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ABSTRACT
One of the simplest problems on directed graphs is that of identi-

fying the set of vertices reachable from a designated source ver-

tex. This problem can be solved easily sequentially by performing

a graph search, but efficient parallel algorithms have eluded re-

searchers for decades. For sparse high-diameter graphs in particular,

there is no known work-efficient parallel algorithm with nontrivial

parallelism. This amounts to one of the most fundamental open

questions in parallel graph algorithms: Is there a parallel algorithm
for digraph reachability with nearly linear work? This paper shows
that the answer is yes.

This paper presents a randomized parallel algorithm for digraph

reachability and related problems with expected work Õ (m) and

span Õ (n2/3), and hence parallelism Ω̃(m/n2/3) = Ω̃(n1/3), on any

graph with n vertices andm arcs. This is the first parallel algorithm

having both nearly linear work and strongly sublinear span, i.e.,

span Õ (n1−ϵ ) for any constant ϵ > 0. The algorithm can be extended

to produce a directed spanning tree, determine whether the graph

is acyclic, topologically sort the strongly connected components of

the graph, or produce a directed ear decomposition, all with work

Õ (m) and span Õ (n2/3).
The main technical contribution is an efficient Monte Carlo al-

gorithm that, through the addition of Õ (n) shortcuts, reduces the

diameter of the graph to Õ (n2/3) with high probability. While both

sequential and parallel algorithms are known with those combina-

torial properties, even the sequential algorithms are not efficient,

having sequential runtimeΩ(mnΩ(1) ). This paper presents a surpris-
ingly simple sequential algorithm that achieves the stated diameter

reduction and runs in Õ (m) time. Parallelizing that algorithm yields

the main result, but doing so involves overcoming several other

challenges.
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1 INTRODUCTION
There are essentially no good parallel algorithms known for the

most basic problems on general directed graphs, especially when

the graph is sparse. This paper yields several.

A good parallel algorithm should have polynomial parallelism

and be (nearly) work efficient. The workW (n) of a parallel algo-
rithm on a size-n problem is the total number of primitive operations

performed. Ideally, the work of the parallel algorithm should be

similar to the best sequential running time T ∗ (n) known for the

problem. An algorithm is work efficient ifW (n) ∈ O (T ∗ (n)) and
nearlywork efficient ifW (n) ∈ Õ (T ∗ (n)) = O (T ∗ (n) ·poly(logn)),
where Õ hides logarithmic factors.

1
(As a slight abuse of notation,

Õ (1) is used to mean O (poly(logn)), where the n should be clear

from context.)
2
The span S (n), also called depth, of a parallel algo-

rithm is the length of the longest chain of sequential dependencies.
3

By Brent’s scheduling principle [2], such an algorithm can gener-

ally be scheduled to run in O (W (n)/p) time on p ≤ W (n)/S (n)
processors; adding more processors beyond that point does not

yield asymptotic speedup. The limitW (n)/S (n) is called the paral-
lelism of the algorithm; an algorithm ismoderately parallel if the
parallelism is Ω(nϵ ), for some constant ϵ > 0, and highly parallel
if the span is Õ (1). The goal is to achieve speedup with respect to

the best sequential algorithm, which is why work efficiency mat-

ters. A nearly work-efficient algorithm runs in Õ (T ∗ (n)/p) time on

p ≤W (n)/S (n) processors, but inefficient algorithms may require

enormous numbers of processors to beat the sequential algorithm.

Remark. Aside from the context provided in this introduction

and high-level ideas, most of the paper does not require any specific

knowledge of parallel algorithms; the challenge lies in producing

1
In addition to uncluttering the bounds, ignoring logarithmic factors is particularly

convenient when comparing parallel algorithms — the precise bounds depend on the

specifics of the parallel model, but the bounds typically only vary by logarithmic

factors (see [11] for discussion) — allowing us to focus on the high-level discussion.

2
The standard definition for soft-O is that f (n) ∈ Õ (д (n)) if f (n) ∈

O (д (n) poly(logд (n))). This paper uses f (n) ∈ Õ (д (n)) to mean f (n) ∈
O (д (n) poly(logn)), with the only relevant difference being the meaning of Õ (1).
3
Older PRAM literature often characterizes algorithms by a number of processors and

parallel running time. Span here is generally equivalent to parallel time, and work

corresponds to the product of processors and time.

https://doi.org/10.1145/3188745.3188926
https://doi.org/10.1145/3188745.3188926
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an algorithm with properties amenable to parallelization. Most

implementation details are straightforward, so the parallel model

and implementation details are deferred to Section 5.

Problem and history. Perhaps the most basic problem on directed

graphs is the single-source reachability problem: given a directed

graph G = (V ,E) and source vertex s ∈ V , identify the set of

vertices reachable by a directed path originating at s . Throughout,
let n = |V | be the number of vertices andm = |E | be the number

of arcs, and for conciseness assume thatm ∈ Ω(n). This problem
has simple sequential solutions: both breadth-first search (BFS) and

depth-first search (DFS) solve the problem in O (m) time. There are

two natural parallel algorithms for the reachability problem, which

seem to be folklore. See Table 1 for a comparison. Parallel transitive

closure [11], which amounts to repeated squaring of the adjacency

matrix, is highly parallel but far from work efficient even for dense

graphs. Parallel BFS is similar to sequential BFS, except that arcs

from each layer (vertices with the same distance) are explored in

parallel. Parallel BFS is work efficient (see, e.g., [16]), but the span is

proportional to the diameter, which is Θ(n) in the worst case. Both

algorithms fall short of our goals, but they are the state of the art.

The only other progress on general graphs are work/span trade-

offs. Ullman and Yannakakis [22] raised the question over 25 years

ago of whether it is possible to solve digraph reachability with

sublinear work without sacrificing work efficiency. Instead, their

algorithm [22], henceforth termed UY, and Spencer’s algorithm [20]

exhibit tradeoffs between work and span. Though not originally de-

scribed in the same terms, both algorithms can be parameterized by

a value ρ, 1 ≤ ρ ≤ n. Table 1 summarizes the performance bounds.
4

For ρ = 1, both algorithms are a parallel BFS. As ρ increases, the

span decreases but thework increases.When ρ = n, both algorithms

converge to transitive closure via regular Θ(n3)-work matrix mul-

tiplication. They differ for intermediate ρ. Spencer’s algorithm is

deterministic and, for sufficiently dense graphs, can be nearly work

efficient with moderate parallelism. In contrast, UY is randomized

and never simultaneously work efficient and moderately parallel,

but it exhibits a better work/span tradeoff for sparse graphs.

Other work focuses on either restricted graph classes or sequen-

tial preprocessing. Kao and Klein [12] give an algorithm for reacha-

bility on planar digraphs with Õ (n) work and Õ (1) span. Klein [15]

gives an algorithm that preprocesses the graph inO (np) sequential
time, where p ≥ 1 is a parameter; after the preprocessing, reacha-

bility can be solved in O (m/p) time on p processors.

1.1 Shortcutting Approach and Contributions
The high-level approach is intuitive: (1) reduce the diameter of the

graph through the addition of shortcuts, or arcs whose addition
does not change the transitive closure of the graph; (2) run parallel

BFS on the shortcutted graph. UY [22] fits this general strategy (and

parallel BFS and transitive closure are extreme cases), but Spencer’s

algorithm [20] does not.

4
The work bound stated by Ullman and Yannakakis [22] is worse, for small ρ , than
the bound displayed in Table 1. The table shows the improved bound observed by

Schudy [19].

The number of shortcuts added is of utmost importance because

it corresponds to the work performed during the BFS phase. Specif-

ically if the BFS phase is to complete with Õ (m) work, then the

number of shortcuts must be limited to Õ (m).
To understand the limits of what could be achieved through this

approach, ignore for the now the cost of computing the shortcuts.

It is known that O (n) shortcuts are sufficient to achieve Õ (
√
n)

diameter — UY [22] with ρ =
√
n, for example, accomplishes this

task. Except for logarithmic factors, this is the best diameter reduc-

tion known for general graphs using a linear number of shortcuts.

(Better bounds are known for, e.g., planar graphs [21].) Moreover,

as Hesse [9] shows, there exists a family of graphs that cannot have

their diameter reduced below Θ(n1/17) without adding Ω(mn1/17)
shortcuts. In a recent breakthrough, Huang and Pettie [10] show

a higher diameter lower bound of Ω(n1/11) when limited to O (m)
shortcuts.

