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ABSTRACT: Purification is a powerful technique in quantum physics whereby a mixed
quantum state is extended to a pure state on a larger system. This process is not unique,
and in systems composed of many degrees of freedom, one natural purification is the one
with minimal entanglement. Here we study the entropy of the minimally entangled pu-
rification, called the entanglement of purification, in three model systems: an Ising spin
chain, conformal field theories holographically dual to Einstein gravity, and random stabi-
lizer tensor networks. We conjecture values for the entanglement of purification in all these
models, and we support our conjectures with a variety of numerical and analytical results.
We find that such minimally entangled purifications have a number of applications, from
enhancing entanglement-based tensor network methods for describing mixed states to elu-
cidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT
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1 Introduction

In quantum physics, it is always possible to interpret the entropy of a physical system as
arising from entanglement with an auxiliary system. Given a physical system in a mixed
quantum state, one can introduce a fictitious auxiliary system such that the combined sys-
tem is in a pure state. The state of the combined system is called a purification of the orig-
inal mixed state and the entanglement between the purifier and the original system, as en-
coded in the entanglement entropy, recovers the von Neumann entropy of the original state.

For example, when studying the thermal physics of quantum systems, it is often useful
to work with a state called the thermofield double which purifies the thermal Gibbs state. In
the context of numerical simulations of strongly interacting quantum spin chains using ten-
sor network methods, the thermofield double construction is useful because it maps thermal
entropy to entanglement entropy and opens up new algorithmic tools [1]. In the context of



the AdS/CF'T correspondence, the thermofield double construction is also useful and takes
on an interesting physical meaning. The AdS/CFT correspondence maps thermal states to
black holes [2—4], and the thermofield double state is mapped is to a wormhole geometry
that connects the original black hole with a second black hole (the auxiliary system) [5, 6].

However, the thermofield double is only one purification of the thermal state; there all
an infinite number of other purifications which are all related by the action of a unitary
transformation on the auxiliary system. In the context of tensor network methods, where
entanglement is a precious resource, it would be especially useful to work with a purification
which had the minimal possible entanglement. It is also interesting to ask if the minimal
purification has any geometric meaning within the AdS/CFT correspondence. Indeed, we
expect there to be a connection between these two directions given the relationship between
tensor networks and the AdS/CFT correspondence [7].

Remarkably, the notion of a purification with the minimal possible entanglement has
also been considered in quantum information science as one measure of the total correlations
present in a bipartite mixed state. This quantity is called the entanglement of purifica-
tion [8], and here we study it in the context of three different classes of quantum many-body
systems. We consider first a class of strongly coupled conformal field theories which are
holographically dual to Einstein gravity. Next we study a spin chain whose low energy
physics is described by an Ising conformal field theory. We also report a result in a random
stabilizer state tensor network model [9, 10]. Through a combination of analytical argu-
ments and numerical calculations, we conjecture values for the entanglement of purification
in all these systems, and, in the case of random stabilizer states, give a rigorous argument.

Our primary motivations are two fold. First, from the perspective of tensor network
methods, specifically matrix product states [11], we want to investigate the minimal entan-
glement amongst purifications of a given thermal state. As indicated above, the minimal
entanglement purification could be a useful technical tool in numerical simulations. In-
deed, in our calculations we find that the entanglement of the thermofield double state can
be reduced by as much as a factor of two, leading to a reduced bond dimension equal to
the square root of the thermofield double bond dimension, a substantial reduction given a
computational cost scaling like the third power of the bond dimension. Second, from the
perspective of holographic models, we want to understand other geometric aspects of the
bulk geometry in terms of quantum information. The Ryu-Takayanagi (RT) formula [12]
relating entanglement entropy to minimal surfaces is the best example of this correspon-
dence, but it is particularly interesting to search for quantum information measures that
go beyond the minimal curve paradigm and capture other aspects of the geometry.

1.1 Technical introduction

The entanglement of purification (EP) is defined as follows [8]: let psp be a density matrix
on a bipartite system Hy ® Hp. Let [)) € Haa @ Hpp be a purification of pap, e.g.,
Tra g [¢) (Y| = pap, as illustrated schematically in figure 1. The EP of p is given by:

E = mi / 1.1
»(p) g}g,lSAA (1.1)
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Figure 1. Ilustration of the definition of the entanglement of purification.

Here we minimize over all ¢ and over all ways of partitioning the purification into A’B’,
and S44/ is the von Neumann entropy of the reduced density matrix obtained by tracing
out the BB’ part of |¢)(¢].
To gain some familiarity with this definition, let us consider a few simple cases. If pap
is pure,
paB = 6)(6]a5, (1.2)

then no purification is needed and E, = S(A) = S(B). If pap is uncorrelated,

PAB = pA® pB, (1.3)

then there exists a purification of the form [11) 44’ ® |12) ppr in which case E, = 0. If pap
is classically correlated,

PAB = ZP@' |9) (il 4 ® |9) (il g , (1.4)

then it can be shown that E, = — ). p; log p;, the Shannon entropy of the {p;} distribution
(see appendix A for the proof).

More generally, F, obeys a few key properties. For readers unfamiliar with these
properties, we have for completeness included proofs of these properties drawn from the
literature [8, 13] in appendix A.

e The E, is bounded above by the entanglement entropy:

E,(A: B) < min(S(A), S(B)) (1.5)

e The £, is monotonic, i.e. it never increases upon discarding a subsystem:

E,(A:BC) > E,(A: B) (1.6)

e The E, is bounded below by half the mutual information:

I(A: B)

E,(A:B) > 5



e For a tripartite system, we have the bound:

I(A:B) I(A:C)
2 + 2

E,(A:BC) > (1.8)
e In a bipartite state that saturates the Araki-Lieb inequality, S(AB) = |S(A4) —S(B)|,
we have E,(A : B) = min(S(A4), S(B)).

e For a tripartite pure state, the E, is polygamous:

E,(A:B)+E,(A:C)>Ey(A:BC) (1.9)

We now proceed to study the entanglement of purification in the aforementioned three
classes of physical systems. In the holographic models we proceed by proposing a new
dictionary entry relating entanglement of purification to minimal cross-section of the “en-
tanglement wedge” [14-16] bounded by the physical boundary and the RT surface [12].
More precisely, we argue that amongst the subset of purifications which have a geometri-
cal gravity dual, the entanglement wedge cross section is the entanglement of purification.
We do not show that it suffices to restrict to geometric purifications, but we give some
plausibility arguments and show that our proposal obeys all the above properties of F,,.
Throughout we denote our holographic proposal for E, by Epy,.

In the spin chain model we proceed numerically to approximately find the minimal
entanglement purification. We start from the thermofield double state and succeed in
removing entanglement, but we do not rigorously show that we have found the optimal
purification. However, we do find that the numerical results are in remarkable accord
with the holographic proposal, perhaps more even than one might expect given that one
conformal field theory has central charge less than one (spin chain) while the other has very
large central charge and a sparse low lying operator spectrum (AdS/CFT). Throughout we
denote the output of our spin chain numerics by Ep.

Finally, we also study a tensor network model composed of random stabilizer states. In
this tensor network class, all entanglement consists of either Bell pairs or “cat states” /GHZ
states. Using recent results on the GHZ content of random stabilizer tensor network
states [10], we show that in this case the entanglement of purification is approximately
%I (A: B) on average, i.e. near the lower bound. This is so despite the fact that entangle-
ment entropy in such states is computed using a discrete version of the RT formula.

Note: after our holographic results were obtained and while preparing the manuscript,
a very similar holographic proposal for the entanglement of purification appeared [17].

2 Holographic proposal

In this section we introduce and motivate our holographic prescription for entanglement of
purification, denoted E,;. We discuss the core ideas justifying our proposal and give some
sample calculations in the ground state and in thermal equilibrium at non-zero temperature.
Later, in section 5, we discuss generalizations of our proposal to time-dependent situations
and show that E,, obeys all the properties listed in the technical introduction. As we



Figure 2. Left: for sufficiently large A and B, the entanglement wedge is connected (the RT
surface ¥ is shown in red) and the E), is computed by the length of the green geodesic X. Center:
for small A and B, the entanglement wedge is disconnected and the E, is zero. Right: tensors
under a causal cut in MERA (red line) can be gotten rid of by a unitary transformation. In each
case, the region to be cut out is shaded in gray.

discuss in detail below, our proposal for the holographic dual of E), is strongly motivated
by tensor network models of the AdS/CFT correspondence.

2.1 Proposal: time-independent geometry

Suppose we have a geometry M dual to some pure state |¢)) apc. We want a holographic
prescription for computing the entanglement of purification of the state on AB, which we
will refer to as E,,(A : B). Our proposal is as follows. Let ¥ be the RT surface associated
with the combined region AB. The spatial region bounded by A, B, and X is called the
entanglement wedge.! We consider the entanglement wedge as a new holographic geometry
with boundary AUBUY, i.e. by discarding all the geometry from ¥ to the old boundary C.
The prescription is to find the minimum area surface X which can end on X that separates
A from B. The E,, is then given by:

Area(X)

(2.1)
where G is Newton’s constant. We illustrate this for two disjoint boundary intervals in
global AdS3 in figure 2. As can be seen from this figure, the E,, in this case is only nonzero
when the entanglement wedge is connected. In essence, Ep, is the minimal cross-section
of the entanglement wedge. Note that, in the limit where B is the complement of A (in
other words pap is pure), our prescription reduces to the Ryu-Takayanagi formula. This
is our first consistency check, since E,(A : B) = S(A) = S(B) for a pure state as argued
previously.

