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Strong negative nonlinear friction from induced
two-phonon processes in vibrational systems
X. Dong 1,2, M.I. Dykman 3 & H.B. Chan1,2

Self-sustained vibrations in systems ranging from lasers to clocks to biological systems are

often associated with the coefficient of linear friction, which relates the friction force to the

velocity, becoming negative. The runaway of the vibration amplitude is prevented by positive

nonlinear friction that increases rapidly with the amplitude. Here we use a modulated elec-

tromechanical resonator to show that nonlinear friction can be made negative and sufficiently

strong to overcome positive linear friction at large vibration amplitudes. The experiment

involves applying a drive that simultaneously excites two phonons of the studied mode and a

phonon of a faster decaying high-frequency mode. We study generic features of the oscillator

dynamics with negative nonlinear friction. Remarkably, self-sustained vibrations of the

oscillator require activation in this case. When, in addition, a resonant force is applied, a

branch of large-amplitude forced vibrations can emerge, isolated from the branch of the

ordinary small-amplitude response.
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Nonlinear friction1,2 was first used by van der Pol to
describe, phenomenologically, the operation of radio-
frequency generators3. In the van der Pol model, the

energy gain is described by negative linear friction. The nonlinear
friction is positive, corresponding to the rate of energy loss that
increases superlinearly with the energy of the vibrations. This
model has been broadly used in science and engineering. Recently,
there has been renewed interest in positive nonlinear friction
following its observations in various passive (rather than self-
oscillating) nano-, micro-, and optomechanical systems4–10. Fur-
thermore, such friction has also been engineered in microwave
cavities in order to create long-lived coherent quantum states11,12.

A simple microscopic mechanism of linear friction is a decay
process where a single energy quantum of the vibrational mode (a
phonon) goes into excitations of a thermal reservoir13. In con-
trast, positive nonlinear friction originates from the decay that
involves two vibrational quanta of the mode14. For nonlinear
friction of nanomechanical modes and cavity modes, the excita-
tions of the reservoir can be, respectively, phonons15,16 or pro-
pagating photons11 (Fig. 1a). For the cavity mode studied by
Leghtas et al.11, the two-photon decay was stimulated by a pump.
This process resembles the stimulated decay in optomechanics17

where an input photon leads to the removal or addition of only
one quantum of the mechanical mode. Provided that the cavity
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Fig. 1 Two-phonon transfer between the plate and beam modes of the electromechanical resonator. a Ordinary positive nonlinear friction involves
transferring two phonons of the vibrational mode 1 (shown by the wavy lines) to excitations of the reservoir (the dashed line). b External pump at
frequency ωF (the solid line) can create one phonon in fast-decaying mode 2 and two phonons in mode 1, inducing negative nonlinear friction in mode 1.
c Colorized scanning electron micrograph of the electromechanical resonator with a schematic of the measurement circuitry. The white scale bar at the
lower right corner measures 20 μm. d The amplitude a1 of the plate mode (mode 1) against frequency ωd1 of a small probe voltage (probe 1). The dots are
measurements. The line is a fit to yield parameters Γ1 and Γ2. Inset: vibration profile of the plate mode. The color bar gives the normalized displacement.
e A similar plot for the beam mode (mode 2). f A sketch of the spectra of the plate mode and the beam mode centered at the mode frequencies ω1 and ω2,
respectively. Pumping at the secondary high-/low-frequency sidebands (red and blue arrows) generates negative/positive nonlinear friction in the plate
mode
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mode decays much faster than the mechanical mode, such pro-
cess is induced by pumping at a sideband of the cavity eigen-
mode18–20. If the pump frequency is red-detuned by the
frequency of the mechanical mode, the linear friction coefficient
of the mechanical mode increases and the mode temperature
decreases. This backaction mechanism enables observation of
interesting quantum effects with nanomechanical systems17,21,22.
On the other hand, blue-detuned pumping, if sufficiently strong,
makes the linear friction coefficient negative, exciting self-
sustained oscillations23–30. However, to our knowledge, friction
that becomes negative only for sufficiently large vibration
amplitudes, i.e., absolute negative nonlinear friction, has not been
obtained in optomechanics.
We note that the decrease of losses with increasing vibration

energy was reported for both microwave cavities31,32 and nano-
mechanical systems33. It was attributed to absorption saturation
in two-level systems that absorb the energy from the vibrations.
By its nature, such nonlinear friction cannot make the overall
energy loss negative. However, it plays an important role in
providing a means to increase the quality factor of super-
conducting microwave cavities used in optomechanics34,35.
In this work we show that a properly designed pumping

generates strong negative nonlinear friction, and we study the
qualitatively new features of vibrational dynamics that come
with such friction. The experiment is done on a micro-
mechanical resonator with two nonlinearly coupled vibrational
modes of strongly differing frequencies ω1,2 and linear decay
rates Γ1,2, with ω2≫ ω1 and Γ2≫ Γ1. Pumping at the blue-
detuned secondary sideband of the higher-frequency mode
ω2+ 2ω1 opens a relaxation channel where two quanta of mode
1 and one quantum of mode 2 are simultaneously excited
(Fig. 1b). The resulting negative nonlinear friction of mode 1
can be controlled and made strong enough to overcome the
intrinsic positive linear friction. We find that the modes can
then settle into a state of stable self-sustained vibrations.
However, these vibrations have to be activated, i.e., require a
sufficiently strong initial excitation. At weaker pump power
where the negative nonlinear friction is not strong enough to
make the full friction force negative even for larger amplitudes,
it still significantly modifies the oscillator dynamics in the
presence of resonant drive. On top of the ordinary Lorentzian-
type dependence of the amplitude of forced vibrations on the
drive frequency, there emerges an additional branch of large-
amplitude vibrations. Unlike the familiar nonlinear response of
vibrations with conservative nonlinearity, this branch is dis-
connected from the small-amplitude branch. It emerges already
for a comparatively weak drive. When the frequency of the drive
or the mode varies, there occur jumps to the small-amplitude
branch at both ends of the high-amplitude branch, opening
opportunities in detecting perturbations to the system of both
polarity, in contrast to bifurcation amplifiers based on the
conservative nonlinearity36–38.

Results
The electromechanical resonator. Our resonator consists of
three parts (Fig. 1c). The first is a polycrystalline silicon plate with
dimension 100 × 100 × 3.5 μm. It is supported on its opposite
sides by two silicon beams (1.3 μm wide and 2 μm thick). The two
beams have different lengths of 80 and 75 μm. Both of them are
coated with 30 nm of gold. The plate performs vibrations normal
to the substrate at eigenfrequency ω1= 272599.72 rad s−1. As
seen from Fig. 1d, the damping constant of this vibrational mode,
which we call mode 1, is Γ1= 3.26 rad s−1. The system also has a
mode in which the longer beam vibrates parallel to the substrate
(Fig. 1e). We call it mode 2. It has a much higher frequency ω2=

9942136.19 rad s−1 and a higher damping constant Γ2= 187.57
rad s−1.

