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Abstract
Imagine coating buildings and bridges with smart particles (also coined smart paint) that monitor structural integrity and

sense and report on traffic and wind loads, leading to technology that could do such inspection jobs faster and cheaper and

increase safety at the same time. In this paper, we study the problem of uniformly coating objects of arbitrary shape in the

context of self-organizing programmable matter, i.e., programmable matter which consists of simple computational

elements called particles that can establish and release bonds and can actively move in a self-organized way. Particles are

anonymous, have constant-size memory, and utilize only local interactions in order to coat an object. We continue the

study of our universal coating algorithm by focusing on its runtime analysis, showing that our algorithm terminates within a

linear number of rounds with high probability. We also present a matching linear lower bound that holds with high

probability. We use this lower bound to show a linear lower bound on the competitive gap between fully local coating

algorithms and coating algorithms that rely on global information, which implies that our algorithm is also optimal in a

competitive sense. Simulation results show that the competitive ratio of our algorithm may be better than linear in practice.

Keywords Distributed algorithms � Programmable matter � Self-organization � Self-organizing systems � Coating

1 Introduction

Inspection of bridges, tunnels, wind turbines, and other

large civil engineering structures for defects is a time-

consuming, costly, and potentially dangerous task. In the

future, smart coating technology, or smart paint, could do

the job more efficiently and without putting people in

danger. The idea behind smart coating is to form a thin

layer of a specific substance on an object which then makes

it possible to measure a condition of the surface (such as

temperature or cracks) at any location, without direct

access to the location. The concept of smart coating already

occurs in nature, such as proteins closing wounds, anti-

bodies surrounding bacteria, or ants surrounding food to

transport it to their nest. These diverse examples suggest a

broad range of applications of smart coating technology in

the future, including repairing cracks or monitoring tension

on bridges, repairing space craft, fixing leaks in a nuclear

reactor, or stopping internal bleeding. We continue the

study of coating problems in the context of self-organizing
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programmable matter consisting of simple computational

elements, called particles, that can establish and release

bonds and can actively move in a self-organized way using

the geometric version of the amoebot model presented in

Daymude et al. (2015), Derakhshandeh et al. (2014). In

doing so, we proceed to investigate the runtime analysis of

our universal coating algorithm, introduced in Der-

akhshandeh et al. (2017). We first show that coating

problems do not only have a (trivial) linear lower bound on

the runtime, but that there is also a linear lower bound on

the competitive gap between the runtime of fully local

coating algorithms and coating algorithms that rely on

global information. We then investigate the worst-case

time complexity of our universal coating algorithm and

show that it terminates within a linear number of rounds

with high probability (w.h.p.),1 which implies that our

algorithm is optimal in terms of worst-case runtime and

also in a competitive sense. Moreover, our simulation

results show that in practice the competitive ratio of our

algorithm is often better than linear.

1.1 Amoebot model

In the amoebot model, space is modeled as an infinite,

undirected graph G whose vertices are positions that can be

occupied by at most one particle and whose edges represent

all possible atomic transitions between these positions. In

the geometric amoebot model, we further assume that

G ¼ Geqt, where Geqt ¼ ðVeqt;EeqtÞ is the infinite reg-

ular triangular grid graph (see Fig. 1a). Each particle

occupies either a single node (i.e., it is contracted) or a pair

of adjacent nodes in Geqt (i.e., it is expanded), as in

Fig. 1b. Particles move by executing a series of expansions

and contractions: a contracted particle can expand into an

unoccupied adjacent node to become expanded, and com-

pletes its movement by contracting to once again occupy a

single node. For an expanded particle, we denote the node

it last expanded into as its head and the other node it

occupies as its tail; for a contracted particle, the single

node it occupies is both its head and its tail.

Two particles occupying adjacent nodes are said to be

neighbors and are connected by a bond. These bonds both

ensure that the overall particle system remains connected

as well as providing a mechanism for exchanging infor-

mation between particles. In order to maintain connectivity

as they move, neighboring particles coordinate their motion

in a handover, which can occur in two ways. A contracted

particle p can initiate a handover by expanding into a node

occupied by an expanded neighbor q, ‘‘pushing’’ q and

forcing it to contract. Alternatively, an expanded particle

q can initiate a handover by contracting, ‘‘pulling’’ a con-

tracted neighbor p to the node it is vacating, thereby

forcing p to expand. Figure 1b, c illustrates two particles

performing a handover.

Particles are anonymous, but each keeps a collection of

uniquely labeled ports corresponding to the edges incident

to the node(s) it occupies. Bonds between neighboring

particles are formed through ports that face each other. The

particles are assumed to have a common chirality, meaning

they share the same notion of clockwise (CW) direction.

This allows each particle to label its ports counting in the

clockwise direction; without loss of generality, we assume

each particle labels its head and tail ports from 0 to 5.

However, particles may have different offsets for their port

labels, and thus do not share a common sense of orienta-

tion. Each particle has a constant-size, local memory for

which both it and its neighbors have read and write access.

Particles can communicate by writing into each other’s

memories. Due to the limitation of constant-size memory,

particles have no knowledge of the total number of parti-

cles in the system, nor do they have any approximation of

this value. We assume that any conflicts of movement or

simultaneous memory writes are resolved arbitrarily, so

that at most one particle writes to any memory location or

moves into an empty position at any given time.

The configuration C of the particle system at the

beginning of time t consists of (1) the nodes in Geqt

occupied by the object and the set of particles, and (2) the

current state of each particle, including whether it is

expanded or contracted, its port labeling, and the contents

of its local memory.

Following the standard asynchronous model of compu-

tation (Lynch 1996), we assume that the system progresses

through a sequence of atomic activations of individual

particles. When activated, a particle can perform a bounded

amount of computation involving its local memory and the

memories of its neighbors and at most one movement. A

classical result under this model is that for any asyn-

chronous concurrent execution of atomic activations, there

exists a sequential ordering of the activations which

Fig. 1 a Shows a section of Geqt, where nodes of Geqt are shown as

black circles. b Shows five particles on Geqt; the underlying graph

Geqt is depicted as a gray mesh; a contracted particle is depicted as a

single black circle and an expanded particle is depicted as two black

circles connected by an edge. c Depicts the resulting configuration

after a handover was performed by particles p and q in (b)

1 By with high probability, we mean with probability at least

1� 1=nc, where n is the number of particles in the system and c[ 0

is a constant.
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produces the same end configuration, provided conflicts

arising from the concurrent execution are resolved (as they

are in our scenario). We assume the resulting activation

sequence is fair,2 i.e., for each particle p and any time t, p

will eventually be activated at some time t0 [ t. An asyn-

chronous round is complete once every particle has been

activated at least once.