This prescription has an alternative description. Imagine breaking 3 into two pieces,
A and B. Group A with A and B with B and view the combined regions as two boundary
regions. The whole system AABB is in a pure state. Now calculate the entanglement

"We are actually talking about a spatial slice in the entanglement wedge. The entanglement wedge itself
is the codimension-0 region in the bulk which is the bulk domain of dependence of any spacelike surface
bounded by the HRT surface and the boundary region.



between AA and BB using the usual RT formula. Finally, minimize the resulting entropy
over A and B. The result is again the minimal area surface which can end on ¥ that
separates A from B. The minimal A is taken to be A’ and similarly for the minimal B (A’
and B’ are labelled on figure 2). This second formulation makes the physical intuition more
clear. The idea is to simplify the geometry M as much as possible by removing the geometry
outside the entanglement wedge of AB. This is accomplished using some operation on C.
The effect is to replace C' with ¥. We then break up X into two pieces such that the
combined entropy, as computed by the RT formula, is as small as possible. The above
intuition suggests that, if we restrict to holographic purifications, then entanglement of
purification is given by our minimal surface prescription. The more non-trivial claim is
that it suffices to restrict to such holographic purifications.

We note that the idea of thinking about ¥ as part of the new boundary is especially
natural from the viewpoint of tensor networks and their connection to the AdS/CFT corre-
spondence. For example, we show an analog of ¥ in a MERA network in figure 2). Similar
pictures can be drawn for networks of perfect tensors or random tensors [9, 18]. In the
MERA example we can remove tensors from the shaded region by a unitary transformation
acting on the complement of AB thereby simplifying the geometry of the tensor network.
For example, the number of boundary legs in the purification of AB has gone from six to
four by removing tensors below the lower red cut in figure 2).

2.2 Sample calculations of E,,: pure AdS3

In this subsection, we provide explicit formulae for the E,;, in empty AdSs.

Non-adjacent intervals in AdSj3. First, consider the case where A and B are 2 non-
adjacent intervals in global AdSs. In this case the RT surface comes in 2 different topologies
depending on the size and separation of the 2 intervals as illustrated in figure 2): either (1)
one component of the RT surface connects the endpoints of A and the other one connects the
endpoints of B, or (2) each component connects one endpoint of A with one endpoint of B.

In the first case, no curve in the bulk separates A from B and we say that the E, is
zero. One could argue for this value of E,; by invoking the mutual information. In this
regime, S(AB) = S(A) + S(B) and I(A: B) = 0. This implies that, to leading order in
N (in the large-N limit), the reduced density matrix is a product state pap = pa ® pp.
It can be seen that the E, of a product state is always zero. Apparently, according to our
picture, the subleading 1/N corrections do not affect the E,,.

Finding E,;, in the second case involves finding the shortest distance between 2
geodesics in the hyperbolic plane. This is a nontrivial exercise in hyperbolic geometry, and
we relegate the details to appendix B and simply quote the result here. If we parametrize
the two subsystems by A = (¢1 — a1, ¢1 + aq) and B = (2 — a2, P2 + az), then the E,y,
between the two geodesics is given by:

_ Laas (VA 4 /2sin a7 sin ap)?
Epn = 4G N log ( A — 2sin o sin ap (22)
A = cos (a1 — az) — cos (¢1 — ¢2) (2.3)



Figure 3. Left: we vary the position of a and keep b, ¢, d fixed. The values chosen here are
b = 0.6r, ¢c = 147 and d = 1.7r. The green geodesics are the shortest curves connecting (ab)
to (cd). Here we use the Beltrami-Klein coordinate system (explained in appendix B), in which
geodesics are straight lines. Right: plot of the E,;, as a function of a, over the range a € [0, ]. The
E,, diverges when a = b, and undergoes a phase transition near a ~ 1.256 (where the RT surface
changes topology). We set 4G = 1.

The formula above applies of course whenever the entanglement wedge is connected. Note
that the formula only depends on ¢1, ¢o through their difference, reflecting the rotational
symmetry. Alternatively, if we parametrize the boundary intervals by their endpoints as

A = (01,02) and B = (03,04) the formula becomes:

Lads [\/sin((el—93)/2)sin((92—04)/2)—|—\/sin((c92—91)/2)sin((94—¢93)/2) :
En= log - -
p 4GN SlH((@Q—Hg)/Q)SIH((Ql—04)/2)

(2.4)
Also, for the special case oy = s =, ¢1 = 7, 2 = 37” (i.e. two geodesic of the same size

diametrically opposite each other) the above reduces to:

B Lags 1+ sina
Epn(@) = 4G N log (1 - sina) (25)

This is the situation depicted on the left panel of figure 2.

To get a sense of the formula (2.2), we can vary one endpoint of one of the two
geodesics (with the other 3 endpoints kept fixed) and plot the Epj, as a function of the
varying endpoint. This is what we show in figure 3 below. Note that the E,;, is only
nonzero in a certain range of the parameters.

Adjacent intervals in AdS. Next we compute the E,, for two adjacent intervals, which
is a special case of the non-adjacent case above, but we need to regulate the divergence.
Consider 2 adjacent intervals A, B on the boundary, with half-widths a; and as respec-
tively. The E,, in this case is the shortest distance from the common endpoint of A and B



Figure 4. Plot of E,;, for 2 adjacent intervals as a function of ap, at fixed o;. The values of o
are: /6 (red), m/4 (green) and 7/3 (black). We set the cutoff € to 0.1 and 4Gn = 1.

to the RT surface of AB, and it can be found using the same techniques as in the previous
case of non-adjacent intervals. Note also that the E;, in this case is divergent whereas it
is finite in the previous case. We relegate the details to appendix B again and only give
the final result here:

Eph(oq, Ozz) = (2.6)

Lags 2v/2 csc (a1 + a) sin g sin ap
log +
4G N Ve

where € is a near-boundary cutoff (the geodesic is regulated at Beltrami-Klein radial coor-
dinate Lags(1 —€)), and ... stand for terms which vanish as € — 0.

In particular, in the symmetrical case where the two adjacent intervals have the same
half-width a1 = as = «, the above simplifies to:?

Eyn(a) = ingS log (\/f tan a> (2.7)

We plot in figure 4 the I, as a function of ap for fixed values of o;. One can notice from

the plot that the E, is neither a convex nor a concave function of the boundary intervals’
sizes. This is more or less expected, since the F, is known to be neither concave nor convex
with respect to mixture of states [8]. Note that the E,} for adjacent intervals is essentially
the mutual information (for the same choice of cutoff in the bulk, the two quantities differ
by only (Lags/4GN)log2, see section 5.2 for more details). Interestingly, the functional
form of (2.6) is also the same as that of the logarithmic negativity for 2 adjacent intervals
in a CFT [19] (see also [20]).

Laas

V2e

2The cutoff € can be converted to a cutoff in global radial coorinate R. by R. =~



2.3 Sample calculations: 1-sided BTZ black hole

Next, we present some sample calculations for the BTZ black hole. We focus on the 1-sided
black hole in this subsection, with metric [21]:

742

_ T2 2
tdt® + AEdr? + 7 dg? (2.8)

ds® = —
2
Lias Ty

and will consider the 2-sided black hole in the next subsection. The Hawking temperature
is given by 8/Ladqs = 2mLags/r+. We distinguish between 2 cases: (1) when the entan-
glement wedge is topologically trivial (i.e. connected and simply connected), and (2) when
the entanglement wedge is not simply connected due to the inclusion of the horizon.

Case (1). In the first case, we can use the fact that BTZ is a quotient of global
AdS. Thus it is straightforward to map formulae (2.2) and (2.6) from AdS to derive the
analogous formula for E,; in BTZ. We do not even need the full coordinate transformation
from global AdS to BTZ, but only the transformation of the boundary coordinates. It
is known that the coordinate transformation from AdS to BTZ reduces to a conformal
transformation on the boundary:

1 T . 7“+ t
tan [2 (LAdS * 9)] = fanh |:2LAdS <LAdS * qﬁﬂ (29)

Here (71,0) are the global AdS time and angle coordinates, and (¢, ¢) are the BTZ time
and angle coordinates. In particular, on the slice 7 = 0 (or equivalently ¢ = 0) we have:

9 T4+
tan <2) = tanh <2LAdS qb> (2.10)
In particular, this implies:
_ inh (5= —
sin <92 01) _ S (2LAdS (¢2 ¢1)) (211)
2 y/cosh (74 ¢a/Laas) cosh (ry¢1/Laas)

Next, we substitute the above into formula (2.4) for the E, of two non-adjacent intervals
in BTZ (such that the entanglement wedge is connected and simply connected):

5. - Lags [\/sinh(QZ:ds (p1 — ¢3)) sinh(QEZdS (¢2 — 1))
ph — @ og Sinh( T+ (¢2 _ ¢3))Slnh( T4 ((]51 — ¢4))

2L aqs 2L aqs

(2.12)

\/sinh (25;8 (2 — ¢1)) sinh (Zgzds (61— 63)) 2
sinh (57— (g2 — ¢3)) sinh (57— (¢1 — ¢4))

2L aqs 2L aqs

The case of two adjacent intervals in BTZ can be similarly handled.



Figure 5. Left: the E,; geodesic is in green, and the RT surface (including the horizon) is in red.
Right: when the Araki-Lieb inequality is saturated, the E,, coincides with S(B).

Case (2). Next, we discuss the more complicated case where the entanglement wedge has
a hole due to the horizon. In this case, the surface computing the E,;, becomes disconnected.