Modes 1 and 2 are parametrically coupled. This coupling
originates from the tension generated in the beam as the plate
moves normal to the substrate, which in turn modifies the spring
constant for the motion of the beam parallel to the substrate, and
vice versa. As the plate vibrates, sidebands at frequencies ω2 ± nω1

with n= 1, 2,… are created in the spectrum of the response of
mode 2 (the beam mode) around its frequency ω2.

The model. To induce nonlinear friction, we pump the system at
the secondary sidebands, i.e., the combination frequencies ω2 ±
2ω1, by applying an ac current to the beam in a magnetic field.
Our system is in the deep resolved-sideband limit, with ω1/Γ2=
1453. The minimalistic model that captures the resonant behavior
is described by equations

€q1 þ ω2
1q1 þ 2Γ1 _q1 þ γ=m1ð Þq1q22 þ γ1=m1

� �
q31

¼ Fp=m1

� �
2q1q2cos ωFtð Þ ð1Þ

€q2 þ ω2
2q2 þ 2Γ2 _q2 þ γ=m2ð Þq21q2 þ γ2=m2

� �
q32

¼ Fp=m2

� �
q21cos ωFtð Þ ð2Þ

where q1,2 are, respectively, the displacement of the plate and the
midpoint of the beam, m1,2 are the effective masses of the two
modes, γ denotes the dispersive coupling coefficient (the coupling
energy is 1

2 γq
2
1q

2
2), and γ1,2 are the coefficients of the Duffing

nonlinearity of the two modes. Parameter Fp determines the
effective amplitude of near-resonant parametric pumping at fre-
quency ωF close to ω2 ± 2ω1. It corresponds to the term
�Fpq

2
1q2cos ωFtð Þ in the modes Hamiltonian. This term effectively

incorporates, in a standard way, the contribution from the linear
force (∝cosωFt) weighted with the parameters of the nonlinear
non-resonant mode coupling.
For pumping frequencies close to the upper combination

frequency, |ωF− 2ω1− ω2|≪ ω1,2, we change from q1;2 tð Þ; _q1;2 tð Þ
to dimensionless complex amplitudes v1,2(t) defined as v1 tð Þ ¼
m1=2ω1Cscð Þ1=2 ω1q1 tð Þ � i _q1 tð Þ½ �exp �iω1tð Þ; v2 tð Þ ¼ m2=2ω2Cscð Þ1=2
ωF � 2ω1ð Þq2 tð Þ � i _q2 tð Þ½ �exp �i ωF � 2ω1ð Þt½ �. The scaling con-

stant Csc has the dimension of action and can be chosen as the
energy of mode 1 divided by its frequency; we set Csc= 10−21 J ⋅ s,
which corresponds to a characteristic displacement ~10 nm. The
vibration amplitudes A1,2 are expressed in terms of the variables
v1,2 as Ai= (2Csc/miωi)1/2|vi| with i= 1, 2. In the rotating wave
approximation, equations for v1,2(t) read

_v1 þ Γ1v1 ¼ i∂HRWA=∂v
�
1 ð3Þ

_v2 þ Γ2v2 ¼ i∂HRWA=∂v
�
2 ð4Þ

HRWA ¼ �Δ v2j j2 þΛ12 v1j j2 v2j j2 þ 1
2

X

i¼1;2

Λii vij j4 � fp v21v2 þ c:c:
� �

ð5Þ

Here HRWA is the Hamiltonian of the driven modes in the
rotating wave approximation. Parameter Δ= ωF− 2ω1− ω2

is the frequency detuning from the combination resonance,
|Δ|≪ ω1. Parameters fp (18.332 s−1), Λ11 (2.201 s−1), Λ22

(1627.7 s−1), and Λ12 (33.234 s−1) are related to Fp, γ, γ1, and
γ2 in Eq. (1), respectively (Supplementary Note 2). However, in
general they also have contributions from the cubic nonlinearity
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of the resonator modes disregarded in Eqs. (1) and (2).
Importantly, Λij are the parameters that can be directly measured,
for example, by applying periodic drives to the modes
(Supplementary Note 1), whereas fp is externally controlled.

In the case of driving close to the lower combination frequency,
|ωF− ω2+ 2ω1|≪ ω1,2, one sets v2 tð Þ ¼ m2=2ω2Cscð Þ1=2
ωF þ 2ω1ð Þq2 tð Þ � i _q2 tð Þ½ �exp �i ωF þ 2ω1ð Þt½ �. Equations for

v1,2 have the same form as Eqs. (3)–(5), except that the last term
in HRWA now reads �fp v21v

�
2 þ c:c:

� �
and Δ= ωF+ 2ω1− ω2.

Weak to moderate negative nonlinear friction. We first explore
the energy dissipation for not too large amplitudes of mode 1
(the plate mode), where the nonlinear friction is moderately
strong. A familiar description of nonlinear friction4–8,31,33

is obtained for Γ2≫ Γ1 where mode 2 serves as a thermal res-
ervoir for mode 1. The analysis simplifies if the dispersive mode
coupling and the internal nonlinearity of the modes are small,
so that the nonlinearity-induced frequency shifts are small com-

pared to Γ22 þ Δ2
� �1=2

. Then, after a short transient we have

_v1=v1j j; _v2=v2j j � Γ2 þ Δ2ð Þ1=2, and we can apply a simple adia-
batic approximation by setting _v2 ¼ 0 in Eq. (2) (a complete
analysis is given in Supplementary Note 2). In this approximation
Eqs. (3)–(5) yield:

_v1 � �v1 Γ1 þ α vj j2� �þ iβv1 v1j j2 ð6Þ

where α ¼ �2f 2p Γ2= Γ22 þ Δ2
� �

and β ¼ Λ11 þ 2f 2p Δ= Γ22 þ Δ2
� �

(α=−1.509 s−1 and β= 0.4326 s−1 for Δ=−35Hz). In this case
Γad= Γ1+ α|v1|2 represents a decay rate for mode 1. For the
negative nonlinear friction considered (α < 0), this rate is decreased
from Γ1 by a parameter quadratic in the vibration amplitude. For
driving at the lower secondary sideband, the sign of α is reversed,
leading to the conventional positive nonlinear friction.

To measure the decay rate, we employ the standard ringdown
technique. We first drive mode 1 into a steady state of vibrations
with a resonant periodic force. Then, we turn off the periodic
force and record the decrease in vibration amplitude A1 ¼
m1ω1=2Cscð Þ�1=2 v1j j as a function of time, as shown in Fig. 2a.
When there is no sideband pumping, A1 decays exponentially as
expected (black dots). The slope of the semi-logarithmic plot
gives the nearly instantaneous (on the timescale � ω�1

1 ) decay
rate Γinst= dlogA1/dt that is independent of the vibration
amplitude, as shown in Fig. 2b. Weak nonlinear friction is
induced by turning on the sideband pumping and choosing the
detuning frequency Δ to be relatively large (~−35 Hz). As shown
by the blue/red curves in Fig. 2a, b for pumping at the upper/
lower sidebands, the decay rate decreases/increases with vibration
amplitude giving negative/positive nonlinear friction. At small
vibration amplitudes, measurements agree well with the dashed
lines that represent Eq. (6), Γinst � Γ1 1þ ~αA2

