
A Generalized Algebraic Approach to Optimizing

SC-LDPC Codes

Allison Beemer∗, Salman Habib†, Christine A. Kelley∗, and Joerg Kliewer†
∗Department of Mathematics, University of Nebraska – Lincoln, Lincoln, Nebraska 68588

†Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07103

Abstract—Spatially coupled low-density parity-check (SC-
LDPC) codes are sparse graph codes that have recently become
of interest due to their capacity-approaching performance on
memoryless binary input channels. In this paper, we unify
all existing SC-LDPC code construction methods under a new
generalized description of SC-LDPC codes based on algebraic
lifts of graphs. We present an improved low-complexity counting
method for the special case of (3, 3)-absorbing sets for array-
based SC-LDPC codes, which we then use to optimize permuta-
tion assignments in SC-LDPC code construction. We show that
codes constructed in this way are able to outperform previously
published constructions, in terms of the number of dominant
absorbing sets and with respect to both standard and windowed
decoding.

I. Introduction

In recent years, it was shown that spatially coupling several

copies of a Tanner graph of an LDPC code improves their

density evolution (DE) thresholds and brings them closer to

channel capacity [1]. This phenomenon, called threshold sat-

uration, allows the SC-LDPC code to have the best threshold

possible, i.e. the threshold under belief propagation (BP) using

DE techniques approaches the maximum a posteriori (MAP)

threshold. Further, it was shown that the threshold approaches

capacity as the degree of the nodes in the graph, the spatial

coupling length, and the memory of the coupling increase.

While these results are all asymptotic, it is desirable for

practical applications to design finite length SC-LDPC codes

that have better performance both in the waterfall and in

the error floor regions compared to standard LDPC codes of

comparable code rates, block lengths, and node degrees.

Moreover, SC-LDPC codes are suitable for windowed en-

coding and decoding in a streaming fashion which significantly

reduces the latency compared to that of block codes. The BP

decoding is performed on a window of variable and check

nodes, and once these nodes are processed for some number

of iterations, the window slides, and the nodes in the new

window are processed [2], [3].

SC-LDPC codes are typically constructed by applying an

edge-spreading process to a base Tanner graph. The resulting

graph (called an SC-protograph) is often lifted to obtain the

graph representation of the overall SC-LDPC code. For array-

based SC-LDPC codes, a so-called cutting vector over an

array-based block code may be used to determine the edge

spreading connections. These methods will be reviewed in

Section III. The SC-protograph is critical in terms of obtaining

SC-LDPC codes with good thresholds and good error floor.

This work is supported by NSF grants CCF-1440001, ECCS-1711056.

While the threshold behavior is controlled mainly by the

memory, coupling length, and the degree of the nodes in the

SC-protograph, the error floor behavior is heavily influenced

by the absorbing sets in the SC-LDPC Tanner graph, whose

presence depends on the structure of the base graph, the edge-

spreading method, and the permutations used in the terminal

lift. Optimizing the cutting vector has been shown to remove

harmful absorbing sets in the resulting code [4], [5]. Moreover,

in [6], the edge spreading process was modified to eliminate

harmful trapping sets in the resulting SC-LDPC code. In this

paper, we present a new unified, single-step lifting method

that performs both the edge-spreading and lifting steps of

the SC-LDPC code construction. This method provides more

flexibility in code construction, and provides an avenue to

remove harmful absorbing sets algebraically via lifting.

Note that the class of array-based LDPC (AB-LDPC) codes

is a particular class of implementation-friendly, quasi-cyclic

LDPC codes that have excellent performance, in particular

for moderate block lengths [7]. In combination with spatial

coupling the resulting codes inherit the excellent benefits of

SC-LDPC codes highlighted above. We simplify the method

of enumerating absorbing sets presented in [8], giving a line

counting method of enumerating absorbing sets in array-

based SC-LDPC (AB-SC-LDPC) codes. We use this method

to find strategic choices of permutations in our general lift

framework that can give codes outperforming those from

optimized cutting vectors of AB-SC-LDPC codes. Further-

more, we demonstrate that our method yields a lower ratio

of absorbing sets affecting a windowed decoder.

This work is organized as follows. Necessary background

is given in Section II. In Section III, we show how common

methods of designing SC-LDPC codes may be viewed as a sin-

gle protograph construction with constraints on the algebraic

lift. In Section IV, we discuss how absorbing sets may be

removed algebraically using suitable choices of permutations.

In Section V, we present a low complexity counting method

for (3, 3)-absorbing sets for AB-SC-LDPC codes, and in

Section VI we provide results comparing several examples.

Section VII concludes the paper.

II. Preliminaries

In this section, we review the basic background for alge-

braic lifts of graphs, the protograph method of LDPC code

construction, and absorbing sets (ABS).

Let [n] = {1, 2, . . . , n}, and let S n denote the symmetric

group on n elements. That is, S n is the group of all permuta-

978-1-5386-3266-6/17/$31.00 ©2017 IEEE 672

Fifty-Fifth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 3-6, 2017

tions of [n]. Cycle notation for an element in S n is an ordering

of the elements of [n] in a list partitioned by parentheses, and

is read as follows: each element is mapped to the element

on its right, and an element before a closing parenthesis is

mapped to the first element within that parenthesis. Each

set of parentheses denotes a cycle. The cycle structure of a

permutation π ∈ S n is a vector (c1, . . . , cn) where, for i ∈ [n],

ci denotes the number of i-cycles in the cycle notation of π.

