ∈ χχk(β )] ∈ {0,1}k, which solves φφ k(β ), and
let x = [xi ∈ {0,1} : xi = 1⇔ i ∈ χχn(β )] ∈ {0,1}n, which indicates a set of items including
those that solve φφ n(β ). Then,

x>Q[k]x = φφ
k(β )≤ φ

k(β )≤ φφ
k(β )≤ φφ

n(β )≤ x>Qx.

Corollary 1 provides the basis for the bounds used in our branch-bound-and-backtrack
algorithm (BBBA), which is described in Algorithm 5. Specifically, for any backtracked
partial solution x̂ ∈ {0,1}n−k, the current problem node’s zero-branch for xk can be
fathomed whenever (x,1, x̂), where x ∈ {0,1}k−1 solves φφ k−1(β ), induces a larger fol-
lower’s objective function value than (x1, . . . ,xk−1,0,xk+1, . . . ,xn), thus indicating that
item k must be selected (lines 10–11). To align with this result, we eliminated the outer
loop of Algorithm 3 and fixed ` = n in our computational experiments. We will explore
using the upper-bounding solutions induced by χχk(β ) for φ k(β ), for all k ∈ {1, . . . ,n−1}
and β ∈ {y, . . . ,y} in future studies.

BBBA differs from the branch-and-backtrack algorithm of Özaltın et al. (2010) in that
we use the solutions to the lower- and upper-bounding value functions in lines 9 and 10 to



On Exact Solution Approaches for Bilevel Quadratic 0–1 Knapsack Problem 11

Algorithm 5 Branch-bound-and-backtrack algorithm (BBBA) for computing λ n(β )

1: procedure BBBA(d, Q, a, β , χχ•(·), χχ•(·), ψ•(·))
2: Initialize ν ← 0
3: Create node Pν with kν = n, β ν = β , ην = 0, and xν = 0
4: Initialize node list M ←{Pν}, lower bound L← 0, and

bounds φφ 0(α)← 0 and φφ 0(α)← 0, ∀α ∈ {0, . . . ,β}
5: while M 6= /0 do
6: Update M ←M \{Pµ}
7: while kµ ≥ 1 and ηµ +ψkµ

(β µ )> L do
8: if β µ ≥ akµ then
9: Let x← [xi = 1⇔ i ∈ χχkµ

(β µ )∨ xµ

i = 1] and x← [xi = 1⇔ i ∈ χχn(β )\{kµ}]
10: if xkµ = 1 and

(
x>Qx > x>Qx

)
then

11: Update ηµ ← ηµ +dkµ , xµ

kµ ← 1, β µ ← β µ −akµ , and L←max {L,ηµ}
12: else

// Branch on not selecting kµ

13: Update ν ← ν +1
14: Create node Pν with kν = kµ −1, β ν = β µ , ην = ηµ , and xν = xµ

15: Update M ←M ∪{Pν}
// Proceed with selecting kµ

16: Update ηµ ← ηµ +dkµ , xµ

kµ ← 1, β µ ← β µ −akµ , and L←max {L,ηµ}
17: end if
18: end if
19: kµ ← kµ −1
20: end while
21: end while
22: return L
23: end procedure

fathom nodes, which incur additional computational burden. In order to reduce the compu-
tation, BBBA also uses the following upper-bounding value function for the leader’s rev-
enues (Özaltın et al. 2010):

ψ
k(β )≡ max

x∈{0,1}k

{
k

∑
i=1

dixi :
k

∑
i=1

aixi ≤ β

}
, ∀k ∈ {1, . . . ,n},∀β ∈ {0, . . . ,y},

in line 7. BBBA computes the leader’s revenues for the optimal follower’s QKP decisions
corresponding to capacity decision β ∈ {y, . . . ,y}. Hence, the leader’s optimal decision is
given by:

y∗ ∈ argmax
y∈{y,...,y}

{ty+λ
n(y)}.

We evaluate the performance of our exact-solution approach for solving BQKP com-
pared with the two-phase approach for solving VF–BQKP in the next section.

