
Improved Leader Election for Self-organizing
Programmable Matter

Joshua J. Daymude1(B), Robert Gmyr2, Andréa W. Richa1,
Christian Scheideler2, and Thim Strothmann2

1 Computer Science, CIDSE, Arizona State University, Tempe, AZ, USA
{jdaymude,aricha}@asu.edu

2 Department of Computer Science, Paderborn University, Paderborn, Germany
{gmyr,scheidel,thim}@mail.upb.de

Abstract. We consider programmable matter that consists of compu-
tationally limited devices (called particles) that are able to self-organize
in order to achieve some collective goal without the need for central con-
trol or external intervention. We use the geometric amoebot model to
describe such self-organizing particle systems, which defines how parti-
cles can actively move and communicate with one another. In this paper,
we present an efficient local-control algorithm which solves the leader
election problem in O(n) asynchronous rounds with high probability,
where n is the number of particles in the system. Our algorithm relies
only on local information — particles do not have unique identifiers, any
knowledge of n, or any sort of global coordinate system — and requires
only constant memory per particle.

1 Introduction

The vision for programmable matter is to create some material or substance
that can change its physical properties like shape, density, conductivity, or color
in a programmable fashion based on either user input or autonomous sensing
of its environment. Many realizations of programmable matter have been pro-
posed — including DNA tiles, shape-changing molecules, synthetic cells, and
reconfiguring modular robots — each of which is pursuing solutions applica-
ble to its own situation, subject to domain-specific capabilities and constraints.
We envision programmable matter as a more abstract system of computation-
ally limited devices (which we refer to as particles) which can move, bond, and
exchange information in order to collectively reach a given goal without any out-
side intervention. Leader election is a central and classical problem in distributed
computing that is very interesting for programmable matter; e.g., most known
shape formation techniques for programmable matter suppose the existence of

J. J. Daymude and A. W. Richa—Supported in part by NSF awards CCF-1422603
and CCF-1637393.
R. Gmyr, C. Scheideler and T. Strothmann—Supported in part by DFG grant SCHE
1592/3-1.

c© Springer International Publishing AG 2017
A. Fernández Anta et al. (Eds.): ALGOSENSORS 2017, LNCS 10718, pp. 127–140, 2017.
https://doi.org/10.1007/978-3-319-72751-6_10

128 J. J. Daymude et al.

a leader/seed particle (examples can be found in [23] for the nubot model, [20]
for the abstract tile self assembly model and [12,13] for the amoebot model).

In this paper, we present a fully asynchronous local-control protocol for the
leader election problem, improving our previous algorithm for leader election
in [14] which was only described at a high level, lacking specific rules for each
particle’s execution. Moreover, while the analysis in [14] used a simplified, syn-
chronous setting and only achieved its linear runtime bound in expectation, here
we prove with high probability1 correctness and runtime guarantees for the full
local-control protocol2. Finally, as this algorithm is both conceptually simpler
than that of [14] and presented directly from the point-of-view of an individual
particle, it is more easily understood and implemented.

1.1 Amoebot Model

We represent any structure the particle system can form as a subgraph of the
infinite graph G = (V,E), where V represents all possible positions the parti-
cles can occupy relative to their structure, and E represents all possible atomic
movements a particle can perform as well as all places where neighboring par-
ticles can bond to each other. In the geometric amoebot model, we assume that
G = Geqt, where Geqt is the infinite regular triangular grid graph. We recall the
properties of the geometric amoebot model necessary for this algorithm; a full
description can be found in [14].

Each particle occupies either a single node (i.e., it is contracted) or a pair
of adjacent nodes in Geqt (i.e., it is expanded), and every node can be occupied
by at most one particle. Particles move through expansions and contractions;
however, as our leader election algorithm does not require particles to move, we
omit a detailed description of these movement mechanisms.

Particles are anonymous; they have no unique identifiers. Instead, each par-
ticle has a collection of ports — one for each edge incident to the node(s) the
particle occupies — that have unique labels from the particle’s local perspective.
We assume that the particles have a common chirality (i.e., a shared notion of
clockwise direction), which allows each particle to label its ports in clockwise
order. However, particles do not have a common sense of global orientation and
may have different offsets for their port labels.