We will also equate a permutation in S n with its corresponding

n×n permutation matrix, where entry (i, j) is equal to 1 if j �→ i

in the permutation, and 0 otherwise.

Let G be graph with vertex set V = {v1, . . . , vn} and edge

set E ⊆ V × V . A degree J lift of G is a graph Ĝ with vertex

set V̂ = {v11
, . . . , v1J

, . . . , vn1
, . . . , vnJ

} of size nJ and for each

e ∈ E, if e = viv j in G, then there are J edges from {vi1 , . . . , viJ
}

to {v j1 , . . . , v jJ
} in Ĝ in a one-to-one matching. To algebraically

obtain a specific lift Ĝ, permutations may be assigned to each

of the edges in G so that if e = viv j is assigned a permutation

τ, the corresponding edges in Ĝ are vik v jτ(k)
for 1 ≤ k ≤ J. The

edge e is considered as directed for the purpose of lifting. Such

edge assignments to the base graph, and the corresponding

graph lift properties, are studied in [9].

Protograph-based LDPC codes are codes constructed from

small Tanner graphs in this way [10], where permutations are

often chosen randomly. Without loss of generality, we assume

all edges in a protograph are directed from variable node to

check node for permutation assignments. We may also view

this process as replacing nonzero entries of the protograph’s

parity-check matrix with J × J permutation matrices, when

the lift is degree J. There are several methods for construct-

ing SC-LDPC codes, including an edge-spreading protograph

approach and the so-called cutting vector approach; we will

describe how these constructions may be unified under a single

graph lift framework in Section III.

Combinatorial structures in the Tanner graph, such as

absorbing sets, have been shown to cause iterative decoder

failure. An (a, b)-absorbing set is a subset D of variable nodes

such that |D| = a, |O(D)| = b, and each variable node in D

has strictly fewer neighbors in O(D) than in F \O(D), where

N(D) is the set of the check nodes adjacent to variable nodes

in D, O(D) is the subset of check nodes of odd degree in

the subgraph induced on D ∪ N(D), and F is the set of all

check nodes [4]. In Sections IV-VI, we optimize permutation

assignments to minimize the number of harmful ABS in an

SC-LDPC code.

III. SC-LDPC Codes from Algebraic Lifts

In the protograph approach to SC-LDPC code construction,

a base Tanner graph is copied and coupled to form the SC-

protograph. There are many ways to couple the edges from

one copy of the base graph to the other copies; this process of

coupling is generally termed edge-spreading. The SC-LDPC

code is then defined by a terminal lift of the resulting SC-

protograph.

A. SC-LDPC codes via edge-spreading

To construct the SC-protograph, L copies of a base graph,

such as the one shown in Fig. 1, are coupled. The coupling

process may be thought of as first replicating the base graph

at positions 0, . . . , L− 1, and then “edge-spreading” the edges

to connect the variables nodes at position i to check nodes in

positions i, . . . , i+m so that the degrees of the variable nodes

in the base graph are preserved. The number L of copies of

the base graph is referred to as the coupling length, and the

number m of future copies of the base graph that an edge

may spread to is called the memory or coupling width. In the

case of a terminated SC-protograph, terminating check nodes

are introduced at the end of the SC-protograph as necessary to

terminate the SC-protograph. An example of an SC-protograph

obtained by coupling the base graph in Fig. 1 is given in Fig.

2. Allowing edges to instead loop back around to the first few

positions of check nodes results in a tailbiting SC-protograph,

in which both variable and check node degrees are preserved

in all positions.

Fig. 1: Base Tanner graph to be coupled to form an SC-protograph.
Variable nodes are denoted by •, and check nodes are denoted by �.

Fig. 2: Terminated SC-protograph resulting from randomly edge-
spreading L copies of the Tanner graph in Fig. 1 with memory m = 1,
and applying the same map at each position.

This edge-spreading process may also be viewed in terms of

the parity-check matrix, H, of the base graph. Edge-spreading

is equivalent to splitting H into a sum of m + 1 matrices of

the same dimension, so that H = H0 +H1 + · · ·+Hm, and then

arranging them as in Matrix (1) below to form the parity-check

matrix of a terminated SC-protograph with L block columns.

The tailbiting code corresponding to this terminated code has

parity-check matrix as in Matrix (2), so that every check node

has degree equal to its corresponding vertex in the base graph.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H0

H1 H0

.

.

.

.

.

.
. . .

Hm

Hm

H0

. . .
.
.
.

Hm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H0 Hm · · · H1

H1

. . .
. . .

.

.

.

.

.

. Hm

Hm

. . .

. . .

Hm · · · H0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2)

Edge-spreading may be done in a variety of ways. Two

common methods are [1]: (i) For each variable node v in

Position 0, if v has j neighbors c1, . . . , c j in the base graph,

randomly choose for each � = 1, . . . , j, a copy of c� from the

Positions 0, . . . ,m, and (ii) if each variable node in Position 0

has j neighbors in the base graph, randomly choose j of the

673

Positions 0, . . . ,m to spread edges to, then, for each of the j

neighbors c1, . . . , c j of a variable node v, randomly choose a

check neighbor from the copies of c� (� = 1, . . . , j) such that

v has exactly one neighbor in each of the chosen j positions,

and exactly one of each check node neighbor type. Note that

method (ii) is a special case of (i).