4 Computational Experiments

4.1 Test Instances and Setup

We designed our experiments based on public datasets created by Beheshti et al. (2015)
available online at http://www.pitt.edu/~droleg/files/NBKP.htm. We repurposed
the relevant subset of their randomly generated parameters for their quadratic test instances,
and we derived our test instances as follows:
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– For our leader’s objective function (i.e., ty+d>x), we fixed t =−1 and reused the linear
component of their leader’s objective function (cf. Beheshti et al. 2015, Equation 11);

– For our follower’s objective function (i.e., x>Qx), we added their follower’s linear ob-
jective function coefficients to the diagonal of their leader’s (zero-diagonal2) Q-matrix;
we report the Q-matrix off-diagonal densities ∆ in alignment with their random-instance
generation, where ∆ = 0% represent BKPs;

– For our follower’s knapsack constraints (i.e., a>x≤ y), we reused the left-hand side
coefficients in their follower’s knapsack constraints, and;

– For our leader’s constraints on y (i.e., y≤ y≤ y), we used y = maxi∈{1,...,n} ai +1
and y = ∑

n
i=1 ai−1 in accordance with Assumption (A4).

Details on the random-parameter generation are described further by Beheshti et al. (2015).
We note the generated Q matrices induce test instances with negative semi-definite QKPs;
however, this assumption can be made for the two-phase approach for solving VF–BQKP
without loss of generality (cf. Billionnet and Elloumi 2007).

We implemented Algorithms 1–5 for solving BQKP in MATLAB 2017a. We also
used MATLAB 2017a to implement our two-phase approach of solving VF–BQKP (i.e.,
solving all the QPs for all knapsack capacities β ∈ {y, . . . ,y} and the MIQCP reformula-
tion of BQKP as described in Section 2) using two state-of-the-art commercial solvers:
Gurobi 7.5.1 (Gurobi Optimization, Inc. 2017) and BARON 17.8.93 (Sahinidis 2017). We
conducted our experiments on a Dell PowerEdge R930 machine with Intel R© Xeon R© CPU
E7-8890 v3 @ 250GHz (4 NUMA nodes, 144 logical cores) and 1TB RAM running Win-
dows Server 2012. We report 95% confidence intervals of computation times from solving
up to 20 test instances.

4.2 Results and Discussion

Between the two commercial solvers, we found Gurobi 7.5.1 to significantly perform better
on initial experiments in our computing environment. Table 1 summarizes the performance
of the commercial solvers in executing the two-phase approach for solving VF–BQKP—
that is, the total time for solving all QPs for all knapsack capacities, as well as the MIQCP
reformulation of BQKP—for the simplest test instances: n = 25 knapsack items, number
of RHSs b≡ y− y+1 average of 11,052.6, and uncorrelated parameters. Thus, subsequent
findings report on comparisons of our solution method against Gurobi 7.5.1 only.

Table 1 Performance of State-of-the-art Commercial Solvers on the Simplest Test Instances

Off-diagonal Computation Time (s)
Average Correlated Density 95% Confidence Interval

n b Q and a of Q (∆ ) Gurobi 7.5.1 BARON 17.8.9

25 11052.6 Uncorrelated 0% [ 222.8, 223.8] [5507.8, 5533.2]
25 11052.6 Uncorrelated 10% [ 340.4, 342.4] [5555.4, 5578.1]
25 11052.6 Uncorrelated 50% [ 862.7, 874.2] [6623.9, 6647.5]
25 11052.6 Uncorrelated 100% [1138.0, 1152.9] [9281.6, 9283.3]

2 Beheshti et al. (2015) factored the diagonal entries of their leader’s Q-matrix into the linear component
of their leader’s objective function.

3 BARON 17.8.9 uses CPLEX 12.7.1 as the default linear and mixed-integer programming solver.
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Table 2 summarizes the performance of our solution method BBBA and an enhanced
variant BBBA+ in solving BQKPs, as well as Gurobi 7.5.1 solving the corresponding
MIQCPs and all their 0–1 QPs. BBBA and BBBA+ implement the straightforward and cut-
ting upper-planes approaches, respectively. (We recall the straightforward upper-planes ap-
proach executes Algorithms 2 and 3 once, while the cutting upper-planes approach executes
the same algorithms iteratively on refined orderings of the knapsack items (cf. Algorithm 4.))

We note that, except in six groups of test instances (i.e., the BKPs with ∆ = 0%, for
all n > 25), BBBA and BBBA+ significantly outperform Gurobi 7.5.1. We further note that
BBBA significantly outperforms BBBA+ for test instances with n > 25, which indicates