Two particles occupying adjacent nodes are connected by a bond, and we
refer to such particles as neighbors. Neighboring particles establish bonds via
the ports facing each other. The bonds not only ensure that the particle system
forms a connected structure, but also are used for exchanging information. Each
particle has a constant-size local memory that can be read and written to by
any neighboring particle. Particles exchange information with their neighbors by

1 An event occurs with high probability (w.h.p.), if the probability of success is at least
1 − n−c, where c > 1 is a constant; in our context, n is the number of particles.

2 An astute reader may note that a w.h.p. guarantee on correctness is weaker than the
absolute guarantee given for the algorithm in [14], but the latter was given without
considering the necessary particle-level execution details.

Improved Leader Election for Programmable Matter 129

simply writing into their memory. Due to the constant-size memory constraint,
particles know neither the total number of particles in the system nor any esti-
mate of this number.

We assume the standard asynchronous model, wherein particles execute an
algorithm concurrently and no assumptions are made about individual particles’
activation rates or computation speeds. A classical result under this model is
that for any asynchronous concurrent execution of atomic particle activations,
there exists a sequential ordering of the activations which produces the same
end configuration, provided conflicts which arise from the concurrent execution
are resolved (namely, only conflicts of shared memory writes can happen in our
algorithm; we simply assume that an arbitrary particle wins). Thus, it suffices to
view particle system progress as a sequence of particle activations; i.e., only one
particle is active at a time. Whenever a particle is activated, it can perform an
arbitrary, bounded amount of computation involving its local memory and the
memories of its neighbors and can perform at most one movement. We define
an asynchronous round to be complete once each particle has been activated at
least once.

1.2 Related Work

A variety of work related to programmable matter has recently been proposed
and investigated. One can distinguish between active and passive systems. In
passive systems, the computational units either have no intelligence (moving and
bonding is based only on their structural properties or interactions with their
environment), or have limited computational capabilities but cannot control their
movements. Examples of research on passive systems are DNA computing [1,3,
7,21], tile self-assembly systems (e.g., the surveys in [15,19,22]), and population
protocols [2]. We will not describe these models in detail as they are of little
relevance to our approach. Active systems, on the other hand, are composed of
computational units which can control the way they act and move in order to
solve a specific task. Prominent examples of active systems are swarm robotics
(see, e.g., [17,18]), modular self-reconfigurable robotic systems (e.g., [16,24]) —
especially metamorphic robots [8] — and the nubot model [5,6,23] by Woods
et al. For an in depth discussion of these models and how they relate to our
amoebot model, we refer the reader to the full version of this paper [9].

The amoebot model [10] is a model for self-organizing programmable matter
that aims to provide a framework for rigorous algorithmic research for nano-
scale systems. In [14], the authors describe a leader election algorithm for an
abstract (synchronous) version of the amoebot model that decides the problem
in expected linear time. Recently, a universal shape formation algorithm [13], a
universal coating algorithm [11] and a Markov chain algorithm for the compres-
sion problem [4] were introduced, showing that there is potential to investigate
a wide variety of problems under this model.

130 J. J. Daymude et al.

1.3 Problem Description

We consider the classical problem of leader election. An algorithm is said to solve
the leader election problem if for any connected particle system of initially con-
tracted particles with empty memories, eventually a single particle irreversibly
declares itself the leader (e.g., by setting a dedicated bit in its memory) and no
other particle ever declares itself to be the leader. We define the running time
of a leader election algorithm to be the number of asynchronous rounds until a
leader is declared. Note that we do not require the algorithm to terminate for
particles other than the leader.

