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Sensing-Motion Co-Planning For Reconstructing a Spatially Distributed
Field Using a Mobile Sensor Network

Jie You and Wencen Wu

Abstract— We investigate the problem of simultaneous pa-
rameter identification and mapping of a spatially distributed
field using a mobile sensor network. We first develop a
parametrized model that represents the spatially distributed
field. Based on the model, a recursive least squares algorithm
is developed to achieve online parameter identification. Next,
we design a global state observer, which uses the estimated
parameters, together with data collected by the mobile sen-
sor network, to real-timely reconstruct the whole spatial-
temporal varying field. Since the performance of the parameter
identification and map reconstruction algorithms depends on
the trajectories of the mobile sensors, we further develop a
Lyapunov redesign based online trajectory planning algorithm
for the mobile sensor network so that the mobile sensors can
use local real-time information to guide them to move along
information-rich paths that can improve the performance of
the parameter identification and map construction. Lastly, a
cooperative filtering scheme is developed to provide the state
estimates of the spatially distributed field, which enables the
recursive least squares method. To test the proposed algorithms
in realistic scenarios, we first build a CO, diffusion field in
a lab and construct a sensor network to measure the field
concentration over time. We then validate the algorithms in
the reconstructed CO, field in simulation. Simulation results
demonstrate the efficiency of the proposed method.

I. INTRODUCTION

The state estimation and prediction of spatially distributed
fields described by partial differential equations (PDEs) plays
key roles in services such as chemical containment detection,
pollution control, and search and rescue missions [1]-[3]. A
typical spatially distributed field is the dispersion of gases
from a gas source into an ambient environment, which results
in a plume. Mapping or estimation of the resulting plume
constitutes the first step in performing monitoring tasks
and controlling the plume. Most of related earlier works
regarding state estimation of spatially distributed fields are
model-based [3]-[5]. By incorporating the dynamics of the
process modeled by a PDE, the field concentration can be
estimated using a large number of static sensors spreading
in the whole domain. It seems clear that endowing nodes
in a sensor network with mobility drastically expands the
spectrum of the network’s capabilities [6]. This leads to
recent flourishing progress in the use of mobile sensor
networks (MSNs) to improve parameter identification and
state estimation of spatially distributed systems [5]-[8].

Various observer designs have been proposed in the lit-
erature to map the fields using MSNs [6], [9]-[11]. As a
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natural enhancement of the state observers, a common and
powerful tool is the Kalman-Bucy filter [10]. The series of
publications [9], [12], [13] establish a general theoretical
framework for distributed filtering and state estimation. Since
the sensors are not assigned to fixed spatial positions, the
measurements along certain trajectories yield more informa-
tion about the field than those at other trajectories, which
makes the mobile sensor trajectory design important. The
optimal trajectory designs based on different criteria can be
seen in [9], [12], [13]. However, most of existing studies
assume the parameters of PDE models are known or can be
estimated offline [2], [12], [14], [15], with few exceptions
that investigate online parameter identification [7], [14], [16].
In many realistic scenarios, it is common that some parame-
ters in the PDEs such as the diffusion coefficient and decay
rate may be unknown or inaccurate. Hence, simultaneous
parameter identification while a MSN is exploring a spatially
distributed field becomes necessary [7], [16]. In this setting,
our most recent efforts [7], [16] proposed a cooperative
filtering scheme for performing online parameter estimation
for advection-diffusion processes. Under this cooperative
filtering scheme, the diffusion coefficient can be estimated
recursively without intensive computational loads to solve
the PDEs in the entire spatial domain [16], [17].

