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ABSTRACT: We present a general model for describing the
properties of excess electrons in multiply charged quantum dots
(QDs). Key factors governing Fermi-level energies and electron
density distributions are investigated by treating carrier densities,
charge compensation, and various material and dielectric medium
properties as independently tunable parameters. Electronic
interactions are described using a mean-field electrostatic potential
calculable through Gauss’s Law by treating the quantum dot as a
sphere of uniform charge density. This classical approximation
modifies the “Particle in a Sphere” Schrödinger equation for a square well potential and reproduces the broken degeneracy and
Fermi-level energies expected from experiment and first-principles methods. Several important implications emerge from this
model: (i) excess electron density drifts substantially toward the QD surfaces with high electron densities and large radii and
when solvated by a high dielectric medium. (ii) The maximum density of the conduction-band electrons depends strongly on the
dielectric strength of the solvent and the electron affinity and dielectric strength of the QD material. (iii) Fermi-level energies
stabilize with charge-balancing cations in close proximity to the QD surface.

1. INTRODUCTION

The addition of excess charge carriers has emerged as a
powerful tool for manipulating the physical and chemical
properties of colloidal quantum dots (QDs). Multiple
conduction-band (CB) electrons can be introduced syntheti-
cally through aliovalent doping or through electrochemical,
thermochemical (remote chemical doping), or photochemical
reduction (photodoping).1 Charge mobilities, carrier dynamics,
optical absorption, plasmon resonances, and various physical
properties are altered upon charge accumulation. In certain
materials, infrared plasmonics emerge that are tunable by
charge, size, and composition,2−4 giving rise to fascinating
electrochromic5 and magneto-optical behavior.6 Electrostatic
interactions between additional carriers and surface charges
leads to dramatic shifts in band-edge potentials7 and Stark-
shifted luminescence.8 At a fundamental level, many properties
of excess electrons in charged QDs are not well understood,
however. Despite progress in tuning carrier densities in various
colloidal QD materials, such as ZnO, CdSe, PbS, InN, and
In2O3,

9−13 the factors governing CB electron (eCB
− ) potentials

and maximum achievable carrier densities remain largely
unknown.
Mounting experimental evidence points to surface electro-

statics as key determinants of QD band-edge potentials.
Systematic modulation of PbS, HgS, and CdSe surface dipoles
has been shown to tune their band-edge potentials by hundreds
of mV.7,14,15 Similar energetic shifts are observed by altering the
ion-pairing strength of charged ZnO16,17 QDs with charge-
balancing cations of differing coordinating ability. Confinement
and interelectronic interactions alone cannot account for these

experimental observations. A convenient model is needed to
describe excess electrons in charged QDs that accounts for
electron−cation stabilization, dielectric effects, and interelec-
tronic interactions. To the best of our knowledge, no such
model exists.
The “Particle in a Sphere” model18,19 is widely used to

describe singly occupied QDs. Expressed in spherical
coordinates, it solves the Schrödinger equation, ĤΨ(r, θ, ϕ)
= EΨ(r, θ, ϕ). The potential V(r) in the Hamiltonian is usually
defined as a step function
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where EA is the electron affinity, and R is the radius of the QD.
With the definition of V(r) in eq 1, the solution of the single-
electron Schrödinger equation is analytically tractable, with
wave functions and energy levels taking the form
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where r( )nl is the spherical Neumann function, Yl
m(θ,ϕ) is the

spherical harmonic function, and A is a normalization constant.
βnl is the solution to the boundary condition of the spherical
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Neumann function. After the separation of variables (eq 2), an
effective Hamiltonian, which is composed of kinetic, angular,
and potential terms, can be written in atomic units for the radial
function r( ) as

̂ = − + + +H
r

l l
r

V r
1
2

d
d
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2

( )r

2

2 2 (4)

This approach gives rise to hydrogenic orbitals, which have
been reproduced using density functional theory (DFT)
calculations of QD eCB

− .20 Whereas the square well potential
assumed in eq 1 is sufficient for singly occupied QDs in the
absence of surface chemistry, it does not describe interelec-
tronic interactions of many-electron systems nor does it
account for important experimental parameters such as charge
compensation or the solvent dielectric strength. As electrons
populate the CB, interelectronic and electron−countercation
interactions significantly perturb the effective potential acting
upon an eCB

− . In first-principles methods, interelectronic
interactions produce Coulomb and exchange contributions to
the Fermi-level energy (EF), but such calculations are only
tractable for small clusters of atoms.20−25 Here, we present a
model of interelectronic and electron−cation interactions in
multiply charged QDs that, through comparison with ab initio
calculations and experimental results, accurately approximates
EF of charged QDs. By treating key experimental parameters as
explicit variables in the model, their impact on the energetics of
excess electrons can be investigated systematically for any QD
material. We then illustrate how this versatile model can help
explain emerging phenomena in multiply charged QDs.

