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Abstract—The joint desizn of both transmit constellation and
low-density parity-check codes (LDIPC) for the two-nser, symbaol-
synchronous, binary-inpul Gaussian multiple access channel is
considered. A transmission scheme is proposed to approach the
symmetric capacity without the use of time-sharing or rate-
splitting by joint decoding of the neisy sum of two LDIPPC
codewords, This scheme relies on an extension of the classic
heliet propagation (BF) algorithm which allows for the simul-
taneous decoding of two LDPC codewords. We use a Gauossian
approximation (GA) of the message distribution to investigate
the comvergence of the decoding process and derive a linear
programming technigue for joint code design. We also implement
a superposition modulation scheme to achieve higher rate. This
code design is applied to different input constellation choices
which attain the symmetric capacity in different SNR regimes,
It is shown that, guite surprisingly, in the moderate SNR regime
the best performance is obtained by an asymmetric constellation.

[. INTRODUCTION

Joint decoding is a fundamental ingredient of multi-terminal
transmission schemes and generally provides substantial im-
provements over time-sharing and rate-splitting. Despite its
importance from both a practical and theoretical perspective,
the study of optimal codes for joint decoding has not been
represented well in the literature as only a few good code
designs are currently known.

The study of codes for the MAC has focused primanly
on two models: the real adder channel and the GMAC. The
real adder channel is a noiseless channel with binary inputs
in which the output is the real sum of the inputs. For this
model, correct decoding is possible only when any two input
codewords are always distinguishable from their sum. The
construction of block codes and decoding for the two-user
real adder channel is studied in [1] and 15 extended in [2]
to the real adder channel with any number of (ransmitters.
Convolutional codes for GMACS are investigated in [3] which
shows that non-uniquely decodable binary convolutional code
pairs exist with a sum rate larger than the time-sharing rate.
The design of LDPC codes for the GMAC is first considered
in [4], although only one construction is mentioned. The
authors of [5] introduce the concept of a “MAC node™ for

The work of Y-C Liang and 5. Bini was funded by the Minisiey Of
Science and Technology (MOST) under the grant 103-2218-E-009-014-MY2
The work of ). Klhewer was supported in parl by the LS, National Science
Foundation under grants CCF-1440001 and ECCS-1711056.

978-1-5386-1823-3/17/531.00 £2017 TEEE

1728

the Tanner graph when describing the decoding of LDPC
codes for the GMAC. This node is a third type of node,
together with variable and check nodes, which receives the
channel output and the bit-religbility for a symbol of one
transmitter and produces the bit-reliability of a symbol of the
other transmitter. In [6], the authors propose a soft demapping
method for multilevel modulation on the GMAC based on
LDPC codes and investigate the role of symbol mapping
in this setting. Spatially coupled codes for the binary adder
channel with erasures are studied in [7] where it 15 shown that
threshold saturation as in the point-to-point erasure channel
also occurs in this model. In [8] spatially-coupled codes for
the GMAC are studied, and 1= shown that threshold saturation
occurs for the joint decoding of two codewords: this result
naturally leads to the design of codes which are universal with
respect o the channel parameters. Although very powerful,
the approach of [8] has not so far been complemented by
numerical evaluations,

In this paper, we consider the joint optimization of both
the transmitter constellation and LDPC codes for a GMAC:
this is, to our knowledge, the first time that these two design
problems have been jointly considered. We consider an ex-
tension of the BP algorithm for the decoding of the sum of
two LDPC codewords corrupted by additive white Gaussian
noise al the receiver We derive convergence conditions for
this decoding algorithm and propose a numerical optimization
tool for code design based on linear programming. This code
construction is applied to three inpul constellations which
maximize the symmetric rate in three different signal-to-noise
ratio (SNR) regimes: (i) antipodal input—optimal at low SNR,
{ii) inputs that maximize the minimum distance in the received
constellation—optimal at high SNR, and (iil) an asymmetric
constellation—optimal at moderate SNE. We show that, quite
surprisingly, in the moderate SNR regime, an asymmetric
constellation outperforms symmetric input constellations. Sim-
ulations resulls are presented to show the effectiveness of the
proposed construction.

IT. CHANNEL MODEL AND CODE DESCRIPTION

We study the two-user, symbol-synchronous GMAC in

which the channel output is obtained as
YNy XV 28, (1)
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Fig. 1. Tanner graph of MAC considered in this work: check nodes ame
indicated as sguares, variable nodes as circles, and the MAC nodes are
indicated with boxes containing the symbol .

where Z¥ is an ii.d. sequence drawn from A0, 52) and all
additions are over the reals. The channel input X, k = {1,2}
is binary and uniformly distributed, i.e.