1

� �
with

~α ¼ αm1ω1=2Csc. Deviations become apparent at larger ampli-
tudes, where the conservative nonlinearity of the modes and their
dispersive coupling need to be taken into account (Supplementary
Note 2).
The decay significantly changes for larger initial vibration

amplitudes. Here the dependence of the instantaneous decay rate
on vibration amplitude becomes non-monotonic. Figure 2c, d
shows respectively the measured decay in time and the
corresponding instantaneous decay rate as a function of the
vibration amplitude. For pumping at the blue secondary
sideband, Γinst attains a minimum and then approaches the
zero-amplitude value Γ1 as the amplitude further increases.
This behavior is a consequence of the conservative nonlinearities
of the coupled modes disregarded in Eq. (6). At large amp-
litudes, the amplitude-dependent frequencies ω1,2(|v1|2, |v2|2)
no longer satisfy the resonant condition for nonlinear friction
ωF ≈ ω2 ± 2ω1. Therefore, the decay rate approaches the linear
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Fig. 2 Positive and negative nonlinear friction on the plate mode due to two-phonon processes. a Measured (dots) and calculated (lines) ringdown of the
dimensional vibration amplitude A1 of mode 1 with no sideband pumping (black) and pumping at the red-/blue-detuned secondary sideband (red/blue)
that leads to positive/negative nonlinear friction; Δ=−35 Hz. b The instantaneous decay rate as a function of the squared vibration amplitude. Dashed
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decay rate Γ1, as shown in Fig. 2d. Calculations are plotted as
solid lines and are in good agreement with measurement
(Supplementary Note 2).

Self-sustained vibrations. When the pump detuning |Δ| at the
blue-detuned secondary sideband is reduced, negative nonlinear
friction becomes stronger. The minimum in the instantaneous
decay rate as a function of |v1| becomes deeper and eventually
drops below zero in a certain range of amplitudes. This leads to a
novel type of self-sustained vibrations. They are qualitatively
different from the self-sustained vibrations in opto- and nano-
mechanics that emerge when the pumping makes the coefficient
of linear friction negative18,23–30. A major difference is that the
excitation of self-sustained vibrations by negative nonlinear fric-
tion requires activation. Nonlinear friction has no effect when the
vibration amplitude is small. If the initial vibration amplitude is
zero, self-sustained vibrations cannot be excited by merely
sweeping the pump power or the pump frequency. This behavior
is seen from the lower branch of data in Fig. 3a. If, however, the
vibration amplitude is perturbed beyond certain threshold, the
system can settle into a state where it performs self-sustained
vibrations. Their typical spectrum is shown in the inset of Fig. 3a.
A change in the pump detuning Δ leads to a change in the
vibration amplitude, as shown by the upper branch of data in
Fig. 3a. As Δ is decreased beyond the bifurcation point ΔB

(≈−24.1 Hz), the vibration amplitude jumps discontinuously to
zero. The system cannot return to the self-sustained vibration
state unless the amplitude is perturbed sufficiently strongly from
zero by a source different from the pump. This type of bistability
qualitatively differs from the well-known bistability of resonantly
or parametrically modulated Duffing oscillators37–39 or coupled
modes pumped close to the sum frequency23–30.

Figure 3b shows that self-sustained vibrations of the plate
mode (mode 1) are accompanied by vibrations of the beam mode
(mode 2). In the presence of fluctuations, the vibrations of both
modes undergo phase diffusion, with remarkable properties
associated with the discrete time-translation symmetry imposed
by the pump30,40 that are, however, outside the scope of this paper.

Figure 3c shows how the plate mode settles into the zero-
amplitude state or the self-sustained vibration state (with amplitude
Ast) depending on the initial vibration amplitude, with Δ fixed at
0 Hz. For the initial amplitude smaller than the threshold value Ath

(purple circles), the negative nonlinear friction is smaller than the
positive linear friction. Vibrations ring down toward zero in a non-
exponential manner. For the initial amplitude lying between Ath

and Ast, the negative nonlinear friction overcomes the positive
linear friction. By absorbing energy from the pump through two-
phonon processes, the plate mode rings up in amplitude toward Ast.
For the initial amplitude larger than Ast (dark red circles), the
overall friction is positive. The vibration amplitude decays, but
toward Ast instead of zero. Thus, Ath represents the threshold
amplitude for self-sustained vibrations to develop. Different pump
detuning yields different values of Ath. The measured value of this
threshold is plotted in light red in Fig. 3a. As the pump detuning
frequency Δ approaches the bifurcation value ΔB, the amplitudes Ast

and Ath merge, leading to a discontinuous jump of the vibration
amplitude to zero.
Near the bifurcation point, the dynamics can be mapped onto a

saddle-node bifurcation of the radius of the limit cycle
(Supplementary Note 3). We note that the actual separation of
the regions of attraction to the coexisting states of self-sustained
vibrations and the zero-amplitude state occurs on a hypersurface
in the four-dimensional space of the dynamical variables of
modes 1 and 2. The value of Ath is the projection of this
hypersurface on the plane of variables of mode 1. In the
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Fig. 3 Self-sustained vibrations associated with strong negative nonlinear friction. a Amplitude of vibrations of mode 1 as a function of pump detuning Δ.
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experiment, it is obtained by driving mode 2 and following the
dynamics of mode 1 after the drive is turned off; Ath is
independent of the phase of mode 1, since ω1 is incommensurate
with the pump frequency.
Figure 3d illustrates the activated nature of self-sustained

vibrations in an alternative way, by plotting the instantaneous
decay rate Γinst as a function of the vibration amplitude A1. This
plot bears resemblance to the blue curve in Fig. 2d recorded at
larger |Δ|, except that the minimum has dropped below zero due
to strong negative nonlinear friction. The instantaneous decay
rate in Fig. 3d crosses zero at two vibration amplitudes Ath and
Ast that represent the threshold amplitude and the amplitude for
stable self-sustained vibrations, respectively. The theory is in
excellent agreement with the measurements.

Forced vibrations. An important consequence of nonlinear
friction is the change of the spectral response of the mode to a
resonant periodic force Fd1cosωd1t with ωd1 ≈ ω1

14 and of the
dependence of the response on the force amplitude Fd1 (Meth-
ods). In the linear regime, the vibration amplitude attains max-
imum value a1max when ωd1= ω1. With no nonlinear friction the
ratio Γpeak= Fd1/2m1ω1a1max is constant even in the presence of
Duffing nonlinearity41 (black line in Fig. 4b). With negative
nonlinear friction, but with no self-sustained oscillations initiated,
the dependence of the vibration amplitude a1 on ωd1 remains
Lorentzian for small Fd1, see light blue curve in Fig. 4a, and a1max

is nearly proportional to Fd1. However, as Fd1 increases,
this measured dependence (dark blue circles) becomes sharper
than the Lorentzian (dark blue curve in Fig. 4a). The blue
data in Fig. 4b show that Γpeak decreases with Fd1. In other

experiments4–8,31,33, a nonlinear dependence of a1max on Fd1 was
interpreted as the evidence of the presence of positive4–9 and
negative33 nonlinear friction.