In this paper, we develop a sensing-motion co-planning
scheme for a MSN tasked with reconstructing a spatially
distributed process. We first propose a parametrized model
that represents the spatially distributed field. Base on this
model, the proposed scheme consists of three parts: first,
a recursive least squares (RLS) algorithm is presented for
the parameter identification of the parametrized model. Next,
using the estimated parameters together with data collected
by the MSN, we design a global state estimator to real-timely
reconstruct the whole spatially distributed field. Additionally,
a Lyapunov-based trajectory design is provided for the mo-
tion control of the MSN. To enable the RLS, a cooperative
Kalman filtering is further developed to provide the necessary
state estimates of the spatially distributed field along the tra-
jectory of the MSN. The convergence analysis shows that the
proposed scheme can achieve the boundedness of parameter
and state estimation errors. Simulation results based on a real
CO, diffusion field show satisfactory performance.

The problem is formulated in Section II. Section III
presents the parameterization of the PDE model. Section IV
shows the sensing-motion co-planning scheme. Section V
illustrates the convergence analysis. Section VI discusses the
cooperative Kalman filter. Simulation is presented in Section
VII. Conclusions and future work follow in Section VIIL.
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II. PROBLEM FORMULATION

In this section, we formulate the problem of sensing-
motion co-planning using MSNs.

A. The model

We assume that the dynamics of a spatially distributed
system is described by the following two-dimensional (2D)
partial differential equation defined on a domain Q =0, L,] X
[0,L,] € R?:

dz(nt)
ot

where z(r,7) is the concentration function, V represents the
gradient operator, and V? represents the Laplacian operator.
f(-) is an unknown nonlinear function. The meaning of
Equation (1) is that there is a net flow of substance from
the regions with higher concentration of the substance to
the ones with lower concentration. This type of nonlinear
PDEs in Equation (1) is widely used to described physical
and engineering phenomena such as heat process, population
dynamics, chemical reactors, fluid dynamics, etc., [15].

In practical applications such as environmental monitor-
ing, the domain Q is much larger than sensor dimensions
so that the boundary can be modeled as a flat surface [2],
[7]. Hence, the initial and Dirichlet boundary conditions for
Equation (1) are assumed as [2], [7] z(r,0) = z0(r),z(r,t) =
2(nt), r € dQ, where zo(r) and z,(r,t) are the arbitrary ini-
tial condition and Dirichlet boundary condition, respectively.

= f(z(rt),Vz(rt),Vi2(rt), reQ, (1)

B. Sensor dynamics

Consider a formation of N coordinated sensing agents
moving in the field, each of which carries a sensor that
takes point measurements of the field z(r,7). We consider
the sensing agents with single-integrator dynamics given by
7i(t) = ui(t),i=1,2,...,N, where r;(t) and u;(t) C R? are the
position and the velocity of the ith agent, respectively. In
most applications, the sensor measurements are taken dis-
cretely over time. Let the moment when new measurements
are available be #;, where k is an integer index. Denote the
position of the ith agent at the moment #; be rf‘ and the field
value at ¥ be z(r¥, k). The measurement of the ith agent can
be modeled as p(r¥,k) = z(r¥, k) +n;, where n; is assumed to
be i.i.d. Gaussian noise. We have the following assumption
for the sensing agents.

Assumption II.1 Each agent can measure its position rf
and concentration value p(rl]»‘, k), and share these information

with other agents.

Under Assumption II.1, the object is to construct a map
of the spatially distributed field in a real-time fashion. Since
the original PDE model (1) is difficult to identify due to the
complex nonlinear structures, we will first parametrize the
model in Equation (1). Based on this parametrized model, we
construct a co-planning scheme for parameter identification
and mapping of the spatially distributed field and design the
error-minimum trajectory for the MSN.