Pr(Xy) = { 1/2  for Xi = zx(0),

1/2 for X = z(1),
where the support gﬂfk[:ﬂ'}l.ﬂ?k('l]} is subject to the power
constraint 3 (0) + 73 (1) < 2.

The user k& € {1,2} wishes to communicate the messages
Wi £ {1,...,2%"*} to the receiver The receiver produces
message estimates such that the probability of error vanishes
as the blocklength W goes to infinity.

In the following, we assume that X{¥ and XJ¥ are two
binary LDPC codewords in which the symbol /1 is mapped
to rp(0}/zs(1). Under this assumption, we jointly optimize
the codes for two users and their respective input constellation
so as to approach the symmetric capacity. For the GMAC,
the symmetric capacity is obtained as an upper bound on the
symmetric rate .., as

(2)

Rsrm = {-3}

TELEN
)T (1)

min {I{Y_:X1 | X2), (Y XalXy), %I{l";XLXz] }

where the maximization is over the power consiraint.

The joint decoding of LDPC codes for the GMAC can be
represented using a modified Tanner graph as shown in Fig. 1:
unlike a classical Tanner graph, the Tanner graph in Fig. 1 also
contains 8 MAC node. This node takes as inputs the channel
ouiput and the bit-reliability of one user and produces the bit-
reliability of the other user, The degree of the variable nodes
from each user connected through the MAC node is described
by the joint variable node distribution. This degree distribution,
together with the check node degree distribution, describes a
2-user code ensemble for the GMAC. More specifically, we
define p{rk] and Tt as the check node degree distribution of
type r edges for user k from the edge and the node perspective,
respectively, as

T®0a) =Y T¥L o) =D """ @

(1}

for & € {1,2}. Similarly, we define A; ; as the fraction

of user | edges both comnected to vanable nodes with [y
outgoing user | edges and connected through the MAC node
to a variable node from user 2 with I3 outgoing edges. The
polynomial ,‘k:fljh is defined in a symmetric manner for user 2,
Finally, Ay, ;, 15 defined as the fraction of variable nodes with
{1 outgoing edges of user | and l3 outgoing edges of user 2
as

Alxixe) = Z Ny ﬂ’ t?, {5a)
Iiyla
1) s
M (xy,xe) = 3 A g, (5b)
bl
A3 (x1,x2) = Z«"ﬁﬁﬂﬂ‘x?"’. (5¢)
Hita
Further, the design rate for user | is obtained as
A
s | bt (6)

1) 4.7
Zi,_-,. }"EH.]K'I ¢

similarly for design rate of user 2, %),
Note that the code specified in (4)46) generalizes the
constructions in [4], [5], [9] which only consider the case
where A is a diagonal matrix, ie., where nodes of degree
I'in the first code collide with nodes of degree [ it the second
code over the MAC node. As in these works, we assume in the
following that the codes have the same check node distribution

Uiy ) = p'2(y), however, no further assumptions are made
on the codes

ITI. CONSTELLATION DESIGN

A closed-form expression of the symmetric capacity of the
binary input GMAC is currently not available but can be
obtained numerically, as for Bernoulli(0.5)-distributed channel
inputs the channel output distribution is given as

1 — o [p—#a (i) —m2(5))°
i e R 1= 1
)= Z 4 E'TFJ;/R : '

(441 (0,1}

and, thus, the mutual information terms in (3) can be precisely
evaluated using numerical integration.

By performing the numerical optimization on the rhs of
(3} with binary uniform inputs, we obtain that three different
constellations, up to reasonable numerical precision, maximize
the symmetric capacity for different SNR regimes, as indicated
in Fig. 2. The optimal choice for user 1 is (D) o (1)] =
|=1 + 1] for all SNRs while the optimal [z2(0) 2(1]] is
obiained as

« Antipodal constellation—low SNR:
[za(0} z2il]] =[-1 4+ 1]. (7

+ Maximum minimum distance constellation—high SNR:

[#2(0) a(1)] = [~1/2 +1/2], ®)
s Asymmetric constellation-moderate SNE:
[22(0) w2(1}] = [0.1571 + 1.4055]. (9)
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Fig. 2. The attainable symmetric rate for the input constellations (7), (8), and
(5 and for Geussian inputs,

We call (8) the maximum minimum distance constellation
is because the minimum distance between the consiellation
points is maximized, Fig. 2 also plots the capacity under a
power constraint bui not a constellation constraint, in which
case Gaussian inputs are optimal. Note that the constellation in
{8) does not meet the power constraint with equality. The fact
that the asymmetric constellation in (9) attains the capacity

in the moderate SNR regime shows there exists a choice of

input constellations which aids joint decoding. Indeed any
constellation of the form [z4(0) zy(1)] = [-1 + 1] and
[z2(0) xa(1})] = [A A + 1.2484] for A such that the power
constraint is satisfied attains the same rate performance as (9).