Next we detune the pump frequency so that Δ < ΔB and the
overall friction remains positive albeit strongly amplitude-
dependent. We find that, in this regime, negative nonlinear
friction leads to a qualitatively new branch of the stable states of
forced vibrations at the drive frequency ωd1. These states are not
straightforward to detect. Figure 4c plots the vibration amplitude
of the plate (mode 1) as a function of ωd1 at Δ=−35 Hz. The
bottom part of the response resembles that of a driven harmonic
oscillator, well described by the square root of a Lorentzian. Here
the vibration amplitude is small so that negative nonlinear
friction has negligible effect on the lineshape. Interestingly, we
observe another branch, with amplitude between ~15 and 29 nm
in Fig. 4c, where negative nonlinear friction reduces the overall
damping and leads to stable oscillations at the drive frequency
ωd1, but with much higher amplitude. The driving amplitude for
this extra branch is identical to that of the resonance peak of the
lower branch. In contrast to the nonlinear response of a Duffing
oscillator with linear friction41, this branch is isolated from the
resonance peak at low amplitudes. It exists in the frequency range
ωL ≤ ωd1 ≤ ωH. If the driving frequency is swept beyond the
bifurcation values ωL,H, the system jumps back to the low-
amplitude branch.
The high-amplitude branch exists because the overall damping

is decreased considerably by strong negative nonlinear friction. It
cannot be accessed by sweeping the driving frequency alone. A
sufficiently large perturbation of the amplitude is required. We
used strong driving force to excite vibrations of large amplitude at
driving frequencies between ωL and ωH. Upon decreasing the
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The dark blue line is obtained by multiplying the blue line by the drive amplitudes ratio 2.28. Inset: 3D plot of the measured ratio a1/Fd1. b The characteristic
width Γpeak of the spectral peak versus drive amplitude for linear friction (black, no sideband pumping), and for positive/negative nonlinear friction (red/
blue, pumping at the red-/blue-detuned secondary sideband with Δ= 0 Hz). The solid lines are the theory (Supplementary Note 4). Error bars represent
±1 s.e. c Bistability of forced vibrations due to negative nonlinear friction, Δ=−35 Hz. The driving force amplitude is 0.70 pN. At the bifurcation points ωL

and ωH, the amplitude jumps down from the upper branch. Inset: with Δ=−1000 Hz, nonlinear friction is negligible. Mode 1 displays a standard Duffing
hysteresis for Fd1= 3.5 pN (black); at Fd1= 0.70 pN no hysteresis occurs (gray). dMeasured (dots) and calculated stable (solid lines) and unstable (dashed
lines) vibration amplitudes for Fd1= 0.595 pN (green) and 0.980 pN (yellow). Inset: zoom in on the isolated branch
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driving force back to value in Fig. 4c, the system settles onto the
upper branch instead of the lower one.
Figure 4d plots the measured stable (dots) and calculated stable

and unstable vibrational states (solid and dashed lines, respec-
tively) for different values of the driving force Fd1. Our
calculations show that within the isolated loop, the state at
higher amplitude is stable, and this is the state that is measured.
The intermediate-amplitude state is unstable. As the drive
amplitude is increased, the loop increases in size. Eventually,
the lower end of the loop touches the top of the lower branch of
the frequency response and the two merge into a single curve that
resembles the shape of the response of a resonantly driven
Duffing oscillator with linear friction. The corresponding critical
bifurcation is qualitatively different from the familiar critical
bifurcation for the Duffing oscillator. As we show in Supple-
mentary Note 4, there are two merging saddle-node bifurcations
with four rather than three branches of stationary vibrations
merging together. More data and a detailed discussion of this
unusual response are given in Supplementary Note 4. Further-
more, the different maximum vibration amplitudes of the isolated
branch and the low-amplitude branch give rise to bistability
in Γpeak as Fd1 is varied (Supplementary Note 5). The form of the
hysteresis loop of the vibration amplitude as a function of the
driving force differs from that of a Duffing oscillator (Supple-
mentary Note 6).

Discussion
Our findings show that by pumping two nonlinearly coupled
microscale vibrational modes at the appropriate frequency, one
can open a channel of decay involving two phonons of the slowly
decaying mode and generate negative nonlinear friction in this
mode. Such friction is controlled by the pumping and can be
made sufficiently strong, so that the overall friction force becomes
negative in a certain range of vibration amplitudes. This opens a
new hitherto unexplored regime of the dynamics for micro/
nanoscale resonators. As we show, the resulting instability is
qualitatively different from the familiar case where the coefficient
of linear friction is made negative, while nonlinear friction
remains positive. For negative nonlinear friction, the zero-
amplitude state always remains stable. Only when the system is
perturbed by an extra pulse into a range of large amplitudes does
it become unstable. It then settles into the regime of self-sustained
vibrations with the amplitude at which the total friction force
(averaged over the period) is zero.
Negative nonlinear friction qualitatively changes the dynamics

of the mode even when it is not strong enough to lead to self-
sustained vibrations. The effect is revealed in the response of the
mode to a resonant driving force. Already for a relatively weak
force, there emerges a large-amplitude branch of forced vibra-
tions. As a function of the force frequency, this branch is dis-
connected from the coexisting Lorentzian-type small-amplitude
branch. Accessing the large-amplitude branch requires activation
to perturb the vibration amplitude to large values. Once the mode
is on the large-amplitude branch, shifts in the mode frequency or
the driving frequency can induce jumping back to the small-
amplitude state. Unlike the driven Duffing oscillator, here
jumping occurs for frequency changes in either directions.
The study of negative nonlinear friction is advantageous for

distinguishing between the relaxation that comes from the cou-
pling to a thermal reservoir with a large number of degrees of
freedom and a broad excitation spectrum, on the one hand, and
the relaxation that comes from the coupling to a vibrational mode
with a comparatively fast decay rate, on the other hand. Our
experiment demonstrates that it is the dynamical nature of the
fast-decaying mode that ultimately prevents the system from a

runaway. Such runaway would have occurred if the negative
nonlinear friction force came from pumping-induced coupling to
a thermal reservoir and therefore kept increasing with the
increasing vibration amplitude. For the coupled modes, the sta-
bilization mechanism is the dependence of the mode eigen-
frequencies on the vibration amplitudes. Because of this
dependence, in combination with the finite spectral width of the
fast-decaying mode, the coupled modes are eventually tuned away
from resonance with the pump as their amplitudes increase. The
pumping-induced negative nonlinear friction falls off, and for
large vibration amplitudes the overall decay rate approaches the
linear decay rate.
While the negative nonlinear friction in our experiment ori-

ginates from the coupling to another mode in the same micro-
mechanical resonator, the analysis applies to mechanical modes
coupled to microwave or optical cavities as well. We emphasize
that in contrast to the driving-induced linear friction17, driving-
induced nonlinear friction leads to a strongly non-Boltzmann
distribution over the eigenstates of the mechanical modes. The
quantum and classical nonequilibrium statistical physics asso-
ciated with such distribution, including the possibility to sig-
nificantly reduce or increase the relative population of higher-
lying excited states, warrants further study. In a broader sense, the
studied system is a classical analog of periodically driven quan-
tum systems. Floquet dynamics of such systems has been
attracting much attention in various contexts, from topological
insulators to time crystals to thermalization far from equilibrium,
see ref. 42 and references therein. Our system is interesting in that
it displays features that have not been discussed so far in the
context of the Floquet dynamics.
On the application side, the observed bidirectional jumping of