2 Algorithm

Before we describe the leader election algorithm in detail, we give a short high-
level overview. The algorithm consists of six phases. These phases are not strictly
synchronized among each other, i.e., at any point in time, different parts of the
particle system may execute different phases. Furthermore, a particle can be
involved in the execution of multiple phases at the same time. The first phase
is boundary setup (Sect. 2.1). In this phase, each particle locally checks whether
it is part of a boundary of the particle system. Only the particles on a bound-
ary participate in the leader election. Particles occupying a common boundary
organize themselves into a directed cycle. The remaining phases operate on each
boundary independently. In the segment setup phase (Sect. 2.2), the boundaries
are subdivided into segments: each particle flips a fair coin. Particles that flip
heads become candidates and compete for leadership whereas particles that flip
tails become non-candidates and assist the candidates in their competition. A
segment consists of a candidate and all subsequent non-candidates along the
boundary up to the next candidate. The identifier setup phase (Sect. 2.3) assigns
a random identifier to each candidate. The identifier of a candidate is stored dis-
tributively among the particles of its segment. In the identifier comparison phase
(Sect. 2.4), the candidates compete for leadership by comparing their identifiers
using a token passing scheme. Whenever a candidate sees an identifier that is
higher than its own, it revokes its candidacy. Whenever a candidate sees its own
identifier, the solitude verification phase (Sect. 2.5) is triggered. In this phase,
the candidate checks whether it is the last remaining candidate on the bound-
ary. If so, it initiates the boundary identification phase (Sect. 2.6) to determine
whether it occupies the unique outer boundary of the system. In that case, it
becomes the leader; otherwise, it revokes its candidacy.

2.1 Boundary Setup

The boundary setup phase organizes the particle system into a set of boundaries.
This approach is directly adopted from [14], but we give a full description here
to introduce important notation. Let A ⊂ V be the set of nodes in Geqt = (V,E)
that are occupied by particles. According to the problem definition, the subgraph

Improved Leader Election for Programmable Matter 131

Geqt|A of Geqt induced by A is connected. Consider the graph Geqt|V \A induced
by the unoccupied nodes in Geqt. We call a connected component R of Geqt|V \A
an empty region. Let N(R) be the neighborhood of an empty region R in Geqt;
that is, N(R) = {u ∈ V \ R : ∃v ∈ R such that (u, v) ∈ E}. Note that by
definition, all nodes in N(R) are occupied by particles. We refer to N(R) as
the boundary of the particle system corresponding to R. Since Geqt|A is a finite
graph, exactly one empty region has infinite size while the remaining empty
regions have finite size. We define the boundary corresponding to the infinite
empty region to be the unique outer boundary and refer to a boundary that
corresponds to a finite empty region as an inner boundary.

For each boundary of the particle system, we organize the particles occu-
pying that boundary into a directed cycle. Upon first activation, each particle
p instantly determines its place in these cycles using only local information as
follows. First, p checks for two special cases. If p has no neighbors, it must be
the only particle in the particle system since the particle system is connected.
Thus, it immediately declares itself the leader and terminates. If all neighboring
nodes of p are occupied, p is not part of any boundary and terminates without
participating in the leader election process any further.

If these special cases do not apply, then p has at least one occupied node
and one unoccupied node in its neighborhood. Interpret the neighborhood of
p as a directed ring of six nodes that is oriented clockwise around p. Consider
all maximal sequences of unoccupied nodes (v1, . . . vk) in this ring; call such a
sequence an empty sequence. Such a sequence is part of some empty region and
hence corresponds to a boundary that includes p. Let v0 be the node before v1
and let vk+1 be the node after vk in the ring. Note that we might have v0 = vk+1.
By definition, v0 and vk+1 are occupied. Particle p implicitly arranges itself as
part of a directed cycle spanning the aforementioned boundary by considering
the particle occupying v0 to be its predecessor and the particle occupying vk+1

to be its successor on that boundary. It repeats this process for each empty
sequence in its neighborhood.

