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Abstract
In this paper we present a study of how Java programs dis-
pose of objects.Unlike prior work on object demographics
and lifetime patterns, our goal is to precisely characterize the
actions that cause objects to become unreachable.We use
a recently-developed tracing tool,called Elephant Tracks,
which can localize object deaths within a specific method
and tell us the proximal cause.Our analysis centers around
garbage clusters:groups of connected objects that become
unreachable at precisely the same time due to a single pro-
gram action. We classify these clusters using traditional
features, such as size, allocation site, and lifetime, and using
new ones, such as death site and cause of death.

We present results for a set of standard benchmarks in-
cluding SPECJVM98,SPECjbb,and DaCapo.We identify
several patterns that could inform the design of new collec-
tors or tuning of existing systems.Most garbage clusters
are small,suggesting that these programs almost always
dispose of large structures in a piecemeal fashion.In addi-
tion, most clusters die in one of only a dozen or so places
in the program. Furthermore,these death sites are much
more stable and predictable than object lifetimes.Finally
we show that this information could inform a new kind of
garbage collection algorithm,which we call cluster-aware
garbage collection, and we evaluate its potential using a GC
simulator.
CCS Concepts•Software and its engineering → Garbage
collection; Dynamic analysis;
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1 Introduction
Many of the dramatic performance improvements in garbage
collection over the last 20 or 30 years have been driven by
observations about common patterns of heap memory use.
The best known, and perhaps most successful is generational
collection, which exploits the weak generational hypothesis
that most objects die young (Ungar 1984).Generational
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collectors are widely deployed in practice, and have given
rise to a large family of related collection schemes,such
as age-based garbage collection (Stefanović et al. 1999) and
pretenuring (Blackburn et al. 2001),as well as the use of
specialized memory spaces for large objects and immortal
objects.A nagging problem,however,is how to improve
performance beyond generationalcollectors,particularly
for programs with non-generational behavior (e.g., software
caches) or with very large heaps that defy simple lifetime
classifications.

An exciting trend that has been gaining momentum is
to develop collectors that support application-specific poli-
cies and mechanisms.Recent promising examples include
cluster collection (Cutler and Morris 2015),data structure
aware garbage collection (Cohen and Petrank 2015),and
connectivity-based garbage collection (Hirzel et al. 2003).In
order to be effective,however,these new techniques rely
on detailed information about how a program creates, con-
nects,and ultimately disposes of objects.Prior work on
computing this information includes a number of empirical
studies of object demographics, heap structure, and GC be-
havior(Blackburn et al. 2004; Dieckmann and Ḧolzle 1999;
Hirzel et al. 2002; Jones and Ryder 2008).

Notably absent from these studies, however, is an analysis
of exactly how objects become garbage: What program events
create garbage and where does that happen in the program?
Part of the reason is that until recently the tools for analyzing
heap memory behavior (GC tracing tools) were not precise
enough to discover this information.The original work on
the Merlin tracing algorithm (Hertz et al. 2006), for example,
uses a fairly coarse notion of time, called allocation time, that
only advances at object allocations.As a result,recorded
program events (such as object deaths) cannot be localized
any more precisely than the nearest allocation site.

In this paper we use the Elephant Tracks GC tracing tool
to perform a detailed study of how and where objects become
garbage (Ricci et al. 2013).Elephant Tracks measures time in
method calls/returns, which is both more precise and more
informative than allocation time.It allows us to determine
the exact location in the program where each object become
garbage,which in turn allows us to identify the program
action that caused it.For example,we can compute how
many objects die as a result of losing a stack reference (versus
losing a heap reference),and we can determine in which
methods these events occur.
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Knowing both where objects are allocated and where they
die gives us the full dynamic extent of their lifetime in the
program.Program scope is qualitatively different from any
measurement of lifetime. In particular, it is much less arbi-
trary: it is defined only by the program actions that directly
impact an object. We find, for example, that scopes are stable
and predictable.In most cases, objects allocated at a partic-
ular program point only die in a small number of possible
places; often only one or two.These objects can nonetheless
have wildly different lifetimes because different code paths
– in many cases irrelevant to the objects in question – are
executed between their allocation and death.

Our study centers around garbage clusters: groups of con-
nected objects that become unreachable together as a result
of a single program action.For each of our benchmark pro-
grams,we analyze garbage clusters in a variety of ways,
including size,scope,connectivity,and cause of death.In
addition, we compute memory flows: collections of clusters
with same dynamic extent.We present this data for a set
of well-known Java benchmarks: SPECJVM98, DaCapo, and
SPECjbb.Some of our key findings include:

• Most garbage clusters are small.With the exception
of one benchmark, clusters are rarely larger than 10
objects, suggesting that Hayes’s notion of a key ob-
ject does not exist at any significant scale in these
programs.

• Most clusters die in one of only 10 to 20 different
methods.

• Memory flows are highly predictable.That is, most
of the objects created at a given allocation site die at
one of only two or three program points (in many
cases, only one). This observation holds even when
the objects vary wildly in their lifetimes.

• Some clusters contain cyclic garbage (one of the major
challenges for reference counting collectors), but the
vast majority of these cycles are small (one to four
objects) and are entirely contained within a single
class (i.e., all objects are instances of one class and/or
any nested classes it contains).

We believe that detailed information about patterns of
object disposal will enable a new class of application-specific
collection algorithms that exploit these patterns.We present
one possible algorithm, called Cluster Aware Garbage Collec-
tion (CAGC), based on an incremental marking scheme that
exploits our knowledge of garbage clusters.We implement
our oracular algorithm in a simulator to show its potential.
We believe that much more is possible.