5
The main lesson is: if a nearly work-efficient parallel

algorithm for digraph reachability uses the shortcutting approach,

then its span must be polynomial (specifically at least Ω̃(n1/11)).
The main technical challenge is to produce the shortcuts effi-

ciently, which is a challenge even ignoring parallelism. There is

no Õ (m)-time sequential algorithm known to reduce every graph’s

diameter to Õ (n1−ϵ ), for any constant ϵ > 0. For contrast, consider

the most natural approach (similar to UY [22]): sample

√
n vertices,

perform a graph search from each, and add shortcuts between all

related pairs of samples. It is straightforward to prove that the

resulting diameter is O (
√
n logn) with high probability, but the

running time of the

√
n independent searches is O (m

√
n).

This paper has the following main contributions:

• (Section 3.) An Õ (m)-time sequential Monte Carlo algorithm

that shortens the diameter of any graph to O (n2/3), with
high probability, through the addition of Õ (n) shortcuts.
• (Sections 4 and 5.) A Monte Carlo parallel algorithm having

Õ (m) work and Õ (n2/3) span that shortens the diameter of

any graph to O (n2/3
logn), with high probability, through

the addition of Õ (n) shortcuts.
• Applying the diameter reduction then parallel BFS yields

a Las Vegas algorithm for single-source reachability with

Õ (m) work and Õ (n2/3) span, with high probability.

• (Deferred to full version.) An extension that finds a directed
spanning tree, i.e., a tree rooted at s containing all vertices

reachable from s and using only arcs from G.

Applying existing reductions yields the following Las Vegas ran-

domized parallel algorithms, both with Õ (m) work and Õ (n2/3)
span with high probability:

• An algorithm that identifies and sorts the strongly connected

components of the graph. (Use the new reachability algo-

rithm in Schudy’s algorithm [19].)

• An algorithm that finds a directed ear decomposition of any

strongly connected graph. (Use the new directed spanning

tree algorithm with Kao and Klein’s algorithm [12].)

5
Closing the diameter gap between the n1/11

lower bound and

√
n upper bound is an

interesting open question, but it is not addressed by this paper.
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Work Span
Nearly

work efficient?

Number of processors to achieve

Õ (n/k ) runtime, form ∈ Θ(n)

parallel BFS O (m) Õ (n) Yes Not Possible unless k = Õ (1)

parallel Trans. Closure Õ (M (n)) Õ (1) No kM (n)/n ≫ nk for k ≤ n

Spencer’s [20] Õ (m + nρ2) Õ (n/ρ) if ρ = Õ (
√
m/n) k3

for k ≤ n

UY [22]
∗ Õ (mρ + ρ4/n) Õ (n/ρ) if ρ = Õ (1) k2

for k ≤ n2/3 †

This paper
∗ Õ (m) Õ (n2/3) Yes k for k ≤ n1/3

Table 1: Comparison of parallel algorithms for single-source reachability. Two of the algorithms are parameterized by ρ, 1 ≤

ρ ≤ n, which trades off work and span.M (n) is the work of the best highly parallel n×nmatrix multiplication, which is at least
the current best sequential time of O (n2.372869) [17].
∗: the algorithm is randomized. Bounds are with high probability.
†: for higher k , the dependence on k becomes worse and more complicated to state.

Algorithm 1: Sequential algorithm for shortcutting

SeqSC1(G = (V ,E))
1 if V = ∅ then return ∅
2 select a pivot x ∈ V uniformly at random

3 let R+ denote the set of vertices reachable from x

4 let R− denote the set of vertices that can reach x

5 S :=
{
(x ,v ) |v ∈ R+

}
∪

{
(u,x ) |u ∈ R−

}
// add shortcuts

6 VF := R+\R− ; VB := R−\R+ ; VU := V \(R+ ∪ R−)

7 return
S ∪ SeqSC1(G[VF ]) ∪ SeqSC1(G[VB ]) ∪ SeqSC1(G[VU ])

1.2 Algorithm and Analysis Overview
The sequential algorithm is simple enough that the main subroutine

is given immediately. (See also Algorithm 1.) The algorithm is recur-

sive. First select a random vertex x , called the pivot. Perform graph

searches forwards and backwards from x to identify subsets R+

and R−, respectively. Add shortcuts from R− to x and from x to R+.
The graph is next partitioned into four subsets of vertices: (i) the

vertices reachable in both directions, (ii) the vertices VF reachable

in the forward direction but not the backward direction, (iii) the

verticesVB reachable in the backward direction but not the forward

direction, and (iv) the vertices VU that are unreachable in either

direction. Recurse on the subgraphs induced by the three subsets

VF , VB , and VU ; the vertices reached in both directions are ignored

because the shortcuts have already reduced the diameter of that

subgraph to 2 hops.

Ignoring the addition of shortcuts, Algorithm 1 is essentially the

divide-and-conquer algorithm for topologically sorting the strongly

connected components of a graph described by Coppersmith et

al. [4]. Their proof thus carries over to prove that this algorithm

runs in O (m logn) sequential time in expectation, but they do not

address the diameter problem.

What should be surprising is that Algorithm 1 reduces the graph’s

diameter, captured by the following lemma. The proof is not obvious

and leverages new insights and techniques.

Lemma 1.1. Let G = (V ,E) be a directed graph, and consider any
verticesu,v ∈ V such that there exists a directed path fromu tov inG .
Let S be the shortcuts produced by an execution of Algorithm 1. Then

with probability at least 1/2 (over random choices in Algorithm 1),
there exists a directed path from u to v in GS = (V ,E ∪ S ) consisting
of O (n2/3) arcs.

As a corollary (applying the union bound across at most n2
related

pairs), the union of shortcuts across Ω(logn) independent execu-
tions of Algorithm 1 is sufficient to reduce the diameter of the graph

to O (n2/3) with high probability. More precisely, with 2 lgn + k

runs, the failure probability is at most 1/2k .

Unusual aspects and insight. The analysis focuses on shortcut-

ting a particular path. But unlike most divide-and-conquer analyses,

the division step here does not seem to effect progress. Partition-

ing a graph is good for reducing the problem size (which is what

Coppersmith et al. [4] leverage), but it is not good for preserving

paths — and once vertices fall in different subproblems, there can

be no subsequent shortcuts between them. This feature is likely

why previous algorithms, such as UY [22], perform independent

searches on the original graph.

A key insight in the analysis is that the partitioning step also

reduces by a constant factor the number of vertices that could cause

the path to split again later. In doing so, the probability of splitting

the path goes down, and hence the probability of shortcutting it

goes up. The end effect is that the path is likely to be significantly

shortcutted before it is divided into too many pieces.

The proof of this filtering insight (Lemma 3.4) leverages anti-

symmetric relationships between certain vertices. Interestingly, the

lack of symmetry in directed graphs is exactly the feature that

makes good parallel algorithms for digraphs so elusive, but here

asymmetry is crucial to the proof.

Building a parallel algorithm. The main obstacle to parallelizing

Algorithm 1 is the graph searches employed to find R+ and R−.
In fact, these searches are exactly the single-source reachability

problem that we want to solve. The obvious solution to try is to

instead limit the searches to a distance of Õ (n2/3), but unfortunately
doing so causes other problems. The parallel algorithm and the

analysis are thus more involved. Section 4 provides a sequential

algorithm with distance-limited searches. Given that, the parallel

implementation (discussed briefly in Section 5) is straightforward.
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2 PRELIMINARIES
This section provides definitions, notations, and the main proba-

bilistic tools used throughout.

The subgraph of G = (V ,E) induced by vertices V ′ ⊆ V is

denoted by G[V ′].
If there is a directed path (possibly empty) fromu tov in digraph

G = (V ,E), then u precedes v and v succeeds u, denoted u ⪯ v .
We say also that u can reach v and that v can be reached by u.
If u ⪯ v and/or v ⪯ u, then u and v are related; otherwise they
are unrelated. The successors or forward reach of x is the set

of nodes R+ (G,x ) = {v |x ⪯ v}. The predecessors or backwards
reach of x is the set R− (G,x ) = {u |u ⪯ x }.

A shortcut is any arc (u,v ) such that u ⪯ v in G.

Paths and nonstandard notation. The analysis considers paths
as well as the relationships between paths and vertices. A path

P = ⟨v0,v1, . . . ,vℓ⟩ is denoted by the sequence of its constituent

vertices, with the arcs between consecutive pairs implied. For con-

venience, an path may be empty. The length of the path, denoted

length(P ), is the number of arcs. For given path P , length(P ) = ℓ. An
empty path and a path comprising a single vertex both have length 0.

Splitting the path P into k piecesmeans partitioning it into k sub-

paths

⟨
v0, . . . ,vi1

⟩
,
⟨
vi1+1, . . . ,vi2

⟩
, . . . ,

⟨
vik−1

+1, . . . ,vℓ
⟩
, where

0 ≤ i1 < · · · < ik−1
< ℓ.

A vertex x and a path P can be compared in the following ways.