A particle can have up to three empty sequences in its neighborhood, and
consequently can be part of up to three distinct boundaries. However, a parti-
cle cannot locally decide whether two distinct empty sequences belong to two
distinct empty regions or to the same empty region. To guarantee that the exe-
cutions on distinct boundaries are isolated, we let the particles treat each empty
sequence as a distinct empty region. For each such sequence, a particle acts as a
distinct agent which executes an independent instance of the algorithm encom-
passing the remaining five phases of the leader election algorithm. Whenever a
particle is activated, it sequentially executes the independent instances of the
algorithm for each of its agents in an arbitrary order, i.e., whenever a particle is
activated also its agents are activated. Each agent a is assigned the predecessor
and successor — denoted a.pred and a.succ, respectively — that was determined
by the particle for its corresponding empty sequence. This organizes the set of
all agents into disjoint cycles spanning the boundaries of the particle system (see
Fig. 1). As consequence of this approach, a particle can occur up to three times

132 J. J. Daymude et al.

on the same boundary as different agents. While we can ignore this property for
most of the remaining phases, it will remain a cause for special consideration in
the solitude verification phase (Sect. 2.5).

Fig. 1. Boundaries and agents. Particles are depicted as gray circles and the agents
of a particle are depicted as black dots inside of the corresponding circle. After the
boundary setup phase, the agents form disjoint cycles that span the boundaries of the
particle system. The solid arrows represent the unique outer boundary and the dashed
arrows represent the two inner boundaries.

2.2 Segment Setup

All remaining phases (including this one) operate exclusively on boundaries, and
furthermore execute on each boundary independently. Therefore, we only con-
sider a single boundary for the remainder of the algorithm description. The goal
of the segment setup phase is to divide the boundary into disjoint “segments”.
Each agent flips a fair coin. The agents which flip heads become candidates and
the agents which flip tails become non-candidates. In the following phases, candi-
dates compete for leadership while non-candidates assist the candidates in their
competition. A segment is a maximal sequence of agents (a1, a2, . . . , ak) such
that a1 is a candidate, ai is a non-candidate for i > 1, and ai = ai−1.succ for
i > 1. Note that the maximality condition implies that the successor of ak is a
candidate. We refer to the segment starting at a candidate c as c.seg and call it
the segment of c. In the following phases, each candidate uses its segment as a
distributed memory.

2.3 Identifier Setup

After the segments have been set up, each candidate generates a random iden-
tifier by assigning a random digit to each agent in its segment. The candidates
use these identifiers in the next phase to engage in a competition in which all but
one candidate on the boundary are eliminated. Note that the term identifier is
slightly misleading in that two distinct candidates can have the same identifier.

Improved Leader Election for Programmable Matter 133

Nevertheless, we hope that the reader agrees that the way these values are used
makes this term an appropriate choice.

To generate a random identifier, a candidate c sends a token along its segment
in the direction of the boundary. A token is simply a constant-size piece of
information that is passed from one agent to the next by writing it to the memory
of a neighboring particle. While the token traverses the segment, it assigns a
value chosen uniformly at random from [0, r − 1] to each visited agent where
r is a constant that is fixed in the analysis. The identifier generated in this
way is a number with radix r consisting of |c.seg| digits where c holds the most
significant digit and the last agent of c.seg holds the least significant digit. We
refer to the identifier of a candidate c as c.id. The competition in the next phase
of the algorithm is based on comparing identifiers. When comparing identifiers
of different lengths, we define the shorter identifer to be lower than the longer
identifier.

After generating its random identifier, each candidate creates a copy of its
identifier that is stored in reversed digit order in its segment. This step is required
as a preparation for the next phase. To achieve this, we use a single token
that moves back and forth along the segment and copies one digit at a time.
More specifically, we reuse the token described above that generated the random
identifier. Once this token reaches the end of the segment, it starts copying the
identifier by reading the digit of the last agent of the segment and moving to the
beginning of the segment. There, it stores a copy of that digit in the candidate
c. It then reads the digit of c and moves back to the end of the segment where
it stores a copy of that digit in the last agent of the segment. It proceeds in a
similar way with the second and the second to last agent and so on until the
identifier is completely copied. Afterwards, the token moves back to c to inform
the candidate that the identifier setup is complete.

Note that for ease of presentation we deliberately opted for simplicity over
speed when creating a reversed copy of the identifier. As we will show in Sect. 3.2,
the running time of this simple algorithm is dominated by the running time of
the next phase so that the overall asymptotic running time of the leader election
algorithm does not suffer.