1.2 Universal coating problem

In the universal coating problem we consider an instance

(P, O) where P represents the particle system and O rep-

resents the fixed object to be coated. Let n ¼ jPj be the

number of particles in the system, V(P) be the set of nodes

occupied by P, and V(O) be the set of nodes occupied by O

(when clear from the context, we may omit the Vð�Þ
notation). For any two nodes v;w 2 Veqt, the distance

d(v, w) between v and w is the length of the shortest path in

Geqt from v to w. The distance d(v, U) between a v 2 Veqt

and U � Veqt is defined as minw2U dðv;wÞ. Define layer i

to be the set of nodes that have a distance i to the object,

and let Bi be the number of nodes in layer i. An instance is

valid if the following properties hold:

1. The particles are all contracted and are initially in the

idle state.

2. The subgraphs of Geqt induced by V(O) and

VðPÞ [ VðOÞ, respectively, are connected, i.e., there

is a single object and the particle system is connected

to the object.

3. The subgraph of Geqt induced by Veqt n VðOÞ is

connected, i.e., the object O has no holes.3

4. VeqtnVðOÞ is 2ðd n
B1
e þ 1Þ-connected, i.e., O cannot

form tunnels of width less than 2ðd n
B1
e þ 1Þ.

Note that a width of at least 2d n
B1
e is needed to guarantee

that the object can be evenly coated. The coating of narrow

tunnels requires specific technical mechanisms that com-

plicate the protocol without contributing to the basic idea

of coating, so we ignore such cases in favor of simplicity.

A configuration C is legal if and only if all particles are

contracted and

min
v2VeqtnðVðPÞ[VðOÞÞ

dðv;VðOÞÞ� max
v2VðPÞ

dðv;VðOÞÞ;

meaning that all particles are as close to the object as possible

or coatOas evenly as possible. A configurationC is said to be

stable if no particle in C ever performs a state change or

movement. An algorithm solves the universal coating prob-

lem if, starting from any valid instance, it reaches a

stable legal configuration in a finite number of rounds.

1.3 Related work

Many approaches have been proposed with potential

applications in smart coating; these can be categorized as

active and passive systems. In passive systems, particles

move based only on their structural properties and inter-

actions with their environment, or have only limited

computational ability but lack control of their motion.

Examples include population protocols (Angluin et al.

2006) as well as molecular computing models such as

DNA self-assembly systems (see, e.g., the surveys in Doty

2012; Patitz 2014; Woods 2015) and slime molds (Bonifaci

et al. 2012; Li et al. 2010).

Our focus, however, is on active systems, in which com-

putational particles control their actions and motions to

complete specific tasks. Coating has been extensively stud-

ied in the area of swarm robotics, but not commonly treated

as a stand-alone problem; it is instead examined as part of

collective transport (e.g., Wilson et al. 2014) or collective

perception (e.g., see respective section of Brambilla et al.

2013). Some research focuses on coating objects as an

independent task under the name of target surrounding or

boundary coverage. The techniques used in this context

include stochastic robot behaviors (Kumar and Berman

2014; Pavlic et al. 2016), rule-based control mechanisms

Blázovics et al. (2012a) and potential field-based approa-

ches (Blázovics et al. 2012b). While the analytic techniques

developed in swarm robotics are somewhat relevant to this

work,many such systems assumemore computational power

and movement capabilities than the model studied in this

work does. Michail and Spirakis recently proposed a model

(Michail and Spirakis 2016) for network construction

inspired by population protocols (Angluin et al. 2006). The

population protocol model is related to self-organizing par-

ticle systems, but is different in that agents (corresponding to

our particles) can move freely in space and establish con-

nections at any time. It would, however, be possible to adapt

their approach to study coating problems under the popula-

tion protocol model.

In the context of molecular programming, our model

most closely relates to the nubot model by Woods et al.

(2013), Chen et al. (2015), which seeks to provide a

framework for rigorous algorithmic research on self-

assembly systems composed of active molecular compo-

nents, emphasizing the interactions between molecular

structure and active dynamics. This model shares many

characteristics of our amoebot model (e.g., space is mod-

eled as a triangular grid, nubot monomers have limited

computational abilities, and there is no global orientation)

2 We will see this notion of fairness is sufficient to prove the desired

runtime for our algorithm; no further assumptions regarding the

distribution of the activation sequence are necessary.
3 If O does contain holes, we consider the subset of particles in each

connected region of VeqtnVðOÞ separately.

On the runtime of universal coating for programmable matter 83

123



but differs in that nubot monomers can replicate or die and

can perform coordinated rigid body movements. These

additional capabilities prohibit the direct translation of

results under the nubot model to our amoebot model; the

latter provides a framework for future, large-scale swarm

robotic systems of computationally limited particles (each

possibly at the nano- or micro-scale) with only local con-

trol and coordination mechanisms, where these capabilities

would likely not apply.

Finally, in Derakhshandeh et al. (2017) we presented

our Universal Coating algorithm and proved its correct-

ness. We also showed it to be worst-case work-optimal,

where work is measured in terms of number of particle

movements.

1.4 Our contributions

In this paper we continue the analysis of the Universal

Coating algorithm introduced in Derakhshandeh et al.

(2017). As our main contribution in this paper, we inves-

tigate the runtime of our algorithm and prove that our

algorithm terminates within a linear number of rounds with

high probability. This result relies, in part, on an update to

the leader election protocol used in Derakhshandeh et al.

(2017) which is fully defined and analyzed in Daymude

et al. (2017). We also present a matching linear lower

bound for any local-control coating algorithm (i.e., one

which uses only local information in its execution) that

holds with high probability. We use this lower bound to

show a linear lower bound on the competitive gap between

fully local coating algorithms and coating algorithms that

rely on global information, which implies that our algo-

rithm is also optimal in a competitive sense. We then

present some simulation results demonstrating that in

practice the competitive ratio of our algorithm is often

much better than linear.

1.4.1 Overview

In Sect. 2, we again present the algorithm introduced in

Derakhshandeh et al. (2017). We then present a compre-

hensive formal runtime analysis of our algorithm, by first

presenting some lower bounds on the competitive ratio of

any local-control algorithm in Sect. 3, and then proving

that our algorithm has a runtime of OðnÞ rounds w.h.p. in
Sect. 4, which matches our lower bounds.

2 Universal coating algorithm

In this section, we summarize the universal coating algo-

rithm introduced in Derakhshandeh et al. (2017) (see Der-

akhshandeh et al. 2017 for a detailed description). This

algorithm is constructed by combining a number of asyn-

chronous primitives, which are integrated seamlessly with-

out any underlying synchronization. The spanning forest

primitive organizes the particles into a spanning forest,

which determines the movement of particles while preserv-

ing system connectivity; the complaint-based coating

primitive coats the first layer by bringing any particles not yet

touching the object into the first layer while there is still

room; the general layering primitive allows each layer i to

form only after layer i� 1 has been completed, for i� 2; and

the node-based leader election primitive elects a node in

layer 1 whose occupant becomes the leader particle, which is

used to trigger the general layering process for higher layers.

