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Abstract collectors are widely deployed in practice, and have given

In this paper we present a study of how Java programs dis- rise to a large family of related collection schemesuch
pose of objectsUnlike prior work on object demographics @S age-based garbage collection (Stefadetial 1999) and
and lifetime patterns, our goal is to precisely characterize the Pretenuring (Blackburn et al2001),as well as the use of
actions that cause objects to become unreachableuse  SPecialized memory spaces for large objects and immortal
a recently-developed tracing tootalled Elephant Tracks, ©bjects.A nagging problemhowever,is how to improve
which can localize object deaths within a specific method Performance beyond generationalollectors,particularly

and tell us the proximal caus@ur analysis centers around for programs with non-generational behavior (e.g., software
garbage clustergroups of connected objects that become caches) or with very large heaps that defy simple lifetime
unreachable at precisely the same time due to a single pro-classifications.

gram action. We classify these clusters using traditional An exciting trend that has been gaining_ momentum iS_
features, such as size, allocation site, and lifetime, and usingto develop collectors that support application-specific poli-
new ones, such as death site and cause of death. cies and mechanismBecent promising examples include

We present results for a set of standard benchmarks in- cluster collection (Cutler and Morris 2015data structure
cluding SPECJVMI&PECjbband DaCapo.We identify aware garbage collection (Cohen and Petrank 201&n)d
several patterns that could inform the design of new collec- connectivity-based garbage collection (Hirzel e24103)In
tors or tuning of existing systemsMost garbage clusters order to be effectivehowever,these new techniques rely
are small,suggesting that these programs almost always ©N detailed information about how a program creates, con-
dispose of large structures in a piecemeal fashioraddi- nects,and ultimately disposes of objectsPrior work on
tion, most clusters die in one of only a dozen or so places computing this information includes a number of empirical
in the program. Furthermore these death sites are much ~ Studies of object demographics, heap structure, and GC be-
more stable and predictable than object lifetimeSinally ~ havior(Blackburn et al2004; Dieckmann anddizle 1999;
we show that this information could inform a new kind of ~Hirzel et al. 2002; Jones and Ryder 2008).
garbage collection algorithmyhich we call cluster-aware Notably absent from these studies, however, is an analysis

garbage collection, and we evaluate its potential using a GCOf exactly how objects become garbage: What program events
simulator. create garbage and where does that happen in the program?

; ) ) Part of the reason is that until recently the tools for analyzing
ccs C}oncep ts'§,°ft"°“"e Cfns its engineering —~ Garbage heap memory behavior (GC tracing tools) were not precise
collection; Dynamic analpsis; enough to discover this informatiorT.he original work on

Keywords Memory management, Dynamic analysis, Java the Merlin tracing algorithm (Hertz et aR006), for example,
uses a fairly coarse notion of time, called allocation time, that
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DOI: 10.1145/3133850.3133854 In this paper we use the Elephant Tracks GC tracing tool
to perform a detailed study of how and where objects become

1 Introduction garbage (Ricci et £013)J_Elephant Tracks measures time in

i ) . method calls/returns, which is both more precise and more
Many of the dramatic performance improvements in garbage informative than allocation timelt allows us to determine
collection over the last 20 or 30 years have been driven byihe exact location in the program where each object become
observations about common patterns of heap memory use. arbagewhich in turn allows us to identify the program
The best known, and perhaps most successful is generationagction that caused it.For examplewe can compute how
collection, which exploits the weak generational hypothesis any objects die as a result of losing a stack reference (versus
that most objects die young (Ungar 1984)Generational  |oging a heap referencelind we can determine in which
Onward!’17, Vancouver, BC, Canada methods these events occur.
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Knowing both where objects are allocated and where they Finally,we discuss future directions for both the analysis

die gives us the full dynamic extent of their lifetime in the
program.Program scope is qualitatively different from any

measurement of lifetime. In particular, it is much less arbi-

trary: it is defined only by the program actions that directly

impact an object. We find, for example, that scopes are stable

and predictableln most cases, objects allocated at a partic-
ular program point only die in a small number of possible
places; often only one or twd hese objects can nonetheless
have wildly different lifetimes because different code paths
—in many cases irrelevant to the objects in question — are
executed between their allocation and death.

and garbage collector design.

2 Background and related work

Our study builds on prior work in several ways. First, we con-
tinue a line of research that aims to characterize the memory
workloads of object-oriented programs and provide infor-
mation that can assist in the further memory management
researchSecond, we use a dynamic analysis tool to collect
traces of the memory behavior of progranise tool we use

Our study centers around garbage clusters: groups of conbuilds on existing techniques and algorithms, but provides a
nected objects that become unreachable together as a result'eW level of precisionThirdly, we develop a novel garbage

of a single program actiorf-or each of our benchmark pro-
grams,we analyze garbage clusters in a variety of ways,
including size scopeconnectivity,and cause of deathn
addition, we compute memory flows: collections of clusters
with same dynamic extentWe present this data for a set

collection algorithm that exploits the knowledge gained in
the dynamic analysisWe evaluate the GC algorithm in a
simulator.

of well-known Java benchmarks: SPECJVM98, DaCapo, and.1  Object demographics

SPECjbbSome of our key findings include:
* Most garbage clusters are smaNith the exception

Many garbage collection research papers use object demo-
graphics data to motivate the design of the collector. Notable

of one benchmark, clusters are rarely larger than 10 examples include the original work on generational scaveng-
objects, suggesting that Hayes’s notion of a key ob-ing (Ungar 1984) and work on pretenuring (Blackburn et al
Ject does not exist at any significant scale in these  2001)For the most part these papers exploit coarse-grained

programs. o . patterns in the lifetimes of objects — for example, distinguish-
* Most clusters die in one of only 10 to 20 different  ing long-lived from short-lived objects — and precision is not
methods. crucial. In some cases they use precise information about the

* Memory flows are highly predictabldhat is, most

allocation sites of objects, since this information is readily

of the objects created at a given allocation site die at gyailable.Since object death information has not been easy

one of only two or three program points (in many

to compute few collectors have been designed around this

cases, only one). This observation holds even when jnformation.

the objects vary wildly in their lifetimes.