In the case of array-based codes, edge-spreading is typically

accomplished using a cutting vector [4]. Requiring a memory

of m = 1, the cutting vector describes the split of the base

matrix into H0 and H1 via a diagonal cut. In particular, for an

array-based parity-check matrix with γ block rows, the cutting

vector is denoted ξ = (ξ0, ξ1, ξ2, . . . ξγ−1); in block row i, block

columns j for 0 ≤ j < ξi are placed in H0. The remaining block

entries above this cut belong to H1. This approach has been

expanded in [11] and [12] to allow for higher memory and

more freedom in the edge-spreading structure, though blocks

of edges remain spread as single units.

Regardless of the edge-spreading method, the mapping

given at Position 0 will be applied at future positions 1, . . . , L−
1; a terminal lift may then be applied to the SC-protograph,

yielding the SC-LDPC code. Repeating the edge-spreading at

future positions allows the resulting SC-LDPC code to be a ter-

minated LDPC convolutional code if the permutations applied

to lift the resulting SC-protograph are cyclic permutations [13],

[14]. In general, terminated SC-LDPC codes are desirable for

practical applications [4], [5], [13].

B. Viewing edge-spreading algebraically

In the remainder of this section, we describe how the edge-

spreading process may be viewed as an approximate graph lift.

First, we note that to construct a terminated SC-protograph, we

may break a tailbiting protograph, copying the constraint nodes

at which the graph is broken. We claim that a tailbiting SC-

protograph may be viewed as a degree L lift of the base graph

– where L denotes the coupling length – by considering the

L copies of a node type in the SC-protograph to be the lift of

the corresponding node in the base graph. While a terminated

SC-protograph is not, then, strictly a graph lift of the base

graph, the set of terminated SC-protographs is in one-to-one

correspondence with the set of tailbiting SC-protographs, and

so each can be associated with a lift of the base graph.

Recall that once an edge-spreading assignment is made for

variable nodes in a single position, that same edge-spreading is

repeated at all future positions. This translates to the following:

Lemma III.1. To construct a tailbiting SC-protograph with

coupling length L and memory m from a base graph via a

graph lift, the possible permutation edge assignments from

the permutation group S L are the permutations corresponding

to τk
L
, for 0 ≤ k ≤ m, where τL is the L × L identity matrix

left-shifted by 1, and at least one assignment corresponds to

τm
L

. We denote this set of permutations by AL,m.

Proof. The proof follows from the structure of the tailbiting

SC-protograph, as given in Matrix (2) above. �

Example III.2. Suppose L = 6 and m = 3. Then, A6,3 =

{τ0
6
, . . . , τ3

6
}. If L = 7 instead, A7,3 = {τ0

7
, . . . , τ3

7
}.

Given a fixed memory, we may spread edges by simply

assigning allowed permutations to edges in the base graph

uniformly at random. This is equivalent to method (i) of edge-

spreading, as described in Section III-A. Method (ii) is more

restrictive: it stipulates that for a given variable node, each

possible permutation assignment is used at most once on its

incident edges.

This framework may be applied to a variety of existing

methods for coupling, with additional restrictions on possible

permutation assignments in each case. In Section III-D, we

will discuss how it may be used to decribe the cutting vector,

as well as the generalized cutting vectors of [11] and [12].

To arrive at the standard matrix structure of the terminated

SC-protograph as given in Matrix (1) – and hence the correct

ordering of bits in a codeword –, one must rearrange the rows

and columns of the matrix resulting from this lift: each L × L

block that has replaced an entry in the base parity-check matrix

corresponds to edges of a single type (i.e. between a single

type of variable and check) in the SC-protograph. To have the

ordering of variable and check nodes in Matrix (2), we should

place the first variable node of type 1 with the first variable

node of type 2, etc., and similarly with check nodes. That is,

ordering is done primarily by a vertex’s index within an L× L

block (ranging from 1 to L), and secondarily by the index of

that L× L block (ranging from 1 to V , where V is the number

of columns of the base matrix). Rearranging rows and columns

does not change the structure of the associated graph (e.g. the

minimum distance of the underlying code, or the number of

ABS therein), but places bits in the correct order, highlights

the repeated structure, and allows us to break the tailbiting

portion of the code and yield a parity-check matrix in the

form of Matrix (1). In particular, this is useful for a sliding

windowed decoder.

C. Combining edge-spreading and the terminal lift

Edge-spreading and the terminal lift may be combined

into a single, higher-degree lift. In other words, the entire

construction process of first replacing each nonzero entry

of the base matrix with an L × L circulant matrix of the

form τk
L
, and then replacing each nonzero entry of each τk

L

with an unrestricted J × J permutation matrix λ to perform

the terminal lift, may be accomplished in a single step by

assigning permutations from S JL to edges in the base graph.

Making a single assignment per edge of the base graph, and

thus per edge of the same type in the SC-protograph, is useful

for two reasons: (1) breaking ABS in the base graph will break

ABS in the terminally-lifted Tanner graph, and (2) the structure

of the code is repeated, reducing storage and implementation

complexity, particularly for windowed decoding.

Theorem III.3. To construct a tailbiting SC-LDPC code with

coupling length L, memory m, and terminal lift of degree

J from a base graph via a single graph lift, the possible

permutation edge assignments from the permutation group S JL

are those whose corresponding matrix is of the form τk
L
⊗ λ

where “⊗” denotes the Kronecker product, τL is the L × L

identity matrix left-shifted by 1, 0 ≤ k ≤ m, and λ is any

674

J × J permutation matrix. We denote this set of permutations

by BL,m,J .