III. THE PARAMETERIZATION OF THE PDE MODEL

This section introduces the parametrized model that we
adopt in this research. Under Assumption II.1, the object
is to construct a map of the process (1) using the discrete
measurements taken by mobile agents over time as input.
Hence, we need to discretize the PDE (1) using some
numerical methods. Suppose the current time step is #;. The
temporal variations of the concentration can be approximated
with finite difference as,

dz(r1)
ot

where ¢, is the sampling interval.
Applying the above finite difference to Equation (1) gives,

2(rk+1) = 2(r k) +1,f (2(r k), Va(r k), VZ2(rk)).  (3)

zZ(rnk+1)—2z(rk
l:Ik% ( t)s ( )) (2)

Exact solutions for the nonlinear PDE (3) are difficult
to obtain due to diverse nonlinearity, different structures,
and complex boundary conditions [15]. Therefore, we pa-
rameterize the nonlinear function f(-) in Equation (3) by
assuming that the unknown nonlinear function f(-) takes a
form of polynomial. Severals works have illustrated that the
polynomial expression of f(-) can be a good approximation
of the original model in Equation (1) [15]. The polynomial
form of Equation (3) is given by the model,

Ak 1) = 2() + Y 6, (6 0y (20K, V(1K) V22(1K))
i=1

+e(r,k), “)

where M denotes the order of the polynomial, 6;
is the coefficient of the ith polynomial term, and
0i(z(r,k), Vz(r,k),V?z(r,k)) is the corresponding monomial,
which is the product of different spatial derivatives z(r,k),
Vz(r,k), and V?z(r,k). e(r,k) is the approximation modeling
error. e(r,k) is a higher order term of the space sampling
interval, which allows us to assume it as an independent
noise sequence with zero mean and finite variance [16], [17].

We observe that Equation (4) is just a semi-discrete
representation of the original continuous PDE (1). That
is because a direct differentiation process of higher-order
spatially derivative terms such as Vz(r,k) and V?z(r,k) tend
to amplify the effects of the noise [15]. Therefore, different
from existing lumped models that discretize each time and
spatial derivative term [2], [15], we only consider the time
derivative discretization in our work. We will employ a
cooperative Kalman filter to directly estimate the spatial
derivative terms Vz(r,k) and V?z(r,k) along the trajectory
of the MSN. This part of work will be introduced in Section
VI. Here, we denote 3(r,k+ 1), 2(r,k), V4(r,k), and V?3(r,k)
as the estimated states from the cooperative Kalman filter,
which can be specified as follows, 2(r,k+1) =z(r,k+ 1)+
E1,8(nk) = z(rk) + &, VE(rk) = Vz(rk) + &,V?5(rk) =
V2z(r,k) + &;. Since the cooperative Kalman filter converges
as proved in [7], [16], all the error terms &;, &, &3, and
&4 can be assumed as Gaussian noises with zero mean and
bounded covariances.

3114



Substituting the states 2(rk + 1), 2(rk), VZ(rk), and
V23(r,k) into (4), we have the following equation, 2(r,k +
1) = 2(r k) + XM, 6; (1,0i(2(r k), VE(r.K), V22(5,K))) + h(r k),
where h(r,k) = &(r,k) + e(r,k). For notation simplification,
we denote &(r,k) as the combination of the Gaussian noises
&1, &, &, and &y, e, E(r,k) = Y4, &. h(r,k) combines two
Gaussian noises & (r,k) and e(r,k), which can be assumed as
a Gaussian noise with zero mean and finite variance. Then,
we can rewrite the dynamic of 2(r,k+ 1) in a vector form,

2(rk+1)=®(rk)®+h(rk), (5)
where @O = [1,0;,---,6y], which is the parameter
vector that we will identify, and ®(rk) =

[2(r,k), 101 (2(r, k), V2(r, k), V22(1,k)), -+ tsm (2(r k), VE(r, k),
VZ23(r,k))]. In Equation (5), 2(r,k+1) and &(r,k) will be
determined by the cooperative Kalman filtering in Section
VI along the formation center of the MSN, ©® is the
parameter that needs to be identified. In the following
section, a co-planning scheme for parameter identification
and mapping of the spatially distributed field will be

designed based on the model (5).

