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Abstract— We investigate the problem of simultaneous pa-
rameter identification and mapping of a spatially distributed
field using a mobile sensor network. We first develop a
parametrized model that represents the spatially distributed
field. Based on the model, a recursive least squares algorithm
is developed to achieve online parameter identification. Next,
we design a global state observer, which uses the estimated
parameters, together with data collected by the mobile sen-
sor network, to real-timely reconstruct the whole spatial-
temporal varying field. Since the performance of the parameter
identification and map reconstruction algorithms depends on
the trajectories of the mobile sensors, we further develop a
Lyapunov redesign based online trajectory planning algorithm
for the mobile sensor network so that the mobile sensors can
use local real-time information to guide them to move along
information-rich paths that can improve the performance of
the parameter identification and map construction. Lastly, a
cooperative filtering scheme is developed to provide the state
estimates of the spatially distributed field, which enables the
recursive least squares method. To test the proposed algorithms
in realistic scenarios, we first build a CO2 diffusion field in
a lab and construct a sensor network to measure the field
concentration over time. We then validate the algorithms in
the reconstructed CO2 field in simulation. Simulation results
demonstrate the efficiency of the proposed method.

I. INTRODUCTION

The state estimation and prediction of spatially distributed

fields described by partial differential equations (PDEs) plays

key roles in services such as chemical containment detection,

pollution control, and search and rescue missions [1]–[3]. A

typical spatially distributed field is the dispersion of gases

from a gas source into an ambient environment, which results

in a plume. Mapping or estimation of the resulting plume

constitutes the first step in performing monitoring tasks

and controlling the plume. Most of related earlier works

regarding state estimation of spatially distributed fields are

model-based [3]–[5]. By incorporating the dynamics of the

process modeled by a PDE, the field concentration can be

estimated using a large number of static sensors spreading

in the whole domain. It seems clear that endowing nodes

in a sensor network with mobility drastically expands the

spectrum of the network’s capabilities [6]. This leads to

recent flourishing progress in the use of mobile sensor

networks (MSNs) to improve parameter identification and

state estimation of spatially distributed systems [5]–[8].

Various observer designs have been proposed in the lit-

erature to map the fields using MSNs [6], [9]–[11]. As a
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natural enhancement of the state observers, a common and

powerful tool is the Kalman-Bucy filter [10]. The series of

publications [9], [12], [13] establish a general theoretical

framework for distributed filtering and state estimation. Since

the sensors are not assigned to fixed spatial positions, the

measurements along certain trajectories yield more informa-

tion about the field than those at other trajectories, which

makes the mobile sensor trajectory design important. The

optimal trajectory designs based on different criteria can be

seen in [9], [12], [13]. However, most of existing studies

assume the parameters of PDE models are known or can be

estimated offline [2], [12], [14], [15], with few exceptions

that investigate online parameter identification [7], [14], [16].

In many realistic scenarios, it is common that some parame-

ters in the PDEs such as the diffusion coefficient and decay

rate may be unknown or inaccurate. Hence, simultaneous

parameter identification while a MSN is exploring a spatially

distributed field becomes necessary [7], [16]. In this setting,

our most recent efforts [7], [16] proposed a cooperative

filtering scheme for performing online parameter estimation

for advection-diffusion processes. Under this cooperative

filtering scheme, the diffusion coefficient can be estimated

recursively without intensive computational loads to solve

the PDEs in the entire spatial domain [16], [17].

In this paper, we develop a sensing-motion co-planning

scheme for a MSN tasked with reconstructing a spatially

distributed process. We first propose a parametrized model

that represents the spatially distributed field. Base on this

model, the proposed scheme consists of three parts: first,

a recursive least squares (RLS) algorithm is presented for

the parameter identification of the parametrized model. Next,

using the estimated parameters together with data collected

by the MSN, we design a global state estimator to real-timely

reconstruct the whole spatially distributed field. Additionally,

a Lyapunov-based trajectory design is provided for the mo-

tion control of the MSN. To enable the RLS, a cooperative

Kalman filtering is further developed to provide the necessary

state estimates of the spatially distributed field along the tra-

jectory of the MSN. The convergence analysis shows that the

proposed scheme can achieve the boundedness of parameter

and state estimation errors. Simulation results based on a real

CO2 diffusion field show satisfactory performance.