Let us consider a few simple special cases, starting with the case where A and B are of
the equal size, each slightly smaller than half the boundary circle (on one side of the BTZ
black hole), as depicted in the left panel of figure 5. Then the RT surface for AB has 3
connected components, one of which is the horizon. The EP geodesic extends in the radial
direction as depicted in figure 5. The E,, is:

2 " Lags Lgs T ( Ts )2
E,;, = dr = lo — 4+ — ) =1 2.13
T /r+ fr2 — 2 2Gy 2\ s T+ (2.13)

where 7, is radial coordinate of the deepest point of the RT components that go to the
boundary. It is related to the half-width « of the boundary intervals A or B by:

T4+ m
ry« = ro coth <— — a)) 2.14
= recoth (5 (3 (214)
In terms of «, the E,; can be written as:
B, a) = ZAGS 100 | coth [+ (f - a> (2.15)
P 2G N 2Lpgs \2

In particular, when o = 5 the Ey, is divergent. The regularized Epy, in this case is:

7T Laas 5 2\ Lagas 2rc
Eph(r+,a = 5) = 20 log | r+4/r? =71 = log | — (2.16)

r N 2GN T+
Next, consider the case where the union of A and B is the whole boundary circle, say A

has half-width « and B has half-width m — . Moreover, suppose « is either sufficiently
large or sufficiently small enough that we are in the “entanglement plateau regime” [22].
This means the Araki-Lieb inequality S(AB) = |S(A) — S(B)| is saturated, which in turn
implies that the F), coincides with the entanglement entropy of the smaller subsystem, and

~10 -
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Figure 6. Left: plot of E}, for the case where A has half-width o and B has half-width 7 — «
for 3 different choices of the horizon: r; /L =1 (red), r4/Lagas = 2 (green) and r;. /L = 5 (black).
Right: plot of the E,; (green) and half the mutual information (black) as a function of «, with
r1/Lags = 1. In both panels, we set the radial cutoff to r./Lags = 10 and 4G = 1.

the I, is computed by the RT surface for the smaller region. This is depicted in the right
panel of figure 5.
Now let us vary o from 0 to 7/2. Initially E,, = S(A). Explicitly:

Lt:;s aﬂ @17)

L 2
Epp(o,ry) = 22&? log LT: sinh (

At the critical angle aerit, pp given by:

L
airit’EP = ﬂarcsinh(l) (2.18)

T+
the RT surface exchanges dominance with a new saddle: the two radial geodesics crossing
the horizon as depicted on the left panel of 5 and its E,, is given by (2.16). As a keeps
increasing, the Ep;, levels off for a while since the surface remains two radial geodesics
despite the change in «. At the second critical angle:

ds arcsinh(1) (2.19)
T4

2 _
Qerit,EPp — T —

the E,}, surface snaps back to being the RT surface again. We plot the FE,;, versus « for
3 different choices of the horizon (or temperature) on the left panel of figure 6, and we
plot both the E,, and half the mutual information for a choice of r; on the right. Let
us now elaborate on figure 6. The fact that the E,}, levels off for « close enough to 7/2
can be accounted for by the fact that correlations in a thermal state are short-range (they
are cut off at the thermal scale). Note that the mutual information, like the E,,, is also a
measure of the total correlation in the quantum state, and therefore should be expected
to saturate for larger values of . This is indeed the case as can be seen from figure 6.
Interestingly, the mutual information saturates at an angle somewhat smaller than the
angle of E,;, saturation. That this happens is a consistency check for our proposal: it
implies that whenever the Araki-Lieb inequality is saturated, then Ej, is indeed given by
the entanglement entropy of the smaller region.

- 11 -
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Figure 7. The two critical angles it g and aerie, pp versus ry /Laqgs. Only the range ry /Laqgg >
1 is physically relevant.

On the right panel of figure 6, we have picked a particular value for the horizon. It
is interesting to compare the two critical angles ocgm-t’ pp and o pE as a function of the
horizon. If a?rit’ gp > Qcrit, pE for some horizon size, then the argument above regarding
the Araki-Lieb inequality would be in trouble! Recall that o, gE is given by:

L
Qcrit, EE = 45 arecoth [2 coth <£rr+ ) — 1} (2.20)

T+ AdS
We plot in figure 7 the two critical angles as a function of 74 /Lagqs. As can be seen from
the plot, we always have it pp < Qerit,pr and we do have a consistent picture (i.e.
E,; = S(B) whenever Araki-Lieb is saturated).
3 Numerical calculation of FE, via finite-temperature matrix product
state algorithms

Calculating F), exactly requires a global minimization over the space of purifications —
a problem that is numerically difficult even for small wavefunctions. The existence of a
geometric interpretation of E,, however, suggests that locality can be exploited during the
minimization process. For numerical purposes, the locality of a many body state can be
captured using a tensor network ansatz. Here we explain how E, can be approximately
computed in 1D using such methods. In fact, as discussed by Hauschild, et al. [23], the
solution suggests a potentially dramatic speedup of finite-temperature DMRG calculations
which should prove useful in its own right.

In 1D, zero-temperature tensor network algorithms such as DMRG rely on the repre-
sentation of a pure state as a matrix product state (MPS). [11, 24] MPSs are a class of
variational ansatz defined by the property that the entanglement entropy for a bipartition
of the state into left and right regions is bounded from above by Sy.r < log(x). Here x is
the “bond-dimension” of the MPS — more entanglement can be captured by using larger
X, but the computational cost generally scales as x>.

When numerically simulating a mixed state p, one can either represent p as a ma-
trix product operator (MPO), [25] or instead purify p and represent the purification as a

- 12 —



MPS. [26] Purifications have several advantages over density operators; for instance the
density matrix will remain positive definite by construction, regardless of numerical errors.
However, as discussed there is a large space of possible purifications, and the choice may
drastically effect the numerical difficulty. [27] For equilibrium calculations, it is standard
to use the “thermofield double” (TFD) purification,

> e P2 n) |a) (3.1)

I'TFD, 8) = \/—

where |n),|n) are the nth eigenstate of H with energy F,, on the physical and ancilla
degrees of freedom respectively, 3 is the inverse temperature, and Z(38) = >, e PEn is the
partition function. In this case the Hilbert space of the ancilla is identical to the physical
one, so locality can be preserved by doubling each degree of freedom in the 1D chain. The
MPS ansatz for the TFD state thus looks like a “caterpillar” (figure 8), just like the MPO
representation of p would, but the prescription for calculating observables differs.

The MPS representation of the TFD state is straightforward to obtain, for instance
using the time-evolving block decimation (TEBD) algorithm. [1, 25, 26, 28] At infinite
temperature, 5 = 0, the TFD state can be constructed by preparing each physical degrees
of freedom into a maximally entangled state with its corresponding ancilla, e.g., for a
spin-1/2 chain we have

ITFD, 8 = 0) = L”Hm b+ 1405 (32)

where | -7); denote the states of the physical and ancilla degrees of freedom on site j. This
has zero entanglement across any cut and can therefore be represented by an MPS with
bond dimension y = 1. To prepare a state at finite 5 using TEBD, [26, 28] we apply e /2
to the physical degrees of freedom by Trotterizing the imaginary time evolution into small
local gates. During the application of the gates to the MPS, the entanglement of the TFD
state grows, and hence the bond dimension x.

Starting from the TFD purification, we may obtain other purifications by acting with a
unitary Uune on the ancilla. Since the difficulty of MPS calculations increases with y ~ e,
we can try and use this freedom to reduce the entanglement of the purification. [27] Clearly
the TFD is not itself optimal; as 8 — 0, the TFD puts both the physical and ancilla degrees
of freedom into the ground state, |TFD, co) = |0) |0), with entanglement twice that of the
ground state. Very crudely speaking, this requires a bond dimension which is the square of
the ground state’s xTrp ~ ng. The optimal purification would instead put the ancilla into
a product state, e.g. |0) [1,7 - ), which requires only x4, suggesting something approaching
a quadratic speedup of finite temperature calculations might be possible. Minimizing the
entanglement of the purification, and hence hopefully the x of the MPS, is precisely the
problem of calculating the entanglement of purification.

Of course, all of this relies on the ability to correctly find the optimizing unitary Upypc.
Given the TFD MPS, how do we best find the optimal unitary that minimizes entanglement
entropy across a cut? Moreover, minimizing entanglement across a single cut is not very
useful, since a priori this may increase the entanglement across other cuts, so we really
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want to minimize the sum of the entanglement entropy at each cut. This is, of course, a
very difficult problem that we do not have an exact solution to.

Nevertheless, we can attempt to find an approximate solution by appealing to locality
and restricting the structure of U,y to a unitary circuit formed from the successive appli-
cation of local (here two-site) gates. We accomplish this practically as follows. [23] Starting
from the 8 = 0 TFD state, we apply a small time step of imaginary time evolution to the
physical degree of freedom, e~ 281/2 |3 = 0), compressing the result as an MPS. We then
act with a disentangling unitary U,pn.(0) which acts only on the ancilla. The disentangler
takes the form of a depth-two unitary circuit acting first on even, then on odd bonds,
Uanc(0) = Hjeodd UQ{&*” Hj@ven ;HIZH]. Each Ui{;ﬁ*” only affects the entanglement of

the corresponding bond, so we may locally (gate-by-gate) solve the minimization problem

Ep= min S.gere (Uane(0)e21/2(8 = 0)). (3.3)

first calculating the even-bond unitaries, and then calculating the odd-bond unitaries hold-
ing the former fixed. Numerical algorithms for minimizing entanglement over a local gate
have been discussed elsewhere. [29] Other disentangling criteria are also possible — in this
work we actually minimize the 2nd Renyi entropy for numerical efficiency (see appendix C).
This defines the optimal Ui{{gﬂ] to apply, and Ep is defined from the minimum. The pu-
rification at the next step is then defined by |AB) = Uanc(0)e=2#H/2 |8 = 0). We then

—ABH/2 o1 the physical degrees of free-

continue the similarly, alternating application of e
dom with a layer of unitary disentangling U,nc(5) on the ancilla. This builds up a state of
the form shown in figure 8, where Uane = - - - Uanc(2A8) Uanc (AB)Uanc(0).

