

1 **Chemical evolution of atmospheric organic carbon over multiple
2 generations of oxidation**

3 Gabriel Isaacman-VanWertz^{1,2*}, Paola Massoli³, Rachel O'Brien¹, Christopher Lim¹, Jonathan P. Franklin¹,
4 Joshua A. Moss¹, James F. Hunter¹, John B. Nowak^{3, #}, Manjula R. Canagaratna³, Pawel K. Misztal⁴, Caleb
5 Arata⁴, Joseph R. Roscioli³, Scott T. Herndon³, Timothy B. Onasch³, Andrew T. Lambe³, John T. Jayne³,
6 Luping Su⁵, Daniel A. Knopf⁵, Allen H. Goldstein⁴, Douglas R. Worsnop³, Jesse H. Kroll^{1*}

7 ¹Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge,
8 Massachusetts 02139, USA

9 ²Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

10 ³Aerodyne Research Inc., Billerica, Massachusetts 01821, USA

11 ⁴Department of Environmental Science, Policy, and Management, University of California, Berkeley,
12 California 94720, USA

13 ⁵School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA

14 [#]Now at NASA Langley Research Center, Hampton, VA 23681, USA

15

16 **Table of Contents Summary:** We quantify and characterize nearly all organic carbon in a highly complex
17 evolving atmospheric system, the multigeneration oxidation of α -pinene. We observe that long-lived
18 initial addition of functional groups quickly gives way to fragmentation reactions, with organic carbon
19 ultimately becoming sequestered in chemically-resistant reservoirs, organic aerosol and long-lived gas-
20 phase species.

21

22 **Abstract**

23 The evolution of atmospheric organic carbon (OC) as it undergoes oxidation has a controlling influence
24 on concentrations of key atmospheric species, including particulate matter, ozone, and oxidants.
25 However, full characterization of OC over hours to days of atmospheric processing has been stymied by
26 its extreme chemical complexity. Here we study the multigenerational oxidation of α -pinene in the
27 laboratory, characterizing products with several state-of-the-art analytical techniques. While
28 quantification of some early-generation products remains elusive, full carbon closure is achieved (within
29 measurement uncertainty) by the end of the experiments. These results provide new insights into the
30 effects of oxidation on OC properties (volatility, oxidation state, and reactivity) and the atmospheric
31 lifecycle of OC. Following an initial period characterized by functionalization reactions and particle
32 growth, fragmentation reactions dominate, forming smaller species. After approximately one day of
33 atmospheric aging, most carbon is sequestered in two long-lived reservoirs, volatile oxidized gases and
34 low-volatility particulate matter.

35 Organic compounds play a central role in the chemistry of the atmosphere, by contributing to ozone
36 formation,^{1,2} serving as the primary sink for oxidants in the atmosphere,^{3,4} and constituting a substantial
37 fraction of global submicron particulate matter.^{5,6} Organic carbon (OC) enters the atmosphere primarily
38 as high-volatility gases. Oxidation of these compounds yields a large number of products, including
39 organic species in the gas phase (gas-phase OC, gOC), organic species in the condensed phase (particle-
40 phase OC, pOC), and inorganic carbon-containing species (CO and CO₂). All of these products (other than
41 CO₂) may themselves undergo further oxidation, continuing this process over multiple generations to
42 produce a highly complex, chemically dynamic mixture of compounds that spans a wide range in
43 chemical composition and properties (e.g., volatility).⁷⁻¹¹ Oxidation continues until OC is either
44 converted to CO₂, or removed from the atmosphere through deposition to the Earth's surface, thereby
45 transporting a wide range of organic compounds into other components of the Earth system. Our ability
46 to track the oxidative evolution of OC over its entire atmospheric lifetime therefore controls not only
47 our ability to understand critical issues in air quality and atmospheric chemistry, but ultimately to
48 understand the impacts of organic emissions on human health, ecosystems, and Earth's climate.

49 The comprehensive measurement of all oxidation products from a given chemical system has been
50 elusive due to the analytical challenges associated with detecting, characterizing, and quantifying
51 compounds within complex organic mixtures. Only studies of the simplest organic compounds have
52 achieved "carbon closure," fully characterizing the product mixture throughout oxidation.¹² For larger
53 species, a large fraction of the products has remained unmeasured and/or uncharacterized, even in the
54 early stages of reaction (first 1-2 generations of oxidation).^{13,14} As a result, there is substantial
55 uncertainty as to the fate and impact of OC over timescales longer than several hours after emission. For
56 example, the possibility of substantial unmeasured "pools" of OC has major implications for the
57 formation of particle-phase mass through the gas-to-particle partitioning of condensable gases. It has
58 traditionally been assumed that such unmeasured carbon will not condense to contribute to particle-
59 phase mass. However, if instead unmeasured carbon in laboratory experiments is irreversibly lost to
60 chamber walls via vapor deposition¹⁵ or reacts over multiple generations to form lower-volatility
61 gases,^{9,16} then formation of pOC from many precursors may be substantially higher than currently
62 estimated. The properties and reactivity of organic oxidation products formed over multiple generations
63 will also impact ozone production, removal pathways (e.g. wet and dry deposition) of pollutants, and
64 reactivity and cycling of oxidants. A quantitative, predictive description of these processes across spatial
65 scales relies critically on the measurement of the chemistry of such species, and more generally on our
66 ability to measure and track all OC in a reactive system.

67 Here, we apply recent advances in analytical instrumentation to characterize the full mixture of products
68 formed in hydrocarbon oxidation with the goal of achieving carbon closure, enabling a more complete
69 understanding of the chemical properties and transformation processes of atmospheric OC. We access
70 the entire range of expected chemical properties of suspended products¹⁷ with an array of state-of-the-
71 art analytical instruments: an aerosol mass spectrometer¹⁸ (TD-AMS) and scanning mobility particle sizer
72 (SMPS) to measure pOC with volatility resolution, a proton transfer reaction mass spectrometer^{19,20}
73 (PTR-MS) and two chemical ionization mass spectrometers²¹ (I⁻ CIMS and NO₃⁻ CIMS²²⁻²⁵) to measure
74 gOC, and two tunable infrared laser differential absorption spectrometers (TILDAS) to measure C₁
75 compounds (CO, formaldehyde, and formic acid). We combine the data from these instruments to
76 present a unified, time-resolved description of the chemical composition of two oxidation systems:
77 initial oxidation of α -pinene (a monoterpene) through photooxidation by hydroxyl radicals (OH) in the

78 presence of NO, and ozonolysis in the absence of NO, followed in both cases by continued high-NO OH
79 oxidation. All experiments were performed at 20 °C and low relative humidity (<5%); see Methods and
80 Supplementary Sect. 1 for details on reaction conditions and instrument operation, calibration, and
81 uncertainty. These systems were chosen because their initial chemistry has been subject to extensive
82 theoretical and experimental characterization,^{26–30} but the subsequent multi-generational oxidation
83 (“aging”) of the reaction mixture (particularly gOC) has received substantially less study.³¹ By the end of
84 the experiments, all carbon is measured to within experimental uncertainties, enabling a coherent and
85 detailed picture of the chemical evolution of the product mixture, and providing new insights into the
86 lifecycle and fate of atmospheric OC.

