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Abstract

Epidemic growth rate, r, provides a more complete description of the potential for epidemics

than the more commonly studied basic reproduction number, R0, yet the former has never

been described as a function of temperature for dengue virus or other pathogens with tem-

perature-sensitive transmission. The need to understand the drivers of epidemics of these

pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problem-

atic. We addressed this need by developing temperature-dependent descriptions of the two

components of r—R0 and the generation interval—to obtain a temperature-dependent

description of r. Our results show that the generation interval is highly sensitive to tempera-

ture, decreasing twofold between 25 and 35˚C and suggesting that dengue virus epidemics

may accelerate as temperatures increase, not only because of more infections per genera-

tion but also because of faster generations. Under the empirical temperature relationships

that we considered, we found that r peaked at a temperature threshold that was robust to

uncertainty in model parameters that do not depend on temperature. Although the precise

value of this temperature threshold could be refined following future studies of empirical tem-

perature relationships, the framework we present for identifying such temperature thresh-

olds offers a new way to classify regions in which dengue virus epidemic intensity could

either increase or decrease under future climate change.
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Author summary

Recurrent, rapidly intensifying epidemics of dengue–the world’s most prevalent mos-

quito-borne viral disease–pose a challenge to healthcare systems throughout the tropical

and subtropical world. An acute disease that tends to respond well to proper treatment,

the sometimes intense nature of dengue epidemics has been known to overwhelm health-

care systems and elevate the morbidity and mortality of patients left without adequate

medical treatment under peak epidemic conditions. Here, we quantify the temperature

dependence of dengue epidemic intensity by quantifying two distinct determinants of epi-

demic growth rate: the average number of secondary infections arising from each primary

infection and the average time between successive infections in humans. Our results show

that the time between successive infections in humans decreases steadily with increasing

temperatures, whereas the average number of secondary infections peaks at intermediate

temperatures. Altogether, this suggests a peak temperature for dengue epidemic intensity.

Applying this result to global temperature projections under future climate change scenar-

ios suggests that dengue epidemics in many regions of the world could become more

intense under future temperature increases.

Introduction

Dengue virus (DENV) is a mosquito-borne pathogen that infects hundreds of millions of

people each year across as many as 128 countries [1]. Along with numerous other arthropod-

borne viruses (arboviruses), including chikungunya and Zika viruses [2,3], DENV causes epi-

demics with considerable public health impact. Rapidly growing, intense epidemics can over-

whelm healthcare systems [4], leaving those infected without adequate medical treatment and

with a significantly elevated risk of mortality to a disease that is seldom fatal when proper treat-

ment is available [5].

A number of factors can lead to variability in the frequency and severity of arbovirus epi-

demics, including importation probability [6], host susceptibility [7], and climatic conditions

[8]. In particular, temperature is known to be a major driver of spatial and temporal variability

in arbovirus transmission, as indicated by empirical studies of relationships between tempera-

ture and several epidemiologically important vector and pathogen traits, including mosquito

lifespan [9–11], incubation time of the pathogen in the mosquito [9,10,12], the rate at which

mosquitoes engage in blood feeding [9,13], and mosquito density [14].

Analyses of the effects of temperature on vector-borne pathogen transmission have focused

primarily on the basic reproduction number R0 through the effects of temperature on the

aforementioned vector and pathogen traits [11,15,16]. Defined as the average number of sec-

ondary infections arising from a primary infection in a fully susceptible population, R0 is a fun-

damentally important epidemiological quantity, because it is informative about the conditions

under which a pathogen can invade, or be eliminated from, a host population. The generation

interval, which is the period of time separating sequential infections, is the temporal analogue

of R0. Through a fundamental mathematical relationship [17], R0 and the generation interval

are related to the epidemic growth rate r, which is defined as the per capita change in incidence

per unit time and characterizes the dynamics of early-stage epidemic growth in a susceptible

population. Because the relationship between r and temperature has never been characterized

for arboviruses, there is little scientific basis for understanding how epidemic growth rates

may be related to temperature.
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Our goal was to quantify the effects of temperature on DENV epidemic growth rates by

first establishing a probabilistic description of DENV generation intervals as a function of tem-

perature. We then combined our generation interval calculations with a temperature-depen-

dent formulation of the basic reproduction number, R0, and solved for the epidemic growth

rate r as a function of temperature. This new capability to calculate r as a function of tempera-

ture allowed us to identify temperature ranges that maximize r and to classify regions by their

potential for increasing or decreasing epidemic growth rates based on their current and future

temperatures. Our results and the accompanying code are made freely available online at

https://github.com/asiraj-nd/arbotemp to facilitate the incorporation of temperature-depen-

dent descriptions of these quantities into future studies.