the amplitude of resonant response due to negative nonlinear
friction can be used to detect, with high sensitivity, small bipolar
frequency perturbations. This suggests a qualitatively new type of
a bifurcation amplifier. Achieving high sensitivity in such an
amplifier relies on choosing a driving amplitude to yield a narrow
frequency range for the isolated branch (see Supplementary
Note 4 for how to prepare the system in the isolated branch). For
the self-sustained vibrations that emerge for stronger negative
nonlinear friction, an advantageous feature is the possibility to
turn them on and off without changing system parameters, which
leads to improved controllability. Experiments are under way to
explore the phase diffusion of the self-sustained vibrations due to
negative nonlinear friction. Preliminary analysis indicates that the
phase diffusion of the two modes are strongly correlated in a
manner which is, however, different from that of negative linear
friction induced by pumping at the primary sideband. The fre-
quency of the self-sustained vibrations can be made extremely
stable using a feedback loop in which the phase of one of the
modes is measured and the output is used to control the phase of
the other mode, which extends the mechanism of stable fre-
quency downconversion30 to a different frequency range.

Methods
Transduction scheme. Measurement was performed at a temperature of 4 K,
pressure of < 10−5 torr, and magnetic field of 5 T perpendicular to the substrate. Two
electrodes are located underneath the plate. One way to excite mode 1 (the plate
mode) is to apply an ac probe voltage (probe 1 in Fig. 1c) at frequency ωd1 close to ω1

on one of the electrodes to generate a periodic electrostatic force Fd1cosωd1t. This ac
voltage is set to zero when studying self-sustained vibrations. Vibrations of the plate
mode are measured by detecting the change in the capacitance between the top plate
and the other electrode. A charge-sensitive amplifier is connected to the top plate, the
output of which is connected to the input of a lockin amplifier. The vibration
amplitudes of the in phase (X(t)) and out of phase (Y(t)) components with respect to
the reference signal at ωd1 yields the complex vibration amplitude v1(t)= (m1ω1/2Csc)
1/2[X(t) - iY(t)] . For mode 2 (the beam mode), vibrations in the plane of the substrate
can be electrostatically excited by applying an ac probe voltage (probe 2) at frequency
ωd2 to the side gates. Motion of the beam is detected by recording the ac current
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generated by the electromotive force as the beam vibrates in-plane in the presence of
the perpendicular magnetic field.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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Supplementary Note 1. Dispersive coupling between the plate mode and the beam mode. 

The plate mode and the beam mode are nonlinearly coupled. This parametric coupling 

arises from the tension induced in the beam as it deforms due to motion of one of the modes, 

which in turn modifies the spring constant of the other mode. Supplementary Figure 1a shows 

the linear dependence of the change in 1 on the square of the vibration amplitude a2 of the beam 

mode. Supplementary Figure 1b shows a similar plot for the change in 2. The linear fits in 

Supplementary Figures 1a and 1b yield the parameters 12 (9.80 × 1022 rad2 s-2 m-2) and 21 (1.37 

× 1025 rad2 s-2 m-2) respectively. 

 

 

Supplementary Figure 1| Dispersive coupling between modes 1 and 2. (a) The dependence of the scaled shift of 

the resonance frequency of the plate mode 1/1 on the vibration amplitude square of the beam mode ܽଶଶ. The line 

represents a linear fit. Inset: spectra of the plate mode in response to a small probe voltage (Probe1 in Fig. 1a), with 

a2
2 increased from 39.13 nm2 in steps of 70.54 nm2. (b) Same plot for the beam mode. In the inset, a1

2 is increased 

from 223.93 nm2 in steps of 406.47 nm2. 
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Supplementary Note 2. Adiabatic approximation  

The parameters of the effective Hamiltonian Hୖ୛୅ are related to the parameters used in the 

equations of motion (1) and (2) as ߉ଵଶ ൌ ୱୡܥߛ 2݉ଵ݉ଶ߱ଵ߱ଶ⁄ , ௜௜߉ ൌ ୱୡܥ௜ߛ3 4݉௜
ଶ߱௜

ଶ⁄ , ୮݂ ൌ

ୱୡܥ୮ܨ
ଵ ଶ⁄ /4ሺ2݉ଶ߱ଶሻଵ ଶ⁄ ݉ଵ߱ଵ. All these parameters have dimension of frequency. 

The instantaneous decay rates for small vibration amplitudes (Figs. 2a and 2b) in the main 

text are calculated using Eq. (6) and the expression for  based on the adiabatic approximation 

with conservative nonlinear terms neglected. To extend the adiabatic approximation to larger 

amplitudes (Figs. 2c and 2d), it is necessary to re-introduce the conservative nonlinear terms. We 

define variables  ݒ෤ଵ,ଶ and ߶ as 

ሻݐଵሺݒ   ൌ ሻ݁୧థݐ෤ଵሺݒ
ሺ௧ሻ         (1) 

ሻݐଶሺݒ   ൌ  ሻ݁ିଶ୧థሺ௧ሻ      (2)ݐ෤ଶሺݒ

The phase ߶ሺݐሻ will be chosen self-consistently so that, in the adiabatic approximation that we 

develop, the decay of function  ݒ෤ଵ is not accompanied by phase accumulation, which means 

that  ݒ෤ଵ can be set real. 

From Eqs. (3) to (5) of the main text, equation for ݒ෤ଶ reads 

  
ୢ

ୢ௧
෤ଶݒ	 ൌ െݒܦ෤ଶ െ i ୮݂	ݒ෤ଵ∗

ଶ			       (3) 

ܦ   ൌ ଶ߁ ൅ i߂ െ 2i߶ሶ െ i߉ଵଶ|ݒ෤ଵ|ଶ െ i߉ଶଶ|ݒ෤ଶ|ଶ		    (4) 

Here, ܦ ≡ ൫߶ሶܦ , ,෤ଵ|ଶݒ| The adiabatic approximation means that we set d	෤ଶ|ଶ൯.ݒ| ෤ଶݒ dݐ⁄ ൌ 0. We 

will then have to check that, for ݒ෤ଶ	obtained this way, |dlog |෤ଶݒ| dݐ|⁄ ≪ ଶݒIf d .|ܦ| dݐ⁄ ൌ 0, then 
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෤ଶݒ    ൎ െ i ୮݂ݒ෤ଵ
∗మ ⁄ܦ .			           (5) 

Substituting the result into Eqs. (3) to (5) of the main text with the account taken of 

Supplementary Equation 1, we find  

  
ୢ

ୢ௧
෤ଵݒ ൌ 	െ߁ୟୢ	ݒ෤ଵ				        (6) 

ୟୢ߁   ≡ ෤ଵ|ଶሻݒ|ୟୢሺ߁ ൌ ଵ߁ െ 2 ୮݂
ଶ|ݒ෤ଵ|ଶ	Re	ିܦଵ						    (7) 