The vertex x is a bridge of P if x can reach and can be reached by

vertices on the path, i.e., if there exists vi ,vj ∈ P such that vi ⪯ x
and x ⪯ vj . Note that every vertex on the path is a bridge. A vertex

x is an ancestor of P if x can reach some vertex on the path, but

x cannot be reached by any vertex on the path. Similarly, x is a

descendant of P if x can be reached by some vertex on the path,

but x cannot reach any vertex on the path. The set of all bridges,

ancestors, and descendants of P are denoted Bridge(G, P ),Anc(G, P ),
and Desc(G, P ), respectively. Note that these sets are all disjoint by
definition. If a vertex x is a bridge, ancestor, or descendant of the

path P , then x and P are related. Otherwise, they are unrelated.

Tools. The analysis employs one relatively uncommon proba-

bilistic tool — a special case of Karp’s [13] probabilistic recurrence

relations, restated next. Roughly speaking, this theorem relates two

processes: (1) a random process where in each round the problem

“size” (Φ in the theorem) reduces by a constant factor in expectation,

and (2) a deterministic process where the problem size reduces by

exactly that constant factor. The theorem says that if the random

process uses a few extra rounds, it is very likely to experience at

least the size reduction of the deterministic process.

Theorem 2.1 (Restatement of special case of Theorem 1.3
6
in

[13]). Consider a random process of the following form. Let I denote
the set of all problem instances, and let I0 ∈ I denote the initial
problem instance. In the r th round, the process makes random choices
and transforms the instance from Ir−1 to Ir (a random variable). Let
Φ : I → R be any function satisfying 0 ≤ Φ(Ir ) ≤ Φ(Ir−1) for
6
Karp states the theorem very differently. The process described here corresponds

to his recurrence T (I ) = a (Φ(I )) +T (h (I )), where a (x ) = 0, x < d and a (x ) = 1,

x ≥ d , for d = pk · Φ(I0 ). This recurrence counts the number of steps to reach

the target size. (Note that d depends only on the initial instance and is constant in

the recurrence.) The deterministic counterpart is τ (x ) = a (x ) + τ (px ), which has

solution u (Φ(I0 )) = ⌈log
1/p (Φ(I0 )/d )⌉ ≤ k + 1.

all relevant r ≥ 1 and all feasible sequences I0, I1, I2, . . . of instance
outcomes.

Suppose there exists some constant p < 1 such that for all instances
E[Φ(Ir ) |I0, I1, . . . , Ir−1] ≤ p · Φ(Ir−1), and consider any integers
k ≥ 0 andw ≥ 0. Then Pr

{
Φ(Ik+w+2

) > pk · Φ(I0)
}
≤ pw .

3 SEQUENTIAL DIAMETER REDUCTION
This section focuses on proving the following theorem. The unmod-

ified G is used to refer to subgraphs G = (V ,E). When the original

input graph is intended, Ĝ is employed instead. Throughout, x de-

notes the pivot, and the vertex setsVF (forward only),VB (backward

only), and VU (unrelated) are used as setup in Algorithm 1.

Theorem 3.1. There exists a randomized sequential algorithm that
takes as input a directed graph Ĝ = (V̂ , Ê) and failure parameter γ ≥
1 with the following guarantees, where n = ���V̂

���,m =
���Ê
���, and without

loss of generalitym ≥ n/2: (1) the running time is O (γm log
2 n), (2)

the algorithm produces a size-O (γn log
2 n) set S∗ of shortcuts, and (3)

with probability at least 1 − 1/nγ , the diameter ofGS∗ = (V ,E ∪ S∗)

is O (n2/3).

As mentioned in Section 1, the algorithm entails taking the union of

shortcuts from Θ(logn) runs of Algorithm 1. To make the running

time worst case, there will be one minor modification introduced

later: namely, an extra base case to truncate the recursion.

Sections 3.1 and 3.2 set up the main ideas for proof of Lemma 1.1

but instead prove a weaker distance bound of O (n1/ lg(8/3) ) =

O (n0.7067). Section 3.3 tightens the distance bound to O (n2/3),
thereby proving Lemma 1.1. It is worth emphasizing that Sec-

tions 3.2 and 3.3 use exactly the same algorithm — the only differ-

ence is the details of the analysis. Finally, Section 3.4 completes the

proof of Theorem 3.1 by analyzing the running time and number

of shortcuts.

3.1 Setup of the Analysis
Fix any simple path P̂ = ⟨v0, . . . ,vℓ⟩ in the graph up front. By

partitioning the graph, each call to SeqSC1 also splits the path into

subpaths. The analysis tracks a collection of calls whose subgraphs

contain subpaths of P̂ .
More precisely, a path-relevant subproblem, denoted by pair

(G, P ), corresponds to a call SeqSC1(G) and an associated nonempty

subpath P of P̂ to shortcut. The starting subproblem is (Ĝ, P̂ ). The
path-relevant subproblems are the subproblems for whichG∩P̂ , ∅,
except that the base case occurs when a subpath P is shortcutted

to two hops — all recursive subproblems arising beyond that point

are not path relevant. The following lemma characterizes the path-

relevant subproblems that arise when executing the call SeqSC1(G)
with associated path P .

It is worth emphasizing that the algorithm has no knowledge

of the path P ; associating the subpath with the subproblem is an

analysis tool only.

Lemma 3.2. Let P = ⟨v0, . . . ,vℓ⟩ be a nonempty path in G =
(V ,E), and consider the effect of a single call SeqSC1(G) in Algo-
rithm 1. The following are the outcomes depending on pivot x :

(1) (Base case.) If x is a bridge of P , then the shortcuts (v0,x ) and
(x ,vℓ ) are created. There are no path-relevant subproblems.
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(2) If x and P are unrelated, then P is entirely contained inG[VU ];
the one path-relevant subproblem is thus (G[VU ], P ).

(3) If x is an ancestor of P , then there exists some vk ∈ P such
that P1 =

⟨
v0, . . . ,vk−1

⟩
is fully contained in G[VU ] and

P2 =
⟨
vk , . . . ,vℓ

⟩
is fully contained in G[VF ]. There are thus

at most two path relevant subproblems: if P1 is nonempty,
(G[VU ], P1) is path relevant; if P2 is nonempty, (G[VF ], P2) is
path relevant.

(4) If x is a descendant of P , then there exists somevk ∈ P such that⟨
v0, . . . ,vk

⟩
is fully contained in G[VB ] and

⟨
vk+1

, . . . ,vℓ
⟩

is fully contained inG[VU ]. This case gives rise to at most two
path-relevant subproblems, as above.

Proof. The proof follows from the definitions. Consider for

example the last case, that x is a descendant of P . Here vk is the

latest vertex on the path such that vk ⪯ x . Then by transitivity,

vi ⪯ vk ⪯ x for all i ≤ k . Thus, P1 is entirely contained in VB . All
vj with j > k are unrelated to x and hence in VU . □

Cases 3 and 4 seem like bad cases because the number of path-

relevant subproblems, and hence unshortcutted arcs in the final

path, increases. Section 3.2 argues that these cases domake progress.

The path-relevant subproblems that arise during the execution

of the algorithm induce a path-relevant subproblem tree, where
each node s corresponds to a call of SeqSC1 on some path-relevant

subproblem s = (G, P ). For the analysis, it is convenient to consider
the flattened path-relevant tree, where each node corresponding

to Case 2 in Lemma 3.2 is merged with its only child. Viewed algo-

rithmically, a node in the flattened path-relevant tree corresponds

to interpreting the algorithm as sampling multiple pivots x (and

discarding some of the graph) until finally getting one that is related

to the path P .
The analysis considers levels in the flattened path-relevant tree

in aggregate. The point is to later fit the analysis to Theorem 2.1.

Specifically, the analysis consists of a sequence of rounds, where

the instance Ir in round r is the collection of subproblems defined

by the nodes at depth r in the flattened path-relevant tree. We have

the following lemma immediately. All that remains is bounding the

remaining subpath lengths (Section 3.2).

Lemma 3.3. Consider any graph Ĝ = (V̂ , Ê) and any path P̂ from
u to v . Consider an execution of Algorithm 1, let S be the short-
cuts produced, and let

{
(G1, P1), . . . , (Gk , Pk )

}
denote the set of path-

relevant subproblems at level/depth r in the flattened path-relevant
tree. Then there is a u-to-v path inGS = (V̂ , Ê ∪ S ) of length at most
2
r + 2

r−1 +
∑k
i=1

length(Pi ).

Proof. Let Li denote the set of paths associated with leaves in

the tree at depth i . Then a simple induction over levels proves that:

the set of paths

{
P1, . . . , Pk

}
∪

(⋃r−1

i=1
Li

)
constitute a splitting (par-

tition) of path P̂ . (To perform the inductive step, apply Lemma 3.2

at each internal node.)