Materials and methods

We first describe our formulation of each of three major metrics of mosquito-borne pathogen

transmission: the generation interval, the basic reproduction number R0, and the epidemic

growth rate r. The first two are calculated a priori as a function of many of the same tempera-

ture-dependent parameters, whereas the third is derived from the first two using a fundamen-

tal mathematical relationship among all three. We then describe analyses that we performed to

evaluate the epidemiological significance of these three different measures of how temperature

impacts dengue virus transmission.

Generation interval

We define the generation interval as the elapsed time between a primary human infection and

a secondary human infection deriving from that primary human infection via two bites from

the same individual mosquito [18]. To derive a quantitative, probabilistic description of the

generation interval for dengue, we adapted an existing framework that defines the generation

interval as a sum of random variables for each of four sequential, constituent phases of the

transmission cycle [19]. Similar to a recent analysis for Plasmodium falciparum malaria [20],

we furthermore quantified each of these phases of the transmission cycle as dependent on tem-

perature (Fig 1). Following Huber et al. [20], we defined these phases as: (1) the intrinsic incu-

bation period (IIP); (2) the period between onset of symptoms in humans and subsequent

transmission to mosquitoes (human-to-mosquito transmission period, HMTP); (3) the extrin-

sic incubation period (EIP); and (4) the period between a mosquito becoming infectious and

subsequent transmission to humans (mosquito-to-human transmission period, MHTP) (Fig

1). Below, we describe the derivation and parameterization of each of these phases of the trans-

mission cycle as four independent random variables based on available data [13,21,22]. To

obtain a single random variable describing the generation interval as a whole, we took the sum

of the four constituent random variables in Fig 1 by applying the convolution theorem, which

involves taking the inverse Fourier transform of the product of the Fourier transforms of each

random variable [23].

Intrinsic incubation period (IIP). Defining the intrinsic incubation period (IIP) as “the

time between a human being infected and the onset of symptoms,” Chan and Johansson [12]

fitted time-to-event models to 204 observations from 35 studies. They concluded that differ-

ences in the IIP across serotypes were indistinguishable and that the IIP was best described by

a lognormal distribution with mean 5.97 days and standard deviation 1.64 days. Given their

comprehensive treatment of data from a broad range of studies, we adopted this best-fit log-

normal distribution in our analysis (Fig 1, IIP).

Human-to-mosquito transmission period (HMTP). We define the human-to-mosquito

transmission period (HMTP) as the entirety of the elapsed time between the conclusion of the
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IIP and when a susceptible mosquito becomes infected. This depends on both the duration of

infectiousness and the timing of a person’s infectiousness over the course of their infection.

We based our estimates of HMTP on studies in which people were experimentally infected

and their infectiousness to mosquitoes assessed over time. These data have been re-analyzed

and compiled on a daily basis relative to onset of fever [22], which is compatible with the end-

point of the IIP described above. To obtain a probabilistic estimate of the period of transmis-

sion from a human host to a mosquito vector, we fitted a normal probability density function

multiplied by a constant scaling factor to the data presented by Nishiura and Halstead [22]

using numerical likelihood maximization (Fig 1, HMTP) and normalized it to yield a descrip-

tion of the probability that an infected mosquito acquired the infection on day t relative to the

onset of symptoms in its human blood-meal host. This interpretation assumes that mosquito

densities and biting rates are constant over the human infectious period.

Extrinsic incubation period (EIP). Chan and Johansson [12] proposed a lognormal dis-

tribution for the length of the extrinsic incubation period with the scale parameter a function

of temperature, e2.9−0.08 T, and the shape parameter a constant, 4.9. Given their comprehensive

treatment of data from a collection of 38 studies, we adopted this best-fit lognormal distribu-

tion in our analysis (Fig 1, EIP).

Mosquito-to-human transmission period (MHTP). This period covers the time between

a mosquito becoming infectious (at the end of the EIP) and it biting a susceptible human host

and causing an infection. A probability distribution describing the length of this period could

potentially depend on several variables, including mosquito biting and mortality schedules.