The rest of this paper is organized as follows.First,we
review prior work in object demographics and garbage col-
lection tracing tools.Second,we explain how we analyze
traces to produce the data for our study.Next, we present
results for the individual benchmarks as well as aggregated
results.We then present our prototype CAG collector simu-
lator and the results of running the simulator on our data.

Finally,we discuss future directions for both the analysis
and garbage collector design.

2 Background and related work
Our study builds on prior work in several ways. First, we con-
tinue a line of research that aims to characterize the memory
workloads of object-oriented programs and provide infor-
mation that can assist in the further memory management
research.Second, we use a dynamic analysis tool to collect
traces of the memory behavior of programs.The tool we use
builds on existing techniques and algorithms, but provides a
new level of precision.Thirdly, we develop a novel garbage
collection algorithm that exploits the knowledge gained in
the dynamic analysis.We evaluate the GC algorithm in a
simulator.

2.1 Object demographics

Many garbage collection research papers use object demo-
graphics data to motivate the design of the collector. Notable
examples include the original work on generational scaveng-
ing (Ungar 1984) and work on pretenuring (Blackburn et al.
2001).For the most part these papers exploit coarse-grained
patterns in the lifetimes of objects – for example, distinguish-
ing long-lived from short-lived objects – and precision is not
crucial. In some cases they use precise information about the
allocation sites of objects, since this information is readily
available.Since object death information has not been easy
to compute few collectors have been designed around this
information.

Connectivity-based garbage collection is a substantially
different approach that uses static analysis to organize ob-
jects into groups with similar lifetimes, allowing the runtime
system to focus on groups most likely to be garbage (Hirzel
et al. 2003).This work was supported by a study showing
that connected objects tend to die together (Hirzel et al. 2002).
The specific analysis computed the probability that two ob-
jects have the same lifetime if they are connected by some
chain of references in the heap.

Several well-known papers have been devoted entirely
to the empirical study of object demographics.The most
recent study by Jones and Ryder provides an in-depth anal-
ysis of object lifetimes.It presents age data for different
categories of objects – application vs library vs virtual ma-
chine objects – across different input sizes (Jones and Ryder
2008).It also shows the correlation between lifetime and
allocation context (allocation site in a calling context).As
with prior studies, however, lifetimes are characterized in
a fairly coarse way, and the underlying data is only precise
for object allocation and heap update events.Our goal is to
complement these studies with precise information about
object deaths.
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2.2 Collecting GC traces

Early work on analyzing programs for memory management
involved running the garbage collector more frequently in
order to compute object death times more precisely (Ste-
fanovic 1999).This technique is extremely limited, though,
because each collection is so expensive. The Merlin algorithm
provided a breakthrough in performance by allowing pre-
cise death times to be computed during regularly-scheduled
garbage collections (Hertz et al. 2006).The key idea in this
algorithm is to timestamp objects when they are used,so
that when they are found to be garbage by the collector,
the last timestamp indicates approximately when they were
last reachable.The challenge is figuring out when to times-
tamp objects reachable from the stack (local variables).The
strategy in the original paper is to timestamp everything on
the stack at each allocation site, which provides a balance
between precision and performance.The major downside is
that since time is tied to allocation sites, it is not possible to
precisely locate events in the program structure.

3 Trace collection and analysis
In this section, we first describe the raw trace information
provided by the Elephant Tracks tracing tool; then we discuss
how we analyze this information systematically to identify
interesting memory use patterns.

3.1 Trace entries

An Elephant Tracks trace consists of a sequence of heap-
related events recorded during execution of a Java program.
Each kind of event includes information about the objects
involved:

• An object allocation event includes the object type
and object size, and number of elements in the case
of arrays.

• A pointer update event includes the source and tar-
get objects, the field or array element being updated,
and the old target (if there was one).

• A root event indicates when an object reference is
used (a witness to the object being reachable from
the stack).

• A death event identifies when an object becomes
unreachable (the earliest point it could be collected).

• Method entry and exit events.
Every object allocated is assigned a unique identifier,so
subsequent events can refer to the exact object instances
involved.At this level of detail the resulting traces are enor-
mous – in the 100s of gigabytes for the larger benchmarks.

3.2 Method time

The Merlin algorithm,which we employ,relies on times-
tamping in order to place object death events in their proper
place in the trace.The exact definition of “trace time” is
arbitrary, but the more fine-grained it is, the more precisely

object deaths can be placed among the other events (which
are simply recorded in the order they occur).

Garbage collection researchers have traditionally mea-
sured time in terms of bytes allocated, since it places events
relative to the consumption of memory (Jones et al. 2011).
This notion of time, called allocation time, is useful for study-
ing GC algorithms because it produces a trace that is equiv-
alent to running the collector at every allocation – the most
frequent collection schedule that would make sense.The
problem with allocation time is that it is too coarse to use for
studying other kinds of events.For example, an object that
becomes garbage when a method returns will appear to have
died at the next allocation site, even if it is in a completely
different part of the code.

Elephant Tracks, on the other hand, ticks the trace clock
at every method entry and exit.This notion of time, called
method time is much more precise than allocation time:
method boundaries are encountered 10-20 times more fre-
quently than allocations.More importantly, however, each
discrete time corresponds to a specific dynamic method in-
vocation (or part of a method).This level of precision allows
us to identify the exact program event that causes an object
(or set of objects) to become unreachable.Furthermore, by
matching entries and exits, we can reconstruct the full call-
ing context of any event.Later in this section we describe
an example of how this information is used.

3.3 Cause of death

The first step in our garbology analysis is to classify objects
according to their cause of death.At the most fundamental
level,objects can only die in two ways:by losing a stack
reference, or by losing a heap reference.We refer to these
categories as dying by stack and dying by heap.We can com-
pute this information easily from an Elephant Tracks trace,
but it is more informative to break down these categories
based on circumstances.