2.1 Preliminaries

We define the set of states that a particle can be in as idle,

follower, root, and retired. In addition to its state, a particle

maintains a constant number of other flags, which in our

context are constant size pieces of information visible to

neighboring particles. A flag x owned by some particle p is

denoted by p.x. Recall that a layer is the set of nodes

V � Veqt that are equidistant to the object O. A particle

keeps track of its current layer number in p.layer. In order

to respect the constant-size memory constraint of particles,

we take all layer numbers modulo 4. Each root particle p

has a flag p.down which stores a port label pointing to a

node of the object if p:layer ¼ 1, and to an occupied node

adjacent to its head in layer p:layer � 1 if p:layer[ 1. We

now describe the coating primitives in more detail.

2.2 Coating primitives

The spanning forest primitive (Algorithm 1) organizes the

particles into a spanning forest F , which yields a

straightforward mechanism for particles to move while

preserving connectivity (see Daymude et al. 2015; Der-

akhshandeh et al. 2015 for details). Initially, all particles

are idle. A particle p touching the object changes its state to

root. For any other idle particle p, if p has a root or a

follower in its neighborhood, it stores the direction to one

of them in p.parent, changes its state to follower, and

generates a complaint flag; otherwise, it remains idle. A

follower particle p uses handovers to follow its parent and

updates the direction p.parent as it moves in order to

maintain the same parent in the tree (note that the particular

particle at p.parent may change due to p’s parent per-

forming a handover with another of its children). In this

way, the trees formed by the parent relations stay con-

nected, occupy only the nodes they covered before, and do

not mix with other trees. A root particle p uses the flag p.dir

to determine its movement direction. As p moves, it
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updates p.dir so that it always points to the next position of

a clockwise movement around the object. For any particle

p, we call the particle occupying the position that p.parent

resp. p.dir points to the predecessor of p. If a root particle

does not have a predecessor, we call it a super-root.

The complaint-based coating primitive is used for the

coating of the first layer. Each time a particle p holding at

least one complaint flag is activated, it forwards one to its

predecessor as long as that predecessor holds less than

two complaint flags. We allow each particle to hold up to

two complaint flags to ensure that a constant size memory

is sufficient for storing the complaint flags and so the

flags quickly move forward to the super-roots. A

contracted super-root p only expands to p.dir if it holds at

least one complaint flag, and when it expands, it con-

sumes one of these complaint flags. All other roots

p move towards p.dir whenever possible (i.e., no com-

plaint flags are required) by performing a handover with

their predecessor (which must be another root) or a suc-

cessor (which is a root or follower of its tree), with

preference given to a follower so that additional particles

enter layer 1. As we will see, these rules ensure that

whenever there are particles in the system that are not yet

at layer 1, eventually one of these particles will move to

layer 1, unless layer 1 is already completely filled with

contracted particles.
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The leader election primitive runs during the com-

plaint-based coating primitive to elect a node in layer 1 as

the leader position. This primitive is similar to the algo-

rithm presented in Daymude et al. (2015) with the dif-

ference that leader candidates are nodes instead of static

particles (which is important because in our case particles

may still move during the leader election primitive). The

primitive only terminates once all positions in layer 1 are

occupied. Once the leader position is determined, all

positions in layer 1 are filled by contracted particles and

whatever particle currently occupies that position

becomes the leader. This leader becomes a marker par-

ticle, marking a neighboring position in the next layer as

a marked position which determines a starting point for

layer 2, and becomes retired. Once a contracted root p

has a retired particle in the direction p.dir, it retires as

well, which causes the particles in layer 1 to become

retired in counter-clockwise order. At this point, the

general layering primitive becomes active, which builds

subsequent layers until there are no longer followers in

the system. If the leader election primitive does not

terminate (which only happens if n\B1 and layer 1 is

never completely filled), then the complaint flags ensure

that the super-roots eventually stop, which eventually

results in a stable legal coating.

In the general layering primitive, whenever a follower is

adjacent to a retired particle, it becomes a root. Root par-

ticles continue to move along positions of their layer in a

clockwise (if the layer number is odd) or counter-clockwise

(if the layer number is even) direction until they reach

either the marked position of that layer, a retired particle in

that layer, or an empty position of the previous layer

(which causes them to change direction). Complaint flags

are no longer needed to expand into empty positions.

Followers follow their parents as before. A contracted root

particle p may retire if: (i) it occupies the marked position

and the marker particle in the lower layer tells it that all

particles in that layer are retired (which it can determine

locally), or (ii) it has a retired particle in the direction p.dir.

Once a particle at a marked position retires, it becomes a

marker particle and marks a neighboring position in the

next layer as a marked position.
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3 Lower bounds

Recall that a round is over once every particle in P has

been activated at least once. The runtime TAðP;OÞ of a

coating algorithm A is defined as the worst-case number of

rounds (over all sequences of particle activations) required

for A to solve the coating problem (P, O). Certainly, there

are instances (P, O) where every coating algorithm has a

runtime of XðnÞ (see Lemma 1), though there are also

many other instances where the coating problem can be

solved much faster. Since a worst-case runtime of XðnÞ is
fairly large and therefore not very helpful to distinguish

between different coating algorithms, we intend to study

the runtime of coating algorithms relative to the best pos-

sible runtime.

Lemma 1 The worst-case runtime required by any local-

control algorithm to solve the universal coating problem is

XðnÞ.

Proof Assume the particles p1; . . .; pn form a single line of

n particles connected to the surface via p1 (Fig. 2). Suppose

B1 [ n. Since dðpn;OÞ ¼ n, it will take XðnÞ rounds in the

worst-case (requiring HðnÞ movements) until pn touches

the object’s surface. This worst-case can happen, for

example, if pn performs no more than one movement (ei-

ther an expansion or a contraction) per round. h

Unfortunately, a large lower bound also holds for the

competitiveness of any local-control algorithm. A coating

algorithm A is called c-competitive if for any valid instance

(P, O),

E ½TAðP;OÞ� � c � OPTðP;OÞ þ K

Fig. 2 Worst-case configuration concerning number of rounds. There

are n particles (black dots) in a line connected to the surface via a

single particle p1
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where OPTðP;OÞ is the minimum runtime needed to solve

the coating problem (P, O) and K is a value independent of

(P, O).

Theorem 1 Any local-control algorithm that solves the

universal coating problem has a competitive ratio of XðnÞ.

Proof We construct an instance of the coating problem

(P, O) which can be solved by an optimal algorithm in

Oð1Þ rounds, but requires any local-control algorithm XðnÞ
times longer. Let O be a straight line of arbitrary (finite)

length, and let P be a set of particles which entirely occupy

layer 1, with the exception of one missing particle below

O equidistant from its sides and one additional particle

above O in layer 2 equidistant from its sides (see Fig. 3).

An optimal algorithm could move the particles to solve

the coating problem for the given example in Oð1Þ rounds,
as in Fig. 4. Note that the optimal algorithm always

maintains the connectivity of the particle system, so its

runtime is valid even under the constraint that any

connected component of particles must stay connected.

However, for our local-control algorithms we allow

particles to disconnect from the rest of the system.

Now consider an arbitrary local-control algorithm A for

the coating problem. Given a round r, we define the

imbalance /LðrÞ at border L as the net number of particles

that have crossed L from the top of O to the bottom until

round r; similarly, the imbalance /RðrÞ at border R is

defined to be the net number of particles that have crossed

R from the bottom of O to the top until round r.