The problem is formulated in Section II. Section III

presents the parameterization of the PDE model. Section IV

shows the sensing-motion co-planning scheme. Section V

illustrates the convergence analysis. Section VI discusses the

cooperative Kalman filter. Simulation is presented in Section

VII. Conclusions and future work follow in Section VIII.
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II. PROBLEM FORMULATION

In this section, we formulate the problem of sensing-

motion co-planning using MSNs.

A. The model

We assume that the dynamics of a spatially distributed

system is described by the following two-dimensional (2D)

partial differential equation defined on a domain Ω= [0,Lx]×
[0,Ly] ∈ R

2:

∂ z(r, t)
∂ t

= f (z(r, t),∇z(r, t),∇2z(r, t)), r ∈Ω, (1)

where z(r, t) is the concentration function, ∇ represents the

gradient operator, and ∇2 represents the Laplacian operator.

f (·) is an unknown nonlinear function. The meaning of

Equation (1) is that there is a net flow of substance from

the regions with higher concentration of the substance to

the ones with lower concentration. This type of nonlinear

PDEs in Equation (1) is widely used to described physical

and engineering phenomena such as heat process, population

dynamics, chemical reactors, fluid dynamics, etc., [15].

In practical applications such as environmental monitor-

ing, the domain Ω is much larger than sensor dimensions

so that the boundary can be modeled as a flat surface [2],

[7]. Hence, the initial and Dirichlet boundary conditions for

Equation (1) are assumed as [2], [7] z(r,0) = z0(r),z(r, t) =
zb(r, t), r ∈ ∂Ω, where z0(r) and zb(r, t) are the arbitrary ini-

tial condition and Dirichlet boundary condition, respectively.

B. Sensor dynamics

Consider a formation of N coordinated sensing agents

moving in the field, each of which carries a sensor that

takes point measurements of the field z(r, t). We consider

the sensing agents with single-integrator dynamics given by

ṙi(t) = ui(t), i = 1,2, ...,N, where ri(t) and ui(t)⊆R
2 are the

position and the velocity of the ith agent, respectively. In

most applications, the sensor measurements are taken dis-

cretely over time. Let the moment when new measurements

are available be tk, where k is an integer index. Denote the

position of the ith agent at the moment tk be rk
i and the field

value at rk
i be z(rk

i ,k). The measurement of the ith agent can

be modeled as p(rk
i ,k) = z(rk

i ,k)+ni, where ni is assumed to

be i.i.d. Gaussian noise. We have the following assumption

for the sensing agents.

Assumption II.1 Each agent can measure its position rk
i

and concentration value p(rk
i ,k), and share these information

with other agents.

Under Assumption II.1, the object is to construct a map

of the spatially distributed field in a real-time fashion. Since

the original PDE model (1) is difficult to identify due to the

complex nonlinear structures, we will first parametrize the

model in Equation (1). Based on this parametrized model, we

construct a co-planning scheme for parameter identification

and mapping of the spatially distributed field and design the

error-minimum trajectory for the MSN.

III. THE PARAMETERIZATION OF THE PDE MODEL

This section introduces the parametrized model that we

adopt in this research. Under Assumption II.1, the object

is to construct a map of the process (1) using the discrete

measurements taken by mobile agents over time as input.

Hence, we need to discretize the PDE (1) using some

numerical methods. Suppose the current time step is tk. The

temporal variations of the concentration can be approximated

with finite difference as,

∂ z(r, t)
∂ t

|t=tk ≈
z(r,k+1)− z(r,k)

ts
, (2)

where ts is the sampling interval.