Many objects die when a program terminates, and these
“immortal” objects do not fall cleanly into either of our cat-
egories.While this information might be useful for some
kinds of collectors (Blackburn et al. 2001),we exclude im-
mortal objects from our analysis.The focus of this study
is on understanding how programs explicitly dispose of ob-
jects in their steady state, which is crucial for long-running
programs, such as server applications.

Quite often, the die-by-stack case is incidental, and the real
cause of death is a heap store.Consider aremovefunction
for a container data structure: it might use a stack reference
to point to the element to be removed while it modifies the
structure.The direct cause of death of the removed object
is the loss of that stack reference when theremovemethod
returns, but the proximate cause is really the overwriting of
the associated heap references in the container.We remove
these cases from die by stack and place them in their own
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category called dying by stack after heap:when an object
first loses its last heap reference, then its last stack reference.

3.4 Garbage clusters and key objects

One problem with the analysis described so far is that it does
not properly account for objects that die indirectly when the
object(s) pointing to them become garbage.For example, a
single variable going out of scope could cause a group of
connected objects to all become garbage.Clearly, the object
directly referred to by the variable dies by stack, but what
about the objects it points to? One could argue that they die
by heap, since heap references are going away, but that does
not seem like a useful classification.Instead, we atrribute
the same cause of death to all objects in the group.

We define a garbage cluster as a set of objects that die at
the same time as a result of a single action by the program.
For heap actions, there is only ever one heap reference that
is overwritten.The classification is more subtle though for
stack actions: there are often multiple stack references that
go out of scope when a method exits.Rather than lump to-
gether potentially unrelated objects, we consider each stack
reference as a separate event.Occasionally, there are mul-
tiple variables that point to the same object, or even worse,
that share structure.Our analysis chooses the cause by de-
termining which incoming reference is older.This design
decision is in line with the spirit of our analysis because an
object intuitively belongs to a garbage cluster if it has been
alive with that cluster the longest.

Garbage clusters are closely related to the idea of key
object opportunism,first proposed by Hayes (Hayes 1991).
He suggested that there are special objects that control the
lifetimes of many other objects.When those key objects
die, many other objects die as a results.Hayes proposed
a collector that schedules collections around the lifetimes
of these objects.It was never clear, however, whether key
objects actually controla significant amount of memory
resources.We can use our garbage clusters analysis to check
this claim.The key object in each cluster is the object that is
most directly affected by the cause of death (e.g., the object
whose last reference the program removes).

3.5 Program contexts

Our analysis uses Elephant Tracks to identify exactly where
an object dies in the program.The source trace allows us to
determine the full calling context of every event, including
object death. Using the full calling context though, generates
too much information and results in an infeasible analysis.

In order to make the analysis more practical, we use the
static location of the death event.That is, we use the top of
the stack as the object’s death location. Quite often, however,
the top of the stack is just a library method. As programmers,
we might be more interested in the application method that
made the call further down the stack.Our analysis therefore
also computes the nearest non-library method in the full

calling context.The static location together with the near-
est non-library method are used instead of the full calling
context.

Our analysis identifies the following packages as libraries:
• java.*
• sun.*
• com.sun.*
• com.ibm.*

Any class from those packages are considered library classes
with library methods.Thus, all other classes and methods
are defined to be non-library classes and methods.

3.6 Properties of garbage clusters

Once we have aggregated all of the object deaths into garbage
clusters, we can analyze their properties, including allocation
and death contexts of each cluster, the age in both allocation
time and method time, number of objects in the cluster, and
total size of all objects in bytes.

While all objects in a garbage cluster die at the same time,
they are all allocated at different times.In order to present a
summary of the allocation properties of clusters, we classify
them according to the oldest object in the cluster.In many
cases, this object also happens to be the key object.We also
compute the range of ages of the objects relative to the age
of the cluster as a whole.

3.6.1 Cycles in garbage clusters

Finally, we analyze the connectivity of objects in each cluster
to determine if there are any cycles. The precision of our anal-
ysis allows us to determine exactly how often cyclic garbage
occurs, and compute properties of the cycles, including their
size and the types of the objects involved.This information
is interesting for reference counting collectors, which cannot
collect cyclic garbage without a separate algorithm (typically
some form of tracing).Using the trace information, we can
reconstruct the connectivity of objects after they are dead
and apply a standard strongly-connected components anal-
ysis to find cycles (Tarjan 1972).Note that many programs
create cyclic structures of varying sizes during execution,
but we are interested only in the cycles that still exist when
the objects die.

3.7 Analysis implementation

Our heap analysis is implemented in two stages.The first
stage is a trace processor written in C++ that reads the raw
Elephant Tracks traces and simulates the events in order,
allowing us to reconstruct the intermediate states of the
program.The trace processor models the objects in the heap
and the pointers between them,and keeps track of when
they become garbage.In addition, it uses the method entry
and exit log entries to keep track of the calling context and
label each heap event with this information.When the trace
processor finds a group of objects with the same death time,
it inspects the recent history and calling context information
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to identify the cause.Since it has a full model of the heap, it
can determine which objects are in connected groups.

The second stage of the analysis is written in Python.This
part of the analysis does further aggregation and computa-
tion on the data generated from the C++ simulator.This part
of the analysis computes the following: (i) The top allocation-
death context pairs; (ii) overall statistics of the precise action
that caused objects to die; (iii) garbage cluster membership.