IV, GAUSSIAN APPROXIMATION OF DENSITY EVOLUTION

In this section, we study the convergence of the BP al-
gorithm through density evolution (DE): we assume that the
message at the output of a variable node has a Gaussian dis-
tribution while the message at the output of a MAC node has
a distibution given by the mixture of two Gaussian densities.
Under these assumptions, we determine the convergence of a
for the BP algorithm as a function of the code distnibution in
(5). ln the BP algorithm, there are eight types of messages:
we will denote them as

(k)

my’, hie{viem}, i£j5 ke{l2Z}, (10

where the subscript indicates that the message 1s from the type
of node i to type of node j and the soperscript indicates the
user k. All possible messages mEJ-J” are shown in Fig. 3 where
£ indicates the log-likelihood ratio of the channel output.

i i 2 4
vyl inds, Ty mis )
—C—m—o—
T "
x
User 1 User 2

Fig. 3. Massages employed in the MAC BP algorithm.

To simplify the analysis of the BP algorithm, we study the
evolution of mutual information during BP decoding by means
of the mutual information transfer function. Here we assume
that the message is a Gaussian random varigble with mean

gt. Thus, the mutual information between the message mi;-;:'

and the input cunstellaucm point [rg{0), zp(1}] for user k is
defined as T(xy;m') in (13) such that 0 < T{zgim)) < 1,
Herein, we have

F . T l ‘T—P!.:r—c
i =l (—T) .
for
P 12 . _9md
oo Lo mOF s 2 2n(0)n(l)

wp(0) — zx (1) w0} — ze(1)

Note that the messages mie), me), mes follow from the

standard approximation of the BP evolution while the MAC
node update rale must be analyzed separately. The relationship
between the messages in Fig. 3 is given as

ml) = (12)
ATV = (OO ) | gk O s (O)—2a(1?

| :

B e Dm0 gl | e (Y —wa (-2 (1)}

where m'2 is defined in a symmetric manner.

Since we wish to track the mean of the messages, let
FiF (0, ptow) for i,j € {0.1}, k £ {1,2}, be defined as
the mean of the messages from MAC to variable node, Here,
72 denotes the noise varance of the channel, and ., is the
mean of the messages from variable to MAC node for the
other user. The quantity Fiyy' (o2, fiyr ) is defined in (14) at the
top of this page. The other terms are defined in an analogous

manner. Using these definitions, the mutual information 1
can be evaluated as

w- ¥
[#,dlefo,1]*
where the function J|.,

1 (k)2 7-1y7(3—k)
7 (FPe, 318 my)

-] 1s defined in (13).

Let now f&t’” be the mutual information between g
and the variable-to-check message and I,Ef‘” be the mutual
information between oy and the check-to-variable message in
the [-th iteration for user k., respectively. Similarly, let Ié:‘,i”
be the mutual information between x), and the messages from
variable o MAC nodes, and 15 be the mutual information
between ry and the messages from MAC 1o variable nodes,
respectively. Then the mutual information between x; and the
messages from variable to check nodes for user 1 is given as

=3T3 s (T IS+ =0T G D)
i

(16)
where
1D = 7 (FY) (o2 35710 -m))),
2s 7
|z, Bje(d,1}?
(17a)
1% 1-Y pd ({m— 1711 — I},f-‘})), (17b)

m

The term 52" can be derived similarly as (17b). The conver-
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)dn ke {12} 03

Wby 2 (f e FolM)xa(1) — 21 (xi (1]
Fi (07 phv) 2 B [mid|X = 21(0), X2 = 22(0)| = —pruus + E (14)
; failu +j|‘9|“'_=2“”uz+u o A—=ailiza(l)
1 oe g 1.4 eli'l van+ ———— e+ ——————
+ —= e log : - : d=
vl ; +F—'|,|"“'F‘*m+?£;ﬂnl.,-rn“ PP = £ (1F 1V MLIT e NEE -;1;:-,-:1}-::.-:-!;:--1“;:- ma i)z (1)

gence conditions for the [-th iteration then become

[0 5 -1 @D 5 (201 yE e (0,1). (18)

From these conditions on the two-dimensional recursion
in (16} and (17), we obtain approximate conditions for the
convergence of the BP algorithm, which will be exploited for
code design in Sec. VI

Using the GA of the DE, we can formulate the numerical
optimization of the symmetric rate as in (6)

{Duﬂu}lm=l_Mn (19
ey ¥, oY
subject to convergence conditions
T -
Ag < exp (ﬂ) (,,.Z-n{m —1 },ﬂm) » (20)
FO (1) > Loy, Vhe € ]0,1], (206)
T2 (0) + (1) < 2, (20c)

for k = {1,2}, ‘}"E = Ei }ls..E = EJ‘ )'-Elj and with

PO L) =Y Ay (I8 + (i — )1 (1),
=5

MNote that (204) is the stability constraint, (20b) is the DE for

GA in (16} while (20c) enforces the power construint for the

binary input constellation,

V. HIGHER ORDER CONSTELLATIONS

In this section, we construct a superposition coded modu-
lation based on the binary constellation we introduced in Sec
Il to increase the input cardinality and symmetric rate.