Connectivity-based garbage collection is a substantially

+ Some clusters contain cyclic garbage (one of the majorifferent approach that uses static analysis to organize ob-

challenges for reference counting collectors), but the
vast majority of these cycles are small (one to four
objects) and are entirely contained within a single

jects into groups with similar lifetimes, allowing the runtime
system to focus on groups most likely to be garbage (Hirzel
et al. 2003).This work was supported by a study showing

class (i.e., all objects are instances of one class and/orthat connected objects tend to die together (Hirzel. 2808R).

any nested classes it contains).
We believe that detailed information about patterns of

The specific analysis computed the probability that two ob-
jects have the same lifetime if they are connected by some

object disposal will enable a new class of application-specific chain of references in the heap.

collection algorithms that exploit these patteridle present

Several well-known papers have been devoted entirely

one possible algorithm, called Cluster Aware Garbage Colledo the empirical study of object demographicd'’he most
tion (CAGC), based on an incremental marking scheme that recent study by Jones and Ryder provides an in-depth anal-
exploits our knowledge of garbage clustei®e implement ysis of object lifetimes. It presents age data for different
our oracular algorithm in a simulator to show its potential.  categories of objects — application vs library vs virtual ma-
We believe that much more is possible. chine objects — across different input sizes (Jones and Ryder
The rest of this paper is organized as followsirst, we 2008).1t also shows the correlation between lifetime and
review prior work in object demographics and garbage col- allocation context (allocation site in a calling contexf)s
lection tracing tools.Secondwe explain how we analyze  with prior studies, however, lifetimes are characterized in
traces to produce the data for our studyext, we present  a fairly coarse way, and the underlying data is only precise
results for the individual benchmarks as well as aggregated for object allocation and heap update everfBur goal is to
results.We then present our prototype CAG collector simu- complement these studies with precise information about
lator and the results of running the simulator on our data. object deaths.
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2.2 Collecting 6C traces object deaths can be placed among the other events (which

Early work on analyzing programs for memory management are simply recorded in the order they occur).

involved running the garbage collector more frequently in Garbage collection researchers have traditionally mea-
order to compute object death times more precisely (Ste- sured time in terms of bytes allocated, since it places events
fanovic 1999)This technique is extremely limited, though, reélative to the consumption of memory (Jones et2d11).
because each collection is so expensive. The Merlin algorithny his notion of time, called allocation time, is useful for study-
provided a breakthrough in performance by allowing pre- ing GC algorithms because it produces a trace that is equiv-
cise death times to be computed during regularly-scheduled alent to running the collector at every allocation — the most
garbage collections (Hertz et 2D06)The key idea in this frequent collection schedule that would make senskhe
algorithm is to timestamp objects when they are used, problem with allocation time is that it is too coarse to use for
that when they are found to be garbage by the collector, studying other kinds of events-or example, an object that
the last timestamp indicates approximately when they were Pecomes garbage when a method returns will appear to have
last reachableThe challenge is figuring out when to times- died at the next allocation site, even if it is in a completely
tamp objects reachable from the stack (local variabl€sg different part of the code.

strategy in the original paper is to timestamp everything on Elephant Tracks, on the other hand, ticks the trace clock
the stack at each allocation site, which provides a balance @t €very method entry and exithis notion of time, called

that since time is tied to allocation sites, it is not possible to Method boundaries are encountered 10-20 times more fre-

precisely locate events in the program structure. quently than allocationsMore importantly, however, each
discrete time corresponds to a specific dynamic method in-
3 Trace collection and Cmaf?g,is vocation (or part of a method)his level of precision allows

us to identify the exact program event that causes an object

In this section, we first describe the raw trace information .
) . ) . (or set of objects) to become unreachablgthermore, by
provided by the Elephant Tracks tracing tool; then we discuss . . .
matching entries and exits, we can reconstruct the full call-

.hOW we analyze this information systematically to identify ing context of any eventLater in this section we describe
interesting memory use patterns. o L
an example of how this information is used.

3.1 Trace entries

An Elephant Tracks trace consists of a sequence of heap- 3.3 Cause of Seath

related events recorded during execution of a Java program; . . o _ _
Each kind of event includes information about the objects The first step in our garbology analysis is to classify objects
involved: according to their cause of deatAt the most fundamental

level, objects can only die in two waysby losing a stack
reference, or by losing a heap referenéée refer to these
categories as dying by stack and dying by h¥¥ép.can com-
pute this information easily from an Elephant Tracks trace,
but it is more informative to break down these categories

+ An object allocation event includes the object type
and object size, and number of elements in the case
of arrays.

« A pointer update event includes the source and tar-
get objects, the field or array element being updated

d the old t ¢ (if th ’ based on circumstances.
and the oid targe (if there was one)l. . Many objects die when a program terminates, and these
« Aroot event indicates when an object reference is .