IV. SIMULTANEOUS PARAMETER IDENTIFICATION AND
MAPPING PLUS TRAJECTORY DESIGN FOR MSNS

A. RLS parameter identification

Based on the parametrized spatially distributed system
(5), the proposed parameter identification algorithm uses the
discrete measurements taken by mobile agents over time
as input. Within a mobile sensor network, consider the N

agents as a group. Let ¥ = [r’c"x,r’;y]r be the center of the

formation at #, i.e., rf. = %Z{»V:l rf-‘. The illustration of VIZ- for
four agents is shown in Fig. 1. By running the cooperative
Kalman filter in real-time, only the states (7%, k), V2(rk k),
and V23(rX,k) at the formation center can be provided by
combing measurements from the sensing agents in the group.
Thus, we need to analyze the dynamics of the field value
along the formation center rX. Therefore, we replace r in

Equation (5) with 7%, which results in,

20k k+1) = (K, k)@ +h(rE, k), (6)

where &(rf, k) = [2(r. k), 1,01 (2(rE, k), VE(ré, k), V2E(rE ),
toe atS¢M(2(r/éak)7V2(r/g7k)a sz(rlgvk))]

Similarly, the system dynamics at the formation center r’g
at time step ;1 can be written as,

2(rk k) = ®(rk k— 1)@+ h(rf k—1). 7)

Let O(k) be the estimate of © at time instant k. Given
an initial estimate of ®(0), a direct application of the
RLS method can iteratively update the estimate of ®. The
proposed RLS algorithm can be stated as follows:

O(k) = O(k—1) + R(k)®T (* k).
(2(F% k) = D(F k—1)O(k—1)),
(

5 (8)
R k) =R "(k—1)+®T (£, k)D(r, k),

B o ok
2,0 I \'fx
o———0
X ’
N ’
X :
A,

Fig. 1. The illustration of the formation center for a four-agent group.

where R(k) is the error covariance matrix and ®(r%,k—1) =
[2(rk k—1),2,01 (2075 k — 1), VE(rK k—1),V223(r5 k- 1)),
T atS¢M(2(rf‘vk* 1),V2(V§,k* 1),V22(}’§,k7 1))]

We should point out that to run the recursive update law in
Equation (8), we require ®(rX, k — 1) and ®(r, k), which can
be obtained from the cooperative Kalman filter introduced in
Section VI.

B. Simultaneous identification and mapping

In Section IV.A, we have shown how to identify ® based
on Equation (5). With the identified parameter ®(k) using
Equation (8), we develop a state estimator for the field
values over the whole area so that a map of the field can be
generated simultaneously with the parameter identification.
In the following, we show how to obtain this state estimator.

Let us first define Z(rX,k+ 1) = ®(r¥, k)O(k), where O(k)
is the estimate of ® using Equation (8), and the bar notation
Z(rk,k + 1) represents the output from a state estimator at
the formation center 7*. By modeling 3(r%,k) as a Dirac
measure concentrated at the formation center, we have
2k ) = 27, K) + 0 (r — ) (20, k) — 2%, K)), where o(.)
is an impulse function. Similarly, we further model the other
states VZ(rk, k) and V22(rk k) as Dirac measurements,

V(K k) = VZ(rk k) + o (r— ) (V2K k) — VZ(rK k),
V22(rk k) = V22(r k) + o (r— k) (V22(rE k) — V22(r5, K).

By combining the above Dirac measurements, we can con-
struct the Luenberger observer as follows,

2(ré k4 1) = 206 k) + 0 (r =) (2, k) = Z(rE k)

M A
+ X 00 (10120400, V2 ), V2204, 0))
i=1

£ (=) L B, V). THA)
—rscm(zof;’gj VZ(re,k), V22(re, k)

= D(5,)O(k) + 0 (r— 1) (2(rk, k) — 2(r4,K)
+o<r7r’z)f 01 (15 4i (2%, k), VE(rk, ), V22 (r% k)
—15¢i(2(rL, T VZ(rk, k), V22(rE k), ©)

where @ (% k) = [2(rk, k), 1,01 (2(r%, k), VZ(r5, k), VZ2(rE k),
ot (Z(rK k), VE(rk k), V2Z(r% k)], Since the coopera-
tive Kalman filter is able to provide the states 2(r% k),
V3i(rk k), and V23(r* k) along the moving trajectory, these
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states can be treated as the “measurements” for the state
estimator. By replacing 7% in terms Z(r%,k 4 1) and ®(r%, k)
with r in (9) , the global state estimator can be readily
obtained to estimate the field value over the entire spatial
domain [2]. The proposed global state estimator takes the
form,
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=
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Na)
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=