87 **Results**

88 **Carbon closure**

89 All products measured in the OH-initiated oxidation of α -pinene are shown in Fig. 1. Results are
90 qualitatively similar to those in the ozonolysis experiment, so ozonolysis results are given in
91 Supplementary Sect. 5. Initial reaction of α -pinene is immediately accompanied by a concomitant rise in
92 in both gOC and pOC oxidation products. Particle-phase OC is formed in the first generations of
93 oxidation, with only minor additional formation after the α -pinene is fully consumed, and accounts for
94 14±3% of the total carbon by the end of the experiment (~24 hours of equivalent daytime atmospheric
95 oxidation). We focus our characterization of pOC on average chemical properties and volatility
96 distributions, providing an ensemble description of the aerosol, while composition of gOC is
97 characterized by individual species. Identified gas-phase products are CO, formaldehyde, formic acid,
98 acetic acid, acetone, and pinonaldehyde. Concentrations of each identified product vary over the course
99 of the experiment, but in total account for 41±5% of the carbon by the end. CO₂ is not measured here
100 but is expected to be similar in concentration to CO (~4%).³²

101 In addition to known compounds, chemical species measured include a large number of “unidentified”
102 gas-phase reaction products, detected by the gas-phase mass spectrometers as 310 ions. Structures for
103 these ions cannot be unambiguously assigned, but molecular formulas are known, from which chemical
104 properties (e.g. volatility) can be estimated using group contribution methods.³³ These unidentified
105 species comprise 46±17% of the carbon at the end of the experiment, most of which is measured by
106 PTR-MS and I[–] CIMS. Species measured by the NO₃[–] CIMS (extremely low volatility, highly oxidized
107 gases)³⁴ account for <0.5% of the total carbon, and so are not included in Fig. 1. The overlap between
108 carbon measured by each instrument is minor, with ions of the same formulas measured by different
109 instruments accounting for less than 20 ppbC (4% of carbon, see Methods). The dominant single
110 contributor to unidentified carbon is C₃H₄O₄ (yield of ~5%, measured by I[–] CIMS), which has previously
111 been observed in the atmosphere and identified as malonic acid,^{35,36} however, its ion cluster strength
112 (Supplementary Fig. 1) indicates that it is not malonic acid but rather some isomer (or combination of
113 isomers) thereof (e.g., the pinene oxidation product 3-oxo-peroxypropanoic acid³⁷). Off-line techniques
114 that would provide structural information (e.g. tandem mass spectrometry) tend not to be adapted for
115 the direct analysis of these gas-phase compounds, which may undergo chemical transformations upon
116 collection or extraction. This highlights the need for new measurements that provide information on
117 molecular structure and improved characterization of these unidentified species.³⁸

118 The total measured carbon yield is 102±20% (1 σ) by the end of the experiment. Calibrations of individual
119 ions are relatively uncertain (e.g., a factor of 2.5 per ion in the I[–] CIMS) because authentic standards are

120 not available for most species. However, uncertainties in each ion are primarily due to random
121 deviations from average calibration relationships rather than systematic bias; relative uncertainty for
122 total measured carbon is therefore lower than that for any given ion and is calculated by the quadrature
123 addition of individual absolute uncertainties. The contributions of each instrument to total uncertainty is
124 provided in the Methods, and given in detail in Supplementary Table 1. “Carbon closure” is achieved in
125 this experiment within measurement uncertainties, allowing for a more comprehensive characterization
126 of the evolving carbon distribution over these timescales than previously possible. This also indicates
127 that the loss of condensable carbon to chamber walls or other surfaces is not a major sink for reaction
128 products in this experiment, as expected given the fast rate of oxidation and the use of seed particles as
129 a condensation sink,^{39–41} and supported by modeled gas-particle-wall partitioning (Supplementary Sect.
130 4).

131 Not all carbon is measured throughout the entire experiment; some “missing” carbon (up to ~40%) is
132 unmeasured early in the experiment. The time dependence of this unmeasured carbon suggests it is
133 made up of early-generation products that quickly react away (with a ~4h timescale) to yield measured
134 products, leading to the observed carbon closure by the end of the experiment. These unmeasured
135 species may be compounds that are not readily detected by the instrument suite. For example, the one
136 peak in the I^- CIMS mass spectrum that is above the detection limit but substantially below the threshold
137 for reliable instrument calibration (and hence not included in Fig. 1) is $\text{C}_{10}\text{H}_{17}\text{NO}_4$ (Supplementary Fig. 2).
138 This likely corresponds to α -pinene hydroxynitrate, a first-generation oxidation product known to be
139 formed in high yields (~15%), but that is not sensitively measured by any of the present instruments.^{28,42}
140 Importantly, the temporal behavior and ion intensity of this species (after applying an approximate
141 calibration factor⁴³) matches the unmeasured carbon well (Supplementary Sect. 4). “Missing” carbon is
142 also observed in the ozonolysis experiment (Supplementary Sect. 5), for which no nitrate formation is
143 expected, so it appears that this instrument suite is not generally sensitive to lightly-oxidized, lower-
144 volatility gases, leading to poor carbon closure in the early generations of oxidation. In addition to
145 undetected or poorly-detected ions, unmeasured carbon may include underestimation of low-sensitivity
146 isomers of detected ions, which is particularly likely for isomers of lightly functionalized ions
147 (Supplementary Sect. 2). Intermediate-volatility, early-generation compounds may also reversibly
148 partition to reactor or inlet walls and re-volatilize upon reaction of their gas-phase component with OH,
149 which could also contribute to unmeasured carbon early in the experiment. Thus, despite uncertainties
150 related to its molecular identity, the unmeasured carbon is likely comprised of lightly oxidized,
151 intermediate-volatility, early-generation products. Indeed, this unmeasured carbon correlates well with
152 the least-oxygenated measured ions (Supplementary Fig. 4). Moreover, the majority of the OC (and all of
153 it by the end of the experiment) is quantified and characterized by chemical properties and formulas,
154 providing a unique opportunity to examine the evolution of the composition and chemistry of OC over
155 multiple generations of oxidation.