Proof. The proof is clear from Lemma III.1 and the above

discussion. �

Notice that for J = 1, BL,m,J = AL,m. To give the parity-

check matrix of the SC-LDPC code the structure of Matrix

(1), we must again rearrange rows and columns after this

lift is performed, and then break the tailbiting code to form

a terminated SC-LDPC code. In this case, however, rows

and columns are rearranged as blocks, so that J × J blocks

corresponding to choices of λ remain intact.

Theorem III.4. The set BL,(L−1),J has size (m+1) · J!, and the

element τk
L
⊗ λ has order

L · o(λ) · gcd(k, L, o(λ))

gcd(k, L) · gcd (L, o(λ))

where o(λ) indicates the order of the permutation λ. Further-

more, BL,(L−1),J forms a subgroup of S JL for any choice of J

and L.

Proof. The proof follows from the cycle structure of τk
L

and

properties of the Kronecker product.
�

We now discuss the case where we restrict the permutation

λ to be a cyclic shift of the J × J identity matrix.

Corollary III.5. The permutation given by τk
L
⊗ τ�

J
has order

JL · gcd(k, J, L) · gcd(�, J, L)

gcd(�, J) · gcd(k, L) · gcd(J, L) · gcd(k, �, J, L)
.

If we use permutations of this type to lift a base matrix, we

may say more about the structure of the parity-check matrix

of the resulting SC-LDPC code.

Lemma III.6. If a base parity-check matrix is lifted to form

an SC-LDPC code using permutation matrices of the form

τk
L
⊗ τ�

J
in BL,m,J , for J ≥ 2, then the resulting parity-check

matrix is quasi-cyclic, independently of whether block rows

and columns are reordered.

This structure is a consequence of the terminal degree J ≥ 2

lift. Note that when J = 1 (i.e. the SC-protograph is not lifted),

the parity-check matrix is not necessarily quasi-cyclic post-

reordering, but will be if the base matrix is array-based and

permutations are assigned constantly on blocks.

D. Comparison of construction methods

Of the existing methods for SC-LDPC code construction,

the framework presented in Theorem III.3 is the most general.

In particular, traditional cutting vectors and the generalized

cutting vector constructions of [11] and [12] form a proper

subset of this approach.

Given a fixed array-based base graph, let the set of SC-

LDPC codes formed with all possible edge-spreadings and

terminal lifts as described in Theorem III.3 be given by A, the

set of codes formed using a traditional cutting vector (without

a terminal lift) be given by C, the set of codes formed using

a generalized cutting vector (also without a terminal lift) be

given by Cg, the set of codes for which there is no terminal

lift (J = 1 in Theorem III.3) be given by E, and the set of

codes formed by restricting λ of Theorem III.3 to be of the

form τ�
J

(as in Lemma III.6) be given by Q. Then we have the

following nested set inclusions:

Proposition III.7. With C, Cg, E, Q, and A defined as above,

C � Cg � E � Q � A.

For an SC-LDPC code constructed using a traditional cut-

ting vector in C, the memory is equal to 1, and so Lemma III.1

stipulates that the two possible permutation assignments to

edges of the base graph are the identity and τL. However, there

is additional structure: if the cutting vector is ξ = (ξ0, ξ1, . . .),

then the first consecutive (blocks of) ξ0 variable nodes have

the identity assigned to all of their edges, while the next ξ1
consecutive (blocks) have the permutation τL assigned to their

first edge1, and the identity assigned to all later edges, the next

ξ2 (blocks of) variable nodes have the permutation τL assigned

to their first two edges, and the identity to all later edges, etc.

In the generalized cutting vector approach of [11] and

[12], which are edge-spreading methods applied specifically

to array-based codes, blocks in the base matrix have constant

assignments, but assignments to those blocks are not as

restricted as in the traditional approach. The Minimum Overlap

(MO) partitioning of [12] minimizes the number of edges

incident to a given variable node that are assigned the same

permutation.

Relaxing the restriction of constant assignments per block

of an array-based code and allowing multiple permutation

assignments per block is enough to show Cg � E. The final

two inclusions are clear from Theorem III.3 and Lemma III.6.

IV. Removing Absorbing Sets

It has been shown that for protograph-based LDPC codes,

substructures such as trapping or stopping sets may be re-

moved and girth may be improved with certain permutation

assignments in the lifting process [15], [16]. Consequently,

we may remove remove absorbing sets (ABS) by choosing

suitable permutation assignments when constructing an SC-

LDPC code via Theorem III.3.

As an example, we will consider base graphs which are

array-based column-weight 3 codes of the form

H(3, p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

I I I · · · I

I σ σ2 · · · σp−1

I σ2 σ4 · · · σ2(p−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3)

where σ is the p × p identity matrix left-shifted by 1. Fig.

3 shows (3,3)- and (4,2)-ABS, which have been shown to be

the most harmful to error floor performance in such codes [8].

Notice that there is a 6-cycle in each of these ABS. To remove

them algebraically by lifting we can assign permutations to the

edges of the cycle that increase the cycle lengths corresponding

to those edges. This may be done using the following known

1The ordering on the edges incident to a variable node is induced by the
ordering of the corresponding parity-check matrix.

675

result, where the net permutation of a path is the product of

the oriented edge labels.

Theorem IV.1. [9] If C is a cycle of length k with net

permutation π in the graph G, and Ĝ is a degree J lift of G,

then the edges corresponding to C in Ĝ will form c1 + · · ·+ cJ

components with exactly ci cycles of length ki each, where

(c1, . . . , cJ) is the cycle structure of π.