It remains to bound the path-length in GS by positing a specific

path: the concatenation of the shortcutted paths for the leaves and

the full unshortcutted paths for the remaining subproblems. Each

concatenation adds 1 arc, each leaf’s path uses 2 shortcuts, and each

remaining non-leaf path Pi has length(Pi ) arcs. Since the degree of
each node is at most 2 (Lemma 3.2), the number of leaves above level

r is at most 2
r−1

, and the number of internal nodes (concatenations)

above level r is also is at most 2
r−1

. Adding everything together

gives the bound. □

3.2 Asymmetry Leads to Progress
This section proves that with probability at least 1/2, the distance

between u and v is at most O (n1/ log(8/3) ). The main tools are The-

orem 2.1 and a proof that the number of path-related vertices de-

creases by a constant fraction, on average, with each level in the

flattened path-relevant tree. More precisely, a vertex v is path ac-
tive at level r if (1) v is part of some path-relevant subproblem

at level r in the flattened tree, and (2) v is related to the path in

that subproblem. The goal is to argue that the expected number of

path-active vertices decreases with each level.

Recall that the each node in the flattened tree corresponds to

sampling multiple pivots until finally drawing a pivot x that is path

related. The analysis focuses on this path-related choice ofx . Instead
of reasoning about x as being drawn uniformly at random from

path-related vertices, instead consider the following equivalent

process for selecting x . First, toss a weighted coin to determine

whether x is a bridge, ancestor, or descendant. Second, choose

the specific pivot vertex from within the selected set uniformly at

random.

The following lemma considers the effect of choosing x uni-

formly from all path ancestors. Choosing from path descendants is

symmetric.

Lemma 3.4. Consider any subproblem (G, P ). Suppose that x is
drawn uniformly at random from Anc(G, P ), let α = |Anc(G, P ) |, and
let α ′ be denote the number of vertices in Anc(G, P ) that remain path
active after recursing. Then E[α ′ |x ∈ Anc(G, P )] < α/2.

Proof. Define the following binary relation over vertices in

Anc(G, P ): u preserves u ′ means that if x = u, then u ′ remains

path active. The relation is irreflexive by virtue of the fact that

x ∈ (R− (G,x ) ∩R+ (G,x )) and hence not contained in any subprob-

lems. The goal is to prove that it is also antisymmetric. Assuming

the asymmetry, the total number of pairs satisfying the preserves

relation is at most

(α
2

)
. The number of vertices preserved by x is

denoted by α ′, and hence E[α ′] ≤
(α

2

)
/α = (α − 1)/2. It remains

only to prove that the preserves relation is antisymmetric.

Let P = ⟨v0,v1, . . . ,vℓ⟩. Consider any ancestor u ∈ Anc(G, P )
and let vk be the earliest vertex in P such that u ⪯ vk . Similarly,

consider any other ancestor vertex u ′ , u and let vk ′ be its earliest
related vertex in P .

The main claim is the following: u preserves u ′ only if one of

the following holds:

• u ≺ u ′ and u ′ ⊀ u, or
• u and u ′ are unrelated and k ′ < k .

This claim alone directly implies the antisymmetry. Specifically,

if u and u ′ are related, then they can only preserve each other in

one direction. If u and u ′ are unrelated, the inequality is strict so

preservation can also only be in at most one direction.

To prove the claim, consider the case that u is chosen as pivot,

and letVB ,VF , andVU , denote the backward, forward, and unrelated

vertex sets, respectively, as defined in Algorithm 1. Foru to preserve

u ′,u ′ must be active in its subproblem, i.e.,u ′ must be in a recursive
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subproblem that contains a subpath, and u ′ must be related to that

subpath. Since u is an ancestor of the path, none of the path falls in

VB . Thus, for u to preserve u ′, at least one of the following must

be true: (1) u ′ ∈ VF , or (2) u
′ ∈ VU and u ′ is related to P1. The first

condition directly implies u ≺ u ′. As for the second, Lemma 3.2

states that P1 =
⟨
v0, . . . ,vk−1

⟩
falls inVU , sou ′ related to P1 implies

k ′ ≤ k − 1 < k . □

Lemma 3.4 states that if an ancestor is selected as pivot, the

number of path-active ancestors decreases by half in expectation.

The following lemma extends that reduction to the total number of

path-active vertices. The worst case is that the number of ancestors

equals the number of descendants, in which case the analysis is

tight (to within additive constants).

Lemma 3.5. Let η denote the total number of path-active vertices in
some level-(r − 1) subproblem (G, P ), and let η′ be a random variable
denoting the number of those vertices that are path active at level-r .
Then E[η′] < (3/4)η.

Proof. The analysis considers the following steps, which may

afford the adversary more power. (1) To model any unrelated pivots,

vertices and arcs may be removed adversarially. This step only

reduces η further so is ignored. (2) A path-related pivot is selected

uniformly at random, first by determining whether the pivot is

an ancestor, bridge, or descendant, then by choosing uniformly

at random from that set. If a bridge is selected, there are no path-

related subproblems, so η′ = 0. Otherwise, filtering occurs as per

Lemma 3.4. This step is analyzed in more detail below.

At the start of step (2), let α , β , and δ denote the number of

ancestors, bridges, and descendants, respectively, of path P in G,
with α+β+δ = η. Scaling by the probabilities of selecting ancestors
or descendants, we have:

E[η′] =

(
α

η

)
E[η′ |x ∈ Anc(G, P )] +

(
δ

η

)
· E[η′ |x ∈ Desc(G, P )]

<

(
α

η

)
(α/2 + β + δ ) +

(
δ

η

)
(α + β + δ/2) (Lemma 3.4)

=
(α + δ ) (α/2 + β + δ/2)

η
+
αδ

η

=
(η − β ) (η + β )

2η
+

(
√
αδ )2

η
(η = α + β + δ )

≤
η2

2η
+

((α + δ )/2)2

η
(AM-GM inequality)

≤ (3/4)η . □

For subproblem s = (G, P ), define ϕ (s ) to be the number of

path-active vertices in s . Define Φ(Ir ) =
∑
s ∈Ir ϕ (s ), where Ir is

the collection of subproblems at level-r in the flattened tree. Then

we have the following. Applying Theorem 2.1 then gives the main

lemma.

Corollary 3.6. For every possible collection Ir−1 of subproblems,
E[Φ(Ir ) |Ir−1] ≤ (3/4)Φ(Ir−1).

Proof. Lemma 3.5 states that for each s ∈ Ir−1, we haveE[ϕ (s1)+
ϕ (s2)] ≤ (3/4)ϕ (s ), where s1 and s2 are random variables for the

(at most) two path-relevant subproblems of s . The claim follows by

linearity of expectation over all s . □

Lemma 3.7. Let Ĝ = (V̂ , Ê) be a directed graph, and consider any
vertices u,v ∈ V such that there exists a directed path from u to v in
Ĝ . Let S be the shortcuts produced by an execution of Algorithm 1 and
let n = ���V̂

���. Then with probability at least 1/2, there exists a directed

path from u to v in GS = (V̂ , Ê ∪ S ) consisting of O (n1/ lg(8/3) ) arcs.

Proof. Choose an arbitrary simple path P̂ from u to v in Ĝ. At
most every vertex is path active, so Φ(I0) ≤ n. By Theorem 2.1 with

Corollary 3.6, Pr {Φ(Ir+5) > (3/4)rn} < 1/2. Observe that Φ(Ir+5)
is at least the number of bridge nodes that are still active in round

r + 5, and each node on an active subpath is a bridge node. Thus,

by Lemma 3.3, running the algorithm to level r + 5 is enough

to yield a shortcutted path length of at most O (2r ) + Φ(Ir+5) ≤
O (2r ) + (3/4)rn, with probability at least 1/2. Setting both terms

equal and solving for r gives r = log
8/3

n. Thus, with probability

at least 1/2, the shortcutted path has length O (2r ) = O (2log
8/3

n ) =

O (n1/ lg(8/3) ). □

3.3 A Tighter Path-Length Bound (Lemma 1.1)
This section tightens the path-length bound to O (n2/3), thereby
proving Lemma 1.1.

The main difference versus Section 3.2 is a better potential func-

tion associated with subproblems. The 3/4 bound reduction in the

number of path-active vertices, as stated in Lemma 3.5, is indeed

tight in the worst case. But the worst case only occurs when the

number of ancestors is equal to the number of descendants. When

there is imbalance between the two, the reduction is better. Con-

sider, for example, the extreme that there are no descendants —

then the number of path active vertices reduces by 1/2 according

to Lemma 3.4.