2.4 Identifier Comparison

During the identifier comparison phase the agents use their identifiers to compete
with each other. Each candidate compares its own identifier with the identifier of
every other candidate on the boundary. A candidate with the highest identifier
eventually progresses to the solitude verification phase, described in the next
section, while any candidate with a lower identifier withdraws its candidacy. To
achieve the comparison, the non-reversed copies of the identifiers remain stored
in their respective segments while the reversed copies move backwards along
the boundary as a sequence of tokens. More specifically, a digit token is created
for each digit of a reversed identifier. A digit token created by the last agent
of a segment is marked as a delimiter token. Once created, the digit tokens
traverse the boundary against the direction of the cycle spanning it. Each agent

134 J. J. Daymude et al.

is allowed to hold at most two tokens at a time, which gives the tokens some
space to move along the boundary. The tokens are not allowed to overtake each
other, so whenever an agent stores two tokens, it keeps track of the order they
were received in and forwards them accordingly. An agent forwards at most one
token per activation. Furthermore, an agent can only receive a token after it
creates its own digit token. We define the token sequence of a candidate c as
the sequence of digit tokens created by the agents in c.seg. Note that according
to the rules for forwarding tokens, the token sequences of distinct candidates
remain separated and the tokens within a token sequence maintain their relative
order along the boundary.

Whenever a token sequence traverses a segment c.seg of a candidate c, the
agents in c.seg cooperate with the tokens of the token sequence to compare the
identifier c.id with the identifier stored in the token sequence. This comparison
has three possible outcomes: (i) the token sequence is longer than c.seg or the
lengths are equal and the token sequence stores an identifier that is strictly
greater than c.id, (ii) the token sequence is shorter than c.seg or the lengths are
equal and the token sequence stores an identifier that is strictly smaller than
c.id, or (iii) the lengths are equal and the identifiers are equal. In the first case,
c does not have the highest identifier and withdraws its candidacy. In the second
case, c might be a candidate with the highest identifier and therefore remains a
candidate. Finally, in the third case, c initiates the solitude verification phase,
which is then executed in parallel to the identifier comparison phase. Solitude
verification might be triggered quite frequently, especially for candidates with
short segments; we describe how this is handled in the next section. Due to space
constraints, we omit the exact token passing scheme for identifier comparison
and refer to the full version of this paper [9].

2.5 Solitude Verification

The goal of the solitude verification phase is for a candidate c to check whether it
is the last remaining candidate on its boundary. Solitude verification is triggered
during the identifier comparison phase whenever a candidate detects equality
between its own identifier and the identifier of a token sequence that traversed
its segment. Note that such a token sequence can either be the token sequence
created by c itself or the token sequence created by some other candidate that
generated the same identifier. Once the solitude verification phase is started, it
runs in parallel to the identifier comparison phase and does not interfere with it.
This phase is based on the idea of solitude verification given in [14], but greatly
simplifies many of the original ideas to obtain a more easily understood protocol.

A candidate c can check whether it is the last remaining candidate on its
boundary by determining whether or not the next candidate in direction of the
cycle is c itself. To achieve this, the solitude verification phase has to span not
only c.seg but also all subsequent segments of former candidates that already
withdrew their candidacy during the identifier comparison phase. We refer to
the union of these segments as the extended segment of c. The basic idea of
the algorithm is the following. We treat the edges that connect the agents on

Improved Leader Election for Programmable Matter 135

the boundary as vectors in the two-dimensional Euclidean plane. If c is the last
remaining candidate on its boundary, the vectors corresponding to the directed
edges of the boundary cycle in the extended segment of c and the next edge
(connecting the extended segment of c to the next candidate) sum to the zero
vector, implying that the next candidate and c occupy the same node. To perform
this summation in a local manner, c locally defines a two-dimensional coordinate
system (e.g., by choosing two consecutive ports as the x and y axes, respectively)
and uses two token passing schemes to generate and sum the x and y coordinates
of these vectors in parallel. Again, due to space constraints, the details of this
token passing scheme for summing x or y vector coordinates is detailed in the
full version of this paper [9].