A priori, the resulting purification need not be the optimal one, first because U,y was
restricted to the form of a unitary circuit, and second because we determined the value of
the initial layers using the low- 5 purification, independent of the subsequent layers. Indeed,
Ep is rather noisy at intermediate temperature, presumably an artifact of our algorithm.
Nevertheless, the numerical experiments reveal that the entanglement Ep of the purification
we obtain is remarkably consistent with the expected properties of the true entanglement
of purification F),, as we now explore.

We study the standard transverse field Ising model (TFIM) at its critical point,

Hrrmm = JZ oioi +h Z of (3.4)

with J = h = 1/2, where 0%,0% are Pauli matrices. While this model is equivalent to a
free fermion problem, we have verified that the results are insensitive to an integrability-
breaking perturbation which is tuned to stay at the critical point. We obtain the entangle-
ment entropy as a function of subsystem size L4, inverse temperature 3, and total system
size L, using the method just discussed, which we will refer to as the disentangled entan-
glement entropy Ep(L A, B, L). If our disentangling unitary were optimal, then Ep would
coincide with the entanglement of purification F,.

In figure 9, we show raw data for E, across the central cut (L4 = L/2) as a function
of B for a few system sizes L. For reference, we also show the entanglement of the TFD
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physical

ancilla
(a)
(c)

compression

H = imaginary time evolution H = disentangler

(b)

Figure 8. (a) The initial [TF D, 8 = 0) MPS is a trivially entangled state. (b) After the application
of the time evolution operator (red boxes, Trotter decomposed on to even an dodd bonds) on to
the physical legs, the MPS is compressed following the usual TEBD algorithm as and results in an
MPS with entanglement. After this step, we perform the disentangling sweep as described in the
text. (¢) The final form of tensor network produced by our algorithm after a single iteration.

Ey(La,B,L)

E,(La=1L/2,3,L)

Figure 9. (a) The disentangled entropy E’p(L 4,03, L) at the middle cut calculated using our
disentangling algorithm (L4 = L/2). The calculation was done using a DMRG truncation error
cutoff € = 10~!* and maximal bond dimension y = 48. Faded lines correspond to calculations using
X = 12, which do not show a significant difference beyond the fluctuation from the disentangling.
The dashed lines are results for the TFD state without disentangling and dash-dotted lines are
half the mutual information to serve as an upper and lower bound respectively for L = 40. (b)
Dependence of EP(L 4,0, L) on the subsystem size L4 . Results for L = 100 are shown with
solid lines. Dashed lines show the minimum thermodynamic entropy min{S(A), S(A)} of the two
subsystems subsystem, which matches excellently with Ep up until saturation, as predicted from

the holographic prescription.
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Figure 10. Left: the scaling form of the entanglement eZr—Fos = f(La/L,B/L) for La/L =1/4
and 1/2, showing a collapse across different L. At S — oo, this approaches unity, consistent with
U.ne completely disentangling the ancilla. The inset shows the same data on a log-log scale for
L,/L = 1/2, and the dashed black line shows a ¢/6 power-law slope (from Eq 3.15). Right: the
scaling form from AdS/BCFT, with ¢ = 1/2 (the Ising value). The Hawking-Page transition occurs
at f/L = 2. For very high temperatures, the E, surface drops vertically into the bulk. As /L
increases, this surface can either exchange dominance with the one terminating on @ before the
Hawking-Page transition (as is the case for L4/L = 1/4) or not (the case Ly/L =1/2).

state as an upper bound (obtained by TEBD without disentangling) and half the mutual
information as a lower bound (obtained via a thermal correlation matrix method [30]). We
believe the noise is due to a landscape of local minima in the entanglement minimization
step (see appendix C). Ep increases up to a maximum, before decreasing again and satu-
rating the lower bound at high 3. Note that the saturation of the lower bound at 5 — oo
indicates that U,ne has successfully transformed the ground state of the ancilla ]6) to an
unentangled state, realizing the desired reduction ytrp = ng — Xgs Of the MPS.

Next, we examine the dependence of F), on the subsystem size L 4, shown in figure 9b).
Also shown is the thermodynamic von Neumann entropy S4, Sz for the subsystem A and its
complement. There are three clear regimes in the behavior of Ep: for small L4, Ep coincides
with S, until it hits a plateau and saturates over a range of L 4. Finally, as L4 becomes the
majority of the system, Ep again coincides with the entropy of the smaller complement 5.

Remarkably, we find that Ep satisfies the scaling form

eEr(LaBL) — [e/S (1, /1 B/L) (3.5)

where ¢ = % is the central charge, and f is a universal function. More conveniently, as
we will show in section 3.1, this can be expressed as o505 — f(La/L, B/L) becoming a
universal function of La/L and /L, where Sy, is the ground state entropy ( f is related
to f by a constant factor). This is shown for L4/L = 1/2,1/4 in figure 10.

The qualitative agreement between the holographic and numerical results for the en-

tanglement of purification is encouraging for both sides. It is evidence that the holographic
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prescription E,;, does indeed correspond to the entanglement of purification. At the same
time, another message is that although calculating F,, numerically is difficult, it is possible
to calculate it approximately with a practical algorithm. This result is also encouraging
for numerical calculations of this type in general, where bond dimension is the limiting
factor. In our current algorithm, the computational gain from decreasing bond dimension
is overshadowed by the cost of performing the disentangling at every time step, since our
goal was to get as small an entanglement as possible. In principle, the algorithm can be
modified to include the disentangling step more sporadically (every few time steps), or only
when necessary (if bond dimension goes above a certain value).

3.1 Comparison with holographic BCFT

Here we compare the numerical results, which were obtained from a spin chain with open
boundary conditions, to the holographic proposal in the case of open boundary conditions.
Since the conformal field theory has open boundary conditions, the appropriate tool is now
“boundary conformal field theory” (BCFT), not to be confused with the conformal field
theory at the boundary of AdS. The holographic calculations are based on an unproven but
plausible proposal [31] for the gravity dual of BCFT (the proposal passes many checks).
Throughout this section we consider two complementary regions, call them A and B, in
the thermal state of a holographic CF'T on an interval. We assume for simplicity that the
size of region A is always less than or equal to the size of region B and that A and B
together give the whole CFT.

The basic proposal for the gravity dual of BCFT is to solve Einstein’s equations in
the presence of an “end of the world brane” which terminates the bulk spacetime and
which ends on the boundary of the boundary, i.e. the boundary of the CF'T spacetime. In
the simplest case, this brane is described just by a tension 7. One then solves the bulk
Einstein equations plus the equation of motion of the brane to find a bulk spacetime with
an asymptotic boundary and a bulk termination at the brane. The rules for calculating
entanglement entropy are the same, but with the extra proviso that the end of the world
brane never contributes.

Practically speaking, for the simple case of three dimensional Einstein gravity which
we consider here, the geometry is either described by a part of empty AdS or a part of
the BTZ black hole. At low or zero temperature, the dominant saddle point is the AdS
geometry. The metric of AdS may be taken to be

dt? dz? h(z)de) (3.6)

2 _ 712
ds® = LAdS <—22 + ZQh(Z) + 22

where h(z) = 1 — 22/22 and z is periodic with period 2729. The terminating brane is
denoted @ and is described by the curve [31]:

L AdS TZ

204/ h(z) — L2AdST2‘

Q:x(2) —z(0) = zptan™! (3.7)
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The turning point of this curve is at z = 294/1 — LQAdSTQ and its mirror continues after
the turning point. The total length of the boundary interval is thus

220 tan~! 0o = m2p. (3.8)

As the temperature is increased, the system experiences a first order Hawking-Page
transition from an AdS geometry to a BTZ black hole geometry. The black hole geometry
may be written as

f(z)dt? dz? dxz) (3.9)

2 _ 72
ds” = Lias <_ 22 +z2f(z)+?

where f(z) =1 — 2%/z% and the temperature is 8 = T~! = 27zy. The terminating brane
is now

LagsT z

The length of the boundary at z = 0 is still written as 7z, and for positive tension T the

Q: x(2) —2(0) = zy sinh™* (3.10)

horizon z = zp includes more of the x coordinate. By analyzing the free energy of the AdS
and BTZ saddle points, one can show that the Hawking-Page transition occurs when

2
= _ \/1 + <1 tanh ! LAdsT> — l tanh ™! LagsT. (3.11)
15} 4 T s
For example, if the string tension goes to zero, then the phase transition occurs when
zo = zg. By contrast, as the string tension gets large, the phase transition occurs at larger
and larger f.

Now to study the entanglement of purification of as a function of the relative size of
A and B we must consider two variables. Fixing the total size, we must first determine,
as a function of temperature, whether we are in the AdS or BTZ phase. Then, given the
geometry, we must perform the minimization over curves according to the rules discussed
above to find the holographic entanglement of purification. This procedure is somewhat
involved, so we will not consider the general case here (we anyway do not expect an
extremely detailed correspondence between the spin chain and holographic model — for
example, the spin chain has no phase transition while the holographic model does). We
will consider a few limits and special cases.

First, consider the limit of high temperature (or large interval size) and the case where
A is just less than half the total system size, |A| = wz/2. In this limit the boundary effects
are mostly irrelevant, at least at finite temperature, and the calculations are simplified.
The dominant geometry is the BTZ black hole and the minimal cross-section of the AB
entanglement wedge is simply given by a curve which drops vertically from z = € (the
regulated asymptotic boundary) to z = zg. The length of this curve in Planck units is the
holographic entanglement of purification; we find

_Lpas, B ¢, B
log — = = log

~ 4Gn Te 6 Cme

E, (3.12)
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To remove the dependence on the cutoff, it is natural to compare to the ground state
entropy of A. On general CFT grounds, the ground state entropy is given by

2L L
Sgs = glog (7re sin 7TLA> +logyg (3.13)

where log g is the boundary entropy and L = 7z is the total length. In holographic BCFT,
the boundary entropy is related to the string tension via

logg = g tanh ™! LagsT . (3.14)

When Ly = L/2, the ground state entropy is Sys = § log % + log g. Hence the UV finite

scaling form reads
Bs.. 1 /B c/6
e PV = 7 <2L> . (3.15)

Another interesting comparison is to the entanglement between AA’ and BB’ (where
A" and B’ are the mirrors of A and B in the purifier) in the thermofield double state. This
entanglement is actually just twice E), in this limit. Since the required bond dimension is
x ~ efr the minimal purification is predicted to require approximately the square root of
the bond dimension needed for the thermofield double state. Note that in this limit, the
holographic entanglement of purification is also approximately the mutual information, so if
the holographic prescription is correct, then the lower bound on E), is close to being reached.