Table 2 Performance of BBBA, BBBA+, and Gurobi 7.5.1 for Multiple Test Instances

Off-diagonal Computation Time (s)
Average Correlated Density 95% Confidence Interval

n b Q and a of Q (∆ ) BBBA BBBA+ Gurobi 7.5.1

25 11052.6 Uncorrelated 0% [ 110.1, 110.4] [ 84.0, 84.3] [ 222.8, 223.8]
25 11052.6 Uncorrelated 10% [ 116.2, 116.7] [ 92.8, 93.2] [ 340.4, 342.4]
25 11052.6 Uncorrelated 50% [ 122.3, 122.8] [ 98.6, 99.0] [ 862.7, 874.2]
25 11052.6 Uncorrelated 100% [ 122.6, 123.1] [ 98.7, 99.1] [ 1138.0, 1152.9]
25 11052.6 Correlated 0% [ 126.7, 127.1] [ 98.2, 98.6] [ 546.1, 549.6]
25 11052.6 Correlated 10% [ 128.0, 128.5] [ 103.3, 103.7] [ 1066.1, 1077.3]
25 11052.6 Correlated 50% [ 125.4, 125.9] [ 104.3, 104.7] [ 2467.9, 2491.4]
25 11052.6 Correlated 100% [ 122.6, 123.1] [ 104.5, 104.9] [ 3568.7, 3616.9]
25 11148.0 Highly correlated 0% [ 116.2, 116.6] [ 100.7, 101.1] [ 804.8, 808.9]
25 11148.0 Highly correlated 10% [ 117.3, 117.7] [ 103.3, 103.7] [ 1856.4, 1872.4]
25 11148.0 Highly correlated 50% [ 115.3, 115.6] [ 102.4, 102.8] [ 2904.0, 2924.5]
25 11148.0 Highly correlated 100% [ 112.3, 112.7] [ 102.6, 103.0] [ 4430.7, 4481.8]
50 22937.4 Uncorrelated 0% [ 592.8, 593.6] [ 682.3, 683.3] [ 441.6, 442.9]
50 22937.4 Uncorrelated 10% [ 609.3, 610.1] [ 719.2, 720.8] [ 1017.0, 1023.8]
50 22937.4 Uncorrelated 50% [ 613.0, 613.9] [ 736.8, 738.3] [ 6388.2, 6547.0]
50 22937.4 Uncorrelated 100% [ 599.2, 600.1] [ 739.4, 741.6] > 14400a

50 22937.4 Correlated 0% [ 628.9, 629.7] [ 725.5, 726.7] [ 375.7, 378.1]
50 22937.4 Correlated 10% [ 632.1, 632.9] [ 727.2, 728.5] [ 1805.1, 1828.7]
50 22937.4 Correlated 50% [ 622.9, 623.8] [ 733.7, 735.3] > 14400a

50 22937.4 Correlated 100% [ 604.4, 605.3] [ 715.2, 716.2] > 14400b

50 23794.8 Highly correlated 0% [ 663.3, 665.2] [ 765.2, 767.3] [ 1043.5, 1047.1]
50 23794.8 Highly correlated 10% [ 659.6, 661.1] [ 765.9, 767.9] [ 4189.4, 4263.7]
50 23794.8 Highly correlated 50% [ 652.3, 654.1] [ 772.7, 775.2] [50283.0, 52522.1]
50 23794.8 Highly correlated 100% [ 638.8, 640.6] [ 769.9, 771.9] > 14400a

75 34875.6 Uncorrelated 0% [1724.8, 1726.6] [2065.1, 2067.5] [ 865.9, 868.5]
75 34875.6 Uncorrelated 10% [1758.9, 1761.0] [2149.7, 2153.9] [ 2246.4, 2258.4]
75 34875.6 Uncorrelated 50% [1739.5, 1742.2] [2276.3, 2284.0] [ 7314.9, 7371.6]
75 34875.6 Uncorrelated 100% [1742.7, 1745.1] [2604.2, 2614.8] > 14400b

75 34875.6 Correlated 0% [1817.2, 1819.7] [2540.5, 2546.6] [ 732.1, 734.0]
75 34875.6 Correlated 10% [1832.8, 1835.3] [2530.3, 2536.9] [ 3135.3, 3147.4]
75 34875.6 Correlated 50% [1833.3, 1835.7] [2679.8, 2690.7] > 14400b

75 34875.6 Correlated 100% [1840.9, 1843.6] [2475.5, 2481.5] > 14400b

75 36186.8 Highly correlated 0% [1888.0, 1891.6] [2582.8, 2588.9] [ 674.0, 676.6]
75 36186.8 Highly correlated 10% [1979.2, 1985.3] [2572.6, 2579.4] [ 3269.3, 3299.9]
75 36186.8 Highly correlated 50% [2074.7, 2081.4] [2659.3, 2671.0] > 14400b

75 36186.8 Highly correlated 100% [2109.4, 2119.6] [2587.3, 2595.6] > 14400b

a The 95% confidence interval exceeds 4 hours. Most test instances could not be solved within 4 hours;
those solvable within 4 hours took longer to solve with Gurobi 7.5.1 than BBBA and BBBA+.

b The 95% confidence interval exceeds 4 hours. All test instances could not be solved within 4 hours.
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that the additional computation for enhancing the QKP upper bounds scales poorly to the
BQKP size. The latter observations hold for both sparse and dense Q matrices.