2. RESULTS AND ANALYSIS
2.1. Theoretical Model. The model presented here

approximates interelectronic and electron−cation interactions
by modifying the potential term of eq 4 to reflect a uniformly
charged sphere. To distinguish our model from the “Particle in
a Sphere” model with a square well potential, we term these the
“Charged Sphere” and “Square Well” models, respectively. The
“Charged Sphere” model consists of q− number of electrons
inside a spherical QD of radius R with q+ compensating cations
at the QD surface (Scheme 1). Employing Gauss’s law, the

effective potential outside the QD (r ≥ R) arises from
contributions from both q+ and q−
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where ϵout is the dielectric constant of the medium (solvent or
vacuum) surrounding the QD. In eqs 5−10, Vr=∞ determines
the zero reference.
q+ and q− make different contributions to the potential inside

the QD (r < R). Because q+ is distributed evenly across the QD

surface, its contribution is equal everywhere inside the dot, and
can be written as

= −
ϵ
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The contribution of the electric field generated by q− to the
potential inside the QD (r < R) can be evaluated at any
distance r using Gauss’s Law (Scheme 1) as
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where ϵr and ρ(r) are the dielectric constant and electron
density inside the QD. As a starting point, the electron density
and dielectric constant are uniform inside the QD, so that eq 7
can be rewritten as
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where ρ(r) is replaced by the homogeneous eCB
− density (ρCB

− )

inside the QD, ρ =
π

− −

( )CB
q

R4
3

3
, and the dielectric constant ϵr

becomes the dielectric constant of the QD, ϵR. Integrating eq 8
from r to ∞ leads to the following expression for the potential
inside the QD
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Combining eqs 1, 5, 6, and 9, the potential at any distance r can
be expressed as
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Figure 1 depicts the combined effect of the square well
potential, a quantum mechanical property defined as EA/ϵout,
and the electrostatic contributions from q+ and q− to the total
effective potential, V(r). Varying q− and q+ in eq 10 leads to
potentials with drastically different forms, as shown in Figure 1.
Two scenarios are presented, q+ > 0 and q+ = 0, to illustrate the
competing effects of q−/ϵoutR and q+/ϵoutR on the potential.
Unless specified otherwise, discussion of the “Charged Sphere”
model will refer to the scenario when q+ = q−. Below, this
model is contrasted with the “Anionic Charged Sphere” (q+ =
0) and the “Square Well” models to explore the impact of
electron−cation and interelectronic interactions.
Eq10 suggests that for a given charged semiconductor QD

surrounded by a dielectric medium (e.g., solvent), the potential
depends on three tunable parameters: the size of the quantum
dot (R), the excess electron density inside the QD (ρCB

− ∝ q−),
and the density of surface counter cations (ρSUR

+ ∝ q+). In the
limit of large crystal radius (R → ∞), it is easy to see from eq
10 that the potential inside the crystal approaches zero. On the
other hand, in the limit of low ρCB

− (q− = 0) and no surface
counterions (q+ = 0), the potential in eq 10 simply converges to
the results from the “Square Well” model.
For QDs with multiple eCB

− , the QD radius R strongly affects
the shape of the potential inside the QD. Figure 2A plots V(r)
as a function of R for a ZnO QD solvated by tetrahydrofuran

Scheme 1. Pictorial Representation of the “Charged Sphere”
Model
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(THF) with q− = q+ = 10. Because evaluating V(r) of undoped
ZnO (q− = q+ = 0) requires an additional uncompensated
probe electron, the same procedure was used to plot Figure 2.
To compare against undoped ZnO, therefore, the zero
reference was taken as the CB edge (CBE) of undoped ZnO.
ZnO and THF are represented in the “Charged Sphere” model
by choosing EA = 4.2 eV and ϵout = 7.56, respectively. When R is
small, the prominent r2 dependence of the potential inside the
QD is consistent with classical Coulombic repulsion increasing
for charges confined to a small volume. As the QD size
increases, the potential inside the QD flattens, because the
Coulombic repulsion is spread across a larger volume. The bulk
limit is illustrated with an R = 5 μm sphere, where the charged
sphere model yields the same results as the “Square Well”

model. At the boundary (r = R), the potential is zero, because
the contributions from both q− and q+ cancel exactly (q− = q+

for all examples shown in Figure 2A).
Figure 2B illustrates the effect of ρCB

− ∝ q− on V(r) when q+ is
fixed. Both EA and ϵout are chosen again to simulate a ZnO QD
solvated by THF. As the density increases, the interior potential
rises, being highest at the origin and decreasing quadratically
toward the surface. This behavior arises from interelectronic
repulsion within the classical mean-field approximation. Figure
2B also illustrates that in accordance with eq 10, charge
balancing cations (q+: q− > 1) lower both the interior and
exterior potentials. This scenario is also depicted in the
“Charged Sphere” model of Figure 1 and represents an extreme

Figure 1. Illustration of the energetic contributions of the square well potential (brown), q+ (red), and q− (blue) to the total potential (black), with
two specific scenarios highlighted: q− ≠ 0, q+ = 0 (middle, “Anionic Charged Sphere” model) and q+ > 0, q− > 0 (right, “Charged Sphere” model).
V∞ and VCBE denote the potential at r = ∞ and at the CB edge (CBE) of the undoped QD, respectively.