  ߶ሶ ൌ ଵଶห߉	 ୮݂ݒ෤ଵ∗
మ
ോ หܦ

ଶ
൅ ෤ଵ|ଶݒ|ଵଵ߉ െ 2 ୮݂

ଶ|ݒ෤ଵ|ଶIm	ିܦଵ	.  (8) 

Here  ߶ሶ 	and parameter ܦ are functions only of |ݒ෤ଵ|ଶ. The numerical solution of the self-

consistent nonlinear equations [Supplementary Equations (3) to (8)] gives the adiabatic decay 

rate ߁ୟୢ. From Supplementary Equation (5), this solution applies provided ߁ୟୢ ≪  in which ,|ܦ|

case |d 	log ෤ଶݒ dݐ⁄ | ≪  .as it was assumed in the derivation ,|ܦ|

 

Supplementary Note 3. Frequency and amplitude of self-sustained vibrations for negative friction  

The frequency and amplitude of self-sustained vibrations can be derived from Eqs. (3) to 

(5) in the main text. By substituting ݒଵ ൌ ܿଵ݁୧ஔఠ௧, ଶݒ ൌ ܿଶ݁ିଶ୧ஔఠ௧,  we obtain  

 ሶܿଵ ൌ െሺ߁ଵ ൅ iδ߱ሻܿଵ ൅ 	i߉ଵଵܿଵ|ܿଵ|ଶ ൅ i߉ଵଶܿଵ|ܿଶ|ଶ െ 2i ୮݂ܿଵ
∗ܿଶ
∗,  (9) 

  ሶܿଶ ൌ െሺ߁ଶ ൅ i߂ െ 2iδ߱ሻܿଶ ൅ i߉ଵଶܿଶ|ܿଵ|ଶ ൅ 	i߉ଶଶܿଶ|ܿଶ|ଶ െ i ୮݂ܿଵ
∗ଶ            (10) 

For stationary self-sustained oscillations, ሶܿଵ ൌ ሶܿଶ ൌ 0. The relation between the amplitudes c1 

and c2 and the value of δ߱ are given by equations 
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ଵ|ܿଵ|ଶ߁   ൌ  ଶ|ܿଶ|ଶ        (11)߁2

 δ߱ ൌ ሺ2߁ଵ ൅	߁ଶሻିଵ ቂ߁ଵ߂ െ |ܿଵ|ଶ ቀ
ଵ

ଶ
ଵଶ߉ଵ߁ ൅

ଵ

ଶ
ሺ߁ଵ

ଶ ⁄ଶ߁ ሻ߉ଶଶ െ  ଵଵቁቃ   (12)߉ଶ߁

where the squared amplitude of mode 1 is 

|ܿଵ|ଶ ൌ ሺ߁ଶ ോ ߂	ܩଵ߁ଶሼିܩଵሻ߁ ൅ ሺ2߁ଵ ൅	߁ଶሻଶ ୮݂
ଶ േ ሺ2߁ଵ ൅	߁ଶሻൣ2߁ଵ ୮݂

ଶ߂ܩ ൅ ሺ2߁ଵ ൅	߁ଶሻଶ ୮݂
ସ െ ଵ߁

ଶܩଶ൧
ଵ ଶ⁄
ሽ 

           (13) 

ܩ     ൌ ሺ߁ଵ ൅	߁ଶሻ߉ଵଶ ൅ ଵଵ߉ଶ߁2 ൅
ଵ

ଶ
                    (14)	ଶଶ߉ଵ߁

The self-sustained oscillation frequency of the plate mode and the beam mode are	߱ଵ ൅ δ߱ and 

߱୊ െ 2߱ଵ െ 2δ߱ respectively. 

 Supplementary Equations (11) to (14) describe two vibrational branches with different 

amplitudes and frequencies. Linearizing Supplementary Equations (9) and (10) about the 

corresponding solutions one can show that the larger-amplitude branch is stable, whereas the 

smaller-amplitude branch is unstable. The periodic solutions exist in the range where the 

argument of the square root in Supplementary Equations (13) and (14) for |ܿଵ|ଶ is positive, 

which imposes a constraint on the frequency and amplitude of the drive 

  2 ୮݂
ଶܩሺ߱୊ െ ߱ଶ െ 2߱ଵሻ ൅ ሺ2߁ଵ ൅	߁ଶሻଶ ୮݂

ସ െ ଵ߁
ଶܩଶ ൐ 0      (15) 

This condition allowed us to calibrate the pumping power from the measured value of ߱୊ where 

the periodic solutions first emerge, because all other quantities in Supplementary Equation (15) 

are independently measured. 
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 One can think of the birth of the stable and unstable limit cycles as a saddle-node 

bifurcation. There are limit cycles for the two modes, but since they are coupled, one can 

describe them near the bifurcation point by one variable, the effective radius of one of the cycles 

  ଴ isݎ The equation for this radius near its bifurcational value .	ݎ

ሶݎ     ൌ 	െሺݎ െ ଴ሻଶݎ ൅ ߳     (16) 

where ߳ is the control parameter; in the experiment, the control parameter is the frequency 

detuning of the pump ߂ ൌ ߱୊ െ	߱ଶ െ 2߱ଵ, and then ߳ ∝ ߂ െ  ஻ is the bifurcational߂ ୆ where߂

value of ߂ where the left-hand side of Supplementary Equation (15) is zero. 

For ߳ ൏ 0	 Supplementary Equation (16) has no stationary solutions for the limit cycle 

radius with ݎ	close to ݎ଴. However, for ߳ ൐ 0 there are two stationary solutions, ݎ െ ଴ݎ ൌ േ√߳, 

which merge at ߳ ൌ 	0. The solution with ݎ െ ଴ݎ ൌ √߳ corresponds to a stable limit cycle, 

whereas the one with ݎ െ ଴ݎ ൌ െ√߳ corresponds to an unstable limit cycle. In the considered 

system, the trajectories that start inside the unstable limit cycle (with respect to the variables of 

the both coupled modes) go to the zero-amplitude state. 

Supplementary Figure 2 shows the calculated amplitude of self-sustained vibrations as a 

function of pump detuning . The range of  is expanded compared to the measurement and 

calculations shown in Fig. 3 of the main text. For the stable limit cycle (upper dark-colored 

curves), the amplitude increases with . The unstable limit cycle (light-colored curves), on the 

other hand, shows a non-monotonic dependence of the amplitude on . For large , the 

amplitude of the unstable limit cycle increases with . This behavior agrees with the notion that 
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it requires larger perturbations to excite stationary self-sustained vibrations as the pump 

frequency deviates more from the red-detuned secondary sideband. 

 

Supplementary Figure 2| Calculated amplitudes of self-sustained vibrations. (a) Amplitude of vibrations of 

mode 1 as a function of pump detuning ߂. The red curves represent the stable limit cycle and the zero-amplitude 

state. The light red curve corresponds to the unstable limit cycle. The results extend the theory curves in Fig. 3(a) of 

the main text, to a broader range of ߂. (b) The same plot for mode 2.  