Although there is some evidence for age-dependent mortality in wild Aedes mosquitoes

[24], incorporating age-dependent effects in a general model of the mosquito-to-human

Fig 1. Random variables associated with components of the transmission cycle (top) and their

successive sums (bottom). On the top, the intrinsic incubation (IIP), human-to-mosquito transmission period

(HMTP), extrinsic incubation period (EIP), and mosquito-to-human transmission period (MHTP) are shown from

left to right, with the latter two parameterized for a temperature of 30˚C. On the bottom, random variables for the

elapsed time between inoculation of the primary infection and each event in the transmission cycle is shown in

successive order from left to right.

https://doi.org/10.1371/journal.pntd.0005797.g001
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transmission period would depend not only on knowledge of age-dependent mortality but

also age-dependent exposure to infection [25]. Because of the extensive variability of these rela-

tionships across different ecological settings [26] and the difficulty of quantifying these effects

based on available data [13], we restricted our analysis to age-independent mortality, which is

a common assumption of dengue transmission models [27]. Conditional on a mosquito sur-

viving the EIP, its lifespan thenceforth can be described as an exponential random variable

parameterized by a mean, age-independent daily mortality rate. Following Perkins et al. [28],

we used the temperature- and age-dependent model by Brady et al. [11], to which we added an

additional rate of extrinsic mortality (0.089 d-1) to match an empirical estimate of overall daily

mortality of 0.115 carried out in an experiment in which temperatures ranged 20–34˚C [21]

(Fig 1, MHTP). To match our simplifying assumption of age-independent mortality, we

parameterized the mortality rate in our model to yield an average lifespan consistent with that

of the model by Brady et al. [11] for a given temperature. Although our primary results were

calculated based on functions of mean temperature, we also explored the effect of diurnal tem-

perature fluctuations using diurnally varying hazards for mosquito mortality and EIP (see S2

Appendix).

Basic reproduction number

The basic reproduction number (R0) is defined as the average number of secondary infections

in humans originating from a single primary human infection introduced into a fully suscepti-

ble population. We used the formal definition of R0 for mosquito-borne pathogens based on a

set of classic “Ross-Macdonald” assumptions [29], which takes the temperature-dependent

form

R0 Tð Þ ¼
mðTÞbcaðTÞ

2e�mðTÞnðTÞ

mðTÞ g
; ð1Þ

where m(T) is the mosquito-to-human ratio as a function of temperature T, μ(T) is the mean

daily mortality rate of adult mosquitoes at temperature T, b and c are human-to-mosquito and

mosquito-to-human infection probabilities, a(T) is the mosquito biting rate as a function of

temperature, 1/γ is the average duration of infectiousness in humans, and n(T) is the mean

extrinsic incubation period at temperature T. We note that the mean daily mortality rate of

adult mosquitoes, μ(T), is the inverse of the mean for the MHTP distribution used in obtaining

the generation interval distribution, while the mean extrinsic incubation period, n(T), is the

mean for the EIP distribution, also used in obtaining the generation interval distribution.

Our parameterization of the ratio c/γ equaled the integral of the non-normalized HMTP

curve describing the infectiousness of humans to mosquitoes over time [22], as noted in the

section describing the generation interval. The parameter b did not appear in our description

of the generation interval, because it affects only the magnitude of transmission (i.e., R0) rather

than its timing (i.e., generation interval). This parameter is poorly understood empirically, so

we chose a value of b = 0.4 consistent with a previous model [30]. We described biting rate a as

a function of temperature T (i.e., a(T)) using two temperature-dependent estimates based on

the average duration of the Ae. aegypti gonotrophic cycle [9,31], similar to how gonotrophic

period was incorporated into the generation interval. This process involved weighting the tem-

perature-dependent length of the first cycle and the temperature-dependent length of each

subsequent cycle based on the probability of the mosquito surviving to a given number of

cycles (see S1 Appendix for mathematical derivation). To capture one potential effect of tem-

perature on the ratio of mosquitoes to humans m, we assumed that m(T) = λ / μ(T) consistent

with equilibrium assumptions of a mosquito population with adult mortality rate μ(T) and
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constant parameter λ, which is the ratio of the daily rate of adult female mosquito emergence

and the number of humans subject to feeding by the mosquitoes represented by m(T) [32].