Applying the above finite difference to Equation (1) gives,

z(r,k+1)≈ z(r,k)+ ts f (z(r,k),∇z(r,k),∇2z(r,k)). (3)

Exact solutions for the nonlinear PDE (3) are difficult

to obtain due to diverse nonlinearity, different structures,

and complex boundary conditions [15]. Therefore, we pa-

rameterize the nonlinear function f (·) in Equation (3) by

assuming that the unknown nonlinear function f (·) takes a

form of polynomial. Severals works have illustrated that the

polynomial expression of f (·) can be a good approximation

of the original model in Equation (1) [15]. The polynomial

form of Equation (3) is given by the model,

z(r,k+1) = z(r,k)+
M

∑
i=1

θi
(
tsφi(z(r,k),∇z(r,k),∇2z(r,k))

)

+ e(r,k), (4)

where M denotes the order of the polynomial, θi
is the coefficient of the ith polynomial term, and

φi(z(r,k),∇z(r,k),∇2z(r,k)) is the corresponding monomial,

which is the product of different spatial derivatives z(r,k),
∇z(r,k), and ∇2z(r,k). e(r,k) is the approximation modeling

error. e(r,k) is a higher order term of the space sampling

interval, which allows us to assume it as an independent

noise sequence with zero mean and finite variance [16], [17].

We observe that Equation (4) is just a semi-discrete

representation of the original continuous PDE (1). That

is because a direct differentiation process of higher-order

spatially derivative terms such as ∇z(r,k) and ∇2z(r,k) tend

to amplify the effects of the noise [15]. Therefore, different

from existing lumped models that discretize each time and

spatial derivative term [2], [15], we only consider the time

derivative discretization in our work. We will employ a

cooperative Kalman filter to directly estimate the spatial

derivative terms ∇z(r,k) and ∇2z(r,k) along the trajectory

of the MSN. This part of work will be introduced in Section

VI. Here, we denote ẑ(r,k+1), ẑ(r,k), ∇ẑ(r,k), and ∇2ẑ(r,k)
as the estimated states from the cooperative Kalman filter,

which can be specified as follows, ẑ(r,k+1) = z(r,k+1)+
ξ1, ẑ(r,k) = z(r,k) + ξ2,∇ẑ(r,k) = ∇z(r,k) + ξ3,∇2ẑ(r,k) =
∇2z(r,k)+ξ4. Since the cooperative Kalman filter converges

as proved in [7], [16], all the error terms ξ1, ξ2, ξ3, and

ξ4 can be assumed as Gaussian noises with zero mean and

bounded covariances.
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Substituting the states ẑ(r,k + 1), ẑ(r,k), ∇ẑ(r,k), and

∇2ẑ(r,k) into (4), we have the following equation, ẑ(r,k+
1) = ẑ(r,k)+∑M

i=1 θi
(
tsφi(ẑ(r,k),∇ẑ(r,k),∇2ẑ(r,k))

)
+h(r,k),

where h(r,k) = ξ (r,k)+ e(r,k). For notation simplification,

we denote ξ (r,k) as the combination of the Gaussian noises

ξ1, ξ2, ξ3, and ξ4, i.e., ξ (r,k) = ∑4
i=1 ξi. h(r,k) combines two

Gaussian noises ξ (r,k) and e(r,k), which can be assumed as

a Gaussian noise with zero mean and finite variance. Then,

we can rewrite the dynamic of ẑ(r,k+1) in a vector form,

ẑ(r,k+1) = Φ̂(r,k)Θ+h(r,k), (5)

where ΘT = [1,θ1, · · · ,θM], which is the parameter

vector that we will identify, and Φ̂(r,k) =
[ẑ(r,k), tsφ1(ẑ(r,k),∇ẑ(r,k),∇2ẑ(r,k)), · · · , tsφM(ẑ(r,k),∇ẑ(r,k),
∇2ẑ(r,k))]. In Equation (5), ẑ(r,k + 1) and Φ̂(r,k) will be

determined by the cooperative Kalman filtering in Section

VI along the formation center of the MSN, Θ is the

parameter that needs to be identified. In the following

section, a co-planning scheme for parameter identification

and mapping of the spatially distributed field will be

designed based on the model (5).