It is also possible to study £, as a function of the size of A. If the system is in the
thermal AdS phase, then E, = S(A) provided A is less than half the total system. In the
holographic model, what is in essence happening is that the dual gauge theory is confined
and the system is essentially in its ground state except for a few thermal modes. Hence
the large N part of the entanglement is like that of a pure state. If the system is in the
BTZ phase, then E, = S(A) again for sufficiently small A, but beyond a critical size of A,
E, saturates to the value

B, = Slog 2 (3.16)
6 TE
as discussed above. These two features, tracking the entropy of A for small A and rapidly
saturating for large A, are strikingly similar to the spin chain data, at least for sufficiently
high temperature.
We conclude this discussion by working out the simplest example in slightly more
detail. We consider the case of vanishing string tension, 7 — 0. Note that in this limit the

boundary entropy goes to zero,
c
lim logg = lim — tanh™' L =0. 1
709 = i g tenh - LaasT =0 347

Similarly, the Hawking-Page transition occurs for zy = zp. Geometrically, the key simpli-
fying feature is that the (Q boundary is now essentially vertical, i.e. independent of z. We
already argued on general grounds that at low temperatures the holographic entanglement
of purification is simply E, = S(A). Therefor let us consider the high temperature case.
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In the high temperature phase, the entanglement entropy of A for any region A less
than half the system size can be obtained by using a doubling trick. The entropy of a
segment terminating at the boundary is simply one half the entropy of a segment of twice
the size without the boundary. This is correct in the limit where @ is vertical. Thus if A
is an interval of length L 4 then

1 c ]
S(A) = isno boundary(QLA) = 6 log <7IT86 sinh

27TLA> . (3.18)

The entanglement of purification is given by the minimum length among two candidate
curves, the minimal curve for A and the vertical segment running from z = € to z = zp.
For large L4, the vertical segment dominates. For small L4, the minimal curve for A
dominates. By equating the entropy of A with the length of the vertical segment, we see
that the two curves exchange dominance when

2L
sinh ——4 = 1 (3.19)
B
or
L log(1 2
La_los(1+vV2) ) (3.20)
I3 27
Thus we have
_c B .. 2wLy
Ep—élog (Msmh ) (La/B < .140...)
~ gl (La/B > .140...) (3.21)
= 6 gﬂ'e A . o) .

If L4 is half the total system size, L4 = mz/2, then the switch occurs at

20 2log(1+v2)
ZH N m

~ 561 ... (3.22)

However, the Hawking-Page transition occurs at zo/zp = 1, so the geometry switches to
AdS before the change of minimal curve can occur in the BTZ geometry. Hence the scaling

function e»~%s has the following form in the tensionless limit,
EAYARY:
eFr=Ses = (2L) r<? (3.23)
1 2<8

By accident, in this limit the scaling function is actually continuous across the Hawking-
Page transition.

We also consider the case L4 = L/4 and zero brane tension. In this case the Hawking-
Page transition still occurs at /L = 2. But at high temperature (3/L < 2), we have a com-
petition between the surface that drops vertically into the bulk and the one that terminates

on (), and they exchange dominance around % ~ 1.782.... The scaling form is found to be:
c/6
() 51782, ..
Ep—Sgs c/6
= [ s (52)] 1S < <o (3.24)
1 2<2
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4 Random stabilizer tensor networks

Having motivated the holographic prescription in part using tensor networks, in this section
we discuss one concrete tensor network computation of £,. Unlike the previous two models,
here our results are rigorously correct. Based on the relationship between tensor networks
and the AdS/CFT correspondence, there has been considerable interest in designing tensor
networks which obey the network version of the RT formula. Random stabilizer tensor
networks are one class that obeys the RT formula. Here we show, using the results of
ref. [10], that the entanglement of purification can be easily calculated in random stabilizer
tensor networks and that it reduces to approximately 31(A : B).

Consider a connected graph (V, E') and choose a subset Vj of the vertices called “bound-
ary vertices”. These vertices are the analog of the CFT degrees of freedom which live on
the boundary in the AdS/CFT correspondence. The remaining vertices are called “bulk
vertices” and they are the analog of the gravity degrees of freedom in the AdS/CFT cor-
respondence. We associate a tensor |V,) to each vertex z € V}, and a maximally entangled
state |e) to each edge e € E. The bond dimension is taken to be x for all bonds so that
le) = % Zi‘;ol |ii) and |V) is a tensor on a x4°8(*) dimensional space where deg(z) is the
degree of vertex x. The final pure quantum state on Vj is

[bo) = | @ (Val | @ le)- (4.1)

€V, eckE

The above construction is quite general. A stabilizer state can be constructed by first
taking the bond dimension to be xy = p¥ for prime p. Then the maximally entangled states
are stabilizer states. If the vertex tensors are also taken to be stabilizer states, then the
resulting pure state on Vy is also a stabilizer state. A random stabilizer state is obtained
by drawing the tensors |V,;) uniformly at random from the set of all stabilizer states of the
relevant dimension.

One of the main results of ref. [9] is that such random stabilizer states obey the network
RT formula. Given a subset A of Vjy, the entropy of A in state |1g) is given by the minimal
number of bonds in the network which must be cut to isolate A,

S(A) ~ Nlogp x |minimal cut|. (4.2)

For the remainder of this section, all entropies will be measured in units of log p, so the
RT formula reads S(A) = N|minimal cut|. This result fully characterizes the bipartite
entanglement in random stabilizer tensor networks.

Recently, progress has also been made on properties of multipartite entanglement in
random stabilizer states. Consider a tripartite stabilizer state |¢) apc. It is known that,
up to local unitary transformations, the entanglement content of such a state is given by
Bell pairs and GHZ states [32, 33]. Denote the Bell pair by

p—1

B 4 = ;ﬁ S iy ali)s, (4.3)

1=0
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and the GHZ state by
-1
17
|GHZ) apc = — li)ali)Bli)C. (4.4)
2

Note that these states do not depend on NV, i.e. they represent elementary units of entan-
glement. In this notation, the statement is that for any tripartite pure state there exist
local unitaries Uy, U, and Ug and factors A;, B;, and C; of the A, B, and C' Hilbert
spaces such that

UAUBUC‘w>ABC = (‘(I)>A131)C (’(I)>3201)a (|(I>>A202)b (‘GHZ>A33303)9 (45)

up to unentangled states.
Given this form, it is easy to calculate the entropy of any region, say A:

S(A)=b+c+g. (4.6)
Similarly, the mutual information is

1 g
—I(A: B) = =, 4.7
1A B)=c+ ! (47)
Finally, using results outlined in the introduction plus the fact that the state of AB reduces
to products of decoupled mixed states, Bell pairs, and purely classically correlated states

(arising from GHZ), the entanglement of purification can be calculated:
E,(A:B)=c+y. (4.8)

Now, in the limit of large N, the numbers a, b, and c¢ scale with N while the number
g is order one [10]. Hence it follows that

Ey(A: B) = %I(A B +ix %I(A . B). (4.9)
In other words, in random stabilizer tensor networks, the entanglement of purification is
approximately the lower bound of one half the mutual information. This is in contrast to
the holographic proposal, where £, and %I could differ by a large amount. Indeed, we
could have considered an analog of the holographic proposal for random stabilizer tensor
networks, but this proposal would be wrong in general.

The random stabilizer tensor network result does highlight an important caveat in the
holographic discussion. Since such networks obey the RT formula, any property derived
from RT is also obeyed in such networks. Similarly, one can show that in holographic
systems which obey the RT formula, the lower bound of %I (A : B) is also consistent with
all properties of E,. Hence it is prudent to emphasize that it is possible the holographic
answer is simply one half the mutual information; however, it must be similarly emphasized
that the entanglement structure of holographic states is known to be more complex than
that of stabilizer states, e.g. the spectrum of density matrices is not flat.

One final note is appropriate. There are other classes of tensor network states that obey
the network version of the RT formula, e.g. some tensor networks made of perfect tensors
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and random tensor network states. KEspecially in the case of random tensor networks,
it is natural to conjecture that the holographic prescription giving E, in terms of the
entanglement wedge cross section generalizes to its network version. It would be very
interesting to prove or refute this conjecture in the class of random tensor networks.

5 Holographic proposal: general formulation and properties

In this section we return to our holographic proposal and discuss some general features of it.
First, we generalize it to time-dependent situations. Then we discuss some interesting fea-
tures of the proposal, especially the case when E,;, undergoes a first order phase transition.
Finally, we show that our proposal in the time-independent case obeys all the properties
of E, listed in the technical introduction. The time dependent case is more complex, and
depends in principle on the actual dynamics of the theory, so we leave it for future work.

5.1 Holographic proposal: time-dependent case

Our proposal for the holographic entanglement of purification can be generalized to a time-
dependent setting in a straightforward manner. Given two boundary regions A and B, the
E,n(A : B) is the length of the shortest of all extremal surfaces in the entanglement wedge
that separates A from B, and this extremal surface is allowed to terminate on the HRT
surface [34] which we will call I". Put differently, we think of the entanglement wedge as a
new spacetime with spatial boundary A U BUT. Then we again consider all partitions of
I’ into A’ and B’ and minimize the entropy of AA’, as computed by HRT, over the choice
of A’. This proposal for time-dependent E,,, of course, reduces to the bottleneck of the
entanglement wedge in the static case.