; . ) immortal” objects do not fall cleanly into either of our cat-
used (a witness to the object being reachable from egories.While this information might be useful for some
the stack). : o . kinds of collectors (Blackburn et 22001)we exclude im-

* A death event |dent|f_|es wh_en an object becomes mortal objects from our analysisThe focus of this study
unreachable (the equlest point it could be collected). is on understanding how programs explicitly dispose of ob-
* Method entry and exit events. jects in their steady state, which is crucial for long-running
Every object allocated is assigned a unique identifiesp programs, such as server applications.
subsequent events can refer to the exact object instances  Quite often, the die-by-stack case is incidental, and the real
involved.At this level of detail the resulting traces are enor- cause of death is a heap stoBansider aemovefunction
mous — in the 100s of gigabytes for the larger benchmarks. for a container data structure: it might use a stack reference
, to point to the element to be removed while it modifies the
3.2 Method time structure. The direct cause of death of the removed object
The Merlin algorithm,which we employ,relies on times- is the loss of that stack reference when tteenovemethod
tamping in order to place object death events in their proper returns, but the proximate cause is really the overwriting of
place in the trace. The exact definition of “trace time” is the associated heap references in the contaidés.remove
arbitrary, but the more fine-grained it is, the more precisely these cases from die by stack and place them in their own
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category called dying by stack after heaghen an object calling context.The static location together with the near-
first loses its last heap reference, then its last stack referenceest non-library method are used instead of the full calling

context.
3.4 Garbage clusters and key objects Our analysis identifies the following packages as libraries:
One problem with the analysis described so far is that it does s java.”
not properly account for objects that die indirectly when the * sun.*
object(s) pointing to them become garbafer example, a * com.sun.”
single variable going out of scope could cause a group of » com.ibm.*

connected objects to all become garbagiearly, the object  Any class from those packages are considered library classes
directly referred to by the variable dies by stack, but what with library methods.Thus, all other classes and methods

about the objects it points to? One could argue that they die gre defined to be non-library classes and methods.
by heap, since heap references are going away, but that does

not seem like a useful classificatiomstead, we atrribute 3.6 Joroperties of garbage clusters

the same cause of death to all objects in the group. Once we have aggregated all of the object deaths into garbage
We define a garbage cluster as a set of objects that die aglusters, we can analyze their properties, including allocation

the same time as a result of a single action by the program. and death contexts of each cluster, the age in both allocation

For heap actions, there is only ever one heap reference thattime and method time, number of objects in the cluster, and

is overwritten. The classification is more subtle though for totg| size of all objects in bytes.

stack actions: there are often multiple stack references that  while all objects in a garbage cluster die at the same time,

go out of scope when a method exiRather than lump to-  they are all allocated at different timekn order to present a

gether potentially unrelated objects, we consider each stack summary of the allocation properties of clusters, we classify

reference as a separate eve@tcasionally, there are mul-  them according to the oldest object in the clustermany

tiple variables that point to the same object, or even worse, cases, this object also happens to be the key objéetalso

that share structureOur analysis chooses the cause by de- compute the range of ages of the objects relative to the age
termining which incoming reference is oldef his design of the cluster as a whole.

decision is in line with the spirit of our analysis because an )
object intuitively belongs to a garbage cluster if it has been 3.6.1 Cycles in garbage clusters

alive with that cluster the longest. Finally, we analyze the connectivity of objects in each cluster

Garbage clusters are closely related to the idea of key  to determine if there are any cycles. The precision of our anal-
object opportunisnfirst proposed by Hayes (Hayes 1991). ysis allows us to determine exactly how often cyclic garbage
He suggested that there are special objects that control the occurs, and compute properties of the cycles, including their
lifetimes of many other objects When those key objects  size and the types of the objects involvdis information
die, many other objects die as a resultddayes proposed s interesting for reference counting collectors, which cannot
a collector that schedules collections around the lifetimes collect Cyc”c garbage without a Separate a|gorithm (typ|ca||y
of these objectslt was never clear, however, whether key some form of tracing)Using the trace information, we can
objects actually controla significant amount of memory  reconstruct the connectivity of objects after they are dead
resourcesWe can use our garbage clusters ana|y3is to check and app]y a standard Strong]y_connected Components anal-
this claim.The key ObjeCt in each cluster is the ObjeCt that is ysis to find Cyc|es (Tarjan 197N0te that many programs
most directly affected by the cause of death (e.g., the objectcreate cyclic structures of varying sizes during execution,
whose last reference the program removes). but we are interested only in the cycles that still exist when

the objects die.

3.5 JProgram contexts
Our analysis uses Elephant Tracks to identify exactly where 3-7 Znalysis implementation
an object dies in the progranihe source trace allows us to  Our heap analysis is implemented in two stagése first
determine the full calling context of every event, including stage is a trace processor written in C++ that reads the raw
object death. Using the full calling context though, generates Elephant Tracks traces and simulates the events in order,
too much information and results in an infeasible analysis. allowing us to reconstruct the intermediate states of the

In order to make the analysis more practical, we use the program.The trace processor models the objects in the heap
static location of the death eventhat is, we use the top of  and the pointers between thengand keeps track of when
the stack as the object’s death location. Quite often, howeverthey become garbagén addition, it uses the method entry
the top of the stack is just a library method. As programmers, and exit log entries to keep track of the calling context and
we might be more interested in the application method that label each heap event with this informatioWhen the trace
made the call further down the stacRur analysis therefore ~ processor finds a group of objects with the same death time,
also computes the nearest non-library method in the full it inspects the recent history and calling context information
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to identify the causeSince it has a full model of the heap, it The Cluster Aware GC (CAGC) simulator is a trace pro-
can determine which objects are in connected groups. cessor written in C++,which shares some code with the
The second stage of the analysis is written in Pythidris Garbology analysis trace processdmhe CAGC simulator
part of the analysis does further aggregation and computa- can be configured with the following parameters:
tion on the data generated from the C++ simulafbiis part
of the analysis computes the following: (i) The top allocation-
death context pairs; (ii) overall statistics of the precise action
that caused objects to die; (iii) garbage cluster membership.
The analysis was performed on a 64-core, 2.5 GHz Opteron
Processor 6380 system with 126 GB of memory, running Red
Hat Enterprise Linux Server release 6/8hile we had mul- The reliance on the garbage cluster information produced
tiple cores available, the simulator currently runs in a single by the Garbology analysis is precisely what makes this im-
thread only.The analysis in its current form needs a lot of plementation of the CAG collector oracul#le recognize
memory to analyze the Elephant Tracks tradédwus the sim-  that there may be no easy way to determine garbage cluster
ulator is unable to finish running on the larger benchmarks: membership to the precision that we are able to in the Gar-

eclipse , jython , h2, andsunflow. We plan to improve the  pology analysis, since the analysis needs a complete ET trace.
performance of the simulator so that we are able to success-That is, it is highly impractical to want to run an application