IV. SIMULTANEOUS PARAMETER IDENTIFICATION AND

MAPPING PLUS TRAJECTORY DESIGN FOR MSNS

A. RLS parameter identification

Based on the parametrized spatially distributed system

(5), the proposed parameter identification algorithm uses the

discrete measurements taken by mobile agents over time

as input. Within a mobile sensor network, consider the N
agents as a group. Let rk

c = [rk
c,x,r

k
c,y]

T be the center of the

formation at tk, i.e., rk
c =

1
N ∑N

i=1 rk
i . The illustration of rk

c for

four agents is shown in Fig. 1. By running the cooperative

Kalman filter in real-time, only the states ẑ(rk
c ,k), ∇ẑ(rk

c ,k),
and ∇2ẑ(rk

c ,k) at the formation center can be provided by

combing measurements from the sensing agents in the group.

Thus, we need to analyze the dynamics of the field value

along the formation center rk
c . Therefore, we replace r in

Equation (5) with rk
c , which results in,

ẑ(rk
c ,k+1) = Φ̂(rk

c ,k)Θ+h(rk
c ,k), (6)

where Φ̂(rk
c ,k) = [ẑ(rk

c ,k), tsφ1(ẑ(rk
c ,k),∇ẑ(rk

c ,k),∇2ẑ(rk
c ,k)),

· · · , tsφM(ẑ(rk
c ,k),∇ẑ(rk

c ,k),∇2ẑ(rk
c ,k))].

Similarly, the system dynamics at the formation center rk
c

at time step tk−1 can be written as,

ẑ(rk
c ,k) = Φ̂(rk

c ,k−1)Θ+h(rk
c ,k−1). (7)

Let Θ̂(k) be the estimate of Θ at time instant k. Given

an initial estimate of Θ̂(0), a direct application of the

RLS method can iteratively update the estimate of Θ. The

proposed RLS algorithm can be stated as follows:

Θ̂(k) = Θ̂(k−1)+R(k)Φ̂T (rk
c ,k)·

(ẑ(rk
c ,k)− Φ̂(rk

c ,k−1)Θ̂(k−1)), (8)

R−1(k) = R−1(k−1)+ Φ̂T (rk
c ,k)Φ̂(rk

c ,k),

Fig. 1. The illustration of the formation center for a four-agent group.

where R(k) is the error covariance matrix and Φ̂(rk
c ,k−1) =

[ẑ(rk
c ,k−1), tsφ1(ẑ(rk

c ,k−1),∇ẑ(rk
c ,k−1),∇2ẑ(rk

c ,k−1)),
· · · , tsφM(ẑ(rk

c ,k−1),∇ẑ(rk
c ,k−1),∇2ẑ(rk

c ,k−1))].
We should point out that to run the recursive update law in

Equation (8), we require Φ̂(rk
c ,k−1) and Φ̂(rk

c ,k), which can

be obtained from the cooperative Kalman filter introduced in

Section VI.

B. Simultaneous identification and mapping

In Section IV.A, we have shown how to identify Θ based

on Equation (5). With the identified parameter Θ̂(k) using

Equation (8), we develop a state estimator for the field

values over the whole area so that a map of the field can be

generated simultaneously with the parameter identification.

In the following, we show how to obtain this state estimator.

Let us first define z̄(rk
c ,k+1) = Φ̂(rk

c ,k)Θ̂(k), where Θ̂(k)
is the estimate of Θ using Equation (8), and the bar notation

z̄(rk
c ,k + 1) represents the output from a state estimator at

the formation center rk
c . By modeling ẑ(rk

c ,k) as a Dirac

measure concentrated at the formation center, we have

ẑ(rk
c ,k) = z̄(rk

c ,k)+σ(r− rk
c)(ẑ(r

k
c ,k)− z̄(rk

c ,k)), where σ(.)
is an impulse function. Similarly, we further model the other

states ∇ẑ(rk
c ,k) and ∇2ẑ(rk

c ,k) as Dirac measurements,

∇ẑ(rk
c ,k) = ∇z̄(rk

c ,k)+σ(r− rk
c)(∇ẑ(rk

c ,k)−∇z̄(rk
c ,k)),

∇2ẑ(rk
c ,k) = ∇2z̄(rk

c ,k)+σ(r− rk
c)(∇

2ẑ(rk
c ,k)−∇2z̄(rk

c ,k)).