156 **Evolving properties of the carbon**

157 The changing composition of this complex mixture with oxidation is shown in Fig. 2, as three
158 “snapshots” of the product distribution in terms of carbon oxidation state ($\overline{\text{OS}_\text{C}}$), vs. volatility (expressed
159 as saturation concentration, c^*), often referred to as the “two-dimensional volatility basis set”.^{44,45}
160 Carbon in the first hour of the experiment (panel a) is dominated by the precursor, α -pinene, and the
161 formation of products with intermediate volatility ($c^* = 10^3\text{--}10^6 \mu\text{g m}^{-3}$), as well as some higher-volatility
162 gases (e.g., acetone, acetic acid), and particle-phase mass. By the end of the initial oxidation, after

163 nearly all α -pinene has reacted (panel b), the product mixture spans a wide range of volatilities and
164 oxidation states. Upon further oxidation (panel c), the distribution of products changes further,
165 indicating the importance of continuing oxidation chemistry beyond the initial α -pinene oxidation.

166 In this chemically dynamic system, the behavior of different products is determined by both their
167 formation pathways and their lifetime versus further oxidation by OH. Some early-generation products,
168 including most intermediate-volatility organic compounds (IVOCs; e.g., pinonaldehyde and multi-
169 functional nitrates), exhibit rapid decreases in concentration after formation, consistent with their high
170 reactivity.^{46,47} By contrast, concentrations of some of the volatile compounds (e.g., CO and acetone)
171 consistently increase throughout the experiment. These are formed both from the initial oxidation of α -
172 pinene (panel a) as well as from the multigenerational oxidation of reaction products (panel c), and their
173 slow reaction rates with OH preclude any significant decay over the timescales of the experiment. This
174 category of less-reactive products also includes pOC, which increases throughout the experiment with
175 only relatively minor changes in average properties, consistent with the long lifetime of particulate
176 carbon against heterogeneous oxidation by gas-phase oxidants.^{48,49}

177 The evolution of the organic mixture as a whole can be described in terms of changes to key chemical
178 properties of the measured products. Figure 3 shows the evolving distributions of three such properties:
179 carbon number (n_c), \overline{OS}_C , and c^* . The n_c of observed products (Fig. 3a) exhibits a clear and dramatic
180 change with oxidation: C_{10} species make up a large fraction (~50%, likely an underestimate since the
181 early-generation unmeasured species are expected to be C_{10}), indicating the importance of
182 functionalization reactions (addition of oxygen-containing groups) early in the reaction. These reactions
183 contribute to the early formation of pOC via gas-to-particle conversion, followed by in-particle accretion
184 reactions that yield low volatility products. . However, trends in chemical properties are dominated by
185 gOC, which is the majority fraction of carbon. (The individual trends for pOC and gOC are shown in
186 Supplementary Fig. 6) Further oxidation depletes gas-phase C_{10} compounds, which account for only 12%
187 of the carbon by the end of the experiment. Their oxidation produces species with smaller carbon
188 numbers (in particular C_{1-3}), suggesting that later-generation oxidation is dominated by fragmentation
189 reactions. The \overline{OS}_C distribution of the product mixture (Fig. 3b) is initially dominated by species with low
190 (<-0.5) oxidation states, but further oxidation leads to the formation of higher oxidation state products,
191 including very oxidized products with oxidation state > +1 (e.g. formic acid and CO) and a few less-
192 oxidized species (mostly acetone).

193 The volatility distribution (Fig. 3c) also undergoes major changes. Initial product carbon is dominated by
194 gas-phase IVOCs, C_{10} products formed by the addition of 1-3 functional groups to the carbon skeleton of
195 the precursor. An early drop in volatility is observed because initially formed products include low-
196 volatility pOC, which is measured, and intermediate-volatility gOC, which is partly unmeasured. As gas-
197 phase species oxidize, the distribution of volatilities shifts away from IVOCs, toward both higher- and
198 lower-volatility products. By the end of the experiment, IVOCs represent a small fraction of the total
199 carbon, which is instead dominated by high-volatility gases (formed from fragmentation reactions) or
200 pOC (formed mostly from functionalization reactions). The trends observed in Fig. 3 are further
201 enhanced by including α -pinene (Supplementary Fig. 6) or unmeasured species, as those have chemical
202 properties similar to early-generation products (large, moderately volatile, and lightly oxidized).
203 Ozonolysis experiment exhibits the same trends as the photooxidation, but with fewer changes during
204 the initial oxidation, since the initial reaction ceases after the oxidation of the double bonds.

205 The evolution of the organic mixture, in which the early-generation species (mostly large, lightly-
206 oxidized, intermediate-volatility species) react to form small, volatile species in the gas phase and low-
207 volatility species in the particle phase, has important implications for the evolving reactivity and lifetime
208 of atmospheric OC. Figure 4a shows the changes to the distribution of the atmospheric lifetime against
209 reaction with OH (τ_{ox}) of the product mixture. The lifetimes of initial products are generally short.
210 Functionalized IVOCs generally have lifetimes of only 3-9 hours.⁴⁸ Unmeasured carbon, representing one
211 or a distribution of such compounds, is included in Fig. 4 with a lifetime of the observed decay timescale
212 (~4 hours, time-dependence of unmeasured mass shown in Supplementary Fig. 9).

213 While the initial IVOC products are short lived with respect to oxidation, other products are extremely
214 long-lived, such as CO ($\tau_{\text{ox}} = 39$ days⁵⁰), acetone ($\tau_{\text{ox}} = 34$ days⁵¹), and pOC ($\tau_{\text{ox}} = 69$ days⁴⁹). Over the
215 course of the experiment, the IVOCs react away and these longer-lived species continue to grow in,
216 increasing the average lifetime of products in the mixture from 5 hours to 2 days. By the end of the
217 experiment, more than half of the carbon is in species that are sufficiently long-lived ($\tau_{\text{ox}} > 20$ hrs) to be
218 unreactive on the timescale of the experiment. This tendency toward long-lived species is a natural
219 consequence of any multigenerational reaction system, since less-reactive products represent “kinetic
220 bottlenecks” and hence will necessarily accumulate. Reversible deposition to walls may impact the
221 timescale of the reaction in this work by temporarily sequestering some reactive carbon from oxidation
222 by OH, but these processes will not substantially diminish the kinetic tendency toward less-reactive
223 products. In the present system, this tendency is closely correlated with the evolving volatility
224 distributions, since long-lived species tend either to be small gas-phase oxygenates (e.g., CO, acetone),
225 or present in the condensed phase (as pOC). Thus, within approximately a day of atmospheric aging of
226 this system, the volatility distribution of the product mixture becomes bimodal, dominated by particles
227 and long-lived high-volatility gases (Fig. 4b). This decrease in reactivity through sequestration of carbon
228 in “low-reactivity pools” occurs roughly exponentially, with a characteristic time of ~3 hours (Fig. 4c);
229 this timescale matches the approximate lifetime of the first-generation products that drive the initial
230 reactivity of the product mixture. Chemical systems are expected to vary in their timescales and
231 composition depending on reaction rates of reactants and products, and the impacts of other chemical
232 processes (e.g. aqueous and multi-phase reactions), but the tendency toward long-lived products is
233 expected for most atmospheric systems.