Table 3 summarizes the performance of BBBA and BBBA+ on large test instances. We
observe from the tables that BBBA and BBBA+ computation times appear to increase only
in the number of knapsack items (n) and number of RHSs (b): in practice, they appear to
run in pseudo-polynomial time. In contrast, Gurobi 7.5.1 computation times appear to have
partially ordered, exponentially fast increases with respect to multiple factors. We confirm
our observations using regression analyses in the next section.

Table 3 Performance of BBBA and BBBA+ on Large Test Instances

Off-diagonal Computation Time (s)
Average Correlated Density 95% Confidence Interval

n b Q and a of Q (∆ ) BBBA BBBA+

100 47336.6 Uncorrelated 0% [6300.4, 6359.5] [6793.7, 6813.0]
100 47336.6 Uncorrelated 10% [6461.7, 6490.9] [6856.1, 6884.3]
100 47336.6 Uncorrelated 50% [7092.8, 7151.7] [8851.2, 8927.8]
100 47336.6 Uncorrelated 100% [6569.0, 6610.6] [8730.7, 8802.9]
100 47336.6 Correlated 0% [6523.6, 6543.0] [9509.7, 9548.3]
100 47336.6 Correlated 10% [6112.1, 6130.3] [9770.1, 9814.5]
100 47336.6 Correlated 50% [6107.4, 6134.3] [9305.5, 9350.2]
100 47336.6 Correlated 100% [6000.7, 6027.3] [9160.9, 9187.8]
100 47939.8 Highly correlated 0% [6819.2, 6858.5] [7557.1, 7593.4]
100 47939.8 Highly correlated 10% [6719.6, 6748.8] [7189.2, 7211.3]
100 47939.8 Highly correlated 50% [6120.6, 6134.5] [7504.1, 7523.4]
100 47939.8 Highly correlated 100% [6312.4, 6341.1] [8168.2, 8190.0]

4.3 Further Analyses

We used R 3.4.1 (R Core Team 2017) to conduct our regression analyses of computation
time against the features of all individual test instances, which are summarized in Tables 2
and 3. Our starting regression models included the key regressors: number of knapsack
items n and number of RHSs b, which determine the number of iterations and branches in
Algorithms 1–5 and solving the MIQCP reformulation of BQKP. Through multiple itera-
tions of residual analyses, variable transformations, and forward and backward selection of
regressors with and without interaction effects, we found the following regression models to
best fit our data:

log(BBBA time) =−9.13519+1.92354 · logn+0.81674 · logb (1a)

BBBA time = 0.0001078046 ·n1.92354 ·b0.81674, (1b)

along with:

log(BBBA+ time) =−11.02172+2.14211 · logn+0.92874 · logb (2a)

BBBA+ time = 0.00001634285 ·n2.14211 ·b0.92874, (2b)
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and:

log(Gurobi 7.5.1 time) =



baseline≡ 0
+0.013629 ·n
+0.567823 · logb
+0.004625 ·∆
+0.000528 ·n ·∆ , if Uncorrelated Q and a

baseline+1.480660
−0.023628 ·n
−0.031607 ·∆
+0.001241 ·n ·∆ , if Correlated Q and a

baseline+2.242742
−0.028339 ·n
−0.026478 ·∆
+0.000855 ·n ·∆ , if Highly Correlated Q and a.

(3)

Regression Models (1), (2), and (3) have R2 values of 0.9794, 0.9889 and 0.9924, re-
spectively, and sufficiently satisfy the linearity assumptions. All coefficients are sig-
nificant (p-value < 0.01) except for ∆ in the Gurobi 7.5.1 model for Uncorrelated Q
and a (p-value = 0.05121); we retain ∆ because of significant interaction effects. We note
that, for all regressed values, the positive coefficients of Model (3) increases faster than
the negative coefficients. Thus, we find that, for our test instances, solving BQKP using
BBBA executes in pseudo-polynomial time O(n2 · b), while solving its MIQCP reformula-
tion remains intractable. Finally, we note that BKP can be solved in O(n · b) by DP-based
approaches (cf. Brotcorne et al. 2009).