* The maximum heap size.

» The garbage clusters to allocate to the deferred region.
These clusters are selected from the initial Garbology
analysis.

* The full program Elephant Tracks (ET) trace.

fully analyze these larger benchmarks. to the end, before actually running it using the garbage clus-
, ter information. We do believe however that this oracular
4 Cluster-aware Garbage Collection simulation should lead to future work where garbage cluster
Our proposed GC algorithm relies on the intuition that pro- membership may be determined with high probability.
gram behavior is clearly related to program structu&nce Since the ET trace contains all allocation and reference up-

objects die in clusters, we propose that garbage clusters candate events, the simulator can precisely model the program
be the basic unit of garbage collectidihile the granularity heap. Program execution is modeled by maintaining the

might be too fine for some applications, the cluster grouping heap according to the allocation policies in the CAGC design.
surprisingly has good results for some applications as we If an object is part of the special set of garbage clusters, then

will show in the results. that object is allocated in the deferred regiof®therwise,
the object is allocated in the regular region.

41 CAGC simulator design The ET trace also contains all reference updates, which

The CAGC simulator is based on an idealized mark-sweepallows the simulator to model precise object connectivity by

scheme. To simplify the experiment,the collector is im- maintaining information on all reference edg&éote that if

plemented as non-generationadlsing the same Elephant ~ We ignore the edge’s direction, there are 3 ways an edge can
Tracks traces used in the Garbology analysis and a given be located with respect to the regionn edge’s endpoints
heap size, the simulator models the allocation and collection ¢an be one of three possible configurations:

of all objects in the trace.

The heap is separated into two regions: (i) a regular region;
and (ii) the special deferred regidhe CAGC simulator then
takes a predetermined number of garbage clusters from the
previous analysis to treat as a designated group of objects.
This special group identifies which objects will be allocated
into the deferred regionAll other objects are allocated into

* Both source and target are in the regular region.

* Both source and target are in the deferred region.

» The source and target are different regions. While this
may further be broken down into two separate cases,
we ignore the edge direction because the direction
adds nothing to our analysis.

the regular region. Such a classification enables us to calculate GC costs for the
Simulated garbage collection is triggered when the sim- CAGC algorithm.

ulator heap cannot fulfill an allocation requesfThe CAG We use the mark/cons ratio as our measure of GC cost.

collector can perform two kinds of collectionsirst, the col- Mark is a measure of GC activity which includes tracing

lector will attempt a regular collection which targets only the and copying. We do not include other effects like cache
regular regionIf enough free memory is reclaimed to satisfy misses that can also affect GC costs in order to simplify the
the request, the collector ends the collection phd§eot, experiment. For our purposes we use number of objects traced
a full collection involving the deferred region is performed. as a simple proxy for the mark part of the raticConspn

Again, if enough free memory is reclaimed, the collector endsthe other hand,is a measure of the application mutation

the collection and transfers control back to the application. activity. We use the number of bytes allocated to represent

If not enough memory is available, an out of memory error is the cons part of the ratidVe use this simplified mark/cons
generated because the heap size configuration cannot satisfyratio to measure the performance characteristics of our CAG
the program requirements. collector.



Since the Elephant Tracks trace allows the simulator to
determine precisely when an object dies, the simulator is able
to correctly simulate all garbage collection activitigghen
a garbage collection is invoked, the simulator keeps track of
all marking costsThus we can compare the performance of 7

the CAG collector to a naive mark-sweep collector.

4.2 €xperimental methodology

How big should the simulated heap be? This is an impor-

tant experimental parameter since heap size will affect the

collector performanceBlackburn et al showed that you can I
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% in bytes
Mey reap
|2 By stack after heap
By stack only
decrease the number garbage collections for any program if
you give it a large enough heap (Blackburn et2004) We
take a range of possible heap sizes to study the relationship I
between heap size and CAGC performance. .

First, we determine the smallest heap size that we will run L e e e e e e e e
the simulation onFor this, we use the program’s maximum s = :
live size. The live size of a program is the size of the part &
of the heap that’s currently reachable from the program
roots at a given time.The maximum live size can then be
determined over a complete program run. our simplified )
simulator world, we take a program’s maximum live size as Figure 1. Objects’ cause of death classified in percentage
the starting point since this would be the minimum heap ©f memory sizeWe show objects that died by stack action
size that a program needs to rdn. but were previously pointed at by the heap as a separate

We then generate the sequence of heap sizes using someFategory.
percentage of the maximum live siZEhis percentage can

S5

specjbb
bat
av;
227_mtr

222_mpega

Benchmark

range from 25% to 100%or the maximum heap size&ye  _ mostly 1 to 10 objects — and that their death is largely
simply run on the next available heap size until no garbage predictable.
collections are incurred for that heap si2&/hile achieving Figure 1 shows all of the benchmarks ordered by maximum

zero collections isn't necessary, this ensures that our data jjve size in descending orderHere we show the general
points are completeEach heap size data point generates  classification of death cause as a percentage of memory size
an associated mark/cons ratio that we can compare to the (see Section 3.3 for a detailed description of the categories).

mark/cons ratio of a Straightforward marking collector. We include immortal objects ina Separate Categm_tice
that all benchmarks have a significant percentage of objects
5 Results dying by stack (i.e., their last reference is a stack reference).