For example, consider the case of the 2-sided BTZ black hole. The boundary consists
of 2 circles, and we want to compute E,;(A: B) where A and B are each half of each
boundary circle from ¢ = 0 to ¢ = 7, at the same boundary time.? A similar setup was
considered in [35] to study the time dependence of the entanglement entropy. First, we
find the HRT surface, which we will denote I': T" a pair of spacelike geodesic crossing the
wormbhole connecting A to B. The HRT surface is disconnected and consists of 2 connected
component, as depicted in figure 11. By symmetry, the E,; should be the geodesic distance
between the two midpoints of the connected components of I'. We schematically depict
this in figure 11. Using the fact that BTZ is a quotient of AdSs, one can work out an
analytical formula for the E,}, as a function of the boundary time Ty (by boundary time,
we mean the Schwarzschild or Killing time on the boundary). In Kruskal coordinates, the
BTZ metric reads:

o —AL3 ygdudv + R*(1 — wv)?d¢?

ds® = 1+ u)? (5.1)

3Note that the Schwarzschild time increases downward on the left boundary and upward on the right
boundary. When we say “same boundary time”, we mean the boundary time on the left is the negative of
the boundary time on the right.
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Figure 11. Left: the HRT surface (green) is a pair of geodesics crossing the wormhole anchored
at the same boundary time on the left and on the right. Right: the topology of a spatial slice is
that of a cylinder. We draw schematically a spatial slice which contains the E, surface.

with ¢ ~ ¢ + 2. We need the geodesic distance between any two spacelike-separated
points X7 = (u1,v1,¢1) and Xo = (ug, va, ¢2) in the BTZ spacetime [36]:

D(Xl,XQ) = LAdSarccosh[—@(Xl,Xg)] (52)
with

2(u1vp + viug) + (1 — uyv1)(1 — ugv) cosh (%;—@))
(1 + u1’l)1)<1 + UQ'UQ)

(X1, X) = — (5.3)
In particular, for two points on the boundary X; = (t1,¢1) and Xo = (t2,¢2) (in the
Schwarzschild coordinates of equation (3.9) with the renaming of the coordinate x — ¢),
we have the distance formula:

(5.4)

—20(X,, X
D(X1, X2) = LagsIn [(12)}

€2

with

O(X1, X,) = 2% [i cosh (tl — t2> — cosh <L/*‘is(¢1_‘b2)ﬂ (5.5)

*H ZH

where the sign of + is plus if the two points belong to the same boundary, and minus if
they belong to different boundaries, and € is a regulator defined by integrating the geodesic
up to the near-boundary hyperbola uv = —1 + 2¢/zy. We now consider the 4 points a,b,c,
and d which are the endpoints of A and B (the black semicircles on the right panel of
figure 11). Their coordinates are:

a=(t=—The¢=0) (5.6)
b= (t=-Ty¢=r) (5.7)
c=(t=Ty¢=0) (5.8)
d=(t="Ty¢=r) (5.9)



Here a, b lie on the left boundary and ¢, d lie on the right boundary, and the time coordinates
of a and b are negative because the time coordinate increases downward on the left bound-
ary. Using the distance formula (5.4) above, we can find S(A) = S(B) = %}’5) = %ﬁ)
and S(AB) = 250 — 9 D).

N

G
L 2 L
S(A) = S(B) = di; In [iH sinh (”22;15” (5.10)
Laas, |[2zH T
AB) = In |—cosh | — 11
S(AB) G n[ — cos <ZH>} (5.11)

Note that S(A) and S(B) are independent of Ty. This is because both these RT surfaces lie
on a spatial slice of fixed Schwarzschild time (which goes through the bifurcation surface of
the black hole), and the metric is static in this time coordinate. The mutual information
is nonzero from time T = 0 to:

L
T, = zpgarccosh [sinh (W)] (5.12)
2ZH

at which point there is a phase transition and the mutual information jumps to zero. During
the time 0 < Ty < Ty, the mutual information is given by:

I(A:B) = Lé*ds In [sinh <7T2LAdS>sech<T°>] (5.13)

N ZH ZH

As for the Eyy,, it is given by the geodesic distance between the midpoint of the component
of I' connecting a to ¢, and the midpoint of the component connecting b to d. These two
midpoints are located at (u,v) coordinates given by:

Tt
u = v = tanh <2;;> (5.14)

At Ty = 0, the midpoint of the HRT surface is the bifurcation circle of the black hole
(u=v=0). As Ty — o0, the midpoint approaches the singularity (v = v = 1). Using the
distance formula (5.2), we find for the E,p:

L L T
Eopn(To) = 43‘115 arccosh{l + [cosh <7T22ds> — 1] sech? <Z;)} (5.15)

In particular, at boundary time Ty = 0 the E,j is equal to half the circumference of the
bifurcation circle of the black hole (divided by 4G). We plot in figure 12 the time evolution
of the Ep, and (half) the mutual information. Note that, as expected, the Ep, is greater

than or equal to half the mutual information.

A peculiar feature of the E,, in this case, as can be seen from figure 12, is that
even as the mutual information approaches zero continuously at the phase transition, the
E,}, remains finite and then jumps discontinuously to zero (with the difference between E,,
and half the mutual information approximately constant in time until the phase transition).
This behavior is somewhat counterintuitive, as one would expect the mutual information
and the entanglement of purification to behave similarly to each other. Nevertheless this is
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I(A:B)/2, Eph (A:B)
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i\ TO
0.5 1.0 1.5 2.0

Figure 12. We plot the E,;, (in orange) and half the mutual information (in blue) as a function
of Ty, with zg = 1/2, Gy = 1 and Lags = 1. The mutual information becomes zero at around
Th = 1.568.

also what occurs for 2 non-adjoint boundary intervals in empty AdS: when the entanglement
wedge transitions from being connected to being disconnected, the mutual information
approaches zero continuously while the Ep; jumps discontinuously to zero. It would be
interesting to understand this phenomenon in more details. In particular, it would be
nice to construct explicit quantum states which have close to zero mutual information but
nonzero k.

5.2 Holographic check of inequalities

In this section, we show that E,, satisfies the inequalities mentioned in the technical
introduction. We will first go through each inequality and check its validity in time-
independent backgrounds. Then we will generalize the arguments to the time-dependent
case at the end.

Upper bound by entanglement entropy. First we check the upper bound (1.5). For
2 adjacent intervals in AdS, this bound is trivially satisfied because the E,, is UV-divergent
at one endpoint but each RT surface for S(A) and S(B) diverges at both endpoints. For
2 non-adjacent intervals, the bound is also trivially true since the entanglement entropy
diverges but the F,, is finite.

The BTZ case is more subtle. Consider for example the symmetrical case where A and
B are each half the boundary on one side (their half-widths are both 7/2). The E,} has
already been computed:

Laas 2rc
En(A:B)= 1 — 1
ph( ) 2G N og <T+ > (5.16)
and the entanglement entropies are:
Laas 2re . Ty
A) = S(B) = 1 —— sinh 1
S(A) = S(B) STepe Og<r+ sin <2LAdS (5.17)

The question of whether E,(A: B) < S(A) then depends on the sign of the quantity
2L g5 log (sinh M*S). This quantity could be of either sign, depending on the size of

2L Aq
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Figure 13. Graphical proof of the lower bound Ep;(A : B) > £I(A : B) for two adjacent intervals.

the horizon relative to L, but we can invoke a thermodynamic argument to eliminate the
negative case. Recall that the BT'Z black hole undergoes the Hawking-Page transition to
thermal AdS when the horizon is smaller than the AdS lengthscale, and only large black
holes (with 74 > L) are thermodynamically stable. For large black holes, we have that

T4
2L aqs

2L g5 log (sinh ) > 0 and the upper bound by the entanglement entropy is satisfied.

Monotonicity. The monotonicity property is quite intuitively clear. For 2 adjacent
intervals in AdSs, recall formula (2.6) for the E,,. If we differentiate this formula with
respect to aq, we have:

OEpn (a1, ag) _ Laas
8&1 4GN

csc (aq) sin ag ese (g + ) (5.18)

Since both «a; and aw are in the range (0,7/2), the quantity above is always positive. This
means the E,;, indeed increases monotonically with oy at fixed ap. Similarly for as. For
non-adjacent intervals in AdSs as well as adjacent or non-adjacent intervals in BTZ, one
can similarly differentiate the E,;, formulae and check that it is positive.

Lower bound by the mutual information. Next, we check the bound (1.7). For 2
adjacent intervals, the lower bound is a simple consequence of Riemannian geometry, as
illustrated in figure 13. Let a, b, ¢ and d be points as labelled on the figure. We will denote
by (ab) the length of the geodesic connecting a and b etc. We then have:

Ep(A: B) = igcj)v (5.19)
I(A:B) = 461¥N [(ab) + (ad) — (be) — (cd)] (5.20)

But, by definition of a geodesic, we also have (ab) < (ac) + (bc) and (ad) < (ac) + (cd).
Plugging the two inequalities above into I(A : B) above, we find

I(a:b) < Z%C])V = 2E,,(A: B) (5.21)

—97 —



thus proving the bound. Similar proofs can be constructed for two non-adjacent intervals
as well as the BTZ black hole in a straightforward way, as well as for other asymptotically
AdS geometries.

Even though we have established the lower bound, it is still interesting to explicitly
compute the difference between E,, and half the mutual information in a few simple
cases. For two arbitrary adjacent intervals of half-widths a1 and ag, the E,;, and mutual
information are:

L L 2R
En(A:B) = 42&? log (2 csc (aq + a2) sinag sin ag) + ﬁ log <LZS) (5.22)
1 L L C
§I(A : B) = 4?;; log (2 csc (aq + o) sin o sin ag) + 42?5 lo (L]jds> (5.23)

Comparing the two expressions above, we find that this latter is larger than half the mutual
information by an amount L qg log 2.