For instance a 4-PAM input can be obtained as the super-
position of two binary constellations, that is

XN = /P XX +/PaXk, (21)
XY = VPuXN + PaXl, (22)

where X, is a binary LDPC codewords mapped to the binary
constellation and under the power constraint

Pu+Pe<1l,Pn+Pn<l (23)

BP and capacity region can be derived in a similar way, but
to simplify the optimization procedure, here we only consider
the antipodal constellation, with

Py = Pia. Py = Ps, Ry = Ria = Ry, Rag = Ras = Rps,
(24)

where H;; is the rate of codeword X,;, and I,; is the
different power level. Since we mainly focos on antipodal
constellations, we also define

Roymi = R + Ray, By = Bio + Ras. (25)

VI SiMuLaTION RESULTS

For simulations, the transmission blocklength is N = 104,
and the code optimization in (19). (20) is performed by
using CVX and linear programming. The check node degree
distribution is fixed to a single degree while the variable
node degree distribution is maximized for a maximum degree
distribution equal to 200. The parity check matrix is con-
structed by uvsing the PEG algorithm in [10]. At decoding,
the messages are exchanged through the MAC node at each
iteration: the maximum number of iterations is set to 300. For
message passing schedules, different update rate of two users
are employed to verify that scheduling has no influence on the
overall performance.

Fig. 4 presenis the error probabilities of the proposed code
design versus the SNR for the input constellations in Sec.
IM. The simulations verify that the antipodal constellation
in (7) has the best performance al low rate, e, B < (.5,
while no code can be successfully decoded for rutes larger
than 0.7 with this input constellation. Tnstead, for higher rates
with & = (.5, the maximum minimum distance constellation
in (8) attains the best performance, and the gap to capacity
decreases as the SNR increases. For the range of rmtes in
0.7 < R < 0.8, the asymmetric constellation in (%) attains
a better performance than both the constellations in (7) and
(#). This is rather surprising as it shows that there exists a
specific constellation choice which aids joint decoding, at least
for the proposed code design. Note that the constellation in
(9} arises from the maximization of an information theoretic
quantity under a large blocklength assumption. However, the
performance gain of this constellation can also be verified in
the finite blocklength regime based on numerical simulations
as shown in Fig. 4. The code polynomials for the relevant
codes in Fig. 4 are shown in Tab. 1. Although the optimization
algorithm allows for any joint variable node distribution, the
best performance is obtained when the matrix A in (5a) has a
diagonal structure,

In Fig. 5 the distance between the performance of our code
designs and the theoretical performance in Fig. 2 is displayed.
It can be seen that we are able to attain the theoretical
performance to within [dB for most SNRs.

Fig. 6 shows the BER performance for a superposition mod-
ulation antipodal constellation with same total mte &5, = 2,
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Fig. 4. Error probabality for (i) Mue — antipodal consellation, (it} green — asymmetric consteliation, (ili) black — max min distance consicliation. Dashed
lines indicate the theoredical performance in Fig. 2 for the selected rales and solid lines indicale the results from numerical simulalions, respectively.
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Fig. 6. BER performance for n = 104, Rypmy + Raymz = 2

but different power allocations. The first level with larger
power Pry = (1.8 is about 1.5 dB better than the other one with
Fr1 = 0.7654 In this case, we cannot guarantee the power
allocation with Fp; = (.8 can give us the best BER, and the
optimization of the power allocation would be an interesting
IssLE.

TAHRLE 1
LDOPC DEGREE DISTRIRUTION FOR THE TWO-USER GMAC AND THE
RELEVANT SCENARIOS TN FIG. 6
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VII. CONCLUSION

This paper proposes an implementation of joint decoding
for LDPC codes for the two-user, symbol-synchronous, binary-
input GMAC that maximizes the symmetric rate. We focus, in
particular, on a joint code and constellation design and show
that il is possible to construct good irregular LDPC codes
which attain the theoretical performance to within 1dB for
maosi SNRs. We show that at low SNR the best performance
is attained by uwsing antipodal inputs at both encoders. For
high SNR, the best performance is attained by a constellation
choice which maximizes the minimum distance among the
received constellation points. For the moderate SNE regime,
we show the interesting resull that an asymmetric constellation
is able to outperform symmetric constellations. We also extend
the resulls to larger constellation alphabets, but only for the
antipodal constellation case.
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