5 Conclusion

In this note we considered BQKP, which models two-level problems where the leader appro-
priates a budget for the follower who solves an instance of 0–1 QKP. We first presented the
single-level, value-function reformulation of BQKP as an MIQCP, which can be solved by
state-of-the-art commercial solvers. We then described our exact-solution approach, BBBA,
which uses DPs to find lower- and upper-bounding solutions to QKP, which, in turn, are
used in a branch-and-backtrack procedure. We showed through computational experiments
that BBBA outperforms commercial software packages solving the MIQCP reformulation.

Our approach exploits the special structure of BQKP, particularly QKP in the second
level. QKPs are well studied in the literature (cf. Pisinger 2007) for which efficient heuris-
tics and exact-solution algorithms exist (e.g., Caprara et al. 1999; Fomeni and Letchford
2014; Gallo et al. 1980; Rodrigues et al. 2012). We exploited the simplest variants of the
heuristics—computable by DPs—to establish QKP bounds used in pruning our branch-and-
backtrack solution search tree in BBBA. Possible enhancements to BBBA include using
more-efficient heuristics for QKP (Fomeni and Letchford 2014) and/or applying Lagrangian
relaxations (Billionnet et al. 1999; Billionnet and Soutif 2004; Caprara et al. 1999).

BQKP in this paper differs from linear-quadratic and quadratic-quadratic bilevel
programs considered in the literature (LQBPs and QQBPs, respectively) in that LQBPs
and QQBPs involve only continuous decision variables in their second-level convex
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QPs, for which approaches to the single-level reformulation afforded by the Karush-
Kuhn-Tucker (KKT) optimality conditions have been proposed (e.g., Adasme and Lisser
2016; Júdice and Faustino 1994; Qin et al. 2017; Vicente et al. 1994; Wang et al. 2008).
The single-level reformulation of BQKP in this paper, on the other hand, is afforded
by value functions; however, the resulting MIQCP is computationally challenging for
commercial state-of-the-art solvers as demonstrated in our experiments, which motivated
the development of the proposed exact solution methods.

Furthermore, BQKP in this paper differs from the nonlinear bilevel knapsack problems
considered by Beheshti et al. (2015) as the latter assumes nonlinear leader’s objective func-
tion (i.e., quadratic or fractional), but a linear 0–1 knapsack problem at the follower’s level.
Therefore, the current study and the study by Beheshti et al. (2015) complement each other
as they consider nonlinearities at different levels of the decision-making hierarchy. Note
that the models considered in both of the papers can be viewed as natural generalizations of
BKP by Brotcorne et al. (2009).

Consequently, in future work one can focus on methods that exploit the ideas from
these studies to accommodate nonlinearities at both levels. In particular, within the BBBA
framework one needs to combine the branching mechanism from the current paper with
the approaches that compute the global lower bound for the leader’s objective function
from Beheshti et al. (2015). Note that the branching mechanism in this paper depends
on the outputs of Algorithms 1–4, while the global lower bound computation in Beheshti
et al. (2015) is specifically customized to handle quadratic and fractional 0–1 types of the
leader’s objective function.

We make some final remarks on the novel contributions of this note. First, we introduced
BQKP as a bilevel program where the second-level optimization problem is integer and
nonlinear; this expands the bilevel programming literature, where models with continuous
and/or linear second-level programs are the norm. Second, we presented a value-function
reformulation of BQKP as an MIQCP, which, with recent advancements in the commer-
cial state-of-the-art solvers, have become computable, albeit still intractable for large test
instances. Third, we developed an exact-solution approach that performs well in practice.

Acknowledgements The authors are grateful to Dr. Behdad Beheshti and three anonymous reviewers for
their constructive comments on earlier versions of this note. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of AFRL/RW or the U.S.
Government.

References

Adasme P., Lisser A. (2016). A computational study for bilevel quadratic programs using
semidefinite relaxations. European Journal of Operational Research, 254(1), 9–18.

Aiyoshi E., Shimizu K. (1981). Hierarchical decentralized systems and its new solution by
a barrier method. IEEE Transactions on Systems, Man, and Cybernetics, 11(6), 444–449.

Audet C., Hansen P., Jaumard B., Savard G. (1997). Links between linear bilevel and mixed
0–1 programming problems. Journal of Optimization Theory and Applications, 93(2),
273–300.

Bard J. F., Falk J. E. (1982). An explicit solution to the multi-level programming problem.
Computers & Operations Research, 9(1), 77–100.



On Exact Solution Approaches for Bilevel Quadratic 0–1 Knapsack Problem 17
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