By combining the above Dirac measurements, we can con-

struct the Luenberger observer as follows,

z̄(rk
c ,k+1) = z̄(rk

c ,k)+σ(r− rk
c)(ẑ(r

k
c ,k)− z̄(rk

c ,k))

+
M

∑
i=1

θ̂i

(
tsφi(z̄(rk

c ,k),∇z̄(rk
c ,k),∇

2z̄(rk
c ,k))

)

+σ(r− rk
c)

M

∑
i=1

θ̂i(tsφi(ẑ(rk
c ,k),∇ẑ(rk

c ,k),∇
2ẑ(rk

c ,k))

− tsφi(z̄(rk
c ,k),∇z̄(rk

c ,k),∇
2z̄(rk

c ,k))

= Φ̄(rk
c ,k)Θ̂(k)+σ(r− rk

c)(ẑ(r
k
c ,k)− z̄(rk

c ,k))

+σ(r− rk
c)

M

∑
i=1

θ̂i(tsφi(ẑ(rk
c ,k),∇ẑ(rk

c ,k),∇
2ẑ(rk

c ,k))

− tsφi(z̄(rk
c ,k),∇z̄(rk

c ,k),∇
2z̄(rk

c ,k)), (9)

where Φ̄(rk
c ,k) = [z̄(rk

c ,k), tsφ1(z̄(rk
c ,k),∇z̄(rk

c ,k),∇2z̄(rk
c ,k)),

· · · , tsφM(z̄(rk
c ,k),∇z̄(rk

c ,k),∇2z̄(rk
c ,k))]. Since the coopera-

tive Kalman filter is able to provide the states ẑ(rk
c ,k),

∇ẑ(rk
c ,k), and ∇2ẑ(rk

c ,k) along the moving trajectory, these
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states can be treated as the “measurements” for the state

estimator. By replacing rk
c in terms z̄(rk

c ,k+1) and Φ̄(rk
c ,k)

with r in (9) , the global state estimator can be readily

obtained to estimate the field value over the entire spatial

domain [2]. The proposed global state estimator takes the

form,

z̄(r,k+1) = Φ̄(r,k)Θ̂(k)+σ(r− rk
c)(ẑ(r

k
c ,k)− z̄(rk

c ,k))

+σ(r− rk
c)

M

∑
i=1

θ̂its(φi(ẑ(rk
c ,k),∇ẑ(rk

c ,k),∇
2ẑ(rk

c ,k))

−φi(z̄(rk
c ,k),∇z̄(rk

c ,k),∇
2z̄(rk

c ,k)),r ⊆Ω, (10)

where Φ̄(r,k) = [z̄(r,k), tsφ1(z̄(r,k),∇z̄(r,k),∇2z̄(r,k)), · · · ,
tsφM(z̄(r,k),∇z̄(r,k),∇2z̄(r,k))]. We observe that Equation (9)

constitutes a finite-dimensional measurement representation

of (10). The state estimator (10) is in the form of a Luen-

berger observer [2] with some output injection terms.

C. The trajectory design for the MSN

Many results have shown that the performance of state

estimation and parameter identification depends on the trajec-

tories of sensing agents [2], [9]. In this paper, the trajectory

design of the MSN is based on the state estimation error

at the formation center, that is, e(rk
c ,k) = ẑ(rk

c ,k)− z̄(rk
c ,k).

The goal of the design scheme is to provide the sensing

agents with control signals that move towards the direction

associated with larger state estimation error. We apply the

following stable motion control laws for the mobile agents:

rk+1
c,x = rk

c,x− kxe(rk
c ,k)ex(rk

c ,k),

rk+1
c,y = rk

c,y− kye(rk
c ,k)ey(rk

c ,k), (11)

where rk
c = [rk

c,x,r
k
c,y], kx and ky are user-defined positive

gains, ex(rk
c ,k) and ey(rk

c ,k) are the error gradients at the

formation center rk
c specified as follows,

ex(rk
c ,k)�

∂ ẑ(rk
c ,k)

∂ rk
c,x

− ∂ z̄(rk
c ,k)

∂ rk
c,x

,

ey(rk
c ,k)�

∂ ẑ(rk
c ,k)

∂ rk
c,y

− ∂ z̄(rk
c ,k)

∂ rk
c,y

. (12)

V. THE CONVERGENCE ANALYSIS

In this section, we provide the convergence proof of the

co-planning scheme. We have the following proposition.