It turns out that leveraging the numbers of ancestors α , bridges
β , and descendants δ is useful, but there is no requirement that

potential merely take the sum of these three terms as in Lemma 3.5.

In general, the potential function may be any function of the terms.

In particular, this section defines a potential function ϕ on subprob-

lems as follows:

ϕ (s ) =



0 if s is not path-relevant

ψ (α , β ,δ ) otherwise

, (1)

where α = |Anc(G, P ) |, β = ��Bridge(G, P )��, δ = |Desc(G, P ) |, and ψ
is a function that obeys certain properties defined next.

Definition 3.8. Letψ : R≥0 ×R≥0 ×R≥0 → R≥0 be any function

mapping three nonnegative real numbers to a nonnegative real

number. The functionψ is well-behaved if the following apply:

(i) (Converting bridges to ancestors/descendants only helps):

ψ (α + k1, β ,δ + k2) ≤ ψ (α , β + k1 + k2,δ ), for all k1,k2 ≥ 0.

(ii) (Bridges are a lower bound):ψ (α , β ,δ ) ≥ β .
(iii) (Monotonicity): ψ (α ′, β ′,δ ′) ≤ ψ (α , β,δ ), for all α ′ ≤ α ,

β ′ ≤ β , and δ ′ ≤ δ .
(iv) (Splittable): For β1 > 0 and β2 > 0 (both strictly positive),

ψ (α1, β1,δ1) +ψ (α2, β2,δ2) ≤ ψ (α1 + α2, β1 + β2,δ1 + δ2).
(v) (Concavity): treating β and δ as constant, the resulting uni-

variate function with respect to variable α is concave. Sim-

ilarly, treating α and β as constant, the function on δ is

concave.
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A well-behaved functionψ is c-reducing, for constant 0 < c < 1,

if the following holds for all η = α + β + δ > 0:

(α/η) ·ψ (α/2, β ,δ ) + (δ/η) ·ψ (α , β ,δ/2) ≤ c ·ψ (α , β,δ ) .

Finally, a well-behaved function ψ has σ -overhead, for σ ≥ 1, if

ψ (α , β ,δ ) ≤ σ · η.

The functionψ (α , β ,δ ) = α + β + δ is well-behaved with over-

head 1. As Lemma 3.5 shows, it is also (3/4)-reducing. The goal of
this section is to first extend the analysis to any c-reducing well-

behaved function, and then to show that there exists a function

with c < 3/4.

Lemma 3.9. Suppose that there exists a c-reducing well-behavedψ ,
and define ϕ as in Equation 1. Consider any path-relevant subproblem
s = (G, P ), and let s1 and s2 be random variables denoting any child
path-relevant subproblems. Then E[ϕ (s1) + ϕ (s2)] ≤ c · ϕ (s ).

Proof. The outline of the proof is the same as that of Lemma 3.5.

(1) Allow the adversary to arbitrarily remove any vertices or arcs.

By Definition 3.8-iii, removing path-related vertices entirely only re-

duces the potential. By Definition 3.8-i, removing relationships that

thereby convert a bridge to an ancestor or descendant also can only

reduce the potential. (2) A path-related pivot is selected uniformly

at random, first by determining whether the pivot is an ancestor,

bridge, or descendant, then by choosing uniformly from that set. If

a bridge is selected, there are no path-related subproblems, so the

resulting potential is 0. Otherwise, consider the expected reduction

to the number of path-active ancestors or descendants and that

impact on the potential. This step is analyzed in more detail below.

(3) Adversarially divide the path-active vertices across up to two

path-relevant subproblems. To be path-relevant, there must be at

least one vertex on the path and hence at least one bridge. Thus

Definition 3.8-iv can be applied, and any partitioning only reduces

the potential further.

The remainder of the proof thus focuses on step (2). When the

path-related pivot is selected, let A = Anc(G, P ) and α = |A|, let
B = Bridge(G, P ) and β = |B |, and let D = Desc(G, P ) and δ = |D |.
Let η = α + β + δ . Let α ′, β ′, and δ ′ be random variables denoting

the number of vertices in A, B, and D, respectively, that are also
path-active in any child subproblems.

E[ψ (α ′, β ′,δ ′)]

=

(
α

η

)
E[ψ (α ′, β ′,δ ′) |x ∈ A] +

(
δ

η

)
E[ψ (α ′, β ′,δ ′) |x ∈ D]

≤

(
α

η

)
E

[
ψ (α ′, β ,δ ) |x ∈ A

]
+

(
δ

η

)
E[ψ (α , β ,δ ′) |x ∈ D]

(by Definitions 3.8-iii and 3.8-i)

≤

(
α

η

)
ψ (E[α ′], β,δ ) +

(
δ

η

)
ψ (α , β,E[δ ′])

(by concavity, i.e., Definition 3.8-v, and Jensen’s inequality)

≤

(
α

η

)
ψ (α/2, β ,δ ) +

(
δ

η

)
ψ (α , β ,δ/2)

(by Lemma 3.4 and Definition 3.8-iii)

≤ c ·ψ (α , β,δ ) (by definition of c-reducing)

To complete the proof, as already notedϕ (s1)+ϕ (s2) ≤ ψ (α
′, β ′,δ ′)

by Definition 3.8-iv. □

As before, defineΦ(Ir ) =
∑
s ∈Ir ϕ (s ), where Ir is the collection of

subproblems at level-r in the flattened tree. Linearity of expectation

yields the following:

Corollary 3.10. Suppose that there exists a c-reducing well-
behaved functionψ . Then given any collection Ir−1 of subproblems,
E[Φ(Ir ) |Ir−1] ≤ c · Φ(Ir−1).

The following lemma, analogous to Lemma 3.7, completes the

argument. Note that the c-reducing functionψ is used only in the

analysis, so exhibiting a better function automatically strengthens

the bound.

Lemma 3.11. Suppose that there exists some c-reducingwell-behaved
functionψ , for constant c , with overhead σ .

Let Ĝ = (V̂ , Ê) be a directed graph, and consider any vertices
u,v ∈ V such that there exists a directed path from u to v in Ĝ. Let
S be the shortcuts produced by an execution of Algorithm 1 and let
n = ���V̂

���. Then with probability at least 1/2, there exists a directed

path from u to v in GS = (V̂ , Ê ∪ S ) consisting of O ((σn)1/ lg(2/c ) )
arcs.

Proof. The proof is similar to that of Lemma 3.7. Choose an

arbitrary simple path P̂ from u to v in Ĝ . Let Ir be the collection of

path-relevant subproblems at level-r in the flattened tree. At most

every vertex is path active, so α + β + δ ≤ n. Since the function has

overhead σ , it follows that Φ(I0) = ψ (α , β,δ ) ≤ σn.
Let r ′ = r + logc (1/2) + 2 = r +Θ(1). By Theorem 2.1 and Corol-

lary 3.10, Pr {Φ(Ir ′ ) > crσn} < 1/2. That is, with probability ≥ 1/2:

crσn > Φ(Ir ′ ) =
∑
s=(G,P )∈Ir ′ ϕ (s ) ≥

∑
s=(G,P )∈Ir ′

��Bridge(G, P )��,
where the last inequality follows from Definition 3.8-ii.

Thus, by Lemma 3.3, running the algorithm to level r ′ is enough

to yield a shortcutted path of length at most O (2r
′

) + Φ(Ir ′ ) ≤
O (2r ) +crσn with probability at least 1/2. Setting both terms equal

and solving for r gives r = log
2/c (σn). Substituting back, with

probability at least 1/2, the path length is O ((σn)1/ lg(2/c ) ). □

3.3.1 A Better c-Reducing Function, and Proof of Lemma 1.1. The
main idea of the potential is to capture any local imbalance between

ancestors and descendants. A good choice of function is

ψ (α , β ,δ ) =
√
(α + β ) (δ + β ) ,

which captures imbalance through a geometric mean. The inclusion

of β in both the α and β terms is primarily meant to capture both the

constraint that converting a bridge to an ancestor/descendant does

not increase the potential, and the constraint thatψ (α , β,δ ) ≥ β .
The remaining goal is to show that the function is well-behaved

and (1/
√

2)-reducing. As long as that is true, Lemma 3.11 directly

implies Lemma 1.1, because 1/ lg(2/(1/
√

2)) = 2/3. Proof of the

following lemma is deferred to the full version of the paper.

Lemma 3.12. The function ψ (α , β ,δ ) =
√
(α + β ) (δ + β ) is a

(1/
√

2)-reducing, well-behaved function with overhead 1.