The analysis was performed on a 64-core, 2.5 GHz Opteron
Processor 6380 system with 126 GB of memory, running Red
Hat Enterprise Linux Server release 6.8.While we had mul-
tiple cores available, the simulator currently runs in a single
thread only.The analysis in its current form needs a lot of
memory to analyze the Elephant Tracks trace.Thus the sim-
ulator is unable to finish running on the larger benchmarks:
eclipse , jython , h2, andsunflow . We plan to improve the
performance of the simulator so that we are able to success-
fully analyze these larger benchmarks.

4 Cluster-aware Garbage Collection
Our proposed GC algorithm relies on the intuition that pro-
gram behavior is clearly related to program structure.Since
objects die in clusters, we propose that garbage clusters can
be the basic unit of garbage collection.While the granularity
might be too fine for some applications, the cluster grouping
surprisingly has good results for some applications as we
will show in the results.

4.1 CAGC simulator design

The CAGC simulator is based on an idealized mark-sweep
scheme.To simplify the experiment,the collector is im-
plemented as non-generational.Using the same Elephant
Tracks traces used in the Garbology analysis and a given
heap size, the simulator models the allocation and collection
of all objects in the trace.

The heap is separated into two regions: (i) a regular region;
and (ii) the special deferred region.The CAGC simulator then
takes a predetermined number of garbage clusters from the
previous analysis to treat as a designated group of objects.
This special group identifies which objects will be allocated
into the deferred region.All other objects are allocated into
the regular region.

Simulated garbage collection is triggered when the sim-
ulator heap cannot fulfill an allocation request.The CAG
collector can perform two kinds of collections.First, the col-
lector will attempt a regular collection which targets only the
regular region.If enough free memory is reclaimed to satisfy
the request, the collector ends the collection phase.If not,
a full collection involving the deferred region is performed.
Again, if enough free memory is reclaimed, the collector ends
the collection and transfers control back to the application.
If not enough memory is available, an out of memory error is
generated because the heap size configuration cannot satisfy
the program requirements.

The Cluster Aware GC (CAGC) simulator is a trace pro-
cessor written in C++,which shares some code with the
Garbology analysis trace processor.The CAGC simulator
can be configured with the following parameters:

• The maximum heap size.
• The garbage clusters to allocate to the deferred region.

These clusters are selected from the initial Garbology
analysis.

• The full program Elephant Tracks (ET) trace.

The reliance on the garbage cluster information produced
by the Garbology analysis is precisely what makes this im-
plementation of the CAG collector oracular.We recognize
that there may be no easy way to determine garbage cluster
membership to the precision that we are able to in the Gar-
bology analysis, since the analysis needs a complete ET trace.
That is, it is highly impractical to want to run an application
to the end, before actually running it using the garbage clus-
ter information. We do believe however that this oracular
simulation should lead to future work where garbage cluster
membership may be determined with high probability.

Since the ET trace contains all allocation and reference up-
date events, the simulator can precisely model the program
heap. Program execution is modeled by maintaining the
heap according to the allocation policies in the CAGC design.
If an object is part of the special set of garbage clusters, then
that object is allocated in the deferred region.Otherwise,
the object is allocated in the regular region.

The ET trace also contains all reference updates, which
allows the simulator to model precise object connectivity by
maintaining information on all reference edges.Note that if
we ignore the edge’s direction, there are 3 ways an edge can
be located with respect to the regions.An edge’s endpoints
can be one of three possible configurations:

• Both source and target are in the regular region.
• Both source and target are in the deferred region.
• The source and target are different regions. While this

may further be broken down into two separate cases,
we ignore the edge direction because the direction
adds nothing to our analysis.

Such a classification enables us to calculate GC costs for the
CAGC algorithm.

We use the mark/cons ratio as our measure of GC cost.
Mark is a measure of GC activity which includes tracing
and copying. We do not include other effects like cache
misses that can also affect GC costs in order to simplify the
experiment. For our purposes we use number of objects traced
as a simple proxy for the mark part of the ratio.Cons,on
the other hand,is a measure of the application mutation
activity. We use the number of bytes allocated to represent
the cons part of the ratio.We use this simplified mark/cons
ratio to measure the performance characteristics of our CAG
collector.
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Since the Elephant Tracks trace allows the simulator to
determine precisely when an object dies, the simulator is able
to correctly simulate all garbage collection activities.When
a garbage collection is invoked, the simulator keeps track of
all marking costs.Thus we can compare the performance of
the CAG collector to a naive mark-sweep collector.

4.2 Experimental methodology

How big should the simulated heap be? This is an impor-
tant experimental parameter since heap size will affect the
collector performance.Blackburn et al showed that you can
decrease the number garbage collections for any program if
you give it a large enough heap (Blackburn et al. 2004).We
take a range of possible heap sizes to study the relationship
between heap size and CAGC performance.

First, we determine the smallest heap size that we will run
the simulation on.For this, we use the program’s maximum
live size.The live size of a program is the size of the part
of the heap that’s currently reachable from the program
roots at a given time.The maximum live size can then be
determined over a complete program run.In our simplified
simulator world, we take a program’s maximum live size as
the starting point since this would be the minimum heap
size that a program needs to run.1

We then generate the sequence of heap sizes using some
percentage of the maximum live size.This percentage can
range from 25% to 100%.For the maximum heap size,we
simply run on the next available heap size until no garbage
collections are incurred for that heap size.While achieving
zero collections isn’t necessary, this ensures that our data
points are complete.Each heap size data point generates
an associated mark/cons ratio that we can compare to the
mark/cons ratio of a straightforward marking collector.

5 Results
In this section we present results from our analysis of GC
traces, and we show the potential of using this information
in a new kind of garbage collector.