In this section we present results from our analysis of GC Some benchmarkspecijbb, xalan, andluindex to name a
traces, and we show the potential of using this information few), have a relatively higher proportion of objects that die

in a new kind of garbage collector. by heap (i.e., they become unreachable when a heap pointer
moves)All in all, though, this graph shows a surprisingly
5.1 YBenchmarks high proportion of die by stack objects.

For our experiments we analyze two common benchmark As mentioned in Section 3.3, we often find that die by stack

suites, the SPECjvm98 (spe 1998) and DaCapo (Blackburr?bjeas have been recently removed from a heap-based data

et al 2006) benchmarks, as well as SPECjbb (spe ZT16). structu_re prior to becoming garbageTo gccount for this
benchmark programs were run on the J9 JVM with the Ele- behavior, we reanalyzed the data, looking for cases where

phant Tracks (Ricci et al. 2013) tracing tool enabled. objects_(_jie immediat_ely after Iqsing a heap referenidée

reclassified these objects as die by stack after Adepore-
5.2 Overall Semographics by Seath cause sglting g.rap.h.is shown in figure 1, which fits more closely
with our intuition about how these programs work.

This result also hints at a more important pattern of be-
havior: objects often die as a result of a specific, intentional
action by the program (e.g., removal from a data structure)
that is strongly predictiveThis kind of information could be
used in a number of ways to improve memory management.
'We actually take the maximum live size and round it up to the nediést ~ For GC algorithms that rely on estimating tenancyuch

In this section we present empirical results of our Garbol-
ogy analysis, including some detailed analysis of individual
benchmarks as well as overall patterns across all of them.
In general, we find that garbage clusters are typically small
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Garbage cluster sizes
benchmark 1 2 3 4 5 6 7 8 9 10 11 12 13+
201 compress 2,983 1,205 156 4 2 1 0 0 0 0 0 0 0
202 jess 3,733,934 2,091,909 3,420 99 18 0 2 0 0 0 0 0 0
_205 raytrace | 5,839,977 235,636 15,797 3,112 68 1 2 0 0 0 0 0 0
209.db 2,907,822 112,389 171 5 15,546 1 2 0 0 0 0 0 0
213 javac 2,859,266 898,705 157,208 66,884 13,922 6,591 3,101 1,121 393 230 187 124 3,276
227 mitrt 6,000,607 268,224 25,106 4,270 96 2 2 0 0 0 0 0 0
228 jack 3,632,399 432,625 124,296 2,166 628 1,374 35 16 672 16 16 O 0
avrora 1,397,610 161,820 105,905 220 29 12 11 7 0 1 0 0 0
batik 730,811 74,379 28,456 7,612 3,550 134 38 165 1 6 0 1 4
fop 1,433,033 573,648 87,696 7,944 3,569 461 187 97 18 25 0 1 5
luindex 267,693 58,206 8,939 85 33 20 9 1 0 1 0 1 0
lusearch 6,905,703 1,516,410 677,400 289 131,156 53,267 6 6 2 2 0 1 3
specjbb 3,785,434 568,349 6,951 16 1 0 0 0 0 0 0 0 1
tomcat 8,660,718 925,172 483,161 11,280 2,372 7,778 154 83 235 22 1 21 4
xalan 5,737,589 399,461 60,187 16,352 4,220 63 9 3 0 4 0 1 0

‘Cable 1. Number of clusters of each size (columns) for each benchmark (r9ws) the exception ofiavac most programs
dispose of objects in small groups at any given time.

as the garbage-first collector, the program could be instru- 5.4 The number of death sites is small

mented with hints to let the collector know that a group of | ike many heap profiling tools before ours, we can label clus-
objects is likely to be garbage. ters according to where they are allocated. More importantly,
though, we can also identify them according to where in the
program they become garbagéne of the unique features
of our analysis is that we can compute the exact calling con-
texts for both the allocation and the death of every object.
5.3 Most clusters are small’ Unfortunately, this information is much too detailed, and it

In table 1 we show the distributions of garbage cluster sizes 1S impossible to present in a compact and useful way. Instead,
across all the benchmarkBor each benchmark, we count We look only at the method containing the allocation and

the number of clusters that consist of one objeabf two death sites, with one slight twistn many cases, objects are
objects, etc., up to 12 object clusteksy clusters with 13 or ~ Created and die inside Java library methodsor example,
more objects are lumped into a single categ@me of the if a program calls clear() on a container, all of the elements