Proposition V.1 Consider the discretized model in Equation

(5) with the parameter Θ unknown. Apply the proposed co-

planning scheme, which consists of the RLS algorithm (8),

the state estimator (10), and the motion control (11). The

error signal e(rk
c ,k) = ẑ(rk

c ,k)− z̄(rk
c ,k) and the parameter

estimation errors δΘ = Θ− Θ̂ are bounded for all k ≥ 0.

Proof: Let us denote the error signal at the formation

center rk
c and at time step k+1 as e(rk

c ,k+1) = ẑ(rk
c ,k+1)−

z̄(rk
c ,k+1). By combing Equations (5) and Equation (9), the

time variance of the error e(rk
c ,k) can be obtained, which

satisfies the following equation:

e(rk
c ,k+1)− e(rk

c ,k) =
M

∑
i=1

(θi− θ̂i)ts· (13)

(
φi(ẑ(rk

c ,k),∇ẑ(rk
c ,k),∇

2ẑ(rk
c ,k))

)
− e(rk

c ,k).

Define a Lyapunov function as V (rk
c ,k) =

1
2 (e

2(rk
c ,k) +

δΘR−1(k)δΘ), where δΘ = Θ− Θ̂(k). Then the difference

of the discrete Lyapunov function can be written as

V (rk+1
c ,k+1)−V (rk

c ,k) = e(rk
c ,k)er(rk

c ,k)·(
rk+1

c − rk
c

)
+ e(rk

c ,k)
(

e(rk
c ,k+1)− e(rk

c ,k)
)

−δΘR−1(t)
(
Θ̂(k)− Θ̂(k−1)

)
, (14)

where er(rk
c ,k) = [ex(rk

c ,k),ey(rk
c ,k)] represents the error gra-

dients in a vector form defined in Equation (12).

It is obvious that the first term in Equation (14) is an

indefinite term which must somehow be made negative.

The desired control law for mobile agents in Equation (11)

can guarantee this indefinite term in the Lyapunov function

be negative semidefinite. Substituting the control laws in

Equation (11) into Equation (14), we can get that

V (rk+1
c ,k+1) =V (rk

c ,k)− kxe2(rc, t)e2
x(rc, t)

− kye2(rc, t)e2
y(rc, t)+ e(rk

c ,k)
(

e(rk
c ,k+1)− e(rk

c ,k)
)

−δΘR−1(t)
(
Θ̂(k)− Θ̂(k−1)

)
. (15)

Then, substituting the update law in Equations (8) and the

dynamics of the error (13) into (15) yields

V (rk+1
c ,k+1) =V (rk

c ,k)− kxe2(rk
c ,k)e

2
x(r

k
c ,k)

− kye2(rk
c ,k)e

2
y(r

k
c ,k)+ e(rk

c ,k)
(

e(rk
c ,k+1)− e(rk

c ,k)
)

−δΘΦ̂T (rk
c ,k)e(r

k
c ,k)

=V (rk
c ,k)− kxe2(rk

c ,k)e
2
x(r

k
c ,k)− kye2(rk

c ,k)e
2
y(r

k
c ,k) (16)

− e2(rk
c ,k)−δΘΦ̂T (rk

c ,k)e(r
k
c ,k)

M

∑
i=1

(θi− θ̂i)ts
(

φi(ẑ(rk
c ,k),+∇ẑ(rk

c ,k),∇
2ẑ(rk

c ,k))
)

e(rk
c ,k).

By definition, we know that

δΘΦ̂T (rk
c ,k) =

M

∑
i=1

(θi− θ̂i)ts
(

φi(ẑ(rk
c ,k),∇ẑ(rk

c ,k),∇
2ẑ(rk

c ,k))
)
.

Using the update law in Equation (8), we can get that, V (rk+1
c ,k+

1) = V (rk
c ,k)− kxe2(rk

c ,k)e
2
x(r

k
c ,k)− kye2(rk

c ,k)e
2
y(r

k
c ,k)− e2(rk

c ,k),
which implies V (rk+1

c ,k+1)≤V (rk
c ,k). Then we conclude that the

parameter estimation errors δΘ and the prediction errors e(rk
c ,k)

are bounded.