5.1 Benchmarks

For our experiments we analyze two common benchmark
suites, the SPECjvm98 (spe 1998) and DaCapo (Blackburn
et al. 2006) benchmarks, as well as SPECjbb (spe 2005).The
benchmark programs were run on the J9 JVM with the Ele-
phant Tracks (Ricci et al. 2013) tracing tool enabled.

5.2 Overall demographics by death cause

In this section we present empirical results of our Garbol-
ogy analysis, including some detailed analysis of individual
benchmarks as well as overall patterns across all of them.
In general, we find that garbage clusters are typically small

1We actually take the maximum live size and round it up to the nearest4K.

Figure 1. Objects’ cause of death classified in percentage
of memory size.We show objects that died by stack action
but were previously pointed at by the heap as a separate
category.

– mostly 1 to 10 objects – and that their death is largely
predictable.

Figure 1 shows all of the benchmarks ordered by maximum
live size in descending order.Here we show the general
classification of death cause as a percentage of memory size
(see Section 3.3 for a detailed description of the categories).
We include immortal objects in a separate category.Notice
that all benchmarks have a significant percentage of objects
dying by stack (i.e., their last reference is a stack reference).
Some benchmarks (specjbb, xalan , andluindex to name a
few), have a relatively higher proportion of objects that die
by heap (i.e., they become unreachable when a heap pointer
moves).All in all, though, this graph shows a surprisingly
high proportion of die by stack objects.

As mentioned in Section 3.3, we often find that die by stack
objects have been recently removed from a heap-based data
structure prior to becoming garbage.To account for this
behavior, we reanalyzed the data, looking for cases where
objects die immediately after losing a heap reference.We
reclassified these objects as die by stack after heap.The re-
sulting graph is shown in figure 1, which fits more closely
with our intuition about how these programs work.

This result also hints at a more important pattern of be-
havior: objects often die as a result of a specific, intentional
action by the program (e.g., removal from a data structure)
that is strongly predictive.This kind of information could be
used in a number of ways to improve memory management.
For GC algorithms that rely on estimating tenancy,such
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Garbage cluster sizes
benchmark 1 2 3 4 5 6 7 8 9 10 11 12 13+
201 compress 2,983 1,205 156 4 2 1 0 0 0 0 0 0 0
202 jess 3,733,934 2,091,909 3,420 99 18 0 2 0 0 0 0 0 0
205 raytrace 5,839,977 235,636 15,797 3,112 68 1 2 0 0 0 0 0 0
209 db 2,907,822 112,389 171 5 15,546 1 2 0 0 0 0 0 0
213 javac 2,859,266 898,705 157,208 66,884 13,922 6,591 3,101 1,121 393 230 187 124 3,276
227 mtrt 6,000,607 268,224 25,106 4,270 96 2 2 0 0 0 0 0 0
228 jack 3,632,399 432,625 124,296 2,166 628 1,374 35 16 672 16 16 0 0

avrora 1,397,610 161,820 105,905 220 29 12 11 7 0 1 0 0 0
batik 730,811 74,379 28,456 7,612 3,550 134 38 165 1 6 0 1 4
fop 1,433,033 573,648 87,696 7,944 3,569 461 187 97 18 25 0 1 5
luindex 267,693 58,206 8,939 85 33 20 9 1 0 1 0 1 0
lusearch 6,905,703 1,516,410 677,400 289 131,156 53,267 6 6 2 2 0 1 3
specjbb 3,785,434 568,349 6,951 16 1 0 0 0 0 0 0 0 1
tomcat 8,660,718 925,172 483,161 11,280 2,372 7,778 154 83 235 22 1 21 4
xalan 5,737,589 399,461 60,187 16,352 4,220 63 9 3 0 4 0 1 0

Table 1. Number of clusters of each size (columns) for each benchmark (rows).With the exception ofjavac most programs
dispose of objects in small groups at any given time.

as the garbage-first collector, the program could be instru-
mented with hints to let the collector know that a group of
objects is likely to be garbage.

5.3 Most clusters are small

In table 1 we show the distributions of garbage cluster sizes
across all the benchmarks.For each benchmark, we count
the number of clusters that consist of one object,of two
objects, etc., up to 12 object clusters.Any clusters with 13 or
more objects are lumped into a single category.One of the
most notable patterns we found is that garbage clusters are
mostly small – almost all are less than 10 objects, and the
vast majority have four or fewer.

The213 javac benchmark is a notable exception.The
javac benchmark appears to create large structures con-
sisting of 700 to 1000 objects that represent types and in-
structions.These structures disappear all at once when the
information is written to the compiled class file.

The prevalence of small garbage clusters suggests that for
most Java programs,key objects of any significant magni-
tude, do not exist.Instead, most programs dispose of large
data structures in a piecemeal fashion, dismantling and pro-
cessing them bit by bit.This style of disposal has certain
advantages, though.For one, it keeps memory drag fairly
low (that is, programs do not have significant amounts of
reachable, but dead data in memory).It also reinforces the
observation above that object disposal is an intentional act
by the program, even though there is no explicit delete oper-
ation.

5.4 The number of death sites is small

Like many heap profiling tools before ours, we can label clus-
ters according to where they are allocated. More importantly,
though, we can also identify them according to where in the
program they become garbage.One of the unique features
of our analysis is that we can compute the exact calling con-
texts for both the allocation and the death of every object.
Unfortunately, this information is much too detailed, and it
is impossible to present in a compact and useful way. Instead,
we look only at the method containing the allocation and
death sites, with one slight twist.In many cases, objects are
created and die inside Java library methods.For example,
if a program calls clear() on a container, all of the elements
appear to die inside the container’s clear() method.The real
question, however, is where clear() was called.So, for this
analysis, when computing the allocation and death methods,
we walk up the call stack to find the nearest non-library
method.