most notable patterns we found is that garbage clusters are appear to die inside the container’s clear() methiik real
mostly small — almost all are less than 10 objects, and the guestion, however, is where clear() was calfed, for this
vast majority have four or fewer. analysis, when computing the allocation and death methods,
The 213 javac benchmark is a notable exceptioriThe we walk up the call stack to find the nearest non-library
javac benchmark appears to create large structures con- method.
sisting of 700 to 1000 objects that represent types and in-  Table 2 shows the top site, by volume, where clusters of
structions. These structures disappear all at once when the Objects become garbagéne notable feature of these results
information is written to the compiled class file. is that for most programs, the top death sites account for a
The prevalence of small garbage clusters suggests that forlarge fraction of all allocated memorin fact, we found that
most Java programsey objects of any significant magni- 90% or more of all memory dies at one of the top 20 death
tude, do not exisinstead, most programs dispose of large Sites, depending on the program.few of the benchmarks,
data structures in a piecemeal fashion, dismantling and pro- Such adatik andtomcat have more death sites accounting
cessing them bit by bit.This style of disposal has certain ~ for 90% or more of the total garbage as shown in table 3.
advantages, thoughFor one, it keeps memory drag fairly We can also aggregate clusters by their allocation site,
low (that is, programs do not have significant amounts of and look at how many death sites they potentially reach.
reachable, but dead data in memotyjglso reinforces the Table 4 shows these results. In some cases, clusters of objects
observation above that object disposal is an intentional act allocated at one site only die at a smalhumber of sites,
by the program, even though there is no explicit delete oper- suggesting that the fate of these objects is highly predictable.
ation.
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% of total Garbage/ | number of
Benchmark Site . max livesize| allocation

allocation . )

ratio sites
_201 compress spec/benchmarks/ 201 compress/Input Buffer.readbytes 85.64 12.68 2
202 jess spec/benchmarks/ 202 jess/jess/Node2.runTests 56.60 109.57 9
_205 raytrace | spec/benchmarks/ 205 raytrace/Point.GetZ 58.05 20.19 18
_209.db spec/benchmarks/ 209 db/Entry.equals 66.60 7.20 4
213 javac spec/benchmarks/ 213 javac/Type.tClass 17.40 3.47 79
227 mtrt spec/benchmarks/ 205 raytrace/Point.GetZ 39.96 7.75 26
228 jack spec/benchmarks/ 228 jack/RunTimeNfaState.Move 46.50 71.68 20
avrora avrora/sim/radio/Medium$Receiver.earliestNewTransmission 29.80 10.72 3
batik org/apache/batik/bridge/BridgeContext.finalize 13.77 0.75 222
fop org/apache/xmigraphics/ps/PSGenerator.formatDouble 24.49 1.25 118
luindex .../lucene/analysis/standard/StandardTokenizerlmpl.yyreset  23.78 1.76 1
lusearch .../lucene/queryParser/QueryParserTokenManager.Relnit 40.29 130.66 3
specjbb spec/jbb/StockLevelTransaction.process 22.56 2.47 2
tomcat org/dacapo/tomcat/Page.stringDigest 23.69 15.64 29
xalan org/apache/xalan/transformer/Transformerimpl.transform 20.40 32.20 49
Table 2. Each benchmark’s top death site by total garbage measured in bytes.
. % of total Gart_)age_/ number of

Benchmark Site . max livesize .

allocation ratio death sites
_201 compress spec/benchmarks/ 201 compress/Compress.spec select action 88.46 13.10 10
202 jess spec/benchmarks/ 202 jess/jess/Node2.appendToken 59.01 114.25 40
_205 raytrace | spec/benchmarks/ 205 raytrace/OctNode.Intersect 32.89 11.44 4
209.db spec/benchmarks/ 209 db/Entry.equals 66.01 7.14 1
213 javac spec/benchmarks/ 213 javac/Scanner.bufferString 15.18 3.03 13
227 mtrt spec/benchmarks/ 205 raytrace/OctNode.Intersect 31.08 6.03 103
228 jack spec/benchmarks/ 228 jack/RunTimeNfaState.Move 46.50 71.68 3
avrora avrora/sim/radio/Medium$Receiver.earliestNewTransmission  29.07 10.40 1
batik org/dacapo/harness/DacapoClassLoader.loadClass 11.47 0.63 30
fop org/apache/xmigraphics/ps/PSGenerator.formatDouble 18.99 0.97 22
luindex org/apache/lucene/demo/FileDocument.Document 25.94 1.92 7
lusearch org/apache/lucene/queryParser/QueryParser.parse 26.46 85.81 10
specjbb spec/jbb/StockLevelTransaction.process 22.56 2.47 3
tomcat org/dacapo/tomcat/Page.stringDigest 21.04 13.89 6
xalan org/apache/xpath/VariableStack.reset 21.20 33.46 35

Table 4. Each benchmark’s top allocation site by total allocated.

For example, objects frompecjbb’s top allocation site die 5.5 $low of memory

in only three sites. We aggregate the information for all clusters with the same
Using allocation sites as predictors is nothing new, as it pajr of allocation and death siteswhich describe a kind
was studied extensively by Jones and Ryder (Jones and Rydef memory flow from a source (allocation) to a sink (death
2008) where they related allocation sites to object lifetimes. site). We characterize a memory flow by the total amount
On the other hand,we have shown how some allocation ¢ memory it accounts for and the number of objecWe
sites are highly predictable with respect to the corresponding gi5o show the range of object ages in each fBuppose a
death site.Note that while this isn’t true of all allocation garbage clusteGdies at a given site paidsing allocation
sites,the existence of a few highly predictable allocation-  {jme as the basis, our analysis takes the oldest member of
death site pairs means that there is predictable behavior we the cluster and uses this for the minimum age and maximum
can exploit in a tuned garbage collection implementation. age attribute of the site paifhe minimum age for a site pair
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| | Number of sites|

| Benchmark | 90%)| 95%|
201 compress 3 5
202 jess 6 7
_205 raytrace 9 14
209 db 3 4
213 javac 37 56
227 mtrt 19 29
_228 jack 13 19
avrora 9 14
batik 63 111
fop 45 77
luindex 27 43
lusearch 3 9
specjbb 15 20
tomcat 81 148
xalan 44 90

Table 3. Number of death sites that account for at least 90%
to 95% of total garbage.
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across all of the benchmark§he way we group cycles for
this table is by the types that make up the cycle — we refer to
this set of types as the type signature of the cyiedeh row

in the table represents a particular combination of object
types.The reason we aggregate across benchmarks is that
they have many kinds of cycles in common; typically, cycles
created as part of the standard library data structures, such
as linked lists and hash table&nother finding is that many
cycles consist of nested types within a single cldgsat is,

the cycle is entirely “contained” in the class that builds it.