3.4 Runtime and Number of Shortcuts
This section completes the proof of Theorem 3.1 by analyzing the

running time and number of shortcuts added. As stated, however,
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Algorithm 2:Modified sequential algorithm for shortcutting

SeqSC2(G = (V ,E))
1 if the recursion depth is lgn then return ∅
2 S := ∅

3 while V , ∅ do
4 select a vertex x ∈ V uniformly at random

5 R+ := R+ (G,x )

6 R− := R− (G,x )

7 S := S ∪
{
(x ,v ) |v ∈ R+

}
∪

{
(u,x ) |u ∈ R−

}
// shortcuts

8 VF := R+\R− ; VB := R−\R+ ; VU := V \(R+ ∪ R−)

9 S := S ∪ SeqSC2(G[VF ]) ∪ SeqSC2(G[VB ])

10 G := G[VU ]

11 return S

the running time of Algorithm 1 is not worst case, so it does not

meet the promise of a Monte Carlo algorithm.

This section instead analyzes Algorithm 2. Algorithm 2 is ob-

tained from Algorithm 1 by replacing one of the recursive calls

(specifically SeqSC1(G[VU ])) with a loop. There is also a new base

case after lgn levels of recursion to make the bounds worst case,

where (as always) n here refers to the number of vertices in the

original graph Ĝ. Aside from this one change, Algorithm 1 and

Algorithm 2 are equivalent.

The following lemma indicates that themain path-length lemmas

(e.g., Lemma 3.11) still hold even with the truncated execution.

More precisely, proof of those lemmas only relies on the execution

reaching a depth much less than lgn in the flattened path-relevant

tree.

Lemma 3.13. Consider an execution of Algorithm 1 and the corre-
sponding flattened path-relevant tree. When mapped to an execution
of Algorithm 2 with the same random choices, the first lgn − 1 levels
of the flattened tree all have recursion depth < lgn in Algorithm 2.

Proof. The flattened tree only merges some of the calls corre-

sponding to G[VU ]. Algorithm 2 merges all such nodes, which can

only reduce the depth of nodes further. □

The next lemmas bound the number of shortcuts and running

time.

Lemma 3.14. Consider a graph Ĝ = (V̂ , Ê), and let n = ���V̂
���. Each

execution of Algorithm 2 creates O (n logn) shortcuts.

Proof. Consider a call to SeqSC2(G) onG = (V ,E). Each short-

cut added removes a vertex: if, e.g., (x ,v ) is created, then either

v ∈ VB or v ∈ VF , both of which sets are removed from G at the

end of the iteration. Thus, there can be at most |V | arcs added.
There are potentially many recursive subproblems, but by the

same argument they are all disjoint subgraphs. Thus, the total

number of arcs added at each level of recursion is O (n). There are
O (lgn) levels by construction, which completes the proof. □

Lemma 3.15. Consider a graph Ĝ = (V̂ , Ê), and let n = ���V̂
��� and

m = ���Ê
���. Algorithm 2 can be implemented to run in O (m logn) time.

Proof. Proof is similar to Lemma 3.14, getting O (m) total time

at each level of recursion, assuming that the call SeqSC2(G) can be

made to run inO ( |V | + |E |) time. Given a pivot x ∈ V , it is straight-

forward to implement each search, and build the induced subgraphs,

to run in time O (a) where a is the number of arcs explored. Each

arc is only explored by one search in each direction, so the total

number of arcs visited is O ( |E |). Finally, sampling vertices can be

achieved by randomly permuting the vertices up front, iterating

over that list, and checking whether the vertex has already been

visited by a search. This takes a total of O ( |V |) time. □

Proof of Theorem 3.1. The full algorithm consists of (2 + γ ) lgn
independent runs of Algorithm 2. For each related pair u ⪯ v , each
run has probability ≥ 1/2 of reducing the distance between those

vertices toO (n2/3) by Lemma 1.1. Thus, the probability that all runs

fail is at most 1/2(2+γ ) lgn = 1/(n2nγ ). Since there are at most n2

related pairs, a union bound across runs gives a failure probability

of 1/nγ for the overall diameter. The running time and number of

shortcuts are obtained bymultiplying the bounds from Lemmas 3.15

and 3.14 by the Θ(γ logn) runs. □

4 AN ALGORITHMWITH
DISTANCE-LIMITED SEARCHES

This section presents a modified algorithm that is more amenable

to being parallelized. For now, this algorithm can be viewed as a

sequential algorithm — discussion of the parallel implementation

is deferred to Section 5 and the full version of the paper. The main

ideas are guided by certain sequential bottlenecks. As in Section 3,

Ĝ = (V̂ , Ê) and n = ���V̂
��� are used only to refer to the original graph.

There are twomain obstacles to parallelizing Algorithm 2, but the

first is more serious. Finding the set R− (G,x ) or R+ (G,x ) entails
a graph search, which can have linear span in a high-diameter

graph. The solution for this problem is to modify the algorithm to

use a D-limited BFS, returning only the vertices within D hops

of the source x , but doing so introduces some other difficulties.

This section thus focuses on modifying the algorithm to work with

distance-limited searches for appropriate distance D.
The second obstacle is best exhibited by the loop in Algorithm 2.

If there are no arcs in the graph, for example, the loop requires Ω(n)
iterations. The solution is to perform multiple pivots in parallel,

but in a controlled way that does not sacrifice much performance.

This second obstacle is commonly addressed in parallel algorithms.

Most related, Schudy [19] and Blelloch et al. [1] also use multiple

pivots to parallelize the divide-and-conquer algorithm for strongly

connected components [4], which is itself structurally identical to

Algorithm 1. (Their algorithms, however, assume reachability as a

black box; they do not address the first challenge.)

The full algorithm is given in pseudocode as Algorithm 3. Sec-

tion 4.1 walks through the ideas incrementally, guided by rough

intuitions behind the analysis. The key performance lemma, analo-

gous to Lemma 1.1, is the following:

Lemma 4.1. Let Ĝ = (V̂ , Ê) be a directed graph, let n = ���V̂
���, let

m = ���Ê
���, and assume without loss of generality thatm ≥ n/2.

Consider any directed path P̂ from u to v with length(P̂ ) ≤ D, for
D = Θ(n2/3

logn). Let S be the shortcuts produced by an execution
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of Algorithm 3 on Ĝ starting with h = lgn. Then with probability
at least 1/2: (1) there exists a path from u to v in GS = (V̂ , Ê ∪ S )
with length at most D/2, (2) the number of shortcuts produced is
|S | = O (n log

2 n), and (3) the total number of vertices and arcs visited
by searches isO (m log

2 n). Moreover, the maximum distance used for
any search is O (n2/3

log
12 n);

Using multiple runs of Algorithm 3 (see Section 4.2) yields the

following:

Theorem 4.2. There exists a randomized algorithm that takes as
input a directed graph Ĝ = (V̂ , Ê) and uses distance-limited searches
with the following guarantees. Let n = ���V̂

���,m =
���Ê
���, and without loss

of generalitym ≥ n/2. Let γ ≥ 1 be a parameter controlling failure
probability. Then (1) the maximum distance used for any search is
O (n2/3

log
12 n); (2) the algorithm produces a size-O (γn log

4 n) set
S∗ of shortcuts; (3) the total number of vertices and arcs visited by
searches is O (γm log

4 n + γ 2n log
8 n), and the searches dominate the

overall number of primitive operations performed; and (4) with failure
probability at most 1/nγ , the diameter of GS∗ is O (n2/3

logn),

The remainder of this section is organized as follows. Section 4.1

describes the main subroutine, namely Algorithm 3. Section 4.2

extends the algorithm to performmultiple passes, thereby obtaining

Theorem 4.2. Finally, Section 4.4 gives an overview of the interesting

issues that arise in the analysis. Due to space constraints, details

and all proofs are deferred to the full version of the paper.

Updated Notation. If there exists a path of length at most d from

u tov , thenu ⪯d v . Ifu ⪯d v orv ⪯d u, thenu andv are d-related.
All other notations and definitions in Section 2 that depend on ⪯

(i.e., successors, predecesors, ancestors, descendents, bridges) are

augmented with the term “d-limited” and a subscript d to indicate

that the ⪯ in the definition should be replaced by ⪯d . For example,

R+d (G,x ) =
{
v |x ⪯d v

}
denotes the d-limited successors of x .

4.1 The Algorithm
The main goal is to replace the searches R+ (G,x ) in Algorithms 1

and 2 with D-limited searches, for D = Õ (n2/3). The good news is

that some version of Lemma 3.4 still holds when restricted to pivots

drawn from D-limited ancestors. The bad news is that Lemma 3.2

does not hold. For concreteness, consider a path ⟨v0,v1, . . . ,vℓ⟩.
It is possible, for example, that x ⪯D v

2k but x ⪯̸D v
2k+1

for

all 0 ≤ k < ℓ/2. Thus all the even vertices would be in VF and all

the odd ones would be in VU , splitting the path into Θ(ℓ) pieces
with no potential to shortcut them later. In contrast, when the

search is not D-limited, x ⪯ vk implies x ⪯ vj for all j ≥ k , so VF
contains a single contiguous subpath.