234

235 Discussion

236 By characterizing nearly all the products formed in a complex chemical system in terms of their
237 molecular formulas and physicochemical properties, we have been able to examine the products and
238 evolution of atmospheric OC through multi-generational oxidation. Initial oxidation occurs through the
239 addition of functional groups to form pOC mass and large, intermediate-volatility gases, but upon
240 further oxidation gas-phase products quickly fragment into high-volatility compounds. Particulate
241 carbon and **some** oxidized volatile gases are resistant to further oxidation by OH, so carbon effectively
242 becomes sequestered in these two pools. The present results are limited to the oxidation of a single
243 precursor hydrocarbon, under a limited set of reaction conditions, and other chemical systems may
244 exhibit somewhat different behavior. However, known long-lived products (e.g., pOC, formic acid, CO,
245 etc.) are formed by a wide range of oxidation systems, and longer-lived species will necessarily
246 accumulate over the course of multiple generations of oxidation. Thus the general trends shown in Fig. 4

247 – the eventual decrease in reactivity and the bifurcation in volatility – are likely to be common features
248 of the oxidation of most atmospheric organic species. Ambient processes that are not captured by these
249 experiments (e.g. aqueous-phase reactions, in-particle secondary chemistry,⁵² reactive uptake of soluble
250 gases such as those formed from isoprene oxidation) may increase the oxidation or fragmentation of
251 pOC or alter chemical pathways. This would shift the relative balance between condensed-phase and
252 high-volatility long-lived reservoirs, but is unlikely to substantially increase or change the trend in the
253 overall reactivity of OC.

254 The observed timescale for oxidative removal of reactive gases and formation of long-lived species has
255 broad implications for understanding the fate of atmospheric OC on global and regional scales. Near
256 emission sources, the diverse and complex mixture of functionalized gases formed from emissions are
257 likely to comprise a significant fraction of suspended carbon, playing a critical role in particle growth, OH
258 reactivity, and depositional loss.^{11,16,53–57} However, farther from emissions, IVOCs will be substantially
259 depleted and most mass will be comprised of relatively few long-lived constituents, so composition and
260 removal of OC in remote regions will be dominated by particles and C_{1–3} gases. Where an airmass is on
261 the continuum between near- and far-field is a function of both the inherent timescales for oxidation of
262 a given chemical system and the “average age” of the OC. Some approaches to quantify the average age
263 of an airmass have been developed, but are generally limited to anthropogenically-influenced
264 chemistries.^{58,59} The fate of atmospheric OC is determined by the competition between the oxidation
265 reactions studied, other chemical processes (e.g. aqueous-phase reactions) that may modify the
266 oxidation pathways, and deposition. The relative timescales of each govern the extent to which emitted
267 carbon is deposited as lightly-functionalized species before being sequestered by oxidation. The
268 timescales of oxidation measured in this work therefore need to be complemented by better
269 observational constraints on average age of OC and timescales of removal in order to improve
270 understanding of the lifecycle and fate of OC under a range of atmospheric conditions.

271

272 **Methods**

273 **Reaction conditions**

274 Studies were carried out using a fixed-volume temperature-controlled 7.5 m³ Teflon environmental
275 chamber in which was mixed α -pinene (60 ppb), ammonium sulfate aerosol (\sim 70 $\mu\text{g m}^{-3}$), and a non-
276 reactive tracer used to measure dilution rate (hexafluorobenzene). Oxidant was introduced as ozone
277 (\sim 350 ppb), or HONO (50 ppb) in the presence of ultraviolet light (300–400 nm) to produce OH radicals.
278 Multi-generational oxidation was initiated 4.5 hours after initial oxidation, through the introduction of
279 \sim 2 ppb/min HONO in the presence of ultraviolet light. Reactions were carried out at 20 °C and low
280 relative humidity (<5%). All data are corrected for dilution due to instrument sampling. Reported particle
281 mass concentrations are corrected for loss to the walls using a rate calculated from the loss rate of seed
282 particles prior to reaction. Additional details are provided in Supplementary Sect. 1.

283 **Measurements**

284 Detailed operation conditions and calibration methods are provided for all instruments in
285 Supplementary Sect. 1. Four high-resolution ($m/\Delta m \approx 4000$) time-of-flight mass spectrometers (HTOF;
286 Tofwerk AG) were used in this work: gas-phase composition was measured by PTR-MS^{19,20} (Ionikon

287 Analytik) and two CIMS²¹ (Aerodyne Research Inc.) using I^- and NO_3^- as reagent ions,²²⁻²⁵ and particle-
288 phase composition was measured by an AMS¹⁸ (Aerodyne Research Inc.). The latter sampled
289 downstream of a ThermalDenuder⁶⁰ to measure volatility distribution of particles. Two TILDAS⁶¹
290 (Aerodyne Research Inc.) instruments measured C_1 compounds. Particle size distributions measured by
291 Scanning Mobility Particle Sizer (TSI Inc.) were converted to mass concentration using an assumed
292 density of 1.4 g cm^{-3} , and converted to carbon concentration via AMS-measured O:C and H:C ratios.⁶²
293 pOC is characterized by average properties of TD-AMS volatility bins. Particle-phase composition was
294 also measured by the I^- CIMS using a “FIGAERO” inlet. Due to decomposition during thermal desorption,
295 this instrument is also limited to characterization of pOC by average properties, which are found to be
296 similar to measurements by AMS in concentration, elemental composition, carbon number, and
297 volatility. All pOC data shown in Figs. 1-4 are consequently from TD-AMS, as it has higher time resolution
298 and lower uncertainty.⁶³ Further detail on pOC composition is discussed in Supplementary Sects. 2 and
299 4. Calibration and data analysis was performed where possible through previously published techniques
300 and with commercially available software. Detailed information regarding the comprehensive
301 calibration of I^- CIMS data, and identification and quantification of species in PTR-MS data are described
302 in Supplementary Information Sects. 2 and 3.