—0i(2(re, k), VE(r, k), V22(r, k), r € 2, (10)
where ®(r,k) = [Z(r,k), 101 (Z(r, k), VZ(r,k),V?Z(r,k)), - ,
tsOu (2(r, k), VZ(r, k), V?Z(r,k))]. We observe that Equation (9)
constitutes a finite-dimensional measurement representation
of (10). The state estimator (10) is in the form of a Luen-
berger observer [2] with some output injection terms.

C. The trajectory design for the MSN

Many results have shown that the performance of state
estimation and parameter identification depends on the trajec-
tories of sensing agents [2], [9]. In this paper, the trajectory
design of the MSN is based on the state estimation error
at the formation center, that is, e(r*,k) = 2(r%, k) — z(r% k).
The goal of the design scheme is to provide the sensing
agents with control signals that move towards the direction
associated with larger state estimation error. We apply the
following stable motion control laws for the mobile agents:

r]c(jl = ']cix_ xe(rlg,k)ex(rlg,k)
k

it =1k —kye(rf k)ey (5 k),

(1)

where & = [k /X ], k. and k, are user-defined positive

c cxrley
gains, e,(r*,k) and e,(rX,k) are the error gradients at the

formation center r’C‘ specified as follows,

o 2K 020k k)

k
R 7 RET
z(rk k) 9z(rk k)
ey(rb k) & 02— o (12)
Y 8r’g’y 8r’g1y

V. THE CONVERGENCE ANALYSIS

In this section, we provide the convergence proof of the
co-planning scheme. We have the following proposition.

Proposition V.1 Consider the discretized model in Equation
(5) with the parameter ® unknown. Apply the proposed co-
planning scheme, which consists of the RLS algorithm (8),
the state estimator (10), and the motion control (11). The
error signal e(r k) = f(r’g,kA) —Z(rk,k) and the parameter

estimation errors 6® = ® — ©® are bounded for all k£ > 0.

Proof: Let us denote the error signal at the formation
center 7€ and at time step k+ 1 as e(rX, k+1) = (7K k41) —
Z(r’c‘ ,k+1). By combing Equations (5) and Equation (9), the
time variance of the error e(r% k) can be obtained, which

satisfies the following equation:

(6 — )ty

M=

e(r* k+1) —e(rX k) = (13)

1

(61(20EK), V2 ), VE0E K)) ) — (7 k).

Define a Lyapunov function as V(rk,k) = $(e*(rk,k) +
SOR'(k)8O), where @ = ® — O(k). Then the difference
of the discrete Lyapunov function can be written as

V(r]c(+lvk+ 1) —V(l’]g,k) = e(’fak)er(rﬁﬂk)'
(At = 8) el ) (elrk k4 1) = e(rh,0)

—8OR™(1)(O(k) —O(k— 1)), (14)

where e, (X, k) = [ex(rX, k), e, (%, k)] represents the error gra-
dients in a vector form defined in Equation (12).

It is obvious that the first term in Equation (14) is an
indefinite term which must somehow be made negative.
The desired control law for mobile agents in Equation (11)
can guarantee this indefinite term in the Lyapunov function
be negative semidefinite. Substituting the control laws in
Equation (11) into Equation (14), we can get that

V(rE k1) = V(i k) — kee? (re 1) ex (re,t)
ke (re1)ed(rest) + e(rE K) (e(rh k1) = (7, 6))
—8OR™'(1)(O(k) —O(k—1)). (15)
Then, substituting the update law in Equations (8) and the
dynamics of the error (13) into (15) yields
V(e k1) = V(r k) — ke (r k)€ (7. K)
— kyez(rf7k)e§(r]g,k) +e(r]§,k) (e(rf,k—l— 1)— e(rlg,k))
—80DT (FF k)e(r, k)
=V (1,k) — ke (e, K)ex (1, k) — ke (rE, K)eg (1, K) - (16)
— 2 (rk k) — SODT (K, k)e(rk k)