It is important to note that only the strongly connected
components themselves are smé&lbr most cycles, there are
many objects reachable from the cycle that are not part of
the strongly connected componerh other words, failing
to collect these small cycles would leave significant garbage
in memory.

We are planning future work that can exploit the pre-
dictability of the type signature, along with the small number
of objects in a cyclélVe envision a reference counting algo-
rithm that reduces the need for the backup tracing collector
by preemptively breaking up the cyclic garbage.

5.7 Cluster aware garbage collection performance

then, is the minimum among all the oldest members of every \ye ran the CAGC simulator on most of the benchmark suites

garbage cluster belonging to the allocation-death site pair
The maximum age is calculated in the same way.

Table 7 shows allthe benchmarks using only the top
allocation-death site pair by total size (shown in MB). We
can see that a large number of garbage clusters follow on
of only a handful of flows through the progrank.or most
of the programs, the top pair accounts for 10% or more of
all the memory allocated by the prograrotice that in a
number of casedhe allocation site and the death site are
the same methodThese cases indicate structures that are
essentially local to those methodalso notice that in many

cases the objects involved have a wide range of ages in al-

location time, even though their lifetimes are highly stable
from the standpoint of memory flowT his result highlights
the problem with using allocation time as metric for study-
ing object demographics: even thought strong patterns exist
they are not readily apparent from the object ages.

Taken together, these results suggest that we should focu
on developing garbage collection algorithms that can take
advantage of knowing:

» Which objects form garbage clusterghat is, which
objects tend to die together.
* Where in the program objects tend to die.

5.6 Cyclic garbage

Most of our benchmarks create cycles of objecteme of
which die together as cycleSomewhat surprisingly, how-

" listed in section 5.1As mentioned in section 3.7, we were
not able to finish the Garbology analysis for the following
larger benchmarks: eclipse, jython, h2, and sunflow.

From the runs, we were able to determine the performance
€of the CAG collector as compared to a straightforward mark-
ing collector using the mark/cons ratid.few benchmarks
showed significant performance improvements at the lower
end of the heap size rangEhe most marked improvements
were for theluindex , lusearch , and_205_raytrace bench-
marks,as shown in table 5The CAGC mark cost column
shows how the CAG collector improves the mark/cons ratio.

All other benchmarks did not show any significant im-

provements. There are two possibilities here.First, the

garbage clusters chosen may not have significantly aided the

CAG collectorlf the objects that end up in the region are

’ short-lived, the generational effect would then overwhelm

the cluster effectA second possible reason is that the pro-
Sgram may not be amenable to the CAGC algorithmiVe

expect that there will be a class of programs that CAG collec-

tion will work well with. And we totally expect that a large

class of programs would no¥e leave it up to future work

on determining the nature of such programs.

On the other hand, the CAG collector performed the best
on thelusearch benchmark which has the lowest heap size
among the benchmarks presented in tabldrbspite of the
help from the oracle, the CAG collector was not able to sig-
nificantly improve the performance of the benchmarks with

ever, we have found that by the time these cycles become larger heapsNotwithstanding this early result, we believe

garbage they are typically very small — only one to four

that our simulated results indicate the future directions for

objects.Table 6 shows a summary of this data aggregated improving and applying the CAG collector.
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Benchmark marlz/:cpc\)gérano mar’lil/g?r:zlratlo CAGC mark cost Heap size(MB 2‘;[22;;:;
luindex 0.12 0.14 89.9% 6.25 76
luindex 0.0268 0.0298 89.9% 7.82 16
lusearch 0.17 0.38 83.2% 4.13 31,988
lusearch 0.44 0.47 92.4% 8.26 5,034
lusearch 0.48 0.50 96.2% 12.39 2,762
_205 raytrace 10.27 12.44 78.9% 7.43 121,025
-205 raytrace 4.06 4.1 98.6% 14.86 33

Table 5. We present here the CAGC simulator performance numbers for select benchAladteer benchmarks are not
shown here if the performance gain is less than Abenchmark may be shown with multiple heap siz€uster aware
garbage collection (CAGC) refers to our idealized GC algorithm using garbage cluster knoWllztgeosts are relative to a
simple mark-sweep collector.

Number of objects

Types in the cycle Number of Minimum | Maximum | Median
cycles

LinkedList$Link 106,917 1 2 2
ElemContext 41,898 1 1 1
ConcurrentLinkedQueue$Node 9,230 1 1 1
HashMap, HashMap$1 5,979 2 2 2
NativeMethodAccessorimpl, DelegatingMethodAccessorimpl 3,907 2 2 2
LinkedBlockingQueue$Node 3,003 1 1 1
HashSet, HashMap, HashMap$Entry, HashMap$Entry 2,173 4 4 4
PythonTree, ArrayList, Object 1,988 4 4 4
DTMDefaultBaseTraversers$AncestorTraverser, SAX2DTM, DTMAXxisTraverser 1,300 3 3 3
HashMap, HashMap$2 704 2 2 2
FileChannellmpl, AbstractinterruptibleChannel$1 132 2 2 2
NativeConstructorAccessorimpl, DelegatingConstructorAccessorimpl 131 2 2 2
SAX2DTM, DTMDefaultBaseTraversers$ChildTraverser, DTMAxisTraverser 102 3 3 3
Cleaner 86 1 1 1
CSSLexicalUnit$SimpleLexicalUnit, CSSLexicalUnit$IntegerLexicalUnit 72 2 2 2
TypeVariableBinding, MethodBinding, TypeVariableBinding 71 3 3 3
ConcurrentHashMap, ConcurrentHashMap$EntrySet 70 2 2 2
SocketChannellmpl, AbstractinterruptibleChannel$1 65 2 2 2
XMLNSDocumentScannerlmpl, XMLDocumentScannerimpl$ TrailingMiscDispatcher 62 2 2 2
BufferUnderflowException 40 1 1 1
Label, Frame 24 2 2 2
ConcurrentHashMap, ConcurrentHashMap$KeySet 13 2 2 2

Table 6. Summary of all garbage cycles across all benchmatikstice that by the time cycles become garbage they are
typically small — only one to four objectd.arge cyclic garbage is rare in our benchmark suite.