Because values of λ are highly variable in space and time for reasons other than temperature

variation, we examined the sensitivity of the value of λ across a range of values 0.0–0.5. We

arrived at 0.5 as an upper limit for λ by dividing an upper limit for R0 based on independent

estimates (maximum of 7.8 [33]) by all other terms on the right-hand side of Eq 1 (19.73 at

32.5˚C). This is equivalent to assuming that one new adult female mosquito emerges from lar-

val habitats every other day for each human at risk of biting within a given population.

To account for uncertainty associated with values of R0 that we calculated, we generated

1,000 Monte Carlo samples from the uncertainty distributions of each model parameter as

described in each of the references [9,12,13] in which those parameters were originally

described. For μ(T) and n(T), we took random draws of their parameters consistent with pub-

lished descriptions of uncertainty in the parameters of these functions from their original

sources [13,14]. For a(T), we used nonlinear least-squares estimates of the first gonotrophic

period’s ρ parameter in the model by Focks et al. [9] by refitting it to their data, resulting in

mean 8.83x10-3 and standard deviation 3.8x10-4. We assumed similar uncertainties (standard

deviation) around the ρ parameter for the second gonotrophic period proposed by Otero et al.

[31]. We then took random draws from normal distributions describing uncertainties in these

two parameters and weighted the resulting two temperature-dependent biting rates (inverses

of the gonotrophic periods) according to the probability of the mosquito surviving to a given

number of gonotrophic cycles, as described in S1 Appendix. A summary of parameters and

their default values is available in S4 Table.

Epidemic growth rate

Given temperature-dependent formulations of R0(T) and the DENV generation interval g(t)
described above, we solved for the corresponding epidemic growth rate r(T) as a function of

temperature by applying the result

1

R0ðTÞ
¼

Z 1

0

e�rðTÞtgðtÞdt ð2Þ

from Wallinga and Lipsitch [17]. Although this does not yield an explicit relationship between

r and T that can be probed analytically, it does provide a way of numerically characterizing the

impacts of temperature on r. We further note that this approximation of r(T) assumes a fully

susceptible, well-mixed population of mosquitoes and hosts.

Analyses

We first derived a formulation of the generation interval for dengue, stochastic variability

therein, and its dependence on temperature based on the assumptions described above. We

then performed analyses of the relationship between temperature and r, including identifi-

cation of the temperature that maximizes r and how incremental changes in r driven by

changes in temperature can be attributed to distinct contributions from changes in R0 ver-

sus changes in the generation interval. For comparison with our detailed formulation of the

epidemic growth rate r, we examined two approximations of the generation interval com-

monly used in transmission models: a fixed-length generation interval and an exponentially

distributed generation interval. For each, we considered two formulations: one with a mean

generation interval of 16 days [34] and one with temperature-dependent mean generation

interval as calculated using our method.
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We next considered how average monthly temperature data at 5 km x 5 km resolution for

each month of the year based on historical records (average for 1950–2000) [35] may change

epidemic growth rates under climate change scenarios. For this analysis, we used three differ-

ent scenarios for mean temperature in 2050 (average for 2040–2060) corresponding to Repre-

sentative Concentration Pathways (RCPs) that describe a set of alternative trajectories for the

atmospheric concentration of key greenhouse gases: RCP 8.5, high greenhouse gas concentra-

tion scenario; RCP 6.0, medium baseline (or high mitigation) scenario; and RCP 4.5, interme-

diate mitigation scenario [36]. We obtained gridded population estimates for the year 2000

from the Global Rural/Urban Mapping Project [37] and for 2050 by projecting values from

2000 onward according to medium-fertility population projections for each country [38]. We

excluded regions from this analysis where Ae. aegypti occurrence probabilities fall below 0.8, a

threshold value that separates two distinct modes of local occurrence probabilities globally

[39,40].

Potential for diurnal temperature fluctuations to influence DENV transmission has been

suggested by temperature effects on extrinsic incubation period (EIP) and mosquito survival

[10]. We examined potential effects of diurnal temperature fluctuations on the generation

interval, basic reproduction number R0, and epidemic growth rate r by introducing an 8˚C

diurnal temperature range (DTR) around all mean temperatures. We assumed a sinusoidal

progression within the day with a decreasing exponential curve at night [9,41]. We also

assumed an absolute maximum temperature for Ae. aegypti survival of 37.73˚C over three con-

secutive hours and 40.73˚C in any single hour, as well as a maximum temperature of 45.9˚C in

any hour of the day for DENV incubation to take place, similar to assumptions of another

recent model of temperature-dependent viral transmission by Ae. aegypti mosquitoes [42].