Table 2 shows the top site, by volume, where clusters of
objects become garbage.One notable feature of these results
is that for most programs, the top death sites account for a
large fraction of all allocated memory.In fact, we found that
90% or more of all memory dies at one of the top 20 death
sites, depending on the program.A few of the benchmarks,
such asbatik andtomcat have more death sites accounting
for 90% or more of the total garbage as shown in table 3.

We can also aggregate clusters by their allocation site,
and look at how many death sites they potentially reach.
Table 4 shows these results. In some cases, clusters of objects
allocated at one site only die at a smallnumber of sites,
suggesting that the fate of these objects is highly predictable.
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Benchmark Site % of total
allocation

Garbage/
max livesize

ratio

number of
allocation

sites
201 compress spec/benchmarks/ 201 compress/Input Buffer.readbytes 85.64 12.68 2
202 jess spec/benchmarks/ 202 jess/jess/Node2.runTests 56.60 109.57 9
205 raytrace spec/benchmarks/ 205 raytrace/Point.GetZ 58.05 20.19 18
209 db spec/benchmarks/ 209 db/Entry.equals 66.60 7.20 4
213 javac spec/benchmarks/ 213 javac/Type.tClass 17.40 3.47 79
227 mtrt spec/benchmarks/ 205 raytrace/Point.GetZ 39.96 7.75 26
228 jack spec/benchmarks/ 228 jack/RunTimeNfaState.Move 46.50 71.68 20

avrora avrora/sim/radio/Medium$Receiver.earliestNewTransmission 29.80 10.72 3
batik org/apache/batik/bridge/BridgeContext.finalize 13.77 0.75 222
fop org/apache/xmlgraphics/ps/PSGenerator.formatDouble 24.49 1.25 118
luindex …/lucene/analysis/standard/StandardTokenizerImpl.yyreset 23.78 1.76 1
lusearch …/lucene/queryParser/QueryParserTokenManager.ReInit 40.29 130.66 3
specjbb spec/jbb/StockLevelTransaction.process 22.56 2.47 2
tomcat org/dacapo/tomcat/Page.stringDigest 23.69 15.64 29
xalan org/apache/xalan/transformer/TransformerImpl.transform 20.40 32.20 49

Table 2. Each benchmark’s top death site by total garbage measured in bytes.

Benchmark Site % of total
allocation

Garbage/
max livesize

ratio

number of
death sites

201 compress spec/benchmarks/ 201 compress/Compress.spec select action 88.46 13.10 10
202 jess spec/benchmarks/ 202 jess/jess/Node2.appendToken 59.01 114.25 40
205 raytrace spec/benchmarks/ 205 raytrace/OctNode.Intersect 32.89 11.44 4
209 db spec/benchmarks/ 209 db/Entry.equals 66.01 7.14 1
213 javac spec/benchmarks/ 213 javac/Scanner.bufferString 15.18 3.03 13
227 mtrt spec/benchmarks/ 205 raytrace/OctNode.Intersect 31.08 6.03 103
228 jack spec/benchmarks/ 228 jack/RunTimeNfaState.Move 46.50 71.68 3

avrora avrora/sim/radio/Medium$Receiver.earliestNewTransmission 29.07 10.40 1
batik org/dacapo/harness/DacapoClassLoader.loadClass 11.47 0.63 30
fop org/apache/xmlgraphics/ps/PSGenerator.formatDouble 18.99 0.97 22
luindex org/apache/lucene/demo/FileDocument.Document 25.94 1.92 7
lusearch org/apache/lucene/queryParser/QueryParser.parse 26.46 85.81 10
specjbb spec/jbb/StockLevelTransaction.process 22.56 2.47 3
tomcat org/dacapo/tomcat/Page.stringDigest 21.04 13.89 6
xalan org/apache/xpath/VariableStack.reset 21.20 33.46 35

Table 4. Each benchmark’s top allocation site by total allocated.

For example, objects fromspecjbb’s top allocation site die
in only three sites.

Using allocation sites as predictors is nothing new, as it
was studied extensively by Jones and Ryder (Jones and Ryder
2008) where they related allocation sites to object lifetimes.
On the other hand,we have shown how some allocation
sites are highly predictable with respect to the corresponding
death site.Note that while this isn’t true of all allocation
sites,the existence of a few highly predictable allocation-
death site pairs means that there is predictable behavior we
can exploit in a tuned garbage collection implementation.

5.5 Flow of memory

We aggregate the information for all clusters with the same
pair of allocation and death sites,which describe a kind
of memory flow from a source (allocation) to a sink (death
site).We characterize a memory flow by the total amount
of memory it accounts for and the number of objects.We
also show the range of object ages in each flow.Suppose a
garbage clusterGdies at a given site pair.Using allocation
time as the basis, our analysis takes the oldest member of
the cluster and uses this for the minimum age and maximum
age attribute of the site pair.The minimum age for a site pair
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Number of sites

Benchmark 90% 95%

201 compress 3 5
202 jess 6 7
205 raytrace 9 14
209 db 3 4
213 javac 37 56
227 mtrt 19 29
228 jack 13 19

avrora 9 14
batik 63 111
fop 45 77
luindex 27 43
lusearch 3 9
specjbb 15 20
tomcat 81 148
xalan 44 90

Table 3. Number of death sites that account for at least 90%
to 95% of total garbage.

then, is the minimum among all the oldest members of every
garbage cluster belonging to the allocation-death site pair.
The maximum age is calculated in the same way.