303 **Calculation of chemical parameters**

304 Gas-phase mass spectrometers measure individual ions with a known molecular formula, while the TD-
305 AMS provides bulk measurements of chemical properties. To explore chemical evolution, volatility is
306 inferred from molecular composition and vice-versa based on the approach of Daumit et al.³³ that
307 relates c^* to n_C and elemental ratios (e.g. those measured by the AMS). $\overline{\text{OS}}_C$ is calculated from
308 elemental ratios.⁴⁴

309 Lifetime against atmospheric oxidation for a compound, i , is calculated from its rate constant for
310 reaction with OH as $\tau_{ox,i} = (k_{OH,i}[\text{OH}])^{-1}$ assuming an average OH concentration of $2 \times 10^6 \text{ molec cm}^{-3}$:
311 OH rate constants for known compounds (those labeled in Figs. 1 and 2) are obtained from the NIST
312 Chemical Kinetics Database.⁴⁷ Rate constants for unidentified ions are calculated from molecular
313 formula as described by Donahue and co-workers,⁴⁸ which spans an atmospheric lifetime of 13 hours for
314 small (high-volatility) gases to ~ 2 hours for larger (IVOC) gases. Lifetime of unmeasured mass is
315 estimated from its time dependence (~ 4 hours, Supplementary Fig. 9). Carbon is assumed to be lost
316 from the particle phase with a lifetime of 69 days, as determined by Kroll and co-workers;⁴⁹ the
317 conclusions in this work are insensitive to uncertainties in this value.

318 **Uncertainty in carbon closure**

319 Most uncertainties in all instrument calibrations introduce random error, not bias. Total uncertainty is
320 consequently calculated by adding in quadrature the absolute uncertainty in each ion concentration.
321 Relative uncertainty in total measured carbon is thus lower than the relative uncertainty of any given
322 ion. Instrument, and total uncertainties are provided in Supplementary Tables 1 and 2. The largest
323 source of uncertainty in the total measured concentration is in the calibration of the I^- CIMS, which in
324 this work is $\sim 60\%$ for total carbon concentration (see Supplementary Sect. 4), though expected to be
325 reduced to 20% in future work. The other main source of uncertainty in this work is the predicted bias in
326 PTR measurements caused by the loss of carbon as neutral fragments in the mass spectrometer. Spectra
327 of oxygenated and non-oxygenated compounds previously published⁶⁴⁻⁶⁷ and measured as part of this

328 work demonstrate that compounds containing more than a few carbon atoms can lose 20% of their
329 carbon as neutral fragments leading to potential underestimation and asymmetry in uncertainty
330 estimates. Fragmentation during analysis is also expected to somewhat bias the chemical
331 characterization of the product mixture toward ions with lower carbon numbers. This bias cannot
332 explain the observed decrease in n_C as this trend is also observed in the I^- CIMS, which does not undergo
333 increased fragmentation of more oxidized ions. The contribution of each instrument to total uncertainty
334 in measured carbon is weighted by the fraction of carbon measured, which mitigates the relatively high
335 uncertainty in I^- CIMS calibration due to its minority contribution to total measured carbon. The
336 uncertainty in total carbon contributed by each instrument is: $\pm 16\%$ from I^- CIMS, $\pm 1\%$ from NO_3^- CIMS,
337 $\pm 1\%$ from PTR-MS, $\pm 1\%$ from TILDAS, and $\pm 3\%$ from AMS/SMPS. Overall uncertainty in total measured
338 carbon is $\pm 20\%$; details provided in Supplementary Table 1.

339 Carbon closure is not substantially impacted by overlap between carbon measured by multiple
340 instruments. The estimated overlap is 20 ppbC, which accounts for known possible transformations in
341 instruments (e.g. dehydration in the PTR-MS). Though not all possible transformations are well known or
342 constrained, this estimate of multiply-measured carbon is likely an overestimate in that it does not
343 consider time-dependence of ions; even ions measured by multiple instruments that do not correlate,
344 which would represent different isomers, are included in the reported overlap.

345 **Gas-particle-wall partitioning**

346 Deposition of vapors to the walls was modeled as equilibrium gas-particle-wall partitioning of the
347 observed carbon volatility distribution using parameters to match the conditions of these experiments,
348 using a similar approach to that of La and coworkers.⁶⁸ Briefly, the fraction of a volatility bin expected to
349 be on the wall was modeled as a function of equilibration time, with parameterized competition
350 between gas-wall partitioning, gas-particle partitioning, and reaction with OH to form a gas-phase
351 product that does not partition. Time evolution of carbon on walls was simulated by modeled phase
352 partitioning of the observed time-evolving volatility distribution of carbon. Details of these calculations
353 are provided in Supplementary Sect. 4.

354 **Data Availability**

355 A list of all ions measured in this work are provided in online as Supplementary Data 1. Time-resolved
356 concentrations of all ions throughout the photooxidation and ozonolysis experiments (shown in Figures
357 1 and 2, forming the basis for Figures 3 and 4) are available by contacting the corresponding authors.

358

359 **References**

- 360 1. Sillman, S. The relation between ozone, NO_x and hydrocarbons in urban and polluted rural
361 environments. *Atmos. Environ.* **33**, 1821–1845 (1999).
- 362 2. Atkinson, R. Atmospheric chemistry of VOCs and NO(x). *Atmos. Environ.* **34**, 2063–2101 (2000).
- 363 3. Lelieveld, J., Gromov, S., Pozzer, A. & Taraborrelli, D. Global tropospheric hydroxyl distribution,
364 budget and reactivity. *Atmos. Chem. Phys.* **16**, 12477–12493 (2016).
- 365 4. Yang, Y. *et al.* Towards a quantitative understanding of total OH reactivity: A review. *Atmos.*
366 *Environ.* **134**, 147–161 (2016).

367 5. Zhang, Q. *et al.* Ubiquity and dominance of oxygenated species in organic aerosols in
368 anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophys. Res. Lett.* **34**, 1–6
369 (2007).

370 6. Jimenez, J.-L. *et al.* Evolution of Organic Aerosols in the Atmosphere. *Science (80-)* **326**, 1525–
371 1529 (2009).

372 7. Aumont, B., Szopa, S. & Madronich, S. Modelling the evolution of organic carbon during its gas-
373 phase tropospheric oxidation: development of an explicit model based on a self generating
374 approach. *Atmos. Chem. Phys. Discuss.* **5**, 703–754 (2005).