Certainly, there is an activation sequence in which

information and particles can only travel a distance of up to

n / 4 nodes towards L or R within the first n / 4 rounds.

Hence, for any r� n=4, the probability distributions of

/LðrÞ and /RðrÞ are independent of each other. Addition-

ally, particles up to a distance of n / 4 from L and R cannot

distinguish between which border they are closer to, since

the position of the gap is equidistant from the borders. This

symmetry also implies that Pr½/LðrÞ ¼ k� ¼ Pr½/RðrÞ ¼ k�
for any integer k. Let us focus on round r ¼ n=4. We

distinguish between the following cases.

Case 1. /Lðn=4Þ ¼ /Rðn=4Þ. Then there are more

particles than positions in layer 1 above O, so the coating

problem cannot be solved yet.

Case 2. /Lðn=4Þ 6¼ /Rðn=4Þ. From our insights above we

know that for any two values k1 and k2, Pr½/Lðn=4Þ ¼ k1 and

/Rðn=4Þ ¼ k2� ¼ Pr½/Lðn=4Þ ¼ k2 and /Rðn=4Þ ¼ k1�.
Hence, the cumulative probability of all outcomes where

/Lðn=4Þ\/Rðn=4Þ is equal to the cumulative probability of

all outcomes where /Lðn=4Þ[/Rðn=4Þ. If /Lðn=4Þ\
/Rðn=4Þ, then there are again more particles than positions

in layer 1 above O, so the coating problem cannot be solved

yet.

Thus, the probability that A has not solved the coating

problem after n / 4 rounds is at least 1 / 2, and therefore

E ½TAðP;OÞ� � 1=2 � n=4 ¼ n=8. Since, on the other hand,

OPT ¼ Oð1Þ, we have established a linear competitive

ratio. h

Therefore, even the competitive ratio can be very high in

the worst case. We will revisit the notion of competitive-

ness in Sect. 5.

Fig. 3 The object occupies a straight line in Geqt. The particles are all

contracted and occupy the positions around the object, with the

exception that there is one unoccupied node below the object and one

extra particle above the object. Borders L and R are shown as red lines

Fig. 4 Each subfigure represents the configuration of the system at the

beginning of a round, and are ordered from left to right, top to bottom.

After 5 rounds (i.e., at the beginning of the sixth round) the object is

coated. Note that the implied algorithm can be adapted to any length

of the object and always requires only 5 rounds to solve the coating

problem
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4 Worst-case number of rounds

In this section, we show that our algorithm solves the

coating problem within a linear number of rounds w.h.p.4.

We start with some basic notation in Sect. 4.1. Section 4.2

presents a simpler synchronous parallel model for particle

activations that we can use to analyze the worst-case

number of rounds. Section 4.3 presents the analysis of the

number of rounds required to coat the first layer. Finally, in

Sect. 4.4, we analyze the number of rounds required to

complete all other coating layers, once layer 1 has been

completed.

4.1 Preliminaries

We start with some notation. Recall that Bi denotes the

number of nodes of Geqt at distance i from object O (i.e.,

the number of nodes in layer i). Let N be the the layer

number of the final layer for n particles (i.e., N satisfies
PN�1

j¼1 Bj\n�
PN

j¼1 Bj). Layer i is said to be complete if

every node in layer i is occupied by a contracted retired

particle (for i\N), or if all particles have reached their

final position, are contracted, and never move again (for

i ¼ N).

Given a configuration C, we define a directed graph

A(C) over all nodes in Geqt occupied by active (follower or

root) particles in C. For every expanded active particle p in

C, A(C) contains a directed edge from the tail to the head of

p. For every follower p, A(C) has a directed edge from the

head of p to p.parent. For the purposes of constructing

A(C), we also define parents for root particles: a root par-

ticle p sets p.parent to be the active particle q occupying

the node in direction p.dir once p has performed its first

handover expansion with q. For every root particle p,

A(C) has a directed edge from the head of p to p.parent, if

it exists. Certainly, since every node has at most one out-

going edge in A(C), the nodes of A(C) form either a col-

lection of disjoint trees or a ring of trees. A ring of trees

may occur in any layer, but only temporarily; the leader

election primitive ensures that a leader emerges and retires

in layer 1 and marker particles emerge and retire in higher

layers, causing the ring in A(C) to break. The super-roots

defined in Sect. 2.2 correspond to the roots of the trees in

A(C).

A movement executed by a particle p can be either a sole

contraction in which p contracts and leaves a node unoc-

cupied, a sole expansion in which p expands into an

adjacent unoccupied node, a handover contraction with p0

in which p contracts and forces its contracted neighbor p0 to

expand into the node it vacates, or a handover expansion

with p0 in which p expands into a node currently occupied

by its expanded neighbor p0, forcing p0 to contract.

4.2 From asynchronous to parallel schedules

In this section, we show that instead of analyzing our

algorithm for asynchronous activations of particles, it

suffices to consider a much simpler model of parallel

activations of particles. Define a movement schedule to be a

sequence of particle system configurations ðC0; . . .;CtÞ.

Definition 1 A movement schedule ðC0; . . .;CtÞ is called
a parallel schedule if each Ci is a valid configuration of a

connected particle system (i.e., each particle is either

expanded or contracted, and every node of Geqt is occu-

pied by at most one particle) and for every i� 0;Ciþ1 is

reached from Ci such that for every particle p one of the

following properties holds:

1. p occupies the same node(s) in Ci and Ciþ1,

2. p expands into an adjacent node that was empty in Ci,

3. p contracts, leaving the node occupied by its tail empty

in Ciþ1, or

4. p is part of a handover with a neighboring particle p0.

While these properties allow at most one contraction or

expansion per particle in moving from Ci to Ciþ1, multiple

particles may move in this time.

Consider an arbitrary fair asynchronous activation

sequence A for a particle system, and let C
ðAÞ
i , for 0� i� t,

be the particle system configuration at the end of asyn-

chronous round i in A if each particle moves according to

Algorithm 1. A forest schedule S ¼ ðA; ðC0; . . .;CtÞÞ is a

parallel schedule ðC0; . . .;CtÞ with the property that AðC0Þ
is a forest of one or more trees, and each particle p follows

the unique path Pp which it would have followed according

to A, starting from its position in C0. This implies that

AðCiÞ remains a forest of trees for every 1� i� t. A forest

schedule is said to be greedy if all particles perform

movements according to Definition 1 in the direction of

their unique paths whenever possible.

We begin our analysis with a result that is critical to

both describing configurations of particles in greedy forest

schedules and quantifying the amount of progress greedy

forest schedules make over time. Specifically, we show that

if a forest’s configuration is ‘‘well-behaved’’ at the start,

then it remains so throughout its greedy forest schedule,

guaranteeing that progress is made once every two

configurations.

Lemma 2 Given any fair asynchronous activation

sequence A, consider any greedy forest schedule

ðA; ðC0; . . .;CtÞÞ. If every expanded parent in C0 has at
4 The logical structure of this section has been significantly updated

from its original conference publication in DNA22.
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least one contracted child, then every expanded parent in

Ci also has at least one contracted child, for 1� i� t.