Figure 2. A: Size-dependence of the potential for a multiply charged ZnO QD with a fixed number of electrons solvated by THF (q− = q+ = 10). See
eq 10 for the definition of V(r). B: Electron density-dependence of the potential for a R = 4.6 nm ZnO QD solvated by THF with fixed q+ = 24. C:
Dependence of the potential on increasing numbers of q+, q− pairs in a R = 3 nm ZnO QD solvated by THF. ZnO and THF are simulated with EA =
4.2 eV, ϵout = 7.56. r > R regions are shaded in gray. The horizontal red dashed line denotes the exterior potential bulk limit, EA/ϵout. The zero
reference is set at the VCBE of pure undoped ZnO for all cases, i.e. q− = q+ = 0.
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limit of charged QDs with large electrical double layers due to
low electrolyte concentrations.
Figure 2C depicts the scenario where overall charge

neutrality is maintained at the surface of an R = 3 nm ZnO
QD solvated by THF. For different values of q+ = q−, the
exterior potential remains constant, whereas the interior
potential rises sharply with electron accumulation. The
maximum number of eCB

− (qmax
− ) that can be stabilized in a

QD is given by the value where EF equals the exterior potential
energy. Because q− = q+, the potential again equals zero at the
QD surface, where both contributions cancel exactly.
The results presented above illustrate the impact of QD size

and charge density on the energetics of excess CB electrons in
QDs. As seen from Figure 2A−C, in the case of weak
interelectronic repulsion or bulk-like crystal sizes, the “Square
Well” model is sufficient, but this model fails when multiple

excess electrons are confined to small volumes, which is the
scenario of most interest when studying charged QDs.

2.2. Implementation of the “Charged Sphere” Model.
Whereas analytical solutions of the Schrödinger equation using
the “Square Well” model (eq 1) can be obtained (eqs 2 and 3),
the Schrödinger equation using the “Charged Sphere” model
(eq 10) does not have analytical solutions. Instead, the discrete
variable representation (DVR) approach25,26 is used to
numerically solve the Schrödinger equation for eCB

− , with the
potential as defined in eq 10. To compare eqs 5−10 and Figure
2 against undoped ZnO (q− = q+ = 0), an additional
uncompensated probe electron was used to evaluate V(r). As
a result, the potential at r = R equals zero, because the
interactions of q− and q+ with the probe electron are equal and
opposite. This potential is identical to the CB edge (VCBE) of
undoped ZnO (q− = q+ = 0) and is therefore the zero reference
in Figure 2. All other calculations with the “Charged Sphere”

Figure 3. Comparison of the “Square Well” (red) and “Charged Sphere” (blue) models for a ZnO QD solvated by THF (EA = 4.2 eV, ϵout = 7.56).
The zero reference is set to the potential energy minimum for each QD size. A: Dependence of the potential energy of the Fermi-level electron (VF)
and radial-distribution functions (ψ(r)2r2) of the QD Fermi-level electron on the QD radius (R) and number of q−, q+ pairs. Potentials are plotted as
dashed lines, and ψ(r)2r2 are plotted as shaded curves. B: Dependence of the sum-total ψ(r)2r2 of all eCB

− (Σψ(r)2r2) on R at a fixed ρCB
− .

Figure 4. Comparison of the “Charged Sphere” (blue) and “Anionic Charged Sphere” (black) models for an R = 4 nm ZnO QD solvated by THF
(EA = 4.2 eV, ϵout = 7.56). A: Dependence of VF and ψ(r)2r2 of the QD Fermi-level electron on the QD radius, R, and number of q−, q+ pairs.
Potentials are plotted as dashed lines, and ψ(r)2r2 are plotted as shaded curves (hashed black for the “Anionic Charged Sphere” model). VF of the
“Anionic Charged Sphere” model are baseline corrected so that the zero reference is taken as the minimum potential of the “Charged Sphere” model.
B: Size-dependence of qmax

− .
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model treat the nth electron as a probe of the mean field
created by the previous n − 1 electrons so that the minimum
potential, always at r = R, lies −1/ϵoutR lower than the VCBE of
the corresponding undoped ZnO QD due to stabilization by q+,
in accordance with eq 10 and as depicted by Figure 1.
Consequently, the zero reference for these calculations, and in
Figures 3, 6, 7, and 8, is taken as the minimum value for
convenience. The zero reference of Figure 4 is taken as the
minimum of the “Charged Sphere” model, which lies q−/ϵoutR
below the minimum of the “Anionic Charged Sphere” model.
As stated previously, we solve the radial part of the Schrödinger
equation for a given angular momentum. The size-dependent
dielectric constant formalism27

ϵ = +
ϵ −

+
1

1

1
R

R

0
1.8
1.7 (11)

is used throughout the paper, where ϵ0 is the static dielectric
constant.
2.3. Comparison to the “Square Well” Model. Figure 3

compares the potential energies of the Fermi-level electron
(VF) and radial-distribution functions (ψ(r)2r2) calculated from
both the “Charged Sphere” and “Square Well” models for
different R and ρCB