VI. COOPERATIVE KALMAN FILTER

In this section, we develop a cooperative Kalman filter

that provides necessary information needed to enable the

RLS algorithm. From Equation (8), we know that we re-

quire Φ̂(rk
c ,k) and Φ̂(rk

c ,k− 1), which consist of the states

z(rk
c ,k), ∇z(rk

c ,k), ∇2z(rk
c ,k), z(rk

c ,k− 1), ∇z(rk
c ,k− 1), and

∇2z(rk
c ,k− 1). While the MSN is moving in the field, the
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field value along the trajectory of the formation center rc
evolves according to

ż(rc, t) = ∇z(rc, t) · ṙc +
∂ z(rc, t)

∂ t
, (17)

Substituting the PDE (1) into (17), we obtain

ż(rc, t) = ∇z(rc, t) · ṙc + f (z(r, t),∇z(r, t),∇2z(r, t)). (18)

We also derive the total time derivative of ∇z(rc, t) as

∇̇z(rc, t) = H(rc, t) · ṙc +
∂∇z(rc, t)

∂ t
, (19)

where H(rci, t) is the Hessian matrix.

To construct the cooperative Kalman filter, define the

information state as X(k) = [z(rk
c ,k),∇z(rk

c ,k),z(r
k
c ,k −

1),∇z(rk
c ,k− 1)]T . In practice, sensors take measurements

discretely with sampling interval ts. By discretizing Equa-

tions (18) and (19), we obtain the state equation as the in-

formation state evolves according to the following equation:

X(k+1) = A(k)X(k)+U(k)+ e(k), (20)

where e(k) = [e(rk
c ,k),0,e(r

k
c ,k−1),0]T represents the model

error terms in Equation (3). We denote the covariance matrix

of e(k) as E[e(k)e(k)T ] = W . The matrices A(k) and U(k)
are defined by

A(k) =

⎡
⎢⎢⎣

1 (rk+1
c − rk

c)
T 0 0

0 I2×2 0 0

0 0 1 (rk+1
c − rk

c)
T

0 0 0 I2×2

⎤
⎥⎥⎦ ,

U(k) =

⎡
⎢⎣

∑M
i=1 θ̂i

(
tsφi(z(rk

c ,k),∇z(rk
c ,k),∇2z(rk

c ,k))
)

H(rk
c ,k)(r

k+1
c − rk

c)

∑M
i=1 θ̂i

(
tsφi(z(rk

c ,k−1),∇z(rk
c ,k−1),∇2z(rk

c ,k−1))
)

H(rk
c ,k−1)(rk+1

c − rk
c)

⎤
⎥⎦ ,

where H(rk−1
c ,k) is the Hessian matrix and θ̂i can be obtained

by the RLS algorithm in Equation (8).

A measurement equation is also required for the coopera-

tive Kalman filter. By applying the formation control, rk
i and

rk−1
i can be controlled to be close to rk

c . Therefore, the con-

centration can be locally approximated by a Taylor series up

to second order as z(rk
i ,k) ≈ z(rk

c ,k)+ (rk
i − rk

c)
T ∇z(rk

c ,k)+
1
2 (r

k
i − rk

c)
T H(rk

c ,k)(r
k
i − rk

c), z(rk−1
i ,k− 1) ≈ z(rk

c ,k− 1) +

(rk−1
i − rk

c)
T ∇z(rk

c ,k−1)+ 1
2 (r

k−1
i − rk

c)
T H(rk

c ,k−1)(rk−1
i −

rk
c). Let P(k) be the vector that contains all measurements

from all the agents at time k and k−1. Then, the measure-

ment equation can be modeled as,

P(k) =C(k) ·X(k)+D(k)Ĥ(k)+D(k)ε(k)+n(k), (21)

where Ĥ(k) represents the estimate of the Hessian H(k) =
[H(rk

c ,k),H(rk
c ,k−1)]T at the center rk

c in a vector form and

ε(k) represents the error in the estimation of the Hessian

matrices. Denote E[n(k)n(k)T ] = R and E[ε(k)ε(k)T ] = Q.