M

3 (6= 60t (9u(20E ), +VE(E 0, V(K ) ) e k).

i=1

By definition, we know that
M
SO (r4,k) = Y (6, 6)rs (01205, 0), VLK), V220E,K)))
i=1

Using the update law in Equation (8), we can get that, V(rif*’l Jk+
1) = V(& k) — kee® (1, k)3 (r ) — kye? (ré k) e3 (1 k) — € (rE ),
which implies V (#X*1 k+1) <V (r% k). Then we conclude that the
parameter estimation errors 8@ and the prediction errors e(r%, k)
are bounded. u

VI. COOPERATIVE KALMAN FILTER

In this section, we develop a cooperative Kalman filter
that provides necessary information needed to enable the
RLS algorithm. From Equation (8), we know that we re-
quire d(r%,k) and (X, k — 1), which consist of the states
2(rk k), Vz(rk k), V2z(r5 k), 2(rk k—1), Vz(r5 k—1), and
V2z(r%,k —1). While the MSN is moving in the field, the
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field value along the trajectory of the formation center r,
evolves according to

dz(re,t
i(rest) = Va(re,t) Fe+ ((9; ); (17)
Substituting the PDE (1) into (17), we obtain
2(re,t) = Va(re,t) -r'C+f(z(r,t),Vz(r,t),sz(r,t)). (18)
We also derive the total time derivative of Vz(r.,t) as
. dVz(re,t
VZ(FC,I)ZH(FCJ)-I“C—F#, (19)

ot

where H(rc,t) is the Hessian matrix.

To construct the cooperative Kalman filter, define the
information state as X (k) = [z(r%,k), Vz(r5 k), z(rk k —
1),Vz(rk,k — 1)]T. In practice, sensors take measurements
discretely with sampling interval #;. By discretizing Equa-
tions (18) and (19), we obtain the state equation as the in-
formation state evolves according to the following equation:

X(k+1) = AKX (k) +U(K) +e(k), (20)

where e(k) = [e(r¥,k),0,e(r*,k—1),0]" represents the model
error terms in Equation (3). We denote the covariance matrix
of e(k) as E[e(k)e(k)"] = W. The matrices A(k) and U (k)
are defined by

1 (A =T 0 0
|0 byo 0 0
A(k)_ 0 0 1 (r]ngl_rICc)T )
0 0 0 Ly

X 6 (159i(2(rf k), Va(rg k) V22(rk k)

) H () (A 2 )

Y76 (te¢i(z(r%, kf 1), Vz(rk k- ) V2z(rkk—1) |
H(ré k= 1)(re =)

where H (%=1 k) is the Hessian matrix and 6; can be obtained

by the RLS algorithm in Equation (8).

A measurement equation is also required for the coopera-
tive Kalman filter. By applying the formation control, rf‘ and
rf_l can be controlled to be close to r’c‘ . Therefore, the con-
centration can be locally approximated by a Taylor series up
to second order as z( k k)~ z(r’g,k) + (rF =TV (% k) +
j(rk rTH (P k) (rF r’c‘), ( _l,k—l) ~z(rkk—1) +
(7

L Tk k- 1) + s =) TH(re k= 1)(rf !