− . Both models incorporate the centrifugal

potential +l l
r

( 1)
2 2 arising from orbital angular momentum. At low

ρCB
− , the solutions of the two models are nearly identical for all
sizes. As ρCB

− increases at a fixed QD size, however, the solutions
of the “Square Well” and the “Charged Sphere” models begin
to deviate. Both models predict a shift of the radial-distribution
function toward the surface at higher angular momentum due
to the centrifugal potential. This shift causes a large degree of
eCB
− tunneling (“spill out”). Compared with the “Square Well”
solutions, the eCB

− in the “Charged Sphere” model shift more
toward the QD surface because of interelectronic repulsion,
resulting in a narrower distribution (Figure 3). For example, in
the case of q− = q+ = 32 in an R = 4.0 nm QD, the difference
between the positions of the distribution maxima is as large as
0.41 nm, with a full-width-at-half-maximum (fwhm) difference
of 0.43 nm. The right hand side of Figure 3 shows that for a
fixed electron density, this deviation is accentuated with
increasing R. For example, when ρCB

− = 1.4 × 1020 cm−3 in an
R = 4.0 nm QD, the sum total ψ(r)2r2 of all eCB

− (Σψ(r)2r2) from
the “Square Well” model resides at r = 3.17 nm with a 1.35 nm
fwhm, whereas the “Charged Sphere” model predicts a
maximum at r = 3.58 nm with a 0.99 nm fwhm. At this ρCB

−

and R = 2.0 nm, the “Square Well” and the “Charged Sphere”
models produce nearly identical results.
2.4. Comparison to the “Anionic Charged Sphere”

Model. To evaluate the energetic stabilization provided by
charge-balancing cations, we compare VF in the “Anionic
Charged Sphere” and “Charged Sphere” models. From Figure
1, the interior potential in the “Anionic Charged Sphere” model
raises by q−/ϵoutR above VCBE, where q− is the number of
uncompensated eCB

− , consequently also shifting the EF by q−/
ϵoutR. This Coulombic term suggests charge-balancing cations
provide the greatest stabilization for highly charged QDs with a
small R and ϵout.
Figure 4 compares VF and ψ(r)2r2 calculated from the

“Charged Sphere” (q+ = q−, blue) and “Anionic Charged
Sphere” (q+ = 0, black) models for an R = 4 nm ZnO QD
solvated by THF (EA = 4.2 eV, ϵout = 7.56) for several values of
q−. The left hand figure shows that ψ(r)2r2 (shaded curves)

calculated from both models are nearly identical when q− < 16.
The calculated potentials (dashed lines) on the other hand
deviate even at q− = 1, with the “Anionic Charged Sphere”
model predicting higher EF. At q

− = 16, the interior potential
rises above the exterior potential, causing the maximum of
ψ(r)2r2 to lie outside the QD. In other words, QDs with
uncompensated eCB

− support lower electron densities. The right
hand panel of Figure 4 summarizes this result across QD sizes,
showing again that modeling charged QDs without surface
cations (q+ = 0) systematically underestimates qmax

− .
2.5. Comparison to DFT and Experiment. To evaluate

the accuracy of the “Charged Sphere” model, we compared its
solutions to DFT calculations of small QDs. Details of the DFT
calculations are provided in the Methods section. Figure 5

compares EF from the “Charged Sphere”, “Anionic Charged
Sphere”, and “Square Well” models with DFT calculations of
Zn33O33 (R = 0.6 nm), Zn84O84 (R = 0.7 nm), and Zn153O153 (R
= 0.8 nm) as well as experimental results9,16 of various ZnO
QDs. Figure 5A plots the predicted energetic difference
between the 1 eCB

− and 2 eCB
− Fermi levels (ΔEF) of R = 0.6

nm, R = 0.7 nm, and R = 0.8 nm ZnO QDs in vacuum (ϵ0 = 1).
The “Square Well” model predicts degeneracy of these levels

Figure 5. Comparison of ZnO QD Fermi-level energies (EF)
calculated using the “Square Well”, “Charged Sphere”, and “Anionic
Charged Sphere” models (EA = 4.2 eV, ϵout = 1 (vacuum)) with DFT
and experimental results.16 A: Energetic difference (ΔEF) between 1
eCB
− and 2 eCB

− Fermi levels of R = 0.6 nm, R = 0.7 nm, and R = 0.8 nm
ZnO QDs calculated from the “Square Well”, “Charged Sphere”,
“Anionic Charged Sphere” models, and DFT. B: Comparison of the
maximum number of eCB

− (qmax
− ) from experiments given in ref 9 and

calculated by the “Charged Sphere” model. C: Comparison of
calculated relative EF values with experimental results for THF-
solvated R = 3.7 nm ZnO QDs. Energies are plotted relative to the EF
at 1eCB