D(k) is a matrix with its first N rows defined by [ 1
2 ((r

k
i −

rk
c)

⊗
(rk

i − rk
c))

T 0] and last N rows defined by [0 1
2 ((r

k
i −

rk−1
c )

⊗
(rk

i − rk−1
c ))T ], where i = 1,2, · · · ,N and

⊗
is the

Kronecker product. C(k) is a matrix with its first N rows

defined by [1 (rk
i − rk

c)
T 0 0] and last N rows defined by

[0 0 1 (rk−1
i − rk

c)
T ] for i = 1,2, · · · ,N. Given (20) and

(21), the equations for the cooperative Kalman filter can be

readily constructed [11]. For more details, please refer to our

previous works [7], [16], [17].

VII. SIMULATION

A. Generating and visualizing a real diffusion field

In this section, we validate the proposed algorithm in

simulation based on a reconstructed CO2 diffusion field,

which is a typical advection-diffusion process. Note that even

though the co-planning scheme is based on the nonlinear

PDE (1), in this paper, we only consider the validation in a

diffusion process, which is a linear PDE, because it is really

hard to construct a controllable nonlinear spatially distributed

field in a lab environment. More simulation and experiment

validations will be included in our further work. The area of

the test-bed is 3.5 × 3.5m2. To measure the concentration

of the CO2 gas over the area, a sensor grid is assembled.

As shown in Fig. 2, the sensor grid consists of 24 CO2

sensors, which is attached to 8 arms. We then use MATLAB

to reconstruct the diffusion process by interpolating the field

values collected by the sensor grid at every discrete time

instant. The diffusion process obtained from the real field is

shown in Fig. 3. The contours in Fig. 3 represent the level

curves of the diffusion field. The diffusion procedure of CO2

begins at step k = 0s and ends at k = 575s. For more details

about the experiment, please refer to our previous paper [16].

(a) (b)

Fig. 2. The illustration of the sensor grid.

k=100s
(a)

k=200s
(b)

k=350s
(c)

k=575s
(d)

Fig. 3. The diffusion field collected by the sensor grid.

B. Simulation results

In the following, we validate the co-planning scheme

with four sensing agents deployed in the reconstructed CO2
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field in simulation. The agents are controlled to move along

the direction associated with higher state estimation error

while keeping a constant formation as shown in Fig. 4. In

Fig. 4, the colored stars represent the four sensing agents,

the dotted colored line represents the designed trajectory

for the center of the MSN. While the MSN is exploring

the field, it also achieves online parameter identification by

implementing the cooperative Kalman filter and update law

in (8). The estimation results of the diffusion coefficient are

shown in Fig. 5. As we can observe from Fig. 5 that, the

estimate of the parameter can converge to a stabilized value.

Based on the state estimator in (10), we show the results of

mapping the diffusion field using the estimated Θ̂ in Fig. 4.

The mapping result of the state estimator is shown to be

a little different from the true values, which is illustrated

in Fig. 3. This is expected, because this difference is due

to the unknown initial conditions of the field and limited

measurements along the trajectory of the MSN. To illustrate

the efficacy of the proposed approach, we further calculate

the root mean squared error (RMSE) of the state estimation

error, which is shown in Fig. 6. As expected, RMSE is

gradually reduced as the estimator learns about the process.

k=100s
(a)

k=200s
(b)

k=350s
(c)

k=575s
(d)

Fig. 4. Evolution of the mapping field using the co-planning scheme.

Fig. 5. The estimated diffusion coefficients.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a novel co-planning scheme for parameter

identification and state estimation of spatially distributed pro-

cesses. By designing a RLS algorithm and a global state es-

timator, the proposed scheme can deal with the use of MSNs

for simultaneous parameter and state estimation of spatially

distributed fields. The trajectory design based on Lyapunov

redesign method is also proposed. Theoretical justifications

are provided for the convergence. Simulation results based on

Fig. 6. The RMSE of the state estimation error.

a real CO2 field show satisfactory performance. Future work

includes extending the proposed algorithm to PDEs with

spatially varying parameters and experimental validation.
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