Proof Suppose to the contrary that Ci is the first config-

uration that contains an expanded parent p which has all

expanded children. We consider all possible expanded and

contracted states of p and its children in Ci�1 and show that

none of them can result in p and its children all being

expanded in Ci. First suppose p is expanded in Ci�1; then

by supposition, p has a contracted child q. By Definition 1,

q cannot perform any movements with its children (if they

exist), so p performs a handover contraction with q,

yielding p contracted in Ci, a contradiction. So suppose p is

contracted in Ci�1. We know p will perform either a han-

dover with its parent or a sole expansion in direction p.dir

since it is expanded in Ci by supposition. Thus, any child of

p in Ci�1—say q—does not execute a movement with p in

moving from Ci�1 to Ci. Instead, if q is contracted in Ci�1

then it remains contracted in Ci since it is only permitted to

perform a handover with its unique parent p; otherwise, if

q is expanded, it performs either a sole contraction if it has

no children or a handover with one of its contracted chil-

dren, which it must have by supposition. In either case,

p has a contracted child in Ci, a contradiction.

As a final observation, two trees of the forest may

‘‘merge’’ when the super-root s of one tree performs a sole

expansion into an unoccupied node adjacent to a particle

q of another tree. However, since s is a root and thus only

defines q as its parent after performing a handover

expansion with it, the lemma holds in this case as well. h

For any particle p in a configuration C of a forest

schedule, we define its head distance dhðp;CÞ (resp., tail

distance dtðp;CÞ) to be the number of edges along Pp from

the head (resp., tail) of p to the end of Pp. Depending on

whether p is contracted or expanded, we have

dhðp;CÞ 2 fdtðp;CÞ; dtðp;CÞ � 1g. For any two configu-

rations C and C0 and any particle p, we say that C domi-

nates C0 w.r.t. p, denoted CðpÞ � C0ðpÞ, if and only if

dhðp;CÞ� dhðp;C0Þ and dtðp;CÞ� dtðp;C0Þ. We say that

C dominates C0, denoted C � C0, if and only if C domi-

nates C0 with respect to every particle. Then it holds:

Lemma 3 Given any fair asynchronous activation

sequence A which begins at an initial configuration C
ðAÞ
0 in

which every expanded parent has at least one contracted

child, there is a greedy forest schedule S ¼
ðA; ðC0; . . .;CtÞÞ with C0 ¼ C

ðAÞ
0 such that C

ðAÞ
i � Ci for all

0� i� t.

Proof We first introduce some supporting notation. Let

MðpÞ ¼ pð1Þ; pð2Þ; . . . be the sequence of movements p ex-

ecutes according to A. Let MiðpÞ denote the remaining

sequence of movements in M(p) after the forest schedule

reaches Ci, and let miðpÞ denote the first movement in

MiðpÞ.

Claim A greedy forest schedule S ¼ ðA; ðC0; . . .;CtÞÞ
can be constructed from configuration C0 ¼ C

ðAÞ
0 such that,

for every 0� i� t, configuration Ci is obtained from Ci�1

by executing only the movements of a greedily selected,

mutually compatible subset of fmi�1ðpÞ : p 2 Pg.

Proof Argue by induction on i, the current configuration

number. C0 is trivially obtained, as it is the initial config-

uration. Assume by induction that the claim holds up to

Ci�1. W.l.o.g. let Mi�1 ¼ fmi�1ðp1Þ; . . .;mi�1ðpkÞg, for

k� n, be the greedily selected, mutually compatible subset

of movements that S performs in moving from Ci�1 to Ci.

Suppose to the contrary that a movement m0ðpÞ 62 Mi�1 is

executed by a particle p 2 P. It is easily seen that m0ðpÞ
cannot be mi�1ðpÞ; since mi�1ðpÞ was excluded when Mi�1

was greedily selected, it must be incompatible with one or

more of the selected movements and thus cannot also be

executed at this time. So m0ðpÞ 6¼ mi�1ðpÞ, and we have the

cases below:

Case 1 mi�1ðpÞ is a sole contraction. Then p is expanded

and has no children in Ci�1, so we must have

m0ðpÞ ¼ mi�1ðpÞ, since there are no other movements

p could execute, a contradiction.

Case 2 mi�1ðpÞ is a sole expansion. Then p is contracted

and has no parent in Ci�1, so we must have

m0ðpÞ ¼ mi�1ðpÞ, since there are no other movements

p could execute, a contradiction.

Case 3 mi�1ðpÞ is a handover contraction with q, one of

its children. Then at some time in S before reaching Ci�1,

q became a descendant of p; thus, q must also be a

descendant of p in Ci�1. If q is not a child of p in Ci�1,

there exists a particle z 62 fp; qg such that q is a descendant

of z, which is in turn a descendant of p. So in order for

mi�1ðpÞ to be a handover contraction with q, M(z) must

include actions which allow z to ‘‘bypass’’ its ancestor p,

which is impossible. So q must be a child of p in Ci�1, and

must be contracted at the time mi�1ðpÞ is performed. If q is

also contracted in Ci�1, then once again we must have

m0ðpÞ ¼ mi�1ðpÞ. Otherwise, q is expanded in Ci�1, and

must have become so before Ci�1 was reached. But this

yields a contradiction: since S is greedy, q would have

contracted prior to this point by executing either a sole

contraction if it has no children, or a handover contraction

with a contracted child whose existence is guaranteed by

Lemma 2, since every expanded parent in C0 has a

contracted child.

Case 4. mi�1ðpÞ is a handover expansion with q, its

unique parent. Then we must have that mi�1ðqÞ is a

handover contraction with p, and an argument analogous to

that of Case 3 follows. h
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We conclude by showing that each configuration of the

greedy forest schedule S constructed according to the

claim is dominated by its asynchronous counterpart. Argue

by induction on i, the configuration number. Since

C0 ¼ C
ðAÞ
0 , we have that C

ðAÞ
0 � C0. Assume by induction

that for all rounds 0� r� i� 1, we have C
ðAÞ
r � Cr. Con-

sider any particle p. Since S is constructed using the exact

set of movements p executes according to A and each time

p moves it decreases either its head distance or tail distance

by 1, it suffices to show that p has performed at most as

many movements in S up to Ci as it has according to A up

to C
ðAÞ
i .