 

Supplementary Note 4. Multi-valued resonant response 

Resonant response of the plate mode (mode 1) to a periodic force is described by adding 

a term  ୢܨ ଵ cos߱ୢଵݐ to Eq. (1), where ୢܨ ଵ is the driving amplitude and ߱ୢଵ is the resonant 

driving frequency with	|߱ୢଵ െ	߱ଵ| ≪ ߱ଵ. Equations (3) and (4) of the main text are modified to: 

ሶଵݒ ൌ െ߁ଵݒଵ ൅ iሺ∂Hୖ୛୅ ଵݒ∂
∗⁄ ሻ െ i݂ୢ ଵ expሾiሺ߱ୢଵ െ ߱ଵሻݐሿ  (17)   

ሶଶݒ		   ൌ െΓଶݒଶ ൅ iሺ߲Hୖ୛୅ ଶݒ߲
∗⁄ ሻ	        (18) 

where  ݂ୢ ଵ ൌ ሺ8݉ଵ߱ଵܥୱୡሻିଵോଶୢܨ ଵ is the scaled extra force (݂ୢ ଵ ൌ 1.717sିଵ for fig. 4c of the 

main text).  
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 To find periodic vibrations at frequency ߱ୢଵ one solves Supplementary Equations (17) 

and (18) by setting ݒଵ ൌ ଵݑ expሾiሺ߱ୢଵ െ ߱ଵሻݐሿ , ଶݒ ൌ uଶexp	ሾെ2iሺ߱ୢଵ െ ߱ଵሻݐሿ and assuming 

that ݑଵ,ଶ are independent of time, which reduces the problem to a set of algebraic equations for 

the complex amplitudes ݑଵ,ଶ 

ሾ߁ଵ ൅ iሺ߱ୢଵ െ	߱ଵሻሿݑଵ ൌ i ∂H′ୖ୛୅ ଵݑ∂
∗ െ i݂ୢ ଵ			⁄ 		   (19) 

  ሾ߁ଶ െ 2iሺ߱ୢଵ െ	߱ଵሻሿݑଶ ൌ i ∂H′ୖ୛୅ ଶݑ∂
∗			⁄                               (20) 

where H′ୖ୛୅ is given by Eq.(5) of the main text for Hୖ୛୅ in which ݒଵ is replaced by ݑଵ and 

. The amplitude of forced vibrations is ܽଵ	ଶݑ is replaced by	ଶݒ ൌ ሺ2ܥୱୡ ݉ଵ߱ଵ⁄ ሻଵോଶ|ݑଵ|. 

Supplementary Equations (19) and (20) can be further reduced to a system of two equations for 

the scaled squared vibration amplitudes 

หܼଵ െ 2 ୮݂
ଶ|ݑଵ

ଶ|/	ܼଶ
∗ห
ଶ
ଵݑ|	

ଶ| 	ൌ |݂ୢ ଵ|ଶ	     (21) 

ଶ|ଶݑ|   ൌ ୮݂
ଶ|ݑଵ|ସ ോ |ܼଶ

ଶ|			      (22) 

  ܼଵ ൌ ଵ߁	 ൅ iሺ߱ୢଵ െ ߱ଵሻ െ i߉ଵଶ|ݑଶ
ଶ| െ i߉ଵଵ|ݑଵଶ|			     (23) 

ܼଶ ൌ ଶ߁	 െ 2iሺ߱ୢଵ െ ߱ଵሻ ൅ 	i߂ െ i߉ଵଶ|ݑଵ
ଶ| െ i߉ଶଶ|ݑଶ

ଶ|  (24) 

The phases of ݑଵ,  ଶ in the stationary states of forced vibrations can be immediately found fromݑ

Supplementary Equations (19) to (24). The stability of the vibrational states is determined in the 

standard way by using Supplementary Equations (17) and (18) to write equations of motion for 

,ଵݑ ,ଵݑ ଶ and linearize these equations  about the stationary values ofݑ  .ଶݑ

 The response curves for negative friction are qualitatively different from the response 

curves of the Duffing oscillator, as shown in Fig.4c of the main text. This figure shows that the 
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amplitude |ܽଵ| as function of the drive frequency can have disconnected branches in a certain 

range of the driving amplitude	ୢܨ ଵ. As explained in the main text, reaching a disconnected 

branch in this case requires activation, e.g., a pulse that makes the vibration amplitude 

sufficiently large so that it approaches the large-amplitude value. In other words, mode 1 must be 

brought by the pulse into the basin of attraction of the corresponding stable vibrational state. In 

Supplementary Figure 3 more detailed data on the response are shown and compared with the 

theoretical results described by Supplementary Equations (17) to (24). As seen from panels (a)-

(c), at the end points of the large-amplitude branches the stable and unstable states merge. The 

analysis shows that these are simple saddle-node bifurcation points. 

With increasing amplitude of the force ୢܨ ଵ, the frequency range where there exists the 

isolated large-amplitude branch expands, Supplementary Figures 3a-c. At the same time, the 

amplitude of the vibrations on the small-amplitude branch increases. Ultimately, the two 

branches merge (Supplementary Figure 3d), and for still stronger drive (Supplementary Figures 

3e and 3f) the response curve becomes reminiscent of the standard Duffing response curve for 

linear friction. The measurements and the theory are in good agreement. 
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Supplementary Figure 3| Isolated branch in the response of forced vibrations. Measured (dots) and calculated 

stable (solid lines) and unstable (dashed lines) vibration amplitudes for the driving force amplitude  ܨௗଵ equal to 

0.595 pN (a) (green), 0.700 pN (b) (purple), 0.805 pN (c) (light blue), 0.8213525 pN (d) (dark purple) (calculation 

only), 0.840 pN (e) (brown) and 0.980 pN (f) (yellow). The isolated branch exists in a limited range of ୢܨ ଵ. As 

ܨୢ ଵincreases beyond a critical value, it merges with the lower branch [panel (d)] and disappears.  
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Supplementary Figure 4| Merging of the branches of forced vibrations near the bifurcation point. (a) 

Calculated stable (solid lines) and unstable (dashed lines) vibration amplitudes for ܨௗଵ  equal to 0.8212748 pN 

(green), 0.8213525 pN (purple), and 0.8213798 pN (yellow) showing the merging of the isolated branch with the 

lower branch. Individual curves are plotted in (b), (c) and (d). 

The merging and restructuring of the branches is an example of a bifurcation of co-

dimension 2. Panel (a) in Supplementary Figure 4 shows the summary plot of the evolution of 

the frequency response curve with increasing drive, whereas panels (b)-(d) show the individual 

response curves; the drive amplitude in panel (d) is larger than in panel (b) by only 0.013%. The 

results are obtained by numerically solving equations for ݑଵ,  ଶ. The overall evolution in theݑ

narrow range where the structure is changed can be mapped onto equation for an auxiliary 

variable ݔ	(a combination of ݑଵ and ݑଶ) of the form 	ݔሶ ൌ ଶݔ െ ሺ߱ െ	߱ୡሻଶ ൅ ߳, where ߱ୡ is the 

value of ߱ୢଵ െ ߱ଵat the intersection of the curves in Supplementary Figure 4c and ߳ is the scaled 
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difference between ܨௗଵand the value of ܨௗଵin Supplementary Figure 4c. For ߳ ൐ 0, equation ݔሶ ൌ

ଶݔ െ ሺ߱ െ	߱ୡሻଶ ൅ ߳ has two disconnected (along the ߱-axis) pairs of stationary solutions ݔୱ୲ ൌ

േ√ሾ߱ െ	߱ୡሻଶ െ ߳ሿ.	The frequency values ߱୆ ൌ 	߱ୡ േ √߳ are saddle-node bifurcations.  For ߳ ൌ

0 the saddle-node bifurcations merge, and for ߳ ൏ 0 there are only two branches of the stationary 

solutions in the considered range of ߱.   