− (EF
1e−). D: Comparison of EF values calculated from the

“Charged Sphere” and “Anionic Charged Sphere” models. The
difference is equal to the term written in red. The baseline is
corrected so that the zero reference is set at the minimum value
calculated from the “Charged Sphere” model.
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(ΔEF = 0), whereas the “Charged Sphere” and “Anionic
Charged Sphere” models and DFT calculate nonzero ΔEF
values that are numerically similar to average values of ΔEF =
0.31, 0.25, and 0.20 eV for the R = 0.6, 0.7, and 0.8 nm QDs,
respectively.
For comparison against two key experimental signatures of

multiply charged QDs, the “Charged Sphere” model was used
to compute the size dependence of qmax

− and the impact of many
additional charge carriers on EF. Figure 5B compares qmax

−

determined from the “Charged Sphere” model with exper-
imental results of ZnO QDs photodoped in the presence of
Li[HBEt3] or K[HBEt3].

9 Excellent numerical agreement
between theory and experiment show increasing qmax

− for larger
QD sizes. The strong size dependence of qmax

− observed
experimentally for ZnO,9 In2O3, Sn/In2O3,

13 and InN12 QDs
can therefore be interpreted in terms of the “Charged Sphere”
model, as large QDs requiring greater numbers of excess
charges to reach the destabilizing interior effective potential
that limits qmax

− . Figure 5C compares EF values of THF-solvated
R = 3.7 nm ZnO QDs from experiment and predicted by the
“Square Well” and “Charged Sphere” models. For clarity, the

zero reference in this figure is taken as EF at 1eCB
− (EF

1e−) rather
than VCBE because the “Charged Sphere” model predicts this
value to lie nearly

ϵ R
1

out
below VCBE, leading to an nonphysical

negative value. Note that we are unable to calculate the
electronic structure of an R = 3.7 nm ZnO QD using DFT due
to computational expense. The solutions to the “Square Well”
model are a set of hydrogenic orbitals with degeneracy within
each orbital shell (S, P, D, ...). By excluding interelectron
repulsion, these orbitals fill in a staircase fashion with constant
potential for each orbital shell. In contrast, the “Charged
Sphere” model reproduces the more gradual increase in EF
observed in experiment16 and that expected for multielectron
systems when interelectronic repulsion is included.
Figure 5D illustrates that the “Anionic Charged Sphere”

model calculates EF values that are systematically raised by q−/

ϵoutR after applying the baseline correction described above.
Even at low eCB

− accumulation, a lack of charge compensation
destabilizes EF by hundreds of meV.

2.6. Comparison of Different QD Materials. Figure 6
compares Σψ(r)2r2 and EF for R = 2 nm In2O3 and ZnO QDs
solvated by THF (ϵout = 7.56), simulated using EA values of 4.45
and 4.2 eV28,29 and ϵ0 of 9 and 10, respectively. Two
hypothetical materials were also included to illustrate the
impact of ϵ0 by setting ϵ0 = 20 and ϵ0 = 80 but keeping the EA
of ZnO. For each material, ϵR was calculated from ϵ0 using eq
11. Figure 6A compares EF computed from the “Square Well”,
“Charged Sphere”, and “Anionic Charged Sphere” models vs
number of eCB

− . Horizontal lines indicate EA/ϵout and vertical
lines denote the qmax

− according to each color-coded model.
Figure 6B compares the Σψ(r)2r2 of the QD materials at qmax

− ,
determined for all models as when the highest bound EF is
reached, i.e., when EF = EA/ϵout.
Figure 6 illustrates the impacts of ϵR and EA in the “Charged

Sphere” model on EF, and, hence, qmax
− of a QD material. As

suggested by eq 9, a large ϵR screens the interior potential and
interelectronic repulsion. As a result, for similar values of EA,
higher dielectric materials accumulate more eCB

− and exhibit
diminished orbital energy splitting within a given orbital shell. A
larger EA, on the other hand, imposes a higher tunneling barrier,
allowing more eCB

− to accumulate. Therefore, despite In2O3
having ϵR smaller than ZnO, its larger EA results in the two
materials having similar qmax

− . As discussed above, the “Anionic
Charged Sphere” model predicts Fermi-level energies that are
greatly destabilized relative to the “Charged Sphere” results,
and fewer eCB

− accumulate in each material, resulting in the
smallest qmax

− in Figure 6A and Σψ(r)2r2 in Figure 6B. The
“Square Well” model, in contrast, predicts much higher qmax

− as
a consequence of neglecting interelectronic repulsion and fails
to reproduce the constant increase in EF with increasing values
of q−.