Fig. 3: A (3, 3)- and a (4, 2)-ABS in a column-weight 3, array-based
code. Variable nodes are denoted by •, and check nodes are denoted
by �.

In the case of SC-LDPC codes, the permutation assignments

are limited to those detailed in Theorem III.3. However, even

if we restrict ourselves to m = 1 (or 2) and no terminal lift,

assigning the permutation τL (and τ2
L
) to a strategic subset of

the edges of a 6-cycle will break the 6-cycle in the lift, and

hence will break the corresponding (3, 3)-ABS. Notice that

since the (3, 3)-ABS is a subgraph of the (4, 2)-ABS in Fig.

3, the latter are also removed. This motivates the algorithmic

approach for optimizing permutation assignments in Sections

V and VI, where we will focus on the case where edge

assignments are made per block (as in [11] and [12]). However,

this restriction may be relaxed and multiple assignments made

per block, which will be illustrated in the full version.

V. Counting (3, 3)-absorbing sets

In this section we present a novel line counting approach to

the problem of enumerating (3, 3)-ABS. This work is a sim-

plification of the approach in [8], which is based on counting

integer points within a polygon. Note that the enumeration

technique discussed in [8] applies only to AB-SC-LDPC codes

obtained by the cutting vector approach; however, our line

counting method is applicable for enumerating (3, 3)-ABS in

any column-weight 3 AB-LDPC code. The method emanates

from the structural properties of the 6-cycles associated to

(3, 3)-ABS in an AB-LDPC code. From the cyclic structure

of these codes, it is straightforward to show that a 6-cycle in

an AB code implies the presence of a (3, 3)-ABS [8].

We enumerate (3, 3)-ABS in two types of AB-SC-LDPC

codes – those obtained by the cutting vector approach, whose

parity-check matrices are denoted as H(3, p, ξ, L), and those

obtained via the general algebraic lifting of Section III, with

parity-check matrix H(3, p, L). Note that H(3, p), as in Equa-

tion (3), is the base matrix in both cases. Let Bm denote a

(m+1)-ary permutation assignment matrix of dimension γ× p,

which will determine H(3, p, L). An entry M ∈ {0, . . . ,m} in

position (i, j) of Bm indicates that all non-zero elements of

block (i, j) of H(3, p) should be lifted by by τM
L

. In Section VI,

we obtain Bm via numerical optimization.

A 6-cycle in an AB code may be indicated by the six (row,

column) pairs associated with its edges in the corresponding

Tanner graph, using the notation (rt, c�) for t, � ∈ [3]. Note

that not all index combinations are possible; indeed, two

consecutive edges in a cycle must share either a row or a

column index. Let qt and st denote the block row index and

the row index within a particular block row, respectively, such

that rt = qt p + st. Similarly, let j� and k� represent the block

column index and the column index inside a particular block

column, so that c� = j�p + k�. In this way, the location of a

vertex (rt, c�) may be written as (qt, st, j�, k�), t, � ∈ [3]. This

may be seen in Fig. 4.

Fig. 4: The structure of a 6-cycle within an AB code.

Due to the structure of an AB-SC-LDPC code, any 6-cycles

present will span 3 distinct block rows and p or (m+1)p block

columns. These three block rows will each have one of the

following structure types:

Type 1: Consists of only identity matrices.

Type 2: Consists of matrices σz for 0 ≤ z ≤ p − 1.

Type 3: Consists of matrices σ2z for 0 ≤ z ≤ p − 1.

From this and other structural observations, we may obtain:

Lemma V.1. A (3, 3)-absorbing set can only exist in a region

of an AB-SC-LDPC code that consists of three consecutive

block rows, where the block columns within these block rows

have weight at least two. In particular, there must be at least

one block row in the (3, 3)-absorbing set whose nonzero blocks

are all identity matrices.

Lemma V.2. Let c1 and c2 denote the two columns of the

6-cycle which belong to the block row comprised of identity

matrices, with c2 > c1. Then, for some n ∈ [p − 1],

c2 − c1 = np. (4)

While a 6-cycle may be uniquely identified by its column

indices, two 6-cycles may share two column indices and differ

in the third. Moreover, the range of values of the third column,

c3 may be expressed in terms of the first two. Bounding the

range of possible c3 values using other structural observations,

we may produce diagonal boundaries in the (c1, c2) plane. The

structure of AB-LDPC codes imposes additional boundaries on

the range of values of c1 and c2. Let R denote a region of the

AB-SC-LDPC code (with γ = 3) containing the three distinct

block row types discussed previously, and p or (m+1)p block

columns. The number of 6-cycles existing within such a region

is then proportional to the length of the segment of the line

(4) enclosed within the boundaries in the (c1, c2) plane induced

by the array-based structure. This dramatically simplifies the

enumeration of [8].

Note that from the cycle structure shown in Fig. 4, the block

column index j3 must have columns with non-zero elements in

676

both block row indices q2 and q3. Let the smallest and largest

index of the block columns satisfying this property be α and

β−1, respectively, where α < β, 0 ≤ α ≤ p−1, and 1 ≤ β ≤ p.

In particular, α ≤ j3 ≤ β − 1.