) Let P(k) be the vector that contains all measurements
from all the agents at time k and k— 1. Then, the measure-
ment equation can be modeled as,

P(k) = C(k) - X (k) + D(k)H (k) + D(k)e(k) 4 n(k),

U(k) =

2n

where H (k) represents the estimate of the Hessian H (k) =
[H(rk,k),H(r* k—1)]T at the center % in a vector form and
€(k) represents the error in the estimation of the Hessian
matrices. Denote E[n(k)n(k)’] = R and E[e(k)e (k)T] =0.
D(k) is a matrix with its first N rows defined by [ ((rf —
YRk — k)T 0] and last N rows defined by [0 %((’{(*
Y@k — rk=1)T], where i =1,2,---,N and  is the
Kronecker product. C(k) is a matrix with its first N rows
defined by [1 (¥ — )T 0 0] and last N rows defined by

001 (X' —#/&7] for i =1,2,---,N. Given (20) and
(21), the equations for the cooperative Kalman filter can be
readily constructed [11]. For more details, please refer to our
previous works [7], [16], [17].

VII. SIMULATION
A. Generating and visualizing a real diffusion field

In this section, we validate the proposed algorithm in
simulation based on a reconstructed CO, diffusion field,
which is a typical advection-diffusion process. Note that even
though the co-planning scheme is based on the nonlinear
PDE (1), in this paper, we only consider the validation in a
diffusion process, which is a linear PDE, because it is really
hard to construct a controllable nonlinear spatially distributed
field in a lab environment. More simulation and experiment
validations will be included in our further work. The area of
the test-bed is 3.5 x 3.5m>. To measure the concentration
of the CO, gas over the area, a sensor grid is assembled.
As shown in Fig. 2, the sensor grid consists of 24 CO»
sensors, which is attached to 8 arms. We then use MATLAB
to reconstruct the diffusion process by interpolating the field
values collected by the sensor grid at every discrete time
instant. The diffusion process obtained from the real field is
shown in Fig. 3. The contours in Fig. 3 represent the level
curves of the diffusion field. The diffusion procedure of CO»
begins at step k = Os and ends at k = 575s. For more details
about the experiment, please refer to our previous paper [16].

80
300 80 250
60 | 60
> 250 e 200
40 200 40 -2
150
20 @' 20 \
1 100
0 oo 5 Ko
o 20 o 40 x 60
k=375s
(d)

Fig. 3. The diffusion field collected by the sensor grid.
B. Simulation results

In the following, we validate the co-planning scheme
with four sensing agents deployed in the reconstructed CO»
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field in simulation. The agents are controlled to move along
the direction associated with higher state estimation error
while keeping a constant formation as shown in Fig. 4. In
Fig. 4, the colored stars represent the four sensing agents,
the dotted colored line represents the designed trajectory
for the center of the MSN. While the MSN is exploring
the field, it also achieves online parameter identification by
implementing the cooperative Kalman filter and update law
in (8). The estimation results of the diffusion coefficient are
shown in Fig. 5. As we can observe from Fig. 5 that, the
estimate of the parameter can converge to a stabilized value.
Based on the state estimator in (10), we show the results of
mapping the diffusion field using the estimated © in Fig. 4.
The mapping result of the state estimator is shown to be
a little different from the true values, which is illustrated
in Fig. 3. This is expected, because this difference is due
to the unknown initial conditions of the field and limited
measurements along the trajectory of the MSN. To illustrate
the efficacy of the proposed approach, we further calculate
the root mean squared error (RMSE) of the state estimation
error, which is shown in Fig. 6. As expected, RMSE is
gradually reduced as the estimator learns about the process.
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Fig. 4. Evolution of the mapping field using the co-planning scheme.
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Fig. 5. The estimated diffusion coefficients.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a novel co-planning scheme for parameter
identification and state estimation of spatially distributed pro-
cesses. By designing a RLS algorithm and a global state es-
timator, the proposed scheme can deal with the use of MSNs
for simultaneous parameter and state estimation of spatially
distributed fields. The trajectory design based on Lyapunov
redesign method is also proposed. Theoretical justifications
are provided for the convergence. Simulation results based on
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120 e e v,
L \\‘\
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920
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Fig. 6. The RMSE of the state estimation error.

a real CO; field show satisfactory performance. Future work

includes extending the proposed algorithm to PDEs with

spatially varying parameters and experimental validation.
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