Using the token passing scheme, a candidate c can decide whether the next
candidate along the boundary is itself. However, this is not sufficient to decide
whether c is the last remaining candidate on the boundary. As described in
Sect. 2.1, a particle can occur up to three times as different agents on the same
boundary. Therefore, there can be distinct agents on the same boundary that
occupy the same node of Geqt. If an extended segment reaches from one of these
agents to another, the vectors induced by the extended segment sum up to the
zero vector even though there are at least two agents left on the boundary.
To handle this case, each particle assigns a locally unique agent identifier from
{1, 2, 3} to each of its agents in an arbitrary way. The token passing scheme then
additionally checks that the agent identifier of the last agent in the extended
segment matches that of c, ensuring that c is the last remaining candidate on
its boundary.

Finally, we must address the interaction between the solitude verification
phase and the identifier comparison phase. As noted in the previous section,
solitude verification may be triggered quite frequently. Therefore, it may occur
that solitude verification is triggered for a candidate c while c is still performing
a previously triggered execution of solitude verification. In this case, c simply
continues with the already ongoing execution and ignores the request for another
execution. Furthermore, c might be eliminated by the identifier comparison phase
while it is performing solitude verification. In this case, c waits for the ongoing
solitude verification to finish and only then withdraws its candidacy.

2.6 Boundary Identification

Once a candidate c determines that it is the only remaining candidate on its
boundary, it initiates the boundary identification phase to check whether or not
it lies on the unique outer boundary of the particle system. If it lies on the outer
boundary, the particle acting as candidate agent c declares itself the leader. Oth-
erwise, c revokes its candidacy. To achieve this, we make use of the observation
that the outer boundary is oriented clockwise while an inner boundary is ori-
ented counter-clockwise (see Fig. 1), a property resulting directly from the way
the an agent’s predecessor and successor are defined in Sect. 2.1.

A candidate c can distinguish between clockwise and counter-clockwise ori-
ented boundaries using a simple token passing scheme introduced in [14]. It

136 J. J. Daymude et al.

sends a token along the boundary that sums up the angles of the turns it takes
according to Fig. 2, storing the results in a counter α. When the token returns
to c, the absolute value |α| represents the external angle of the polygon induced
by the boundary. It is well known that the external angle of a polygon in the
Euclidean plane is |α| = 360◦. Since the outer boundary is oriented clockwise
and an inner boundary is oriented counter-clockwise, we have α = 360◦ for the
outer boundary and α = −360◦ for an inner boundary. The token can encode
α as an integer k such that α = k · 60◦. To distinguish the two possible final
values of k it is sufficient to store k modulo 5 so that we have k = 1 for the outer
boundary and k = 4 for an inner boundary. Therefore, the token only needs
three bits of memory.

Fig. 2. Determining the external angle α. The incoming and outgoing arrows represent
the directions in which the token enters and leaves an agent, respectively. Only the angle
between the arrows is relevant; the absolute global direction of the arrows cannot be
detected by the agents since they do not posses a common compass.

3 Analysis

We now turn to the analysis of the leader election algorithm. We first show its
correctness in Sect. 3.1 and then analyze its running time in Sect. 3.2. Due to
space constraints, some of the supporting lemmas and their proofs are omitted;
they can be found in the analysis section of the full version of this paper [9].

3.1 Correctness

To show the correctness of the algorithm we must prove that eventually a single
particle irreversibly declares itself to be the leader of the particle system and
no other particle ever declares itself to be the leader. Any agent on an inner
boundary can never cause its particle to become the leader; even if the algo-
rithm reaches the point at which there is exactly one candidate c on some inner
boundary, c will withdraw its candidacy in the boundary identification phase.
Therefore, we can focus exclusively on the behavior of the algorithm on the
unique outer boundary. We focus only on the major theorem here.

Theorem 1. The algorithm solves the leader election problem, w.h.p.