2.7. Solvation Effects. Solvation effects can be simulated
within the “Charged Sphere” model by adjusting ϵout. Figure 7

Figure 6. Comparison of EF (A) and Σψ(r)2r2 (B) and of R = 2 nm ZnO, In2O3, and two hypothetical QDs using the “Square Well”, “Charged
Sphere”, and “Anionic Charged Sphere” models. A: EF of QDs with increasing eCB

− accumulation. Horizontal lines indicate the EA/ϵout of each
material. Vertical lines denote qmax

− according to each color-coded model. B: Comparison of Σψ(r)2r2 of the same series of QDs at the predicted qmax
−

of each. ϵR was calculated from eq 11, using ϵ0 values of 9, 10, 20, and 80 for In2O3, ZnO, and the two hypothetical materials, respectively.
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plots qmax
− , Σψ(r)2r2, and EF for an R = 2 nm ZnO QD in

various dielectric media chosen for their experimental
relevance: toluene (ϵ0 = 2.38), poly(methyl methacrylate)
(PMMA, ϵ0 = 3), THF (ϵ0 = 7.56), ethanol (EtOH, ϵ0 = 24.5),
propylene carbonate (PC, ϵ0 = 64), water (ϵ0 = 80.1), and
formamide (ϵ0 = 111). As suggested by eq 5, ϵout screens EA,
lowering the tunneling barrier and decreasing the qmax

− . The
leftmost panel of Figure 7 compares qmax

− as a function of ϵout.
The smallest ϵout leads to greatest eCB

− accumulation by
maximizing the barrier height EA/ϵout. The middle panel of
Figure 7 illustrates the impact of ϵout on ψ(r)2r2 at a fixed qmax

− .
In the 1-eCB

− limit, the Σψ(r)2r2 expands toward the QD surface
with increasing ϵout. The rightmost panel of Figure 7 plots EF

for three selected solvents vs log of eCB
− , illustrating that weaker

dielectric solvents lower the interior QD potential, decrease EF,
and greatly confine ψ(r)2r2.
2.8. Surface Proximity of Charge-Balancing Cations.

The dependence of EF on the distance (ΔR) of charge-
balancing cations from QD surfaces was also examined within
the “Charged Sphere” model. EF increases as q+ moves away
from the QD surface, as illustrated in the left-hand-side of
Figure 8. To calculate the Coulombic destabilization of
displacing charge-balancing cations from the QD surface, an

energetic correction of −ϵ ϵ + Δ

+ +q
R

q
R R( )out out

is added to EF.

The right panel of Figure 8 plots EF of a ZnO QD in the q− =
q+ = 1 limit vs ΔR for a variety of R and ϵout. ΔR = 2 nm is the
largest distance considered. This distance coincides with the
approximate length of a typical surface-capping ligand such as
trioctylphosphonate. In all cases, displacement of the cations

from the QD surfaces leads to destabilization of EF. Comparing
EF for R = 4 nm vs R = 2 nm ZnO QDs solvated by THF shows
that smaller QDs experience greater Coulombic destabilization.
Comparing R = 2 nm ZnO QDs solvated by THF (ϵ0 = 7.56)
vs toluene (ϵ0 = 2.38), on the other hand, illustrates that QDs
in weaker dielectric media are more sensitive to cation
displacement. Although these results were obtained for q− =
q+ = 1, the correction term scales linearly with q+, and so,
similar trends are predicted for other values of q+ and q−.

3. METHODS

3.1. DFT Calculations. All electronic structure calculations
were performed using the development version of the Gaussian
program.30 Nearly spherical wurtzite phase ZnO QDs having
C3v symmetry were built according to the previously published
scheme31,32 using lattice parameters from the American Crystal
Structure Database. The coordinatively unsaturated surface
atoms were passivated using pseudohydrogen atoms with
modified nuclear charges of +0.5 and +1.5 to terminate surface
O2− and Zn2+ ions, respectively, for neutral QDs.31,32 In the
case of QDs charged with eCB

− , this pseudohydrogen capping
scheme also allows us to create a homogeneous distribution of
surface compensating charges by increasing the nuclear charge
of each pseudohydrogen by δ+ so that q+ = ∑δ+. A uniform
distribution of fractional charges simulates the realistic scenario
of dipoles induced by localized cations and delocalized
electrons being counterbalanced by large numbers of other
dipoles distributed over the entire QD surface. The PBE0
hybrid DFT functional was used33−35 along with the Los
Alamos double-ζ pseudopotential and the associated valence
double-ζ basis (LANL2DZ) for the lattice.36−38 This method-
ology has already shown promising results for the theoretical
characterization of diluted magnetic semiconductors, e.g.,
doped ZnO QDs, and for charged ZnO QDs in the limit of
one excess electron.20,32,39−43 All DFT calculations were
performed in vacuum.

3.2. Model Calculations. The discrete variable representa-
tion (DVR) approach25,26 is used to numerically solve the
Schrödinger equations in the hybrid model. The DVR code is
implemented in Python and is publicly available.44 A fine grid
composed of 1000 Gauss-Hermite quadrature points was
employed in the DVR calculations. The eigenfunction and
corresponding radial-distribution function were collected with
0.02 nm resolution.