Table 7 shows allthe benchmarks using only the top
allocation-death site pair by total size (shown in MB). We
can see that a large number of garbage clusters follow one
of only a handful of flows through the program.For most
of the programs, the top pair accounts for 10% or more of
all the memory allocated by the program.Notice that in a
number of cases,the allocation site and the death site are
the same method.These cases indicate structures that are
essentially local to those methods.Also notice that in many
cases the objects involved have a wide range of ages in al-
location time, even though their lifetimes are highly stable
from the standpoint of memory flow.This result highlights
the problem with using allocation time as metric for study-
ing object demographics: even thought strong patterns exist,
they are not readily apparent from the object ages.

Taken together, these results suggest that we should focus
on developing garbage collection algorithms that can take
advantage of knowing:

• Which objects form garbage clusters.That is, which
objects tend to die together.

• Where in the program objects tend to die.

5.6 Cyclic garbage

Most of our benchmarks create cycles of objects,some of
which die together as cycles.Somewhat surprisingly, how-
ever, we have found that by the time these cycles become
garbage they are typically very small – only one to four
objects.Table 6 shows a summary of this data aggregated

across all of the benchmarks.The way we group cycles for
this table is by the types that make up the cycle – we refer to
this set of types as the type signature of the cycle.Each row
in the table represents a particular combination of object
types.The reason we aggregate across benchmarks is that
they have many kinds of cycles in common; typically, cycles
created as part of the standard library data structures, such
as linked lists and hash tables.Another finding is that many
cycles consist of nested types within a single class.That is,
the cycle is entirely “contained” in the class that builds it.

It is important to note that only the strongly connected
components themselves are small.For most cycles, there are
many objects reachable from the cycle that are not part of
the strongly connected component.In other words, failing
to collect these small cycles would leave significant garbage
in memory.

We are planning future work that can exploit the pre-
dictability of the type signature, along with the small number
of objects in a cycle.We envision a reference counting algo-
rithm that reduces the need for the backup tracing collector
by preemptively breaking up the cyclic garbage.

5.7 Cluster aware garbage collection performance

We ran the CAGC simulator on most of the benchmark suites
listed in section 5.1.As mentioned in section 3.7, we were
not able to finish the Garbology analysis for the following
larger benchmarks: eclipse, jython, h2, and sunflow.

From the runs, we were able to determine the performance
of the CAG collector as compared to a straightforward mark-
ing collector using the mark/cons ratio.A few benchmarks
showed significant performance improvements at the lower
end of the heap size range.The most marked improvements
were for theluindex , lusearch , and 205 raytrace bench-
marks,as shown in table 5.The CAGC mark cost column
shows how the CAG collector improves the mark/cons ratio.

All other benchmarks did not show any significant im-
provements. There are two possibilities here.First, the
garbage clusters chosen may not have significantly aided the
CAG collector.If the objects that end up in the region are
short-lived, the generational effect would then overwhelm
the cluster effect.A second possible reason is that the pro-
gram may not be amenable to the CAGC algorithm.We
expect that there will be a class of programs that CAG collec-
tion will work well with. And we totally expect that a large
class of programs would not.We leave it up to future work
on determining the nature of such programs.

On the other hand, the CAG collector performed the best
on thelusearch benchmark which has the lowest heap size
among the benchmarks presented in table 5.In spite of the
help from the oracle, the CAG collector was not able to sig-
nificantly improve the performance of the benchmarks with
larger heaps.Notwithstanding this early result, we believe
that our simulated results indicate the future directions for
improving and applying the CAG collector.
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Benchmark mark/cons ratio
CAGC

mark/cons ratio
Normal CAGC mark cost Heap size(MB) Number of

collections
luindex 0.12 0.14 89.9% 6.25 76
luindex 0.0268 0.0298 89.9% 7.82 16
lusearch 0.17 0.38 83.2% 4.13 31,988
lusearch 0.44 0.47 92.4% 8.26 5,034
lusearch 0.48 0.50 96.2% 12.39 2,762
205 raytrace 10.27 12.44 78.9% 7.43 121,025
205 raytrace 4.06 4.11 98.6% 14.86 33

Table 5. We present here the CAGC simulator performance numbers for select benchmarks.All other benchmarks are not
shown here if the performance gain is less than 1%.A benchmark may be shown with multiple heap sizes.Cluster aware
garbage collection (CAGC) refers to our idealized GC algorithm using garbage cluster knowledge.Mark costs are relative to a
simple mark-sweep collector.

Number of objects

Types in the cycle Number of
cycles Minimum Maximum Median

LinkedList$Link 106,917 1 2 2
ElemContext 41,898 1 1 1
ConcurrentLinkedQueue$Node 9,230 1 1 1
HashMap, HashMap$1 5,979 2 2 2
NativeMethodAccessorImpl, DelegatingMethodAccessorImpl 3,907 2 2 2
LinkedBlockingQueue$Node 3,003 1 1 1
HashSet, HashMap, HashMap$Entry, HashMap$Entry 2,173 4 4 4
PythonTree, ArrayList, Object 1,988 4 4 4
DTMDefaultBaseTraversers$AncestorTraverser, SAX2DTM, DTMAxisTraverser 1,300 3 3 3
HashMap, HashMap$2 704 2 2 2
FileChannelImpl, AbstractInterruptibleChannel$1 132 2 2 2
NativeConstructorAccessorImpl, DelegatingConstructorAccessorImpl 131 2 2 2
SAX2DTM, DTMDefaultBaseTraversers$ChildTraverser, DTMAxisTraverser 102 3 3 3
Cleaner 86 1 1 1
CSSLexicalUnit$SimpleLexicalUnit, CSSLexicalUnit$IntegerLexicalUnit 72 2 2 2
TypeVariableBinding, MethodBinding, TypeVariableBinding 71 3 3 3
ConcurrentHashMap, ConcurrentHashMap$EntrySet 70 2 2 2
SocketChannelImpl, AbstractInterruptibleChannel$1 65 2 2 2
XMLNSDocumentScannerImpl, XMLDocumentScannerImpl$TrailingMiscDispatcher 62 2 2 2
BufferUnderflowException 40 1 1 1
Label, Frame 24 2 2 2
ConcurrentHashMap, ConcurrentHashMap$KeySet 13 2 2 2

Table 6. Summary of all garbage cycles across all benchmarks.Notice that by the time cycles become garbage they are
typically small – only one to four objects.Large cyclic garbage is rare in our benchmark suite.