 

Supplementary Figure 5| Accessing the disconnected branch of forced vibrations. (a) Calculated stable (solid 

lines) and unstable (dashed lines) vibration amplitudes for  ୢܨ ଵ= 0.595 pN (green) and 1.4 pN (orange). The 

calculated values are identical to Fig. 4d of the main text. Dots represent measurements. The orange arrows indicate 

how the isolated branch (green) can be accessed. The two green arrows show the amplitude jumps from the isolated 

branch to the lower branch at the two bifurcation points. (b) Close-up showing that the isolated branch can be 

reached by reducing  ୢܨ ଵ from 1.4 pN to 0.595 pN in small steps with  fixed at 0.8 Hz. 

Supplementary Figure 5 demonstrates one way to access the disconnected branch of 

stable vibrations (isolated branch in green). We first set the driving amplitude to be sufficiently 

large so that the frequency response resembles that of a Duffing oscillator (orange). The driving 

frequency is increased toward the bistable region, ensuring that the system resides in the high-

amplitude vibration state. Upon reaching the target frequency, the driving amplitude is then 

gradually lowered so that the system settles into the isolated branch (Supplementary Figure 5b). 
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Once the system is on the isolated branch, if the driving frequency is increased (the green arrow 

that goes right in Supplementary Figure 5b) or decreased (the green arrow that goes left), at the 

corresponding bifurcation points the system switches to the low-amplitude branch. 

 

Supplementary Note 5. Bistability of the characteristic spectral width peak for strong negative 
nonlinear friction    

A sufficiently strong negative nonlinear friction gives rise to the isolated branch in the 

driven response of mode 1 as function of the drive frequency (Fig. 4c and Fig. 4d of the main 

text). The isolated branch and the lower branch have different maximum (as function of 

frequency ߱ୢଵ) amplitudes ܽଵ୫ୟ୶ of forced vibrations. Supplementary Figure 6 illustrates the 

effect of different strength of negative nonlinear friction on the quantity peak that is proportional 

to the ratio of the amplitude ୢܨ ଵof the periodic driving force to ܽଵ୫ୟ୶. With large pump detuning 

 of -1000 Hz (black data), negative nonlinear friction is essentially absent and the frequency 

response has only one branch. It corresponds to the response of a Duffing oscillator with linear 

friction, and peak is independent of the drive amplitude ୢܨ ଵ	even where the response to the 

resonant drive is significantly nonlinear1. When  is increased to -50 Hz (green data), the effects 

of negative nonlinear friction become important. As a consequence, ߁୮ୣୟ୩ decreases sharply at 

1.12 pN, corresponding to a superlinear increase of the peak amplitude with drive amplitude. 

Upon further increase of  to -35 Hz and the respective increase of negative nonlinear friction, 

the response to the resonant drive displays two branches, as seen in Fig. 4c; see also 

Supplementary Note 4. We can define ߁୮ୣୟ୩ for each branch, and then it becomes multivalued for 

periodic driving amplitude between 0.57 pN and 0.82 pN (blue data). In particular, the two 

circles correspond to the maximum vibration amplitude for the two branches in Fig. 4c. Such 
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bistability of ߁୮ୣୟ୩ does not occur for systems with conservative nonlinearity such as Duffing or 

parametric resonators, nor in systems with weak nonlinear friction. 

 

Supplementary Figure 6| Bistable behavior of ܓ܉܍ܘࢣ . The dots show the dependence of ߁୮ୣୟ୩ ൌ

ܨୢ	 ଵ 2݉ଵ߱ଵܽଵ	୫ୟ୶⁄  on the drive amplitude for negligible nonlinear friction (the pump detuning  = -1000 Hz, black) 

and increasingly strong negative nonlinear friction ( = -50 Hz, green, and  = -35 Hz, blue). The filled circles 

represent the peak amplitudes of the response ܽଵ୫ୟ୶	for the two branches in Fig. 4c of the main text. The solid lines 

in this figure are theoretical predictions (Supplementary Note 4). Error bars represent ±1 s.e. 

 

Supplementary Note 6. Hysteresis of the vibration amplitude with varying driving force 
amplitude.  

The amplitude of forced vibrations of a nonlinear oscillator with linear friction is known 

to display hysteresis with varying amplitude of the driving resonant force1. Here we show that 

the character of the hysteresis changes qualitatively in the presence of negative nonlinear friction. 

In Supplementary Figure 7 we plot the amplitude of forced vibrations ܽଵ as a function of the 

driving force amplitude ୢܨ ଵ for a fixed driving frequency ߱ୢଵ. The data for red and purple 
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curves in Supplementary Figure 7 are taken with large pump detuning ߂ ൌ -1000 Hz, so that 

nonlinear friction effects are practically absent and the system behaves as a Duffing oscillator. 

For Duffing oscillators, the hysteretic response occurs only if the detuning δ߱ ൌ 	߱ୢଵ െ	߱ଵ of 

the driving frequency from the mode eigenfrequency exceeds the threshold value of √3 1 (~0.9 

Hz for our system). Supplementary Figure 7 shows that when δ߱ is reduced from 1.1 Hz (blue 

curve) to 0.4 Hz (red curve), hysteresis indeed disappears. The red curve is obtained by changing 

the pump detuning to -35 Hz so that negative nonlinear friction becomes strong. The detuning of 

the driving force is set at ߱ߜ ൌ	0.4 Hz. It is thus < √3 1. Still we observe hysteresis, because 

vibrations at high amplitudes are stabilized by negative nonlinear friction. We note that the 

dependence of the vibration amplitude ܽଵ on the force amplitude ܨௗଵ for fixed ߱ୢଵ does not 

display an isolated branch, in contrast to the dependence of ܽଵ on ߱ୢଵ for fixed ୢܨ ଵ. 

 

Supplementary Figure 7|  The amplitude of forced vibrations with and without negative nonlinear friction.  

For a Duffing resonator with effectively linear friction (the pump detuning  = -1000 Hz), hysteresis is seen on the 

blue curve, which refers to ߱ୢଵ െ	߱ଵ = 1.1 Hz ൐ √3 1. For the purple curve with ߱ୢଵ െ	߱ଵ = 0.4 Hz smaller than 

√3 1, there is no hysteresis. In contrast, when negative nonlinear friction is strong ( = -35 Hz), hysteresis is seen 
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even for ߱ୢଵ െ	߱ଵ = 0.4 Hz (the red curve). Solid and dashed lines are calculated stable and unstable vibration 

amplitudes respectively. Dots represent measurement. 
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