Lemma V.3. The following inequalities hold for c1 and c2:

Case 1:
αp

2
≤ c2 −

1

2
c1 <

βp

2
(5)

Case 2:
p2 + αp

2
≤ c2 −

1

2
c1 <

p2 + βp

2
(6)

Case 3: p2 − βp < c2 − 2c1 ≤ p2 − αp (7)

Case 4: − βp < c2 − 2c1 ≤ −αp (8)

Lemma V.3 can be explained as follows: when c1 is con-

nected to type-1 and type-2 block rows, the conditions c3 < p2

and c3 ≥ p2 generate (5) and (6), respectively. When c1 is

connected to a type-1 and type-3 block rows, (7) and (8) arise

when c3 < p2 and c3 ≥ p2, respectively. Recall that c3 exists

only between type-2 and type-3 block rows. The positioning

of the circulant matrices of R places additional constraints on

the range of values of c1 and c2. Let

w1 p ≤ c1 < w2 p and (9)

w3 p ≤ c2 < w4 p, (10)

where w1,w2,w3,w4 are integers satisfying 0 ≤ w1 ≤ p − 2,

1 ≤ w2 ≤ p−1, w1+1 ≤ w3 ≤ p−1, w2+1 ≤ w4 ≤ p. Also, note

that n of the line in V.2 must be contained in {1, . . . ,w4−w1−1}.
The upper and lower bounds from (9) (resp., equation (10))

produce vertical (resp., horizontal) boundaries on the (c1, c2)

plane. Since Cases 1, 2, 3, and 4 in Lemma V.3 are mutually

exclusive, the following theorem is obtained:

Theorem V.4. The number of (3, 3)-absorbing sets within R
is equal to the sum of the number of (c1, c2) integer pairs

obtained from each of the cases in Lemma V.3.

Recall that α (resp., β − 1) is the lower (resp., upper)

bound on the range of possible block column indices of c3;

similarly, w1 (resp., w2 − 1) and w3 (resp., w4 − 1) are the

lower (resp., upper) bounds on the column numbers of c1 and

c2, respectively. Consequently, S � := {α, β,w1,w2,w3,w4}� is

the set of input parameters for the line counting algorithm for

Case � ∈ [4].

In the next subsection, we derive an analytical expression

for the number of (3, 3)-ABS of an AB-SC-LDPC code via

a line counting algorithm. We then apply this approach to

(3, 3)-ABS for H(3, p, ξ, L) in Subsection V-B, and extend the

technique to piecewise line counting to enumerate (3, 3)-ABS

in the more general case of H(3, p, L) in Subsection V-C.

A. Enumeration of (3, 3)-absorbing sets in R via line counting

Let N�,R be the number of integer points (c1, c2) on the line

in (4) that satisfy the conditions for Case � ∈ [4] in Lemma

V.3. ForN1,R, consider the following lines: let l1a (resp., l2a) be

the line obtained from the lower (resp., upper) bound of (5), l3
(resp., l4) the line obtained from the lower (resp., upper) bound

of (9), l5 (resp., l6) the line obtained from the lower (resp.,

upper) bound of (10), and l7 the line in (4). For example, l1a

represents c2− 1
2
c1 =

αp

2
. These lines are shown in Fig. 5. Note

that a (c1, c2) integer pair on l7 in the grey region of Fig. 5

indicates an existing 6-cycle (and hence a (3, 3)-ABS) for the

case � = 1.

Let θi be the point of intersection between l7 and li+2 for

i ∈ [4], and let φ1a (resp., φ2a) be the point of intersection

between l7 and l1a (resp., l2a). Note that θ1 and θ3 are obtained

from the lower bounds of (9) and (10), respectively, and hence

they lie on the lower left corner of the region; by similar

reasoning, {θ2, θ4} may be found on the upper right corner.

The two points (one picked from each set) producing the

shortest length of l7 within the rectangular boundary imposed

by l3, l4, l5, l6, are the points of interest. These points are

denoted by σ1a and σ2a. That is, σ1a,x = max(φ1a,x, θ1x, θ3x),

σ1a,y = max(φ1a,y, θ1y, θ3y), σ2a,x = min(φ2a,x, θ2x, θ4x), σ2a,y =

min(φ2a,y, θ2y, θ4y). Moreover, the y-coordinates of the points

of intersection between l3, and l2a, l4 and l1a are (w1 + β)p/2

and (w2 + α)p/2, respectively. Then, from the principles of

Cartesian geometry and the constraints given by (5), (9) and

(10), we obtain

N1,R =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑w4−w1−1

n=1

(√
(σ2a,x−σ1a,x)2+(σ2a,y−σ1a,y)2

√
2

)

, if (∗)

0, otherwise,

(11)

where (∗) denotes the conditions θ1y <
(w1+β)p

2
, θ2y >

(w2+α)p

2
,

θ1x ≤ {σ1a,x, σ2a,x} ≤ θ2x, and θ1y ≤ {σ1a,y, σ2a,y} ≤ θ2y.

N2,R,N3,R and N4,R can be obtained in similar fashion from

(6), (7) and (8), respectively.

Fig. 5: Case � = 1 in Lemma V.3: the valid integer points satisfying
(5), (9) and (10), are shown in green. Here, N1,R = 5; additionally,
σ1a = θ3, and σ2a = θ2.

B. Enumeration of (3, 3)-absorbing sets in H(3, p, ξ, L) via

line counting

Due to the constraints given in Lemma V.1, there are seven

possible structures of regions in the matrix H(3, p, ξ, L) in

which a 6-cycle could reside [8]. Let R1, . . . ,R4 denote the

four possible regions contained within a block column of the

matrix – that is, all variable nodes in the cycle are contained

677

in a single position of variable nodes, or an H0−H1 column in

the parity-check matrix. These regions may be seen in Fig. 6.