First, we can target the CAGC algorithm at programs that ~ Secondly, we note that the benchmarks suites used by the
run in limited memory situations.Modern Java VMs will memory management community have short runtiméée
throw an error if too much time is spent doing collectiohs.  ran a casual test of the DaCapo benchmarks using OpenJDK
We propose that there’s a need for GC algorithm improve- 1.7 on an AMD Opteron 6380 at 2.5 GHz, and most bench-
ments in low memory situations that Garbology inspired  marks ran in less than 10 second@iseeclipse benchmark
algorithms plan to fill. had the longest runtime at roughly 45 second& believe

that the standard benchmark suites used by the research

2From 3.2 Understand the OutOfMemoryError Exception in (jav 2016)
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Benchmark Allocation site Death site (?/ﬁ;; % ag';\gl(rr(B) agl;la(])k(B)
fop PSGenerator.formatDouble PSGenerator.formatDouble 26.32 13% 0.03 17,594
specjbb StockLevelTransaction.process | StockLevelTransaction.process 77.65 22% 0.00 46
batik DacapoClassLoader.loadClass DacapoClassLoader.loadClass 14.07 10% 0.00 49,040
213 javac Type.tClass Type.tClass 44.20 13% 0.00 <1
209 db Database.set index Database.remove 33.93 20% 15.17 1,061
227 mtrt PolyTypeObj.Intersect Point.GetZ 38.84 14% 0.00 <1
tomcat Page stringDigest Page.stringDigest 190.11 20% 0.00 3,077
_205 raytrace | PolyTypeObj.Intersect Point.GetZ 60.59 23% 0.00 <1
_201 compress Decompressor.<init> Decompressor.decompress 4534 42% 71.91 83
xalan VariableStack.reset VariableStack.reset 105.53 9% 319.37 27,840
luindex FileDocument.Document StandardTokenizerlmpl.yyreset 10.14 21%  20.03 799
lusearch QueryParser.parse QueryParserTokenManager.Relnit | 354.20 26% 0.00 4,205
avrora Medium$Receiver Medium$Receiver

.earliestNewTransmission .earliestNewTransmission 31.91 28% 0.00 1
202 jess Node2.appendToken Node2.runTests 280.70 56% 0.05 50,659
228 jack RunTimeNfaState.Move RunTimeNfaState.Move 122.18 46% 0.00 <1

Table 7. Top allocation-death context pair (by total size) for each benchmark.

points in the program that cause garbage clusters toTe.

ble 2 shows that a small number of death sites is responsible
for a non-trivial number of objects/Ve are currently study-
ing the possibility of exploiting these death sites for the CAG
algorithm.

community do not reflect an important class of server pro-
grams that are designed to run indefiniteljjhis is how the
lusearch benchmark, which performs a search over a text
corpus,represents the promise of algorithms that exploit
garbage clustersA real world text search program would
be expected to do multiple searches over a longer period of
time, whereas théusearch benchmark runs in less than 2
seconds.

6 Conclusion and future work

Exploiting predictable program behavior has been effective

Addltlonally, we note that the CAGC simulator only used in the design of garbage collection a|gorithrﬁkve|oping
a single region for simplicityGiven that any program will  new and creative ways to understand program heap behavior
have numerous garbage clusters, any practical design of thejs therefore essential for the progress of these algorithms.
CAGC algorithm should use multiple regions. We have shown how the study of garbage clusters shifts the
emphasis from allocation to disposal.

We strongly believe that the following key findings in
this paper will form the basis for new garbage collection
algorithms:

* Most garbage clusters are smdihus reducing the
significance of key objects.

» Most garbage clusters die in relatively few methods.

* Memory flows are highly predictabl&hat is, most

of the objects created at a given allocation site die at

one of only two or three program points (in many

cases, only one).

» Most cyclic garbage clusters are composed of a small
number of types and objects.

» Most objects and garbage clusters die by stack action.

The majority of these objects were reachable from the

heap before dying.

5.8 Yoractical CAG collectors

The improvements were achieved in large part because we
used oracular foreknowledge from the Garbology analysis,
which is clearly impractical. We believe that Garbology
can help develop practical heuristics that can approximate
garbage cluster membershipreviously, information about
the objects’allocation site and type have been used suc-
cessfully as predictors for GC algorithms (Blackburn et al
2001; Jones and Ryder 2008). Consequently, we present some
possible avenues for future work on practical heuristics for
identifying garbage clusters.

In our Garbology demographics of the DaCapo and SpecJVM
benchmark suiteswe show that a significant number ob-
jects die because of stack actionlVe believe that future
algorithms should exploit this fac€learly, stack action is
directly correlated to program structure, whether through
loops or function callsBy focusing on garbage clusters that
die because of stack actiowe need to identify the static

We believe that collectors that exploit these findings should
be able to achieve performance gains over more traditional
collectors that only exploit the allocation side of the pro-

gram. The oracular CAG collector is such an example, where
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