Results

Characterizing temperature effects on transmission

We developed a probabilistic description of the DENV generation interval by sequentially

summing random variables associated with each phase of the transmission cycle (Fig 1).

Allowing each of these component random variables to depend on temperature (Fig 2A)

resulted in a description of the generation interval that was itself strongly dependent on tem-

perature and captured variability and uncertainty in the underlying components (Fig 2B). For

example, mean generation interval halved from 30 to 15 days with a change in temperature

from 25 to 35˚C. Sensitivity of the mean generation interval to changes in temperature was

nonlinear, with steeper changes at more extreme temperature values (Fig 2B) due to increasing

steepness of the relationships between temperature and the component random variables (Fig

2A).

The basic reproduction number, R0, was also sensitive to temperature, as it includes the

same temperature-dependent random variables as the generation interval. At low tempera-

tures, increases in temperature caused a steady increase in R0 due to a shortening extrinsic

incubation period and increasing biting frequency (Fig 2A and 2C). Beyond a peak tempera-

ture of 32.5˚C, R0 decreased rapidly with increasing temperatures due to rapidly increasing

mosquito mortality (Fig 2A and 2C). This result contrasted with a lower peak temperature

(~29˚C) that was obtained in our analysis (not shown in figures) under an assumption that bit-

ing rate did not depend on temperature.

Effects of temperature on the DENV generation interval and R0 contributed to similar

effects on epidemic growth rate, r. Under mean estimates of model parameters, r increased

with temperature until it peaked at 33˚C (Fig 2D). Under 1,000 Monte Carlo samples of model

parameters, peak temperature for r varied within a relatively narrow band with 95% of values
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falling between 32.6 and 33.2˚C (Fig 3). As both R0 and the generation interval are tempera-

ture-dependent, changes in r due to temperature occur through both components. At a con-

stant mosquito emergence rate λ, changes in R0 accounted for the majority of changes in r,
although changes in the generation interval accounted for a greater degree of change near

extreme and peak temperature regions (Fig 4; S1 Fig).

Allowing for diurnal temperature fluctuations (8˚C daily temperature range for all mean

temperature values) shortened the mean generation interval and increased its variance relative

to a scenario with no diurnal temperature fluctuation (S2 Fig). Similarly, R0 decreased when

DTR was considered, as the temperature at which R0 peaks decreased from 32.5 to 30.9˚C due

to the effect of daily temperature extrema (under DTR) on mosquito survival (S3 Fig). The

combined effect of these changes on epidemic growth rate was a slight decrease, while the tem-

perature at which the epidemic growth rate peaks remained close to its value under a scenario

with no diurnal temperature fluctuation (Fig 3; S2–S4 Figs).

How much detail is necessary to capture temperature effects on

transmission?

Because a fully detailed generation interval distribution is beyond the capabilities of many

commonly used modeling frameworks [43], we examined the correspondence between

Fig 2. Relationships between temperature and entomological parameters (A) and epidemiological quantities

(B-D). The thick solid (dashed) line in B shows the mean (median) generation interval at each temperature,

and colors indicate the probability density of generation intervals at a given temperature (red to yellow = low to

high). Contours show probability density values in intervals of 0.05. Colored surfaces in C and D show how

temperature and mosquito emergence rate λ affect R0 and r (red to yellow = low to high), respectively. Black

planes in C and D indicate the combinations of temperature and λ values for which R0 and r fall above or

below threshold values (1 or 0, respectively). The thick black lines in C and D show the temperatures at which

either R0 or r is maximized for a given value of λ. For comparison, the thin line in D indicates temperatures at

which R0 is maximized.

https://doi.org/10.1371/journal.pntd.0005797.g002
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epidemic growth rates r calculated under our detailed approach and under four less detailed

approximations of the generation interval that are commonly used in transmission models. A

fixed-length generation interval yielded a consistently better approximation of our detailed cal-

culations of r as a function of temperature than did an exponentially distributed generation

interval (Fig 5A vs. 5B). Calculations of r under the fixed-length approximation tended to

match calculations of temperature-dependent r under the detailed generation interval distribu-

tion particularly well in temperature ranges of significance to epidemics (i.e., where r > 0) (Fig

5B). For both fixed-length and exponential generation interval distributions, allowing their

mean values to follow the temperature-dependent model improved their correspondence with

our detailed formulation of temperature-dependent r (Fig 5A & 5B vs. 5C & 5D). These differ-

ences in r resulting from different assumptions about the distribution and temperature depen-

dence of r could be of significance to epidemic projections, given that differences in r as small

as 0.01 can lead to differences in incidence projections of an order of magnitude only a few

months into an epidemic (Fig 6).