Next, consider 2 non-adjacent intervals. For the simple special case where A and B
have the same size o and are diametrically opposite each other (with « sufficiently large
so that the entanglement wedge is connected), the E,;, and mutual information are:

) B Lags 1+ sina
E,(A:B) = G log (1 — sina) (5.24)
Lia: By = BA%S 106 (tana) (5.25)
2 2G N

and one can check that the first one is larger than the second. Finally, consider the BTZ
black hole, with A, B taken to be each half the boundary (on one side). In this case the
Epp, and the mutual information are given by:

Laas 21
E,(A:B)= —=1 — .2
p(A: B) STe <T+ ) (5.26)
1 LAdS 27’c LAdS . ™4 4
—I(A:B) = 1 — I h — 5.27
1A B) =50, Og<r+> TGy B\ o) T day (5:27)

To see that E,(A: B) > 3I(A: B), we have to argue:

wr

2L aqs log <sinh 5 + > —7ry <0 (5.28)

Lpas

This is easy to show:

mry/2Lads _ o=+ /2L Ads
2L pqs log | sinh Lk = 2L aqs log ¢ ¢
2L ags 2

< 2L pgs log €™ +/2kaas — oy, (5.29)

where we used the fact that the log is a monotonic function. This verifies the bound (1.7).
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Figure 14. Graphical proof polygamy of E,, for tripartite pure state. Beltrami-Klein coordinates
are used here.

Tripartite bound. Next, consider the tripartite bound (1.8). We note a relevant fact:
in a holographic state, the mutual information in holographic states is known to be monog-
amous:

I(A: BC)>I(A:B)+1(A: Q) (5.30)

as proved in [37]. This property combined with the lower bound (1.7) implies the tripartite
bound (1.8). To see this, let us replace B by BC in the bound (1.7). We obtain:

I(A: BC)

E,(A:BC) > 5

(5.31)
Using the monogamy relation (5.30) to replace I(A : BC') on the right-hand side then yields
the bound (1.8). Thus, it will be sufficient to check the bound (1.7) holographically.

Polygamy of tripartite pure state. Finally, we check the polygamy of the E,;, for
tripartite pure states. Like the lower bound by the mutual information, this property is
a simple consequence of Riemannian geometry as illustrated in figure 14. If we denote by
(ab) the geodesic length between a and b on this figure etc, then we have:

1

E,(A:B) = Cn [(ac) + (ce)] (5.32)
Ey(A:C) = 4c1:N ((be) + (cd)] (5.33)
E,(A: BC) = 4(1;N (ab) (5.34)

But (ab) < (ac) + (bc) by virtue of being a geodesic. Therefore clearly E,(A: B) +
E,(A:C) > E,(A:BC). Even though we draw AdS in figure 14, it is clear from the
proof above that it applies to any asymptotically AdS geometry, and not only empty AdS.
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Generalization to time-dependent situations. Finally, we generalize the arguments
above for time-dependent backgrounds, starting with the lower bound by half the mutual
information. Note that the geometrical argument presented above in the time-independent
case does not directly apply due to the fact that in general, the different extremal surfaces
involved lie on different spatial slices. However, one can adapt the techniques of [38] to
prove this lower bound, as follows.

Consider for instance a spatial slice of the boundary of global AdS, and let A and B
be “large”, non-adjacent boundary intervals (we require them to be large so that the E,,
is nonzero). By corollary (h) of Theorem 17 in [38], we know that there exists a spatial
slice ¥ containing the HRT surfaces for A, B and AB, and on which all these HRT surfaces
are minimal. Thus, one can draw a picture analogous to the left panel of figure 2, except
that the spatial slice shown is ¥ and not a static time slice. The green curve on this figure
is now taken to be the minimal curve lying on ¥ which connects the two components of
the HRT surface for S(AB). Note, in particular, that this green curve does not in general
compute the E,;, since the curve that does is not confined to the slice ¥. However, by
the minimax property of extremal surfaces shown in [38], we know that the green curve is
shorter in length than the curve computing the E,;,. This fact, combined with the same
argument for the lower bound in the static case but repeated on the slice X, establishes
the lower bound in time-dependent settings: Ep,(A: B) > 1I(A: B).

The tripartite bound I(A : BC) > I(A: B)+I(A : C) also holds in the time-dependent
case since the monogamy of mutual information is known to be true (with the assumption

of null curvature condition). This is, again, established in [38].

6 Conclusion and future work

We presented an analysis of the entanglement of purification in three different model many-
body systems. In the case of random stabilizer tensor networks we were able to actually
compute the entanglement of purification. Our holographic calculations focused for sim-
plicity on the case of a three dimensional bulk, but the proposal obviously extends to
any dimension. One technical challenge is to show that the desired properties of F,, are
obeyed by our holographic proposal in the time dependent case. We found reasonably good
agreement between the holographic results and a numerical study of the Ising spin chain.

We mention two promising directions for future work within holography: (1) explor-
ing the connection between the E, and the differential entropy [39] as well as kinematic
space, and (2) exploring the connection between £, and the bit threads [40]. It has been
discovered that the lengths of arbitrary curve in the bulk can be interpreted by terms of
quantum information by a quantity called the differential entropy. This latter quantity
is associated to a continuum of boundary intervals defined by the family of geodesics in
the bulk tangential to the curve of interest. Equivalently, the length of curves can also
be computed by integrating over the volume of a region in an auxiliary geometry called
kinematic space. Remarkably, volume elements in kinematic space turn out to compute the
conditional mutual information of 3 adjacent boundary intervals. Of course, the differential
entropy/kinematic space interpretation also applies to the geodesic segments computing the
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Epp,. Therefore, there seems to be deep connection between holographic entanglement of
purification and other quantum-information-theoretical quantities such as the conditional
mutual information.

On the other hand, the Ryu-Takayanagi formula has been reinterpreted recently via the
min-cut/max-flow theorem as some kind of information flow [40]. Within this framework, a
beautiful picture emerges for the lower bound of the E,,;, by half the mutual information, as
follows: one can construct a flow in the bulk that computes half the mutual information and
which is supported only in the entanglement wedge. The E,;, then acts as the bottleneck
that restricts this flow, in pretty much the same way as the diameter of a pipe contrains
the amount of water flowing across it. Further explorations of this bit thread picture may
help prove nontrivial properties of the E,; that are not easily seen otherwise.

In the context of spin chains, we have shown that a substantial reduction in entan-
glement relative to the thermofield double state is possible. One promising direction is to
construct new tensor network algorithms that take some advantage of this potential re-
duction in entanglement. Finding the right balance between the cost of keeping unneeded
entanglement and the cost of finding and removing it is an interesting challenge.

Finally, in the context of tensor network model of holography, we computed the entan-
glement of purification for random stabilizer tensor networks. Despite the fact that these
networks obey the discrete RT formula, the discrete analog of the holographic proposal for
E, was actually not obeyed in general. This is presumably due to the rather simple struc-
ture of entanglement in these networks. It would be very interesting to study random tensor
networks, for example, to see if the analog of E,; does actually compute E, in that case.
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A Proofs of properties of E,

In this appendix, we review the proofs of the properties of the E, mentioned in the Intro-
duction [8, 13], starting with the upper bound (1.5) by the entanglement entropy.

Proof: let pap be a bipartite density matrix with eigenvalues \; and eigenvectors |1;).
The standard purification of pap:

) = Z VAili) ag % 10) ali) e (A1)

~ 31—



yields the entanglement entropy S(A) when we trace out the BB’, and S(B) when we trace
out the AA’. Since we have to minimize over all purifications in the definition of the EP,
the bound (1.5) follows.

Next, we prove monotonicity (1.6).

Proof: let papc be the density matrix on ABC'. If papc is pure, then the EP coincides
with the entanglement entropy: E,(A : BC) = S(A). But E,(A : B) is bounded above by
S(A), hence monotonicity is satisfied. If papc is mixed, then we note that the set of
purifications of the form 1) 44/, BC)(BC) 1s a subset of the purifications of pap of the form
|9)) a47,BB’, and monotonicity follows immediately.

Next, we prove the lower bound (1.7) by the mutual information.

Proof: let |) apa g be the optimal pure state for the evaluation of E,(A: B), i.e.
S(AA', |¢)) = Ep(A : B). USing the subadditivity of the conditional entropy for a 4-party
quantum state:

S(A'B'|AB) < S(A'|A) + S(B'|B) (A.2)
Using the definition of conditional entropy (S(A|B) = S(AB) — S(B)), this implies:
S(ABA'B") — S(AB) < S(AA") — S(A) + S(BB') — S(B) (A.3)
But S(ABA'B’) = 0 since papa/p’ is pure by definition of the EP, and S(AA") = S(BB’) =
E,(A : B). The above simplifies to:
S(A)+ S(B) — S(AB) < 2E,(A: B) (A.4)

which is equivalent to (1.7).
Next, we prove the lower bound (1.8) for the tripartite systems.
Proof: let |Y) apcarp be the optimal pure state for evaluating the EP, i.e.

E,(A: BC) = %I(AA’ . BCD') (A.5)

We now use the fact that mutual information satisfies the monogamy equality condition
for pure states:

I(AA": BOD')=I(AA": B) + I(AA": CD') (A.6)

to obtain . )
E,(A:BC) = §I(AA’ : B) + §I(AA' : CD’) (A.7)

But the mutual information is monotonic, i.e. I(AA’: B) > I(A: B) and TAA": CD" >
I(A: C). The bound (1.8) then follows.

Next, we show that the FE), in a state saturating the Araki-Lieb inequality is the
entanglement entropy of the smaller subsystem.