375 8. Kroll, J. H. & Seinfeld, J. H. Chemistry of secondary organic aerosol: Formation and evolution of
376 low-volatility organics in the atmosphere. *Atmos. Environ.* **42**, 3593–3624 (2008).

377 9. Cappa, C. D. & Wilson, K. R. Multi-generation gas-phase oxidation, equilibrium partitioning, and
378 the formation and evolution of secondary organic aerosol. *Atmos. Chem. Phys.* **12**, 9505–9528
379 (2012).

380 10. Donahue, N. M., Kroll, J. H., Pandis, S. N. & Robinson, A. L. A two-dimensional volatility basis set-
381 Part 2: Diagnostics of organic-aerosol evolution. *Atmos. Chem. Phys.* **12**, 615–634 (2012).

382 11. Goldstein, A. H. & Galbally, I. Known and Unexplored Organic Constituents in the Earth's
383 Atmosphere. *Environ. Sci. Technol.* **41**, 1514–1521 (2007).

384 12. Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S. & Wallington, T. J. *Mechanisms of
385 Atmospheric Oxidation of the Alkanes*. (Oxford University Press, 2007).

386 13. Lee, A. *et al.* Gas-phase products and secondary aerosol yields from the photooxidation of 16
387 different terpenes. *J. Geophys. Res. Atmos.* **111**, 1–25 (2006).

388 14. Lee, A. *et al.* Gas-phase products and secondary aerosol yields from the ozonolysis of ten
389 different terpenes. *J. Geophys. Res. Atmos.* **111**, 1–18 (2006).

390 15. Zhang, X. *et al.* Influence of vapor wall loss in laboratory chambers on yields of secondary organic
391 aerosol. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 1–6 (2014).

392 16. Robinson, A. L. *et al.* Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical
393 Aging. *Science (80-)* **315**, 1259–1262 (2007).

394 17. Isaacman-VanWertz, G. *et al.* Using advanced mass spectrometry techniques to fully characterize
395 atmospheric organic carbon: current capabilities and remaining gaps. *Faraday Discuss.* **200**, 579–
396 598 (2017).

397 18. Decarlo, P. F. *et al.* Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer.
398 *Anal. Chem.* **78**, 8281–8289 (2006).

399 19. Graus, M., M ller, M. & Hansel, A. High resolution PTR-TOF: Quantification and Formula
400 Confirmation of VOC in Real Time. *J. Am. Soc. Mass Spectrom.* **21**, 1037–1044 (2010).

401 20. Jordan, A. *et al.* A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass
402 spectrometer (PTR-TOF-MS). *Int. J. Mass Spectrom.* **286**, 122–128 (2009).

403 21. Aljawhary, D., Lee, A. K. Y. & Abbatt, J. P. D. High-resolution chemical ionization mass
404 spectrometry (ToF-CIMS): Application to study SOA composition and processing. *Atmos. Meas.*

405 *Tech.* **6**, 3211–3224 (2013).

406 22. Jokinen, T. *et al.* Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF.
407 *Atmos. Chem. Phys.* **12**, 4117–4125 (2012).

408 23. Krechmer, J. E. *et al.* Formation of Low Volatility Organic Compounds and Secondary Organic
409 Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. *Environ. Sci. Technol.* **49**,
410 10330–10339 (2015).

411 24. Lee, B. H. *et al.* An Iodide-Adduct High-Resolution Time-of-Flight Chemical- Ionization Mass
412 Spectrometer: Application to Atmospheric Inorganic and Organic Compounds. *Environ. Sci.*
413 *Technol.* **48**, 6309–6317 (2014).

414 25. Lopez-Hilfiker, F. D. *et al.* Constraining the sensitivity of iodide adduct chemical ionization mass
415 spectrometry to multifunctional organic molecules using the collision limit and thermodynamic
416 stability of iodide ion adducts. *Atmos. Meas. Tech.* **9**, 1505–1512 (2016).

417 26. Eddingsaas, N. C. *et al.* α -pinene photooxidation under controlled chemical conditions-Part 1:
418 gas-phase composition in low-and high-NO x environments. *Atmos. Chem. Phys.* **12**, 6489–6504
419 (2012).

420 27. Eddingsaas, N. C. *et al.* α -pinene photooxidation under controlled chemical conditions-Part 2:
421 SOA yield and composition in low-and high-NO x environments. *Atmos. Chem. Phys.* **12**, 7413–
422 7427 (2012).

423 28. Capouet, M., Peeters, J., Nozière, B. & M Iller, J.-F. Alpha-pinene oxidation by OH: simulations of
424 laboratory experiments. *Atmos. Chem. Phys. Discuss.* **4**, 4039–4103 (2004).

425 29. Pathak, R. K., Stanier, C. O., Donahue, N. M. & Pandis, S. N. Ozonolysis of a-pinene at
426 atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions
427 (yields). *J. Geophys. Res. Atmos.* **112**, 1–8 (2007).

428 30. Jaoui, M. *et al.* Formation of secondary organic aerosol from irradiated α -pinene/toluene/NO x
429 mixtures and the effect of isoprene and sulfur dioxide. *J. Geophys. Res.* **113**, D09303 (2008).

430 31. Donahue, N. M. *et al.* Aging of biogenic secondary organic aerosol via gas-phase OH radical
431 reactions. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 13503–13508 (2012).

432 32. Hatakeyama, S., Ohno, M., Weng, J., Takagi, H. & Akimoto, H. Mechanism for the formation of
433 gaseous and particulate products from ozone-cycloalkene reactions in air. *Environ. Sci. Technol.*
434 **21**, 52–57 (1987).

435 33. Daumit, K. E., Kessler, S. H. & Kroll, J. H. Average chemical properties and potential formation
436 pathways of highly oxidized organic aerosol. *Faraday Discuss.* **165**, 181–202 (2013).

437 34. Ehn, M. *et al.* A large source of low-volatility secondary organic aerosol. *Nature* **506**, 476–479
438 (2014).

439 35. Ehn, M. *et al.* Composition and temporal behavior of ambient ions in the boreal forest. *Atmos.*
440 *Chem. Phys.* **10**, 8513–8530 (2010).

441 36. Hodshire, A. L. *et al.* Multiple new-particle growth pathways observed at the US DOE Southern
442 Great Plains field site. *Atmos. Chem. Phys.* **16**, 9321–9348 (2016).

443 37. Saunders, S. M., Jenkin, M. E., Derwent, R. G. & Pilling, M. J. Protocol for the development of the
444 Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic
445 volatile organic compounds. *Atmos. Chem. Phys.* **3**, 161–180 (2003).