If p does not perform a movement between Ci�1 and Ci,

we trivially have C
ðAÞ
i ðpÞ � CiðpÞ. Otherwise, p performs

movement mi�1ðpÞ to obtain Ci from Ci�1. If p has already

performed mi�1ðpÞ according to A before reaching C
ðAÞ
i�1,

then clearly C
ðAÞ
i ðpÞ � CiðpÞ. Otherwise, mi�1ðpÞ must be

the next movement p is to perform according to A, since

p has performed the same sequence of movements in the

asynchronous execution as it has in S up to the respective

rounds i� 1, and thus has equal head and tail distances in

Ci�1 and C
ðAÞ
i�1. It remains to show that p can indeed per-

form mi�1ðpÞ between C
ðAÞ
i�1 and C

ðAÞ
i . If mi�1ðpÞ is a sole

expansion, then p is the super-root of its tree (in both Ci�1

and C
ðAÞ
i�1) and must also be able to expand in C

ðAÞ
i�1. Simi-

larly, if mi�1ðpÞ is a sole contraction, then p has no children

(in both Ci�1 and C
ðAÞ
i�1) and must be able to contract in

C
ðAÞ
i�1. If mi�1ðpÞ is a handover expansion with its parent q,

then q must be expanded in Ci�1. Parent q must also be

expanded in C
ðAÞ
i�1; otherwise dhðq;CðAÞ

i�1Þ[ dhðq;Ci�1Þ,
contradicting the induction hypothesis. An analogous

argument holds if mi�1ðpÞ is a handover contraction with

one of its contracted children. Therefore, in any case we

have C
ðAÞ
i ðpÞ � CiðpÞ, and since the choice of p was arbi-

trary, C
ðAÞ
i � Ci. h

We can show a similar dominance result when consid-

ering complaint flags.

Definition 2 A movement schedule ðC0; . . .;CtÞ is called
a complaint-based parallel schedule if each Ci is a valid

configuration of a particle system in which every particle

holds at most one complaint flag (rather than two, as

described in Algorithm 3) and for every i� 0, Ciþ1 is

reached from Ci such that for every particle p one of the

following properties holds:

1. p does not hold a complaint flag and property 1, 3, or 4

of Definition 1 holds,

2. p holds a complaint flag f and expands into an adjacent

node that was empty in Ci, consuming f,

3. p forwards a complaint flag f to a neighboring particle

p0 which either does not hold a complaint flag in Ci or

is also forwarding its complaint flag.

A complaint-based forest schedule S ¼ ðA; ðC0; . . .;CtÞÞ
has the same properties as a forest schedule, with the

exception that ðC0; . . .;CtÞ is a complaint-based parallel

schedule as opposed to a parallel schedule. A complaint-

based forest schedule is said to be greedy if all particles

perform movements according to Definition 2 in the

direction of their unique paths whenever possible.

We can now extend the dominance argument to hold

with respect to complaint distance in addition to head and

tail distances. For any particle p holding a complaint flag

f in configuration C, we define its complaint distance

dcðf ;CÞ to be the number of edges along Pp from the node

p occupies to the end of Pp. For any two configurations

C and C0 and any complaint flag f, we say that C dominates

C0 w.r.t. f, denoted Cðf Þ � C0ðf Þ, if and only if

dcðf ;CÞ� dcðf ;C0Þ. Extending the previous notion of

dominance, we say that C dominates C0, denoted C � C0, if
and only if C dominates C0 with respect to every particle

and with respect to every complaint flag.

It is also possible to construct a greedy complaint-based

forest schedule whose configurations are dominated by

their asynchronous counterparts, as we did for greedy

forest schedules in Lemma 3. Many of the details are the

same, so as to avoid redundancy we highlight the differ-

ences here. The most obvious difference is the inclusion of

complaint flags. Definition 2 restricts particles to holding at

most one complaint flag at a time, where Algorithm 3

allows a capacity of two. This allows the asynchronous

execution to not ‘‘fall behind’’ the parallel schedule in

terms of forwarding complaint flags. Basically, Definition 2

allows a particle p holding a complaint flag f in the parallel

schedule to forward f to its parent q even if q currently

holds its own complaint flag, so long as q is also for-

warding its flag at this time. The asynchronous execution

does not have this luxury of synchronized actions, so the

mechanism of buffering up to two complaint flags at a time

allows it to ‘‘mimic’’ the pipelining of forwarding com-

plaint flags that is possible within one round of a com-

plaint-based parallel schedule.

Another slight difference is that a contracted particle

cannot expand into an empty adjacent node unless it holds

a complaint flag to consume. However, this restriction

reflects Algorithm 3, so once again the greedy complaint-

based forest schedule can be constructed directly from the

movements taken in the asynchronous execution. More-

over, since this restriction can only cause a contracted

particle to remain contracted, the conditions of Lemma 2

are still upheld. Thus, we obtain the following lemma:
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Lemma 4 Given any fair asynchronous activation

sequence A which begins at an initial configuration C
ðAÞ
0 in

which every expanded parent has at least one contracted

child, there is a greedy complaint-based forest schedule

S ¼ ðA; ðC0; . . .;CtÞÞ with C0 ¼ C
ðAÞ
0 such that C

ðAÞ
i � Ci

for all 0� i� t.

By Lemmas 3 and 4, once we have an upper bound for

the time it takes a greedy forest schedule to reach a final

configuration, we also have an upper bound for the number

of rounds required by the asynchronous execution. Hence,

the remainder of our proofs will serve to upper bound the

number of parallel rounds any greedy forest schedule

would require to solve the coating problem for a given

valid instance (P, O), where jPj ¼ n. Let S	 ¼
ðA; ðC0; . . .;Cf ÞÞ be such a greedy forest schedule, where

C0 is the initial configuration of the particle system P (of

all contracted particles) and Cf is the final coating

configuration.

In Sects. 4.3 and 4.4, we will upper bound the number of

parallel rounds required by S	 in the worst case to coat the

first and higher layers, respectively. More specifically, we

will bound the worst-case time it takes to complete a layer

i once layers 1; . . .; i� 1 have been completed. For con-

venience, we will not differentiate between complaint-

based and regular forest schedules in the following sec-

tions, since the same dominance result holds whether or not

complaint flags are considered. To prove these bounds, we

need one last definition: a forest–path schedule S ¼
ðA; ðC0; . . .;CtÞ; LÞ is a forest schedule ðA; ðC0; . . .;CtÞÞ
with the property that all the trees of AðC0Þ are rooted at a

path L ¼ v1v2 � � � v‘ � Geqt, and each particle p must tra-

verse L in the same direction.

4.3 First layer: complaint-based coating
and leader election

Our algorithm must first organize the particles using the

spanning forest primitive, whose runtime is easily

bounded:

Lemma 5 Following the spanning forest primitive, the

particles form a spanning forest within OðnÞ rounds.

Proof Initially all particles are idle. In each round any idle

particle adjacent to the object, an active (follower or root)

particle, or a retired particle becomes active. It then sets its

parent flag if it is a follower, or becomes the root of a tree if

it is adjacent to the object or a retired particle. In each

round at least one particle becomes active, so—given

n particles in the system—it will take OðnÞ rounds in the

worst case until all particles join the spanning forest. h

For ease of presentation, we assume that the particle

system is of sufficient size to fill the first layer (i.e., B1 � n;

the proofs can easily be extended to handle the case when

B1 [ n); we also assume that the root of a tree also gen-

erates a complaint flag upon its activation (this assumption

does not hurt our argument since it only increases the

number of the flags generated in the system). Let S1 ¼
ðA; ðC0; . . .;Ct1Þ; L1Þ be the greedy forest–path schedule

where ðA; ðC0; . . .;Ct1ÞÞ is a truncated version of S	, Ct1—

for t1 � f—is the configuration in S	 in which layer 1

becomes complete, and L1 is the path of nodes in layer 1.