Fig 3. Temperature at which r peaks across a range of mosquito emergence rates λ, obtained by

solving for r with 1,000 simulations of R0 based on Monte Carlo resampling of its three temperature-

dependent parameters μ(T), n(T), and a(T) and applying Eq (1). The solid line is the median r at each λ
value, and the shaded region shows the 95% confidence interval of r conditional on λ.

https://doi.org/10.1371/journal.pntd.0005797.g003

Fig 4. Relative contributions of the generation interval (blue) and the basic reproduction number R0

(orange) to temperature-driven changes in epidemic growth rate r. Temperature changes are considered

in 0.1˚C increments and assume λ = 0.2. See S1 Fig for consideration of alternative λ value.

https://doi.org/10.1371/journal.pntd.0005797.g004
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Putting temperature effects on transmission into context

Our result that the temperature threshold for maximum r was relatively constant around 33˚C

(95% CI: 32.6–33.2˚C) offers a useful reference point. In a given area and with other factors

held constant, an increase in temperatures beyond this threshold would imply first a rise and

then a fall in r between present and future. An increase in temperatures that never exceeds this

threshold would imply an increase in r between present and future. At most times of year in

most regions of the world that are suitable for DENV transmission, temperature increases by

2050 are expected to fall into the latter category (i.e., remaining below 33˚C), suggesting that

temperature changes could increase epidemic growth rates in those areas (S1–S3 Tables, S5–

S16 Figs). On the other hand, temperature increases by 2050 in regions such as India and the

African Sahel are expected to exceed 33˚C during April-June, potentially resulting in lower

epidemic growth rates in those areas during a portion of the year (S1–S3 Tables, S5–S16 Figs).

Discussion

The central advance that we have made is the development of a probabilistic description of the

generation interval for dengue virus (DENV) that is based on first principles of transmission,

synthesizes pertinent data for DENV and Ae. aegypti, and characterizes the generation interval

as a function of temperature. Although there is little data with which to independently validate

our calculations, the mode of our generation time distribution at optimal temperatures for

Fig 5. DENV epidemic growth rate, r, for high (red) and low (blue) mosquito densities based on our

full model and other approximations. The top panels show comparisons of the full model estimates (solid

lines) with those based on temperature independent, exponentially distributed (A) and fixed-length (B)

generation intervals (mean = 16 days [34]) (dashed lines). The bottom panels show comparisons of estimates

of the full model (solid lines) with those based on exponentially distributed (C) and fixed-length (D) generation

intervals (dashed lines), with their mean values at each temperature set to the corresponding mean from the

full model.

https://doi.org/10.1371/journal.pntd.0005797.g005
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transmission (approximately 16 days at 28–32˚C) accords with independent estimates of this

quantity based on statistical analyses of spatiotemporal dengue case data from Thailand (15–

17 days) [34]. Combining this result with a temperature-dependent description of the basic

reproduction number, R0, we obtained a temperature-dependent description of the epidemic

growth rate, r. All of these quantities were estimated explicitly for DENV but are also relevant

for other arboviruses such as chikungunya and Zika, given their similar ecology and given that

many of the parameters we used are not specific to any one virus but instead to their common

vector.

The generation interval has a wide range of applications in epidemiology, including the

identification of sources of infection [44], the establishment of causal linkages between cases

[45], and the characterization of temporal variation in transmission [8,46]. These and other

studies have typically assumed a static generation interval of either fixed length [47] or with

some standard statistical distribution [48]. Our result that the generation interval for DENV is

not static but is instead highly dynamic with respect to temperature highlights that transmis-

sion models for DENV and other arboviruses could be systematically inaccurate by excluding

temperature-dependent effects. Future work will be needed to address the existence and signif-

icance of any such inaccuracies, but our results about the sensitivity of r to the form of the gen-

eration interval and temperature dependency therein suggest that these effects could be

substantial.