Proof. We must show that eventually a single particle irreversibly declares itself
to be the leader of the particle system and no other particle ever declares itself to

Improved Leader Election for Programmable Matter 137

be the leader. Again, we consider only the agents on the outer boundary as agents
on an inner boundary will never cause their particles to declare themselves as
leaders. Once every particle has finished the boundary setup phase, every agent
has finished the segment setup phase, and every candidate has finished the iden-
tifier setup phase, with high probability3 there is a unique candidate c∗ that has
the highest identifier on the outer boundary. Since c∗ has the highest identifier, it
does not withdraw its candidacy during the identifier comparison phase. In con-
trast, every other candidate c �= c∗ eventually withdraws its candidacy because
the token sequence of c∗ eventually traverses c.seg. Therefore, such an agent c
cannot cause its particle to become the leader. Once c∗ is the last remaining
candidate on the outer boundary, it eventually triggers the solitude verification
phase because the token sequence of c∗ eventually traverses c∗.seg while c∗ is
not already performing solitude verification. After verifying that it is the last
remaining candidate, c∗ executes the boundary identification phase and deter-
mines that it lies on the outer boundary. It then instructs its particle to declare
itself the leader of the particle system. ��

3.2 Running Time

Recall from Sect. 1.3 that the running time of an algorithm for leader election is
defined as the number of asynchronous rounds until a leader is declared. Since
the given algorithm always establishes a leader on the outer boundary, we can
limit our attention to that boundary. Let n be the number of particles in the
system and L be the number of agents on the outer boundary.

The first two phases of the algorithm, namely the boundary setup and seg-
ment setup phases, consist entirely of computations based on local neighborhood
information. Therefore, these phases can be completed instantly by each particle
upon its first activation. Since each particle is activated at least once in every
round, every particle completes these first two phases after a single round. When
an agent becomes a candidate, it initiates the identifier setup phase. We have
the following lemma.

Lemma 1. All candidates on the outer boundary complete the identifier setup
phase after O(log2 n) rounds, w.h.p.

After the identifiers have been generated, they are compared in the identifier
comparison phase. In this phase, a set of digit tokens, one for each agent on the
boundary, traverses the boundary against the direction of the cycle spanning it.
Each agent can store at most two tokens. The tokens are not allowed to overtake
each other, so agents maintain the order of the tokens when forwarding them.
Note that a token is never delayed unless it is blocked by tokens in front of it.

3 This w.h.p. guarantee results from there being a small but nonzero probability that
either (a) all agents flip tails and become non-candidates in the segment setup phase,
or (b) more than one candidate generates the same highest identifier in the identifier
setup phase. See [9] for more details.

138 J. J. Daymude et al.

Therefore, an agent a forwards a token whenever a.pred can hold an additional
token. Finally, an agent forwards at most one token for each activation.

We define the number of steps a token has taken as the number of times
it’s been forwarded from one agent to the next since its creation. Let T be the
earliest round such that at its beginning every agent on the outer boundary has
created its digit token. We have the following lemma.

Lemma 2. At the beginning of round T + i for i ∈ N, each digit token on the
outer boundary has taken at least i steps.

Next, the following lemma provides an upper bound on the running time of
the solitude verification phase.

Lemma 3. For an extended segment of length �, the solitude verification phase
takes O(�) rounds.

The boundary identification phase is only executed once a candidate deter-
mines that it is the last remaining candidate on the boundary. The following
lemma provides an upper bound for the running time of this phase.

Lemma 4. The boundary identification phase on the outer boundary takes O(L)
rounds.

Finally, we can show the following runtime bound.

Theorem 2. The algorithm solves the leader election problem in O(L) rounds,
w.h.p.

Theorem 2 specifies the running time of the leader election algorithm in terms
of the number of agents on the outer boundary. Let C be the number of particles
on the outer boundary. Since each particle on the outer boundary corresponds to
at most three agents on the outer boundary, we have that the algorithm solves
the leader election problem in O(C) rounds, w.h.p.. Moreover, the number of
particles on the outer boundary is obviously at most n; thus, the runtime bound
can also be formulated as O(n) rounds, w.h.p.. Note that compared to the O(C)
bound, the O(n) bound is quite pessimistic since the number of particles on the
outer boundary can much lower than n. For example, a solid square of n particles
only has C = O(

√
n) particles on its outer boundary.