First, we can target the CAGC algorithm at programs that
run in limited memory situations.Modern Java VMs will
throw an error if too much time is spent doing collections.2

We propose that there’s a need for GC algorithm improve-
ments in low memory situations that Garbology inspired
algorithms plan to fill.

2From 3.2 Understand the OutOfMemoryError Exception in (jav 2016)

Secondly, we note that the benchmarks suites used by the
memory management community have short runtimes.We
ran a casual test of the DaCapo benchmarks using OpenJDK
1.7 on an AMD Opteron 6380 at 2.5 GHz, and most bench-
marks ran in less than 10 seconds.Theeclipse benchmark
had the longest runtime at roughly 45 seconds.We believe
that the standard benchmark suites used by the research
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Benchmark Allocation site Death site Size
(MB) % Min

age(kB)
Max

age(kB)
fop PSGenerator.formatDouble PSGenerator.formatDouble 26.32 13% 0.03 17,594
specjbb StockLevelTransaction.process StockLevelTransaction.process 77.65 22% 0.00 46
batik DacapoClassLoader.loadClass DacapoClassLoader.loadClass 14.07 10% 0.00 49,040
213 javac Type.tClass Type.tClass 44.20 13% 0.00 <1
209 db Database.set index Database.remove 33.93 20% 15.17 1,061
227 mtrt PolyTypeObj.Intersect Point.GetZ 38.84 14% 0.00 <1

tomcat Page.stringDigest Page.stringDigest 190.11 20% 0.00 3,077
205 raytrace PolyTypeObj.Intersect Point.GetZ 60.59 23% 0.00 <1
201 compress Decompressor.<init> Decompressor.decompress 45.34 42% 71.91 83

xalan VariableStack.reset VariableStack.reset 105.53 9% 319.37 27,840
luindex FileDocument.Document StandardTokenizerImpl.yyreset 10.14 21% 20.03 799
lusearch QueryParser.parse QueryParserTokenManager.ReInit 354.20 26% 0.00 4,205
avrora Medium$Receiver Medium$Receiver

.earliestNewTransmission .earliestNewTransmission 31.91 28% 0.00 1
202 jess Node2.appendToken Node2.runTests 280.70 56% 0.05 50,659
228 jack RunTimeNfaState.Move RunTimeNfaState.Move 122.18 46% 0.00 <1

Table 7. Top allocation-death context pair (by total size) for each benchmark.

community do not reflect an important class of server pro-
grams that are designed to run indefinitely.This is how the
lusearch benchmark, which performs a search over a text
corpus,represents the promise of algorithms that exploit
garbage clusters.A real world text search program would
be expected to do multiple searches over a longer period of
time, whereas thelusearch benchmark runs in less than 2
seconds.

Additionally, we note that the CAGC simulator only used
a single region for simplicity.Given that any program will
have numerous garbage clusters, any practical design of the
CAGC algorithm should use multiple regions.

5.8 Practical CAG collectors

The improvements were achieved in large part because we
used oracular foreknowledge from the Garbology analysis,
which is clearly impractical. We believe that Garbology
can help develop practical heuristics that can approximate
garbage cluster membership.Previously, information about
the objects’allocation site and type have been used suc-
cessfully as predictors for GC algorithms (Blackburn et al.
2001; Jones and Ryder 2008). Consequently, we present some
possible avenues for future work on practical heuristics for
identifying garbage clusters.

In our Garbology demographics of the DaCapo and SpecJVM
benchmark suites,we show that a significant number ob-
jects die because of stack action.We believe that future
algorithms should exploit this fact.Clearly, stack action is
directly correlated to program structure, whether through
loops or function calls.By focusing on garbage clusters that
die because of stack action,we need to identify the static

points in the program that cause garbage clusters to die.Ta-
ble 2 shows that a small number of death sites is responsible
for a non-trivial number of objects.We are currently study-
ing the possibility of exploiting these death sites for the CAG
algorithm.

6 Conclusion and future work
Exploiting predictable program behavior has been effective
in the design of garbage collection algorithms.Developing
new and creative ways to understand program heap behavior
is therefore essential for the progress of these algorithms.
We have shown how the study of garbage clusters shifts the
emphasis from allocation to disposal.

We strongly believe that the following key findings in
this paper will form the basis for new garbage collection
algorithms:

• Most garbage clusters are small,thus reducing the
significance of key objects.

• Most garbage clusters die in relatively few methods.
• Memory flows are highly predictable.That is, most

of the objects created at a given allocation site die at
one of only two or three program points (in many
cases, only one).

• Most cyclic garbage clusters are composed of a small
number of types and objects.

• Most objects and garbage clusters die by stack action.
The majority of these objects were reachable from the
heap before dying.

We believe that collectors that exploit these findings should
be able to achieve performance gains over more traditional
collectors that only exploit the allocation side of the pro-
gram.The oracular CAG collector is such an example, where
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CAG collection showed improvements in low memory sit-
uations for some benchmarks.Through further refinement
of the design, we hope to achieve a practical design that can
be implemented in a real JVM. Another avenue for future
work involves improving reference counting algorithms by
exploiting the cyclic tendencies of programs.
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