The solution is to extend the search a little further and duplicate

vertices. That is, start with a distance of dD, for some d = Õ (1).
Any vertices reached this way are called core vertices, and they are
treated similarly to reached vertices in Algorithm 1. Then extend the

search a little farther: to a distance of (d+1)D. Vertices discovered in
the extended search are called fringe vertices, denoted by F+ and
F− in the code. Fringe vertices F+ and incident arcs are duplicated

(similarly for F−), belonging to both to the unrelated subproblem

G[VU ] and the forwards subproblem G[VF ∪ F+].

The addition of fringe vertices fixes the path-splitting prob-

lem, giving an analog of Lemma 3.2, at least for paths of length

Algorithm 3: Shortcutting algorithm with distance-limited

searches.

ParSC(G = (V ,E), h)
/* The value h indicates how many more levels of

recursion to perform. ϵπ , Nk, NL, and D are
global parameters (independent of subproblem)
set later. */

1 if h = 0 then return ∅
2 S := ∅

3 randomly permute V , giving vertex sequence

X = x1,x2, . . . ,x |V | . Mark each x j live

4 split X into subsequences X1,X1, . . . ,X2k , with

|Xi | = ��Xk−i+1

�� = ⌊(1 + ϵπ )i ⌋ for i < k and

��Xk �� = ��Xk+1

�� ≤ ⌊(1 + ϵπ )k ⌋
5 for i := 1 to 2k do
6 dmin = 1 + hNkNL − iNL // offset

dmax = dmin + NL − 1

7 choose random d ∈ {dmin,dmin + 1, . . . ,dmax − 1}

8 foreach live x j ∈ Xi do
9 R−j := R−dD (G,x j )

R+j := R+dD (G,x j ) // core vertices

10 F−j := R−
(d+1)D (G,x j )\R

−
j ;

F+j := R+
(d+1)D (G,x j )\R

+
j // fringe vertices

11 S := S ∪
{
(x j ,v ) |v ∈ R

+
j ∪ F+j

}
∪
{
(u,x j ) |u ∈ R

−
j ∪ F−j

}

// add shortcuts

12 append a tag of j to all vertices in R+j ∪ R
−
j

13 foreach live x j ∈ Xi do
14 remove vertices with tag < j from R+j , R

−
j , F
+
j , F

−
j

// first core search wins

15 VF , j := R+j \R
−
j ; VB, j := R−j \R

+
j

16 S := S ∪ ParSC(G[VF , j ∪ F+j ],h − 1) ∪

ParSC(G[VB, j ∪ F−j ],h − 1) // include fringe

17 mark all vertices in

⋃
j (R
+
j ∪ R

−
j ) as dead in X

18 VU := V \
⋃
j (R
+
j ∪ R

−
j )

19 G := G[VU ]

20 return S

ℓ ≤ D. Consider again the bad example where x ⪯dD v
2k but

x ⪯̸dD v
2k+1

. All of the even vertices are core vertices, but now

all of the odd vertices are fringe vertices. Thus, the entire path is

indeed contained in the subgraph G[VF ∪ F+]. The analysis still

treats the path as being partitioned across subproblems, but any

fringe vertices on the path can be treated as belonging to whichever

subproblem is better.

Unfortunately, duplicating fringe vertices introduces another

problem — path-related fringe vertices can be active in multiple

subproblems, thereby destroying the progress bound on Φ. In the

worst case, almost all of the active vertices could be fringe ver-

tices, and the total number of active vertices could thus increase

drastically after partitioning around pivot x .
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The solution is to select d (for search distance dD) randomly

from the range d ∈ {1, 2, . . . ,NL − 1}, for some NL = Õ (1) to be

chosen later.
7
Any vertices in the fringe for distance dD are in the

core for distances d ′D, d ′ > d . Thus, on average, only an O (1/NL )
fraction of vertices are on the fringe. For large enough NL , the

addition of these fringe vertices does not impact ϕ (s ) much.

It is also important that the distances searched never increases.

This is because any progress towards the number of active vertices

is with respect to a particular search distance dD. The algorithm
therefore selects the distance to search from the NL − 1 options

{dmin,dmin + 1, . . . ,dmax − 1}, where dmax = dmin + NL − 1, and

dmin is offset by some value to allow for later decreases. With each

choice of pivot(s), the offset decreases by at least NL . More precisely,

as in Algorithm 2, the main subroutine consists of a sequence of

iterations, where some pivots are chosen in each iteration. The

total number of iterations is bounded by some value Nk , meaning

that the full range of distances effectively owned by a single call

has size NkNL . Each time the recursion depth increases, the offset

decreases accordingly by NkNL . We thus use an initial offset dmin =

1 + hNkNL , and more generally dmin = 1 + hNkNL − iNL , where h
is the number of levels of recursion to perform and i is the iteration
number. As long as h = Õ (1), Nk = Õ (1), and NL = Õ (1), the

maximum distance searched is Õ (D) = Õ (n2/3) as desired.

Searches from Multiple Pivots. In addition to being more par-

allelizable, searching from multiple pivots is also necessary to

keep the maximum number of iterations Nk = Θ(log
1+ϵπ n) =

Θ(logn/ϵπ ) low, where 0 < ϵπ ≤ 1 is chosen later.

A single recursive call ParSC consists of a sequence of iterations,
like Algorithm 2 flattening the recursion of G[VU ]. Each iteration

proceeds as follows. First, sample a set

{
x j
}
of pivots and perform

independent searches from each of them, determining both the dD-
limited core (R+j and R−j ) and the (d + 1)D-limited fringe (F+j and

F−j ) of each pivot. Add shortcuts to and from all reached vertices. To

roughly simulate the effect of selecting one pivot at a time, if a vertex

is part of x j ’s core, then it is removed from the core and fringe sets

for any x ′j with j ′ > j. Next, calculate the forward and backwards

sets VF , j and VB, j , respectively, as in Algorithms 1 and 2. Then

launch the recursive subproblems G[VB, j ∪ F−j ] and G[VF , j ∪ F+j ],

each including the fringe nodes found in that direction. Finally,

remove all core vertices from the graph and start the next iteration.

Algorithm 3 uses the following process to control the pivot sam-

pling. Randomly permute all of the vertices at the start of the call,

creating a sequence x1,x2, . . . of pivots to consider. All pivots are

initially live; the live pivots are those still in the graph. In each

iteration, select the next group of pivots from the sequence, where

the size of the group is discussed below. Perform searches from

each live pivot, and ignore the dead ones. When a core vertex is

removed from the graph, the vertex is also marked dead in the pivot

sequence.

Number of pivots. The number of pivots (live or dead) selected

in each iteration is controlled by the parameter 0 < ϵπ ≤ 1. For

the first Θ(1/ϵπ ) iterations, only one pivot is used. In subsequent

iterations, the number of pivots increases geometrically by roughly

(1 + ϵπ ). Were the only goal to keep the number of times a vertex

7
Read NL as “number of layers”.

Algorithm 4: Diameter reduction with distance-limited

searches.

ParDiam(Ĝ = (V̂ , Ê,γ ))
/* The value γ ≥ 1 controls failure probability */

1 G ′ = (V ′,E ′) := Ĝ

2 for i := 1 to Θ(logn) do
3 foreach j ∈

{
1, 2, . . . ,Θ(γ logn)

}
do

4 Sj := ParSC(G ′, lgn), aborting if number of shortcuts

or work exceeds Lemma 4.1

5 E ′ := E ′ ∪
(⋃

j Sj
)

// add more arcs to G ′

6 return G ′

is reached in a search to O (logn), setting ϵπ = 1 and following the

geometric increase would be sufficient. To bound the number of

times a path can split in a single iteration, however, it is important

to achieve a tighter bound. There are 2k iterations total, where k
is chosen to be large enough to include all vertices according to

the following group sizes. The first k iterations follow a geometric

increase, and the next k iterations follow a symmetric geometric

decreases. More precisely, the number of pivots considered in both

iteration i and 2k − i + 1 is ⌊(1+ ϵπ )
i ⌋; the middle iterations 2k and

2k + 1 can be smaller.

4.2 Full Diameter-Reduction Algorithm and
Proof of Theorem 4.2

Like the algorithm in Section 3, to achieve diameter reduction with

high probability requires multiple passes of Algorithm 3. But now

more passes are necessary. The full algorithm, shown in Algo-

rithm 4, is as follows. Perform Θ(logn) iterations. In each iteration,

perform Θ(γ logn) independent executions of Algorithm 3 on the

current graph. Add to the graph all of the shortcuts produced thus

far, and continue to the next iteration on the updated graph.