The following lemma shows that the algorithm makes

steady progress towards completing layer 1.

Lemma 6 Consider a round i of the greedy forest–path

schedule S1, where 0� i� t1 � 2. Then within the next two

parallel rounds of S1, (i) at least one complaint flag is con-

sumed, (ii) at least one more complaint flag reaches a par-

ticle in layer 1, (iii) all remaining complaint flags move one

position closer to a super-root along L1, or (iv) layer 1 is

completely filled (possibly with some expanded particles).

Proof If layer 1 isfilled, (iv) is satisfied; otherwise, there exists

at least one super-root in AðCiÞ. We consider several cases:

Case 1 There exists a super-root s in AðCiÞ which holds

a complaint flag. If s is contracted, then it can expand and

consume its flag by the next round. Otherwise, consider the

case when s is expanded. If it has no children, then within

the next two rounds it can contract and expand again,

consuming its complaint flag; otherwise, by Lemma 2,

s must have a contracted child with which it can perform a

handover to become contracted in Ciþ1 and then expand

and consume its complaint flag by Ciþ2. In any case, (i) is

satisfied.

Case 2 No super-root in AðCiÞ holds a complaint flag

and not all complaint flags have been moved from follower

particles to particles in layer 1. Let p1; p2; . . .; pz be a

sequence of particles in layer 1 such that each particle

holds a complaint flag, no follower child of any particle

except pz holds a complaint flag, and no particles between

the next super-root s and p1 hold complaint flags. Then, as

each pi forwards its flag to pi�1 according to Definition 2,

the follower child of pz holding a flag is able to forward its

flag to pz, satisfying (ii).

Case 3 No super-root in AðCiÞ holds a complaint flag

and all remaining complaint flags are held by particles in

layer 1. By Definition 2, since no preference needs to be

given to flags entering layer 1, all remaining flags will

move one position closer to a super-root in each round,

satisfying (iii). h

We use Lemma 6 to show first that layer 1 will be filled

with particles (some possibly still expanded) in OðnÞ
rounds. From that point on, in another OðnÞ rounds, one
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can guarantee that expanded particles in layer 1 will each

contract in a handover with a follower particle, and hence

all particles in layer 1 will be contracted, as we see in the

following lemma:

Lemma 7 After OðnÞ rounds, layer 1 must be filled with

contracted particles.

Proof We first prove the following claim:

Claim After 8B1 þ 2 rounds of S, layer 1 must be filled

with particles.

Proof Suppose to the contrary that after 8B1 þ 2 rounds,

layer 1 is not completely filled with particles. Then none of

these rounds could have satisfied (iv) of Lemma 6, so one

of (i), (ii), or (iii) must be satisfied every two rounds. Case

(i) can be satisfied at most B1 times (accounting for at most

2B1 rounds), since a super-root expands into an unoccupied

position of layer 1 each time a complaint flag is consumed.

Case (iii) can also be satisfied at most B1 times (accounting

for at most 2B1 rounds), since once all remaining complaint

flags are in layer 1, every flag must reach a super-root in B1

moves. Thus, the remaining 8B1 þ 2� 2B1 � 2B1 ¼
4B2 þ 2 rounds must satisfy (ii) 2B1 þ 1 times, implying

that 2B1 þ 1 flags reached particles in layer 1 from fol-

lower children. But each particle can hold at most one

complaint flag, so at least B1 þ 1 flags must have been

consumed and the super-roots have collectively expanded

into at least B1 þ 1 unoccupied positions, a contradiction.

h

By the claim, it will take at most 8B1 þ 2 rounds until

layer 1 is completely filled with particles (some possibly

expanded). In at most another B1 rounds, every expanded

particle in layer 1 will contract in a handover with a fol-

lower particle (since B1 � n), and hence all particles in

layer 1 will be contracted after OðB1Þ ¼ OðnÞ rounds. h
Once layer 1 is filled, the leader election primitive can

proceed. The full description of the universal coating

algorithm in Derakhshandeh et al. (2017) uses a node-

based version of the leader election algorithm in Daymude

et al. (2015) for this primitive. For consistency, we kept

this description of the primitive in this paper as well.

However, with high probability guarantees were not proven

for the leader election algorithm in Daymude et al. (2015).

In order to formally prove with high probability results on

the runtime of the universal coating algorithm, we intro-

duced a variant of our leader election protocol under the

amoebot model which provably elects a leader in OðnÞ
asynchronous rounds, w.h.p.5 (Daymude et al. 2017). This

gives the following runtime bound.

Lemma 8 A position of layer 1 will be elected as the

leader position, and w.h.p. this will occur within OðnÞ
additional rounds.

Once a leader position has been elected and either no

more followers exist (if n�B1) or all positions are com-

pletely filled by contracted particles (which can be checked

in an additional OðB1Þ rounds), the particle currently

occupying the leader position becomes the leader particle.

Once a leader has emerged, the particles on layer 1 retire,

which takes OðB1Þ further rounds. Together, we get:

Corollary 1 The worst-case number of rounds for S	 to

complete layer 1 is OðnÞ, w.h.p.

4.4 Higher layers

We again use the dominance results we proved in Sect. 4.2

to focus on parallel schedules when proving an upper

bound on the worst-case number of rounds—denoted by

Layer(i)—for building layer i once layer i� 1 is complete,

for 2� i�N. The following lemma provides a more gen-

eral result which we can use for this purpose.

Lemma 9 Consider any greedy forest–path schedule S ¼
ðA; ðC0; . . .;CtÞ; LÞ with L ¼ v1v2 � � � v‘ and any k such that

1� k� ‘. If every expanded parent in C0 has at least one

contracted child, then in at most 2ð‘þ kÞ configurations,

nodes v‘�kþ1 � � � v‘ will be occupied by contracted particles.

Proof Let s be the super-root closest to v‘, and suppose s

initially occupies node vi in C0. Additionally, suppose there

are at least k active particles in C0 (otherwise, we do not

have sufficient particles to occupy k nodes of L). Argue by

induction on k, the number of nodes in L starting with v‘
which must be occupied by contracted particles. First

suppose that k ¼ 1. By Lemma 2, every expanded parent

has at least one contracted child in any configuration Cj, so

s is always able to either expand forward into an unoccu-

pied node of L if it is contracted or contract as part of a

handover with one of its children if it is expanded. Thus, in

at most 2ð‘þ kÞ ¼ 2‘þ 2 configurations, s has moved

forward ‘ positions, is contracted, and occupies its final

position v‘�kþ1 ¼ v‘.

Now suppose that k[ 1 and that each node v‘�xþ1, for

1� x� k � 1, becomes occupied by a contracted particle in

at most 2ð‘þ k � 1Þ ¼ 2ð‘þ kÞ � 2 configurations. It

suffices to show that v‘�kþ1 also becomes occupied by a

contracted particle in at most two additional configurations.