6-cycles may also be present within regions R5,R6,R7, which

arise when they span two block columns of the matrix.

Fig. 6: A depiction of the structure of regions R1 −R4 in the matrix
H(3, p, ξ, L).

Lemma V.5. Let the number of 6-cycles in a single iteration

of region types R1 −R4 be given by μ1, and let the number of

6-cycles in a single iteration of region types R5 −R7 be given

by μ2. Then, the total number of 6-cycles in the AB-SC-LDPC

code is Lμ1 + (L − 1)μ2.

Proof. The proof follows from the structure of H(3, p, ξ, L).

�

In particular, μ1 =
∑4
R=1

∑4
�=1N�,R and μ2 =

∑4
�=1N�,5 −

∑4
�=1N�,3 +

∑4
�=1N�,6 −

∑4
�=1N�,4 −

∑4
�=1N�,1 +

∑4
�=1N�,7 −

∑4
�=1N�,2.

C. Piecewise line counting: method for enumeration of (3, 3)-

absorbing sets in H(3, p, L)

The line counting method discussed above can be leveraged

to count (3, 3)-ABS in H(3, p, L), as well. Recall that spatially-

coupled codes obtained via graph lifting can be reordered to

have the structure shown in Matrix (2). Due to this reordering

step, the circulant matrices belonging to Hi in Matrix (2), for

i ∈ {0, . . . ,m}, are no longer a contiguous share of H(3, p). In

contrast to H(3, p, ξ, L) there now may exist all-zero blocks

between circulants in a given block row. As a result, the line

l7 that contains the valid (c1, c2) pairs related to the 6-cycles

of Matrix (2) “splits,” and this splitting is contingent upon the

location of the zero blocks. This leads to disjoint regions on

the (c1, c2) plane containing the valid integer points on l7 for a

given � and n. As a result, in case of H(3, p, L), the length of

l7 in each of these regions can be found by applying a distinct

set of input parameters to the line counting algorithm, leading

to piecewise line counting. The values of the elements in these

sets are contingent upon the locations of the zero blocks of

the region. As a result, N�,R can be found in H(3, p, L) for

any choice of m using (11). However, the number of regions R
needed for enumerating (3, 3)-ABS in H(3, p, L) via piecewise

line counting is greater than in H(3, p, ξ, L), and this number

increases significantly with m.

VI. Results

In order to compare the cycle-breaking approach outlined in

Section IV to previous edge-spreading methods, we consider

three AB-SC-LDPC constructions. In all three cases, the codes

are obtained from the array-based H(3, p) base matrix with

p = 17. Although the lifting method of Section IV extends to

higher memory, the examples considered have memory fixed

at m = 1 or 2, as indicated. We consider:

• Code 1: This code is obtained by coupling H(3, 17) using

the optimal cutting vector of [8] (i.e., m = 1).

• Code 2: This code is obtained by lifting H(3, 17) using

the optimized Bm matrix for the case m = 1.

• Code 3: This code is obtained by lifting H(3, 17) using

the optimized Bm matrix for the case m = 2.

We minimize the number of (3, 3)-ABS in each of these

codes for both windowed and non-windowed BP decoding

by finding a suitable permutation assignment matrix Bm. This

matrix is obtained via a numerical optimization technique: Bm

is optimized using a procedure combining a limited exhaustive

search with iterative backtracking. In each step of this algo-

rithm, the number of (3, 3)-ABS is determined efficiently via

the line counting approach of the previous section.

Enumeration results for the non-windowed case are shown

in Table I. This table compares the numbers of (3, 3)-ABS

for Codes 1-3. The number of (3, 3)-ABS in Code 3 should

compared to the numbers in the other AB-SC-LDPC codes

with m = 2: those obtained via the optimization techniques of

[11], [12]. Fig. 7 displays these results using the parameter r1:

r1 =
total # of ABS in Code 1, 2 or 3

total # of ABS in the corresponding uncoupled code
.

Note that in the non-windowed case, the resulting code’s block

length is equal to Lp2 = 289L. The number of (3, 3)-ABS in

the uncoupled code for p = 17 is 4624L. Clearly, Code 3

outperforms all the other codes.

L Code 1 Code 2 Code 3 [12] for m=2 [11] for m=2

10 19108 5644 442 n/a 646

20 39508 11764 952 n/a 1326

30 59908 17884 1462 4335 2006

40 80308 24004 1972 n/a 2686

50 100710 30124 2482 n/a 3366

TABLE I: The number of (3, 3)-ABS in Codes 1-3, in addition to
the results presented in [11], [12].

10 15 20 25 30 35 40 45 50

L

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

r 1

Code 1

Code 2

Code 3

[12] for m=2

[11] for m=2

Fig. 7: Values of r1 for various coupling lengths.