Figure 7. Solvent dependence of the eCBmax

− (A), 1-eCB
− Σψ(r)2r2 (B), and EF (C) for R = 2 nm ZnO QDs using the “Charged Sphere” model, simulated

by varying ϵout. The Fermi-level zero reference is set to the potential minimum for the QD solvated by toluene. The horizontal dashed line in the
leftmost panel denotes the experimentally determined qmax

− for colloidal ZnO QDs. Solvent ϵout was adjusted as follows: toluene (ϵ0 = 2.38),
poly(methyl methacrylate) (PMMA, ϵ0 = 3), THF (ϵ0 = 7.56), ethanol (EtOH, ϵ0 = 24.5), propylene carbonate (PC, ϵ0 = 64), water (ϵ0 = 80.1), and
formamide (ϵ0 = 111).

Figure 8. A: The potential difference resulting from q+ displacement
from the QD surface. Contributions from EA/ϵout, q

−, q+ at R, and q+ at
R + ΔR are shown in brown, blue, red, and gray, respectively. B:
Dependence of EF calculated from the “Charged Sphere” model on the
surface proximity of charge-balancing cations (ΔR) for a ZnO QD (EA
= 4.2 eV) with q− = q+ = 1 and varying R and solvent media (ϵout).
Horizontal lines denote the energy at ΔR = 0 for comparison.
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4. DISCUSSION
The “Charged Sphere” model presented above offers four key
predictions about excess electron accumulation in colloidal
QDs: (i) ψ(r)2r2 dramatically shifts toward the QD surfaces
with larger ϵout, R, or ρCB

− . (ii) For a fixed dielectric medium,
QDs with larger values of EA and ϵr can sustain higher
ρCBmax

− (∝qmax− ) values. (iii) Weaker dielectric media promote

greater ρCBmax

− by increasing the barrier height for electron
escape. (iv) Charge-balancing cations closer to the QD surfaces
stabilize eCB

− more effectively.
Although the “Charged Sphere” model uses a uniform charge

density to construct the interior potential, a key insight is that
excess electrons in highly charged QDs shift toward the QD
surfaces. The resulting electron density distributions are
reminiscent of Schockley or Tamm delocalized surface states.45

Our analysis suggests that these states become more relevant in
larger QDs with greater ρCB

− .
The “Charged Sphere” model helps explain several

experimental observations. For example, the model correctly
predicts similar ρCBmax

− in colloidal In2O3 and ZnO QDs,
determined from experiment to be 2.3 × 1020 cm−3 and 1.4 ×
1020 cm−3, respectively.9,13 Numerically, the model predicts
ρCBmax

− of 5.4 × 1020 cm−3 for both materials when photodoped
in the presence of EtOH. A likely explanation for this higher
predicted ρCBmax

− is that the model neglects competing redox
transformations such as QD oxidation reactive surface species.
As EF rises with greater ρCB

− , these processes may dominate. In
line with this reasoning, acetaldehyde hydrogenation was
invoked previously as introducing a limit to ρCBmax

− in colloidal
ZnO QDs photodoped using EtOH as the hole quencher.16

Interestingly, photodoping ZnO QDs with Li[HBEt3], thereby
eliminating formation of acetaldehyde, leads to higher ρCBmax

− of
6 × 1020 cm−3, much more similar to our predicted value. This
model, therefore, estimates an upper limit of ρCBmax

− for a QD
material in the absence of competing redox processes.
The strong size dependence of qmax

− for a given QD material
is accurately predicted by the “Charged Sphere” model.
Agreement between experiment and calculations in Figure 5B
provides a basis for understanding why larger ZnO,9 In2O3, Sn/
In2O3,

13 and InN12 QDs accumulate greater qmax
− and display

volume-independent ρCBmax

− regardless of whether charges arrive
through photodoping, remote chemical doping, or reductive
synthetic conditions. Electrons accumulate in QDs until the
interior effective potential rises above a threshold value that
causes spontaneous charge ejection. Whereas the “Charged
Sphere” model simulates this process as QD ionization into
solvated electrons and cationic QDs, reports have postulated
Zn(0) metal formation in the case of ZnO QD photodoping,
for instance.9 Despite mechanistic differences of charge ejection
between experiment and theoretical predictions, the “Charged
Sphere” model captures the essence of the strong size
dependence of qmax

− with remarkable numerical accuracy.
Solvent dependencies of ρCBmax

− are also explainable by the
“Charged Sphere” model. A previous study of electrochemical
electron injection into a thin-film assembly of R = 2.15 ZnO
QDs reported a solvent dependence consistent with the one
predicted by the “Charged Sphere” model (Figure 7).46

Electron injection in EtOH, PC, and water led to qmax
− values

of 4, 2, and 11, respectively, compared to predicted values of 4,
2, and 1 for R = 2 ZnO QDs. Interestingly, the ϵ0 of water at

the surface of an electrode is known to be at least ten times
smaller than its bulk value,47 which would bring the calculated
qmax
− for this solvent in line with experiment. The qmax

− values
predicted by the “Charged Sphere” model for ZnO QDs in
toluene, PMMA, and THF are not observed experimentally,
however. Lower values of qmax

− are observed likely because of
competing redox processes, such as charge trapping at surfaces.
For example, the high calculated values of qmax