Our calculations of R0 are consistent with the notion that temperature plays an important

role in determining optimal conditions for transmission (i.e., peak R0 at 32.5˚C) and for delim-

iting conditions where transmission is sustainable (i.e., R0 > 1, Fig 2B and 2C). However, these

results are only valid for a given value of the ratio of new adult mosquitoes to humans λ, which

we allowed to vary within a plausible range due to the fact that it depends on a wide range of

factors other than temperature. In particular, λ depends on the availability and quality of

Fig 6. Epidemic growth under an exponential model with values of the epidemic growth rate r ranging

from 0.01 to 0.05 for a duration of 180 days.

https://doi.org/10.1371/journal.pntd.0005797.g006
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aquatic habitats for mosquitoes [49] and sociocultural factors that affect contact between peo-

ple and mosquitoes [50]. Some studies have used temperature-based R0 calculations to delimit

geographic ranges of other vector-borne diseases such as malaria [16], but we used R0 solely as

part of an intermediate step to link the generation interval with epidemic growth rates.

Although R0 is important for quantifying threshold conditions for pathogen persistence, it

is not well suited for characterizing temporal dynamics of transmission [51]. By combining

temperature-dependent descriptions of R0 and the generation interval, our results offer a new

way to characterize the intensity of dengue epidemics as a function of temperature. One com-

mon concern about analyses based on R0, and estimates of r based on R0, is whether they are

relevant beyond the context of a novel pathogen in a fully susceptible population. Estimates of

r based on the effective reproduction number, R [17], offer a more generalizable alternative to

estimates of r based on R0, which is what we have considered in this study. To consider how

the distinction between R0 and R might impact our results, we note the relationship R = R0S,

where S is the proportion of a population that is susceptible. This linear relationship between

R0 and R implies that extrapolating our results below S = 1 should result in behavior similar to

how our temperature-dependent estimates of r vary with changes in λ, given that λ also affects

R0 linearly. Perhaps most importantly, this reasoning implies that the temperature at which

epidemic growth rates peak should be applicable across contexts in which either the suscepti-

ble fraction S or the mosquito-human ratio λ vary. Still other factors affecting R0 and r could

vary across contexts—e.g., species or strain differences [52]—that could be important for some

future applications.

One limitation of our approach is that the precise value of the temperature threshold for

maximum r could be subject to revision as understanding of the relationships between temper-

ature and transmission parameters improves. In previous work [15], revised assumptions

about the effects of temperature on transmission parameters were shown to affect prior under-

standing of the relationship between temperature and R0 for malaria. Independently validating

our calculations with epidemic data could be one way to address these uncertainties, but epi-

demic growth rates based on case reports can be difficult to compare across sites. Even if fac-

tors such as temperature are consistent across sites, still others may vary and have major

impacts on epidemic growth rates, including mosquito abundance [39], population immunity

[53], and reporting rates [54]. Due to these and other variations across locations, Johansson

et al. [55] found no detectable association between temperature and large-scale epidemic

dynamics. Our results make important progress towards being able to resolve the roles of and

complex interactions among these factors in future studies.

Based on current understanding of relationships between temperature and transmission

parameters, our result that r consistently peaks around 33˚C (95% CI: 32.6–33.2˚C) led us to

examine which populations globally could remain below, newly exceed, or further surpass this

temperature under future climate change scenarios. We found that most people currently liv-

ing in areas at risk for DENV transmission could be subject to increased epidemic growth

rates by 2050 under a range of scenarios about future temperature increases. For most DENV-

endemic areas, this would have little effect on the overall burden of disease, which is already

high, but it could affect transmission dynamics, making epidemics more intense. At the same

time, there are a number of important caveats to bear in mind about these projections. First,

transmission depends not only on temperature but also other abiotic variables, such as rainfall,

in complex ways [56]. Second, the effects of abiotic variables may be outweighed by changes in

human factors, such as economic development, urbanization, demography, and population

immunity [57,58]. Third, long-term projections of dengue are highly variable and conflicting

[59], making the long-term effects of any single change such as temperature nearly impossible

to anticipate.
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Conclusion

Although r will vary across different regions for different reasons, our finding that temperature

changes under future climate change could elevate epidemic intensity of dengue in some areas

suggests a categorically new way in which climate change might impact infectious disease

transmission [60]. Our quantification of these effects focused on DENV, but these results also

offer tentative, but plausible, estimates of how epidemics of other viruses transmitted by Ae.
aegypti mosquitoes, such as chikungunya and Zika, might be impacted under future climate

change. Our qualitative results apply even more broadly, implying that temperature has the

potential to shape multiple aspects of vector-borne parasite life history and to influence multi-

ple aspects of the temporal dynamics of associated diseases.
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