Next, we present ABS counting results for a sliding win-

dowed decoder. In particular, we compare the number of (3, 3)-

ABS in all the sliding positions of the windowed decoder to

678

the number of (3, 3)-ABS seen by the standard decoder of the

same code. The window in H(γ, p, ξ, L) is positioned such that

the block rows inside a window of length p2S 1 variable nodes

(VNs) are contained within S 1 contiguous H1−H0 row groups,

with the total number of block rows inside the window being

γ(S 1−1)+1 for γ = 3 and integer S 1 ≥ 2. An example of such

a placement is shown in Fig. 8. The same placement technique

is applicable for the H(3, p, L) code in the case that m = 1. For

m = 2 however, the window in H(γ, p, L) of length p2S 2 VNs

is contained within S 2−2 contiguous H2−H1−H0 row groups

such that the total number of block rows inside the window is

γ(S 2 − 3) + 1, where S 2 ≥ 4. Positioning the window in this

way ensures that all the windows sliding across the matrix

are identical, and that parity-check equations are not broken.

Note that in each of these cases there are no (3, 3)-ABS in the

region where the windows overlap, since only one block row

is common between two consecutive sliding positions.

Fig. 8: Example of window placement in H(3, p, ξ, L) shown for
S 1 = 2, 3.

Results obtained using line counting for the BP windowed

decoder are shown in Fig. 9 using the parameter r2:

r2 =
total # of ABS at all sliding positions of window

total # of ABS seen by the standard decoder
.

Table II contains the number of (3, 3)-ABS for Codes 1, 2

and 3 with varying window sizes. It is worth noting that Code

3 for a window length of 4p2 bits has no (3, 3)-ABS at all,

making it an excellent candidate for windowed decoding.

Window Length (VNs) Code 1 Code 2 Code 3

2p2 1700 51 n/a

3p2 3740 544 n/a

4p2 5780 1156 0

5p2 7820 1768 85

TABLE II: The number of (3, 3)-ABS in Codes 1-3 for varying
window sizes.

VII. Conclusion

We presented a generalized description of SC-LDPC codes

using algebraic lifts; this framework allows for greater flexibil-

ity in code design, and for the removal of harmful absorbing

sets in the design process. We introduced a novel absorbing

set enumeration method and used this to demonstrate that our

generalized method has the potential to outperform conven-

tional array-based SC-LDPC construction methods such as

the (generalized) cutting vector. Further optimization using

10 15 20 25 30 35 40 45 50

L

0

0.2

0.4

0.6

0.8

1

r 2

Code1 (4p
2
 VNs)

Code2 (4p
2
 VNs)

Code3 (4p
2
 VNs)

Code1 (5p
2
 VNs)

Code2 (5p
2
 VNs)

Code3 (5p
2
 VNs)

Fig. 9: Values of r2 for various coupling lengths, with window lengths
of 4p2 and 5p2.

multiple permutation assignments per block will be included

in the full version of this paper.

References

[1] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. on Info. Theory, vol. 59, no. 12, pp. 7761–7813, Dec 2013.

[2] M. Papaleo, A. R. Iyengar, P. H. Siegel, J. K. Wolf, and G. E. Corazza,
“Windowed erasure decoding of LDPC convolutional codes,” in IEEE
Info. Theory Workshop (ITW), Cairo, Jan 2010, pp. 1–5.

[3] A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed
decoding of spatially coupled codes,” IEEE Trans. on Info. Theory,
vol. 59, no. 4, pp. 2277–2292, Apr 2013.

[4] D. Mitchell, L. Dolecek, and J. Costello, D.J., “Absorbing set charac-
terization of array-based spatially coupled LDPC codes,” in Proc. IEEE
Int’l Symp. on Info. Theory (ISIT), June 2014, pp. 886–890.

[5] B. Amiri, A. Reisizadeh, J. Kliewer, and L. Dolecek, “Optimized array-
based spatially-coupled LDPC codes: An absorbing set approach,” in
Proc. IEEE Int’l Symp. on Info. Theory (ISIT), June 2015, pp. 51–55.

[6] A. Beemer and C. A. Kelley, “Avoiding trapping sets in SC-LDPC
codes under windowed decoding,” in 2016 International Symposium on
Information Theory and Its Applications (ISITA), Oct 2016, pp. 206–210.

[7] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd
Int’l Symp. on Turbo Codes, Brest, France, Sept. 2000, 2000.

[8] B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and
L. Dolecek, “Optimized design of finite-length separable circulant-based
spatially-coupled codes: An absorbing set-based analysis,” IEEE Trans.
on Comm.s, vol. 64, no. 10, pp. 4029–4043, Oct 2016.

[9] J. L. Gross and T. W. Tucker, Topological Graph Theory. Dover, 2001.
[10] J. Thorpe, “Analysis and design of protograph based LDPC codes and

ensembles,” Ph.D. dissertation, California Institute of Technology, 2005.
[11] D. Mitchell and E. Rosnes, “Edge spreading design of high rate array-

based SC-LDPC codes,” in Proc. IEEE Int’l Symp. on Info. Theory
(ISIT), July 2017.

[12] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “A novel combinato-
rial framework to construct spatially-coupled codes: Minimum overlap
partitioning,” in Proc. IEEE Int’l Symp. on Info. Theory (ISIT), July
2017.

[13] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. on Info. Theory, vol. 50, no. 12, pp. 2966–2984, Dec 2004.

[14] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello,
“Deriving good LDPC convolutional codes from LDPC block codes,”
IEEE Trans. on Info. Theory, vol. 57, no. 2, pp. 835–857, Feb 2011.

[15] C. A. Kelley, “On codes designed via algebraic lifts of graphs,” 2008
46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 1254–1261, 2008.

[16] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets
in low-density parity-check codes by using Tanner graph covers,” IEEE
Trans. on Info. Theory, vol. 54, no. 8, pp. 3763–3768, Aug 2008.

679