− may not be
achievable in weak dielectric media because these solvents
poorly solubilize cations, leading to ineffective charge
compensation at the QD surface and higher EF. The general
agreement with experiments performed in EtOH, PC, and
water suggest that among sufficiently strong dielectric media,
the key determinant of ρCBmax

− is the ability of the dielectric to
screen the QD EA and stabilize eCB

− . Again, the “Charged
Sphere” model estimates an upper limit of ρCBmax

− achievable in a
given dielectric medium.
The higher EF calculated for QDs with q+ displaced from the

surface supports experimental observations that surface electro-
statics greatly impact eCB

− stabilization.7,14−17,48 Altering ΔR
simulates the effect of poor ion-pairing and low electrolyte
concentrations at the QD surface, with the “Anionic Charged
Sphere” model representing an extreme limit of cation
displacement. Consistent with experimental evidence, Figure
8 predicts these electrostatic factors to impact EF by hundreds
of meV. For example, one report has shown that R = 1.9 nm
ZnO colloidal QDs in toluene charged to the 1-eCB

− limit are
destabilized by 600 mV when compensated by [CoCp2*]

+ vs
H+.16 For comparison, the maximum destabilization obtained
by displacing cations from the surface of an R = 1.9 nm QD
solvated by toluene is predicted to be 320 meV (by setting ΔR
= ∞). The precise value depends heavily on ϵout, which likely
differs from ϵ0 of the bulk solvent, because the QD surface is
surrounded by ligands and other chemical species, in addition
to solvent. Reducing ϵout by half would reproduce the 600 mV
destabilization and is reasonable given solvent exclusion from
the QD ligand shell and the weak dielectric ligands used.
Adjusting ΔR can also be used simulate experimental

observations that qmax
− depends on the electrolyte concentration

and composition of the electrical double layer. For example, EF
of Se2−-rich R = 2.7 nm CdSe colloidal QDs has been
demonstrated experimentally to stabilize by over 250 mV
simply by increasing the concentration of the [Bu4N][PF6]
electrolyte, thereby decreasing the length of the electrical
double layer and improving charge-compensation at the QD
surface. This value is similar to the 224 meV maximum
destabilization energy predicted for R = 2.7 nm ZnO QDs in
toluene (Figure 8). A dependence of EF on the proximity of
charge-balancing cations has also been reported in potentio-
metric titrations of multiply charged ZnO QDs.17 Displacing
charge-balancing protons from the surfaces of charged ZnO
QDs with increasing amounts of bulky noncoordinating
diammonium ions leads to systematic destabilization of EF
without changing the number of eCB

− .
Conceptually, the “Charged Sphere” model relates to the

classical electrostatic expression ΔV = μN/ϵ0 invoked
previously to calculate the shift ΔV of QD band-edge potentials
resulting from a surface density N of dipoles with magnitude
μ.7,15,48 Both predict a shift of EF when the QD surface is
surrounded by separated point charges screened by a dielectric
medium. Whereas the expression above treats this charge
separation specifically as a dipole with quantifiable strength μ,
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the “Charged Sphere” model parametrizes this interaction more
generally as q− separated from q+ by ΔR, allowing a greater
variety of surface phenomena to be modeled, such as
dependence on electrolyte concentration and coordinating
strength of the countercation. Further development of the
“Charged Sphere” model will allow more detailed description of
specific aspects of the electrical double layer, but these results
already provide valuable insight into the electrostatics of QD
surfaces.
The accuracy of the “Charged Sphere” model can be

improved through several modifications. First, the Schrödinger
equation can be solved iteratively by proceeding from V(r)
determined through Gauss’s Law using the previously
calculated electron density. Also, introducing additional
parameters to model the electrical double layer and modifying
EA as a function of electron doping level would improve both
EF and ψ(r)2r2. The model presented here was chosen to
balance convenience and accuracy.

5. CONCLUSION

In summary, we present a quantum model for describing EF and
ψ(r)2r2 of excess electrons in multiply charged QDs. This
“Charged Sphere” model successfully accounts for interelec-
tronic and electron−cation interactions using classical electro-
statics and exhibits marked quantitative advantages over models
that neglect charge-compensating cations at the QD surfaces or
interelectronic interactions. The model is generalizable to many
materials and dielectric media by using the adjustable
parameters ϵR, ϵout, and EA. Its predictions agree well with
both DFT and experiment. The model’s predictions of an
expansion of excess electron density toward the QD surfaces
and a strong dependence of EF on the proximity of charge-
balancing cations provide a theoretical basis for understanding
and quantifying the sensitivity of multiply charged QDs to
surface chemistry. Future work will focus on extending this
model to p-type semiconductor QDs with excess holes, to
aliovalently doped QDs, and to modeling electrical double
layers. Beyond providing insights into the characteristics of
multiply charged QDs as discussed above, the quantitative
description of key experimental factors determining VCBE

outlined here will help guide the understanding of surface
electrostatic effects on QD electron-transfer processes including
those involved in QD-based photovoltaics, solar photocatalysis,
and electrical devices.
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