Let p be the particle currently occupying v‘�kþ1 (such a

particle must exist since we supposed we had sufficient

particles to occupy k nodes and S ensures the particles

follow this unique path). If p is contracted in C2ð‘þkÞ�2,

then it remains contracted and occupying v‘�kþ1, so we are

5 The updated leader election algorithm’s runtime holds with high

probability, but its correctness is guaranteed; see Daymude et al.

(2017) for details.
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done. Otherwise, if p is expanded, it has a contracted child

q by Lemma 2. Particles p and q thus perform a handover

in which p contracts to occupy only v‘�kþ1 at C2ð‘þkÞ�1,

proving the claim. h

For convenience, we introduce some additional notation.

Let ni denote the number of particles of the system that will

not belong to layers 1 through i� 1, i.e., ni ¼ n�
Pi�1

j¼1 Bj,

and let ti (resp., Cti) be the round (resp., configuration) in

which layer i becomes complete.

When coating some layer i, each root particle either

moves either (a) through the nodes in layer i in the set

direction dir (CW or CCW) for layer i, or (b) through the

nodes in layer iþ 1 in the opposite direction over the

already retired particles in layer i until it finds an empty

position in layer i. We bound the worst-case scenario for

these two movements independently in order to get a an

upper bound on Layer(i). Let Li ¼ v1; . . .; vBi
be the path of

nodes in layer i listed in the order that they appear from the

marker position v1 following direction dir, and let Si ¼
ðA; ðCti�1þ1; . . .;CtiÞ; LiÞ be the greedy forest–path schedule

where ðA; ðCti�1þ1; . . .;CtiÞÞ is a section of S	. By Lemma

9, it would take OðBiÞ rounds for all (a) movements to

complete; an analogous argument shows that all (b)

movements complete in OðBiþ1Þ ¼ OðBiÞ rounds. This

implies the following lemma:

Lemma 10 Starting from configuration Cti�1þ1, the worst-

case additional number of rounds for layer i to become

complete is OðBiÞ.

Putting it all together, for layers 2 through N:

Corollary 2 The worst-case number of rounds for S	 to

coat layers 2 through N is OðnÞ.

Proof Starting from configuration Ct1þ1, it follows from

Lemma 10 that the worst-case number of rounds for S	 to
reach a legal coating of the object is upper bounded by

XN

i¼2

LayerðiÞ� c
XN

i¼2

Bi ¼ HðnÞ;

where c[ 0 is a constant. h

Combining Corollaries 1 and 2, we get that S	 requires

OðnÞ rounds w.h.p. to coat any given valid object O

starting from any valid initial configuration of the set of

particles P. By Lemmas 3 and 4, the worst-case behavior of

S	 is an upper bound for the runtime of our universal

coating algorithm, so we conclude:

Theorem 2 The total number of asynchronous rounds

required for the universal coating algorithm to reach a

legal coating configuration, starting from an arbitrary

valid instance (P, O), is OðnÞ w.h.p., where n is the number
of particles in the system.

5 Simulation results

In this section we present a brief simulation-based analysis

of our algorithm which shows that in practice our algorithm

exhibits a better than linear average competitive ratio.

Since OPTðP;OÞ (as defined in Sect. 3) is difficult to

compute in general, we investigate the competitiveness

with the help of an appropriate lower bound for OPTðP;OÞ.
Recall the definitions of the distances d(p, q) and d(p, U)

for p; q 2 Veqt and U � Veqt. Consider any valid instance

(P, O). Let L be the set of all legal particle positions of

(P, O); that is, L contains all sets U � Veqt such that the

positions in U constitute a coating of the object O by the

particles in the system.

We compute a lower bound on OPTðP;OÞ as follows.

Consider any U 2 L, and let G(P, U) denote the complete

bipartite graph on partitions P and U. For each edge

e ¼ ðp; uÞ 2 P
 U, set the cost of the edge to

wðeÞ ¼ dðp; uÞ. Every perfect matching in G(P, U) corre-

sponds to an assignment of the particles to positions in the

coating. The maximum edge weight in a matching corre-

sponds to the maximum distance a particle has to travel in

order to take its place in the coating. Let M(P, U) be the set

of all perfect matchings in G(P, U). We define the

matching dilation of (P, O) as

MDðP;OÞ ¼ min
U2L

min
M2MðP;UÞ

max
e2M

wðeÞð Þ
� �� �

:

Since each particle has to move to some position in U for

some U 2 L to solve the coating problem, we have

OPTðP;OÞ�MDðP;OÞ. The search for the matching that

minimizes the maximum edge cost for a given U 2 L can

be realized efficiently by reducing it to a flow problem

using edges up to a maximum cost of c and performing

binary search on c to find the minimal c such that a perfect

matching exists. We note that our lower bound is not tight.

This is due to the fact that it only respects the distances that

particles have to move but ignores the congestion that may

arise, i.e., in certain instances the distances to the object

might be very small, but all particles may have to traverse

one ‘‘chokepoint’’ and thus block each other.

We implemented the universal coating algorithm in the

amoebot simulator (see https://sops.engineering.asu.edu/

simulations/ for videos). For simplicity, each simulation is

initialized with the object O as a regular hexagon of object

particles; this is reasonable since the particles need only

know where their immediate neighbors in the object’s

border are relative to themselves, which can be determined
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independently of the shape of the border. The particle

system P is initialized as idle particles attached randomly

around the hexagon’s perimeter. The parameters that were

varied between instances are the radius of the hexagon and

the number of (initially idle) particles in P. Each experi-

mental trial randomly generates a new initial configuration

of the system.

Figure 5a shows the number of rounds needed to com-

plete the coating with respect to the hexagon object radius

and the number of particles in the system. The number of

rounds plotted are averages over 20 instances of a given |P|

with 95% confidence intervals. These results show that, in

practice, the number of rounds required increases linearly

with particle system size. This agrees with our expecta-

tions, since leader election depends only on the length of

the object’s surface while layering depends on the total

number of particles. Figure 5b shows the ratio of the

number of rounds to the matching dilation of the system.

These results indicate that, in experiment, the average

competitive ratio of our algorithm may exhibit closer to

logarithmic behaviors. Figure 5c shows the number of

rounds needed to complete the coating as the radius of the

hexagon object is varied. The runtime of the algorithm

appears to increase linearly with both the number of active

particles and the size of the object being coated, and there

is visibly increased runtime variability for systems with

larger radii.

6 Conclusion

This paper continued the study of universal coating in self-

organizing particle systems. The runtime analysis shows

that our universal coating algorithm terminates in a linear

number of rounds with high probability, and thus is worst-

case optimal. This, along with the linear lower bound on

the competitive gap between local and global algorithms,

further shows our algorithm to be competitively optimal.

Furthermore, the simulation results indicate that the com-

petitive ratio of our algorithm may be better than linear in

practice. In the future, we would like to apply the algorithm

and analysis to the case of bridging, in which particles

create structures across gaps between disconnected objects.

We would also like to extend the algorithm to have self-

stabilization capabilities, so that it could successfully

complete coating without human intervention after occa-

sional particle failures or outside interference.
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