446 38. Worton, D. R., Gentner, D. R., Isaacman, G. & Goldstein, A. H. Embracing complexity: Deciphering
447 origins and transformations of atmospheric organics through speciated measurements. *Environ.*
448 *Sci. Technol.* **46**, 5265–5266 (2012).

449 39. Nah, T. *et al.* Influence of seed aerosol surface area and oxidation rate on vapor wall deposition
450 and SOA mass yields: A case study with α -pinene ozonolysis. *Atmos. Chem. Phys.* **16**, 9361–9379
451 (2016).

452 40. Trump, E. R., Epstein, S. A., Riipinen, I. & Donahue, N. M. Wall effects in smog chamber
453 experiments: A model study. *Aerosol Sci. Technol.* **50**, 1180–1200 (2016).

454 41. Ye, P. *et al.* Vapor wall loss of semi-volatile organic compounds in a Teflon chamber. *Aerosol Sci.*
455 *Technol.* **50**, 0 (2016).

456 42. Nozière, B., Barnes, I. & Becker, K.-H. Product study and mechanisms of the reactions of α -pinene
457 and of pinonaldehyde with OH radicals. *J. Geophys. Res. Atmos.* **104**, 23645–23656 (1999).

458 43. Iyer, S., Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A. & Kurtén, T. Modeling the Detection of
459 Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. *J. Phys. Chem. A* **120**,
460 576–587 (2016).

461 44. Kroll, J. H. *et al.* Carbon oxidation state as a metric for describing the chemistry of atmospheric
462 organic aerosol. *Nat. Chem.* **3**, 133–139 (2011).

463 45. Donahue, N. M., Epstein, S. A., Pandis, S. N. & Robinson, A. L. A two-dimensional volatility basis
464 set: 1. organic-aerosol mixing thermodynamics. *Atmos. Chem. Phys.* **11**, 3303–3318 (2011).

465 46. Lee, B. H. *et al.* Highly functionalized organic nitrates in the southeast United States: Contribution
466 to secondary organic aerosol and reactive nitrogen budgets. *Proc. Natl. Acad. Sci. U. S. A.* **113**,
467 1516–1521 (2016).

468 47. Manion, J. A. *et al.* *NIST Chemical Kinetics Database, NIST Standard Reference Database 17*,
469 *Version 7.0 (Web Version), Release 1.6.8, Data version 2015.12.* (National Institute of Standards
470 and Technology, 2015).

471 48. Donahue, N. M. *et al.* Why do organic aerosols exist? Understanding aerosol lifetimes using the
472 two-dimensional volatility basis set. *Environ. Chem.* **10**, 151–157 (2013).

473 49. Kroll, J. H., Lim, C. Y., Kessler, S. H. & Wilson, K. R. Heterogeneous Oxidation of Atmospheric
474 Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase
475 Organic Carbon. *J. Phys. Chem. A* **119**, 10767–10783 (2015).

476 50. Dixon-Lewis, G. Flames Structure and Flame Reaction Kinetics VII. Reactions of Traces of Heavy
477 Water, Deuterium and Carbon Dioxide added to rich Hydrogen + Nitrogen + Oxygen Flames. *Proc.*
478 *R. Soc. London A* **330**, (1972).

479 51. Raff, J. D., Stevens, P. S. & Hites, R. A. Relative rate and product studies of the OH - Acetone
480 reaction. *J. Phys. Chem. A* **108**, 4728–4735 (2005).

481 52. Richards-henderson, N. K., Goldstein, A. H. & Wilson, K. R. Large Enhancement in the

482 Heterogeneous Oxidation Rate of Organic Aerosols by Hydroxyl Radicals in the Presence of Nitric
483 Oxide. *J. Phys. Chem. Lett.* **6**, 4451–4455 (2015).

484 53. Palm, B. B. *et al.* In situ secondary organic aerosol formation from ambient pine forest air using
485 an oxidation flow reactor. *Atmos. Chem. Phys.* **16**, 2943–2970 (2016).

486 54. Chan, A. W. H. *et al.* Speciated measurements of semivolatile and intermediate volatility organic
487 compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011. *Atmos. Chem. Phys.* **16**,
488 1187–1205 (2016).

489 55. Tkacik, D. S., Presto, A. A., Donahue, N. M. & Robinson, A. L. Secondary organic aerosol formation
490 from intermediate-volatility organic compounds: Cyclic, linear, and branched alkanes. *Environ.*
491 *Sci. Technol.* **46**, 8773–8781 (2012).

492 56. Park, J.-H. *et al.* Active Atmosphere-Ecosystem Exchange of the Vast Majority of Detected Volatile
493 Organic Compounds. *Science (80-.)* **341**, 643–648 (2013).

494 57. Nguyen, T. B. *et al.* Rapid deposition of oxidized biogenic compounds to a temperate forest. *Proc.*
495 *Natl. Acad. Sci. U. S. A.* **112**, E392-401 (2015).

496 58. Wolfe, G. M. *et al.* Formaldehyde production from isoprene oxidation across NO_x regimes.
497 *Atmos. Chem. Phys.* **16**, 2597–2610 (2016).

498 59. Warneke, C. *et al.* Photochemical aging of volatile organic compounds in the Los Angeles basin:
499 Weekday-weekend effect. *J. Geophys. Res. Atmos.* **118**, 5018–5028 (2013).

500 60. Faulhaber, A. E. *et al.* Characterization of a thermodenuder-particle beam mass spectrometer
501 system for the study of organic aerosol volatility and composition. *Atmos. Meas. Tech.* **2**, 15–31
502 (2009).

503 61. McManus, J. B. *et al.* Pulsed quantum cascade laser instrument with compact design for rapid,
504 high sensitivity measurements of trace gases in air. *Appl. Phys. B Lasers Opt.* **92**, 387–392 (2008).

505 62. Canagaratna, M. R. *et al.* Elemental ratio measurements of organic compounds using aerosol
506 mass spectrometry: Characterization, improved calibration, and implications. *Atmos. Chem. Phys.*
507 **15**, 253–272 (2015).

508 63. Lopez-Hilfiker, F. D. *et al.* A novel method for online analysis of gas and particle composition:
509 Description and evaluation of a filter inlet for gases and AEROSols (FIGAERO). *Atmos. Meas. Tech.*
510 **7**, 983–1001 (2014).

511 64. Tani, A., Hayward, S. & Hewitt, C. N. Measurement of monoterpenes and related compounds by
512 proton transfer reaction-mass spectrometry (PTR-MS). *Int. J. Mass Spectrom.* **223–224**, 561–578
513 (2003).