Proof: saturation of Araki-Lieb means:

S(A) — S(B) = S(AB) (A.8)

Note that the EP is bounded above by the entanglement entropy and below by half the
mutual information:

% I(A:B) < E,(A:B) < S(B) (A.9)
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But Araki-Lieb saturation also implies I(A : B) = 25(B). The above becomes:
S(B) < E,(A:B) < S(B) (A.10)

Hence E,(A : B) = S(B).
Next, we show that the E, in a tripartite pure state is polygamous (inequality 1.9).

Proof: by the lower bound by the mutual information E,(A : B) > 1(142:3)7 we have:
1
E,(A:B)+Ey(A:C)> 5( (A:B)+I(A:()) (A.11)

Recall that in a pure state, the mutual information satisfies the monogamy equality (A :
B)+I(A:C)=1(A:BC)=5(A). But S(A) = E,(A : BC) since the state is pure. Thus,

E,(A:B)+ E,(A:C) > E,(A: BC) (A.12)

Finally, we show that for a classically correlated state of the form pap = >, pili)(i]a ®
|i)(i| B, the E), is the Shannon entropy of the corresponding probability distribution: E, =

—>_; pilog pi.
Proof: we copy the classical information to a third system C and consider the state:

PABC = Zpl (ila @ |9)(ilp @ |i)(ilc (A.13)

This state is unitarily related to the state pap. Indeed, if we call V' a unitary operator
that copies the classical information V|i) g|0)c = |i) g|i)c for some reference state |0) g, we
then have:

pasc =Vpap @[0)(0|c V1 (A.14)

Using the inequalities previously established in this appendix, we have:

S(A) > Ey(A: B) = Ey(A: BC) > ~I(A: B) + %I(A . C) (A.15)

> 1y
2
But S(A) =I(A:B)=1(A:C)=—),pilogp;. Thus, we have:

— Zpi log p; (A.16)

B Shortest distance between 2 geodesics via Beltrami-Klein coordinates

In this appendix, we use the Beltrami-Klein model of the hyperbolic plane [41, 42] together
with its well-known properties to compute the shortest distance between any two geodesics
in the hyperbolic plane H2. To this effect, we use the following fact (also known as the
ultraparallel theorem in hyperbolic geometry):
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N

Figure 15. Left: plot of the RT surface (red) and the EP surface (green) in the Poincaré disk
model. Right: the same plot as it appears in the BK model.

Fact. Given any two geodesics in the hyperbolic plane which do not share a common
endpoint on the boundary (i.e. given two ultra-parallel curves), then there exists a unique
geodesic which is perpendicular to both of them. Moreover, this common perpendicular is
the shortest curve between the two given geodesics.

By the fact above, we should construct the unique common perpendicular to the two
given geodesics in order to find the shortest distance between them. We will work with the
Beltrami-Klein (BK) model of the hyperbolic plane to construct the common perpendicular.
The BK metric can be obtained from the usual global coordinates in AdS by a redefinition

of the radial coordinate:

o R (B.1)

LAdS | R2 + L?AdS

In the BK model, geodesics are straight lines. For example, in figure 15 we draw the

RT surface as well as the EP surface for the case where A and B are of the same size and
diametrically opposite from each other, both in the Poincaré disk model and BK model.
In the simple case of figure 15, the unique common perpendicular is easily seen to be
the line connecting the midpoints of the two red lines (by symmetry). For more general
boundary intervals A and B, finding the common perpendicular is a bit more involved, but
the following fact is helpful:

Fact. Let L be a geodesic in the hyperbolic plane. Another geodesic L' is perpendicular
to L if and only if it goes throught the pole of L when extended beyond the edge of the disk
(in the Beltrami-Klein model). Here the pole of L is the intersection between the two lines
tangential to the edge of the disk at the two endpoints of L.

Using the fact above, we can then construct the common perpendicular to any two
geodesics as in figure 16 below. Let a, b, ¢, d be 4 boundary points, and we have two
geodesics £1 and Lo connecting a to b and ¢ to d respectively. These two geodesics are
black lines in figure 16. By the fact above, we know that the unique common perpendicular
to £1 and Ly passes through the poles of both £; and L. The pole of £ is the point p,
which is the intersection of the two tangential lines to the disk at a and b (depicted in red,
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Figure 16. The RT surface is in red. The EP surface is in green.

dashed in the figure). Similarly, the pole of L9 is the point q. The green line connecting p
to ¢ is then the unique commone perpendicular to £; and L.

Let m and n be the intersection of the green line with £; and with Lo respectively,
and let r and s be the two intersections of the green line with the edge of the disk. The
shortest distance between £1 and Lo is then the distance between m and n. Using the
standard formula for distance in the Beltrami-Klein model:

|sm||nr|

Laas
d(m,n) = lo B.2
(m,n) 2 |sn||mr| (B2)
where | - | is the Euclidean distance between the two points. Note that the distance is a

function of a the cross-ratio of the 4 points. Our task now is to relate the 4 points m,
n, r and s in the formula above to the 4 points a, b, ¢, d. Let us denote by i, as the
half-widths of (a,d) and (b, ¢) respectively, and by ¢1, ¢2 the midpoints of (a,d) and (b, c).
Note that the intervals we are referring to are not (ab) and (cd) but the other two. We
want to write down a formula for d(¢1, a1, P2, ). After some analytical geometry, we find
the formula (2.2) for E,}, of 2 non-adjacent intervals.

Next, we consider the limiting case where one of the two geodesics shrinks to a point on
the boundary. Of course, the distance between the remaining geodesic and the point on the
boundary is divergent and we have to regularize it. The shortest curve from the geodesic
to the point can be constructed using the techniques previously described: by constructing
the line going through the pole of the geodesic to the point on the boundary (see figure 17
below). Unlike the non-adjacent case, the EP is now divergent. We regularize it length by
introducing a cutoff at radius Lags(1 — €) (dashed circle in the figure above). Thus, we
want to compute the length of the green line segment between the dashed circle and the
RT surface. As in the non-adjacent case, we parametrize A and B as (¢1 — a1, ¢1 + )
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Figure 17. The RT surface for AB is in red. The EP surface for E,(A: B) is in green. The
regularizing surface is in black dashed.

and (¢ — g, ¢2 + ag) respectively. The fact that they are adjacent implies:
P2 =1+ a1 + a2 (B.3)

After some analytical geometry, we find the distance formula:

g2

tan2 (041 + 042) (B4)

d = =log

" (2sin aq sin ag + cos (g + 042)\/92(1 —€)2 —sec? (a1 + ag) sin® (a1 — ap)

(2sin oy sin ag — cos (a1 + a2)v/g2(1 — €)2 — sec? (a1 + o) sin? (a; — ao)

If we now expand in € around e = 0, we find the result (2.6) given in section 2.

C Minimization of 2nd Renyi entropy

In this appendix we describe the disentangling step of the numerical calculation described
in section 3 in more detail.

The disentangling step seeks to efficiently find a unitary transformation on the ancilla
degrees of freedom of our system which minimizes the total entropy. While this unitary
could be any global unitary transformation, to make the problem tractable we instead
sweep across the system, minimizing the Second Renyi Entropy between two sites at a
time. Disentangling algorithms are discussed in more detail in ref. [29].

Once the center of normalization for the MPS is on site ¢ or ¢ + 1, the state can be
represented by the object © [26], depicted in figure 18. We calculate the Second Renyi
Entropy Sz = —log Trp? in the usual way, treating © as our state.

To minimize this quantity for our pair of sites, we use a modified steepest descent
algorithm. In particular, we apply a unitary disentangler to the ancilla legs of ©, and
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Figure 18. The state ©. We combine the bond and physical degrees of freedom into a pair of
physical indices represented by the horizontal legs. The ancilla degrees of freedom (the bottom
legs) are acted upon by our two-site disentangler.

Figure 19. An illustration of the gradient operator agj’z evaluated at the identity. Each oval

represents © or its conjugate. Every pair of connected ancilla legs is connected by the identity,
while the disconnected set of legs represents the removed unitary transformation.

express Sy in terms of this unitary. We then calculate the gradient of Trp? with respect to
this unitary, evaluated at the identity. This gradient is depicted graphically in figure 19.

The algorithm then chooses a unitary disentangler close to this gradient, which we
obtain via a singular value decomposition. In particular, for the decomposition

OTrp?
ou

where X and Z are unitary matrices, the two-site disentangler chosen by the algorithm
is U' = X Z. This selects the unitary closest to XY Z, as defined by the matrix norm.
As argued in section 3, this approach does well to approximate the entanglement of

=XYZ, (C.1)

purification, but the data contains considerable noise for intermediate values of 5. One
method to reduce the noise is to choose two-site disentanglers which are closer to the
identity. For example, an alternate approach would be to instead choose the decomposition

O0Trp?
ou

for a small value of k, with U’ = X Z as before. This choice of disentangler corresponds

1+k

=XYZ, (C.2)

to the standard steepest descent algorithm (again with the restriction that only unitary
disentanglers are allowed). The choice (C.1) corresponds to the large k limit of (C.2).
Figure 20 shows the entropy after disentangling using various values of k.
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Figure 20. The disentangled entropy Spg at the middle cut for different choices of two-site
disentangler given by (C.2), for a system size L = 30. The dashed line shows the entropy of the
TFD state without disentangling, while the dash-dotted line is the disentangled entropy using the
prescription (C.1).

Unforunately, small values of k lead to sub-optimal disentanglers, as the algorithm
converges on local minima more readily when k is small. As figure 20 suggests, the noise
becomes significant once the algorithm is able to escape some local minima, even for sub-
optimal purifications. This suggests that the noise is in part due to movement between
local minima. Escaping these local minima, however, appears essential to produce a good
approximation of the entanglement of purification, as we argue our algorithm accomplishes.
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