4 Conclusion

In this paper we presented a randomized leader election algorithm for pro-
grammable matter which requires O(n) asynchronous rounds with high prob-
ability. The main idea of this algorithm is to use coin flips to set up random
identifiers for each leader candidate in such a way that at least one candidate
has an identifier of logarithmic length, leading to a unique leader w.h.p.. In the
full version of this paper [9], we consider several variants of the leader election
problem and detail how our algorithm can be modified to solve them. These

Improved Leader Election for Programmable Matter 139

variants include allowing particle systems to contain both expanded and con-
tracted particles, enforcing that all particles terminate their executions of the
algorithm (instead of requiring only the leader to terminate), and improving
the with high probability guarantee on electing a leader to a with probability 1
guarantee without changing the O(L), w.h.p. runtime bound.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(11), 1021–1024 (1994)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

3. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of
DNA. Discrete Appl. Math. 71, 79–94 (1996)

4. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm
for compression in self-organizing particle systems. In: Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago,
IL, USA, 25–28 July 2016, pp. 279–288 (2016)

5. Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast
algorithmic self-assembly of simple shapes using random agitation. In: Murata,
S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11295-4 2

6. Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In:
Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-01928-4 2

7. Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assem-
bly with universally foldable strings (moteins). IEEE Trans. Rob. 27(4), 718–729
(2011)

8. Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the
1994 IEEE International Conference on Robotics and Automation, IRCA 1994, vol.
1, pp. 449–455 (1994)

9. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. CoRR, abs/1701.03616
(2017)

10. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: amoebot - a new model for programmable matter. In: 26th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2014,
Prague, Czech Republic, 23–25 June 2014, pp. 220–222 (2014)

11. Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann,
T.: On the runtime of universal coating for programmable matter. In: Rondelez,
Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 148–164. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43994-5 10

12. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An
algorithmic framework for shape formation problems in self-organizing particle sys-
tems. In: Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, NANOCOM 2015, Boston, MA, USA, 21–22
September 2015, pp. 21:1–21:2 (2015)

https://doi.org/10.1007/978-3-319-11295-4_2
https://doi.org/10.1007/978-3-319-01928-4_2
https://doi.org/10.1007/978-3-319-43994-5_10

140 J. J. Daymude et al.

13. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal shape formation for programmable matter. In: Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar
State Beach/Pacific Grove, CA, USA, 11–13 July 2016, pp. 289–299 (2016)

14. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler,
C.: Leader election and shape formation with self-organizing programmable matter.
In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21999-8 8

15. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88
(2012)

16. Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based
on cell structures - CEBOT. In: Proceedings of the 1988 IEEE International Con-
ference on Intelligent Robots and Systems, IROS 1988, pp. 145–150 (1988)

17. Kernbach, S. (ed.): Handbook of Collective Robotics - Fundamentals and Chal-
langes. Pan Stanford Publishing, Singapore (2012)

18. McLurkin, J.: Analysis and implementation of distributed algorithms for multi-
robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)

19. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent
results. Nat. Comput. 13(2), 195–224 (2014)

20. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp.
459–468 (2000)

21. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

22. Woods, D.: Intrinsic universality and the computational power of self-assembly. In:
Proceedings of MCU 2013, pp. 16–22 (2013)

23. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS 2013, pp. 353–354 (2013)

24. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom.
Mag. 14(1), 43–52 (2007)

https://doi.org/10.1007/978-3-319-21999-8_8

	Improved Leader Election for Self-organizing Programmable Matter
	1 Introduction
	1.1 Amoebot Model
	1.2 Related Work
	1.3 Problem Description

	2 Algorithm
	2.1 Boundary Setup
	2.2 Segment Setup
	2.3 Identifier Setup
	2.4 Identifier Comparison
	2.5 Solitude Verification
	2.6 Boundary Identification

	3 Analysis
	3.1 Correctness
	3.2 Running Time

	4 Conclusion
	References