514 65. Buhr, K., Van Ruth, S. & Delahunty, C. Analysis of volatile flavour compounds by Proton Transfer
515 Reaction-Mass Spectrometry: Fragmentation patterns and discrimination between isobaric and
516 isomeric compounds. *Int. J. Mass Spectrom.* **221**, 1–7 (2002).

517 66. Klein, F. *et al.* Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-
518 Flight Mass Spectrometry: Cooking Emissions. *Environ. Sci. Technol.* **50**, 1243–1250 (2016).

519 67. Steitz, B. Experimental determination of the partitioning coefficient of nopolone as a marker
520 substance in organic aerosol. (Bergischen Universität Wuppertal, 2012).

521 68. La, Y. S. *et al.* Impact of chamber wall loss of gaseous organic compounds on secondary organic
522 aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation. *Atmos.*
523 *Chem. Phys.* **16**, 1417–1431 (2016).

524

525 **Acknowledgements**

526 We would like to thank Harald Stark for insights into correcting for mass-dependent transmission in the
527 I⁻ CIMS calibration, Jose-Luis Jimenez for valuable discussions regarding vapor wall loss, Colette Heald for
528 valuable discussions of overall chemical trends, and Laura Wattenberg for the inspiration for the stacked
529 plot approach to visualizing these data. This work was supported in part by the NSF Postdoctoral
530 Research Fellowship program (AGS-PRF 1433432), as well as grants AGS-1536939, AGS-1537446 and
531 AGS- 1536551. D. A. Knopf acknowledges support from NSF grant AGS-1446286.

532

533 **Author Contribution**

534 Experiments were conducted by GIVW, PM, REO, CL, JBN, JPF, PKM, CA, LS, DAK, ATL, JRR, and STH, with
535 data analysis by these researchers with significant contributions by JAM, JFH, AHG, TBO, MRC, JHK, JTJ,
536 DRW. GIVW and JHK interpreted the results. This manuscript was prepared by GIVW and JHK, with
537 contributions and editing by all listed authors.

538

539 **Competing Financial Interests**

540 The authors declare no competing financial interests.

541

542 **Materials & Correspondence**

543 All correspondence should be addressed to Prof. Gabriel Isaacman-VanWertz at ivw@vt.edu or Prof.
544 Jesse Kroll at jhkroll@mit.edu.

545

546 Figure 1. Measured carbon photooxidation of α -pinene, characterized by molecular formula. Each
547 product ion of α -pinene (dark gray) is colored by the instrument by which it was measured (green:
548 AMS/SMPS, purple: PTR-MS, light gray: TILDAS, orange: I⁻ CIMS). Unlabeled species measured by TILDAS
549 are formic acid and formaldehyde. Uncertainty range for each instrument shown on right. Carbon
550 closure is achieved within measurement uncertainty (102 \pm 20%) with expected carbon in the system
551 (light gray dashed line at \sim 550 ppbC, which accounts for dilution of the precursor), providing an
552 unprecedented opportunity to study the complete chemical evolution of atmospheric oxidation
553 processes. All concentrations are corrected for dilution; pOC is also corrected for particle deposition to
554 the chamber walls. Bottom panel: modeled OH concentration (red line) and approximate photochemical
555 age in the atmosphere (blue dashed line), assuming an average atmospheric OH concentration of 2×10^6
556 molec cm⁻³. The corresponding plot for the α -pinene ozonolysis experiment is given in Supplementary
557 Fig. 6.

558 Figure 2. Chemical characterization of carbon measured in the photooxidation of α -pinene in terms of
559 \overline{OS}_C and c^* , commonly used for simplified representation of atmospheric organic carbon. These
560 measurements illustrate the highly dynamic nature of the chemical system. Circle area is proportional to
561 carbon concentration. Hollow: α -pinene, light gray: gas-phase species, dark gray: pOC, shown at average
562 \overline{OS}_C of each volatility bin measured by TD-AMS. Gas-phase species containing nitrate groups (defined as
563 containing nitrogen and ≥ 3 oxygen atoms) are outlined. Distributions are provided after approximately
564 (a) 1 hour, (b) 4 hours, and (c) 24 hours of equivalent atmospheric age. Some products are observed to
565 increase in concentration throughout the experiment (e.g., CO), while others form and are then
566 depleted (e.g., pinonaldehyde), demonstrating differences in reactivity and lifetime drive the dominant
567 formation of less-reactive products. The full time evolution of these data is available as online as
568 Supplementary Videos 1 and 2.

569 Figure 3. Distribution of key chemical properties of gas- and particle-phase products during the
570 photooxidation of α -pinene: (a) number of carbon atoms, n_C , (b) oxidation state of carbon, \overline{OS}_C , and (c)
571 volatility in terms of saturation concentration, c^* , each denoted by the color scale shown. The
572 properties of only the measured oxidation products (and not of the α -pinene precursor or the
573 "unmeasured" carbon) are shown; the plots in which α -pinene is included is provided in Supplementary
574 Fig. 6. Evolution of distributions and carbon-weighted averages of each property (bottom panels)
575 demonstrate several general trends in atmospheric oxidation: initial formation of pOC and lightly-
576 oxygenated moderately-volatile products, followed by fragmentation of gases to yield small oxygenated
577 compounds.

578 Figure 4. Changes in atmospheric lifetime and reactivity through multigenerational oxidation of α -
579 pinene. (a) Time-dependent distribution of atmospheric lifetime against oxidation by OH (τ_{ox}) including
580 unmeasured carbon (for which assumed $\tau_{\text{ox}} = 4$ h). Average trend shown in bottom panel. (b) The
581 volatility distribution of carbon at two points in the experiment. Times shown are denoted by arrows in
582 panel (a): relatively early (top) and late (bottom) in the reaction. Volatility bins are colored by τ_{ox} with
583 the same color scale as in panel a. Unmeasured carbon is assumed to be distributed evenly across $c^* =$
584 10^2 - 10^4 $\mu\text{g m}^{-3}$ (hashed bars) for illustrative purposes. (c) Carbon-weighted average OH reactivity
585 (assuming average OH concentration of 2×10^6 molec cm^{-3}). Exponential fit (black dashed line) has a
586 decay constant, $\tau_{\overline{k_{\text{OH}}}}$, of 2.8 hours. The average observed trend of increasing lifetime is shown to lead to
587 the sequestration of carbon into high- and low-volatility reservoirs of low-reactivity carbon (small
588 oxygenated gases and pOC, respectively) and a rapid decrease in overall reactivity.