The main reason for the extra passes of Algorithm 3 is that, due

to the Õ (D)-limited searches, the analysis only considers paths of

length D. The distance D is chosen to be large enough so that each

iteration is enough to reduce the length of the path to D/2, with
high probability, but a longer path needs to be subdivided.

Proof of Theorem 4.2, Assuming Lemma 4.1. Consider any two

vertices u ≺ v ∈ V . Let ∆i denote the length of the shortest path

from u to v in the graph after iteration i of the outer loop of Algo-

rithm 4. The main claim is that with probability at least 1 − /n2+γ
,

for all i we have ∆i ≤ D · maxn/(D2
i ), 1. For i = Ω(logn), i.e.,

when the main procedure returns, this reduces to ∆i ≤ D. Finally,
taking a union bound across up to n2

pairs u,v , the diameter bound

is met with failure probability 1/nγ .
The proof is by induction on i . For i = 0, the length of the shortest

path is at most n, so ∆0 ≤ n = D · n/(D2
0). For the inductive step

(going from iteration i to i + 1), consider the shortest path P from u
to v in the current graph. If length(P ) ≤ D, then the path is already

short enough. Otherwise, subdivide the path into at most (n/(D2
i ))

subpaths, each of length at most D. Consider each subpath. By

Lemma 4.1, a single execution of Algorithm 3 shortens the subpath’s

length toD/2 with constant probability. Thus, for failure probability
1/n4+γ

can be achieved by repeating for 4 lgn +γ lgn runs. Taking
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a union bound over all < n subpaths gives failure probability for

this iteration of at most 1/n3+γ
. If no failure occurs, concatenating

the subpaths yields a path of length (D/2) · n/(D2
i ) = n/(D2

i+1)
as desired.

Taking a union bound for failures across all Θ(logn) iterations
of the outer loop, the failure probability overall for this pair is at

most 1/n2+γ
.

The search distance follows directly from Lemma 4.1. The num-

ber of shortcuts follows from Lemma 4.1 by multiplying by the

number of Θ(γ logn) runs. As for the bound on total number of

arcs visited, observe that the graph size is at most Ê +O (γn log
4 n)

at the end. Thus, by Lemma 4.1, each run of Algorithm 3 visits

O ((m+γn log
4 n) (log

2 n)) = O (m log
2 n+γn log

6 n) arcs. Multiply-

ing by Θ(γ log
2 n) runs completes the proof. □

4.3 Notation and Shorthand
It is often convenient to refer to iterations of the loop in Algorithm 3.

During iteration i , quite a bit happens: some pivots are processed,

some searches are performed, some induced subgraphs are built,

etc., and the claims throughout refer to those objects. Defining every

term concretely in every lemma statement or proof gets tedious and

unwieldy. Instead, this paper adopts some notational conventions

consistent with the pseudocode in Algorithm 3, using the variables

to implicitly adopt the meaning of the code.

Concretely, for iteration i on graph G = (V ,E), the following
notations are used with the same meaning as the pseudocode: h, Xi
meaning the pivot sequence, and d meaning the random distance

chosen. Moreover, for each x j ∈ Xi , whenever notations R
+
j , R

−
j ,

F+j , F
−
j ,VF , j , orVB, j appear, they should also be interpreted to have

the meaning laid out in the pseudocode.

Min and max distances. In each iteration i , the algorithm chooses

a random distances in some size-(NL − 1) range, but at an offset

that depends on the iteration. Specifically, the distance is drawn

uniformly at random from d ∈ {dmin,dmin + 1, . . . ,dmax − 1}. The

minimum possible search distance for a core search is dminD. The
maximum possible search distance for a core search is (dmax − 1)D,
and the maximum possible distance for a fringe search is dmaxD.
Note that the offset used for dmin and dmax both rely on the current

iteration i and recursion height h.
These min and max distances are useful for classifying vertex

relationships as follows:

Definition 4.3. Consider any iteration i of Algorithm 3. To un-

clutter the notation, ⪯min is used to denote ⪯dminD , where dmin =

1 + hNkNL − iNL . Similarly, ⪯max similarly denotes ⪯dmaxD .

• Verticesu andv are never related ifu ⪯̸max v andv ⪯̸max u.
• Vertices u and v are partly related if u ⪯max v or v ⪯max u.
• Vertices u and v are fully related if u ⪯min v or v ⪯min u.
If u and v are fully related, then they are also partly related.

When comparing a vertex v and a path P , the same terms apply in

the natural way. For example, if v is fully related with any vertex

in P , then v and P are fully related.

4.4 Overview of the Analysis
This section outlines the issues that arise in the analysis of Algo-

rithm 3. The complete analysis appears in the full version of the

paper.

For most of the main ideas, it is convenient to consider a version

of the algorithm where in each iteration, only one pivot is selected.

(This would be the case if, e.g., ϵπ = Θ(1/n) for appropriate choice
of constant.) Using a larger number of pivots is indeed important

for some aspects of the analysis, addressed in Section 4.4.5.

An analog of Lemma 3.4 is easy to show. The statement is com-

plicated by the fact that this lemma does not count the impact of

fringe vertices. Specifically:

Lemma 4.4. Consider any iteration of the algorithm on remaining
subproblem (G, P ). Let dD be an arbitrary distance.

Suppose that a pivot x is selected uniformly at random from A =
AncdD (G, P ). Let α = |A| and let α ′ denote the total number of
vertices in A that are either (i) reached by the forward core search
and still path-active in the forward recursive subproblem, or (ii) not
reached by the core search and still path-active in the next iteration.
Then E[α ′] < α/2.

When bounding the progress with respect to ϕ, however, one
must incorporate the impact of fringe nodes. It is fairly easy to

prove the following lemma bounding the number of fringe nodes.

Lemma 4.5. Consider any iteration of the algorithm on remaining
subproblem (G, P ). Let V ′ be any subset of vertices, e.g., all path-
related vertices. Let x be an arbitrary choice of pivot.

Suppose that the search distance d is chosen uniformly at random
from {dmin, . . . ,dmax − 1}. Then the expected number of vertices in
V ′ that are fringe vertices is at most O (��V ′�� /NL ).

These preliminary lemmas expose several issues, outlined in each

of Sections 4.4.1–4.4.4. Section 4.4.5 revisits the multiple pivots.

4.4.1 The Flattened Path-Relevant Tree. Naturally, each node in

the unflattened path-relevant tree should correspond to an iteration

of the algorithm, and more specifically the graph G on which that

algorithm is operating along with a path P to shortcut. The big

question is how to setup the flattened tree, which was essential for

the analysis in Section 3.

The natural choice would be to flatten any nodes selecting piv-

ots that are dD-unrelated to the path P . Unfortunately, this choice
effects some subtle changes to the distributions assumed in Lem-

mas 4.4 and 4.5. Consider, for example, the process where random

pivots and random distances are sampled until finally selecting a

pivot that happens to be dD-path-related. Then one cannot assume,

as in Lemma 4.5, that d is chosen uniformly.

The solution is reinterpret the random process as follows:

(1) Toss a weighted coin to determine whether the pivot is never

path related or partly path related. Repeat until getting a

partly-path-related pivot, i.e., flatten the iterations corre-

sponding to never-path-related pivots. Pessimistically as-

sume that two path-relevant subproblems are created.

(2) Toss a weighted coin to decide if the pivot is fully path related

or not. If not, Lemma 4.4 will not be applied — a different

argument is necessary.



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Jeremy T. Fineman

(3) Select the pivot uniformly from the appropriate set. If the

pivot is fully path-related, apply Lemma 4.4, but with respect

to distance dminD — the actual distance is not yet known.

(4) Select the random distance and determine the number of

fringe nodes. No information about the distance has yet been

revealed, so Lemma 4.5 may be applied.

4.4.2 Balancing Fully and Partly Path-Related Pivots. The poten-
tial function incorporates all partly path-related vertices, e.g., using

α = ���AncdmaxD (G, P )���. A nice consequence of reducing distances

with each subsequent subproblem is as follows: any partly but not

fully path-related vertex v is never path related in any child sub-

problems. Thus, regardless of random choices, v is not included in

the potential in any subproblems.

The argument outlined in Section 4.4.1 considers the fully path-

related vertices separately. In more detail, let α , β , and δ denote the

numbers of partly path-related ancestors, bridges, and descendants,

respectively. Let ᾱ , ¯β , and ¯δ denote the fully-path-related numbers,

and let p = (ᾱ + ¯β + ¯δ )/(α + β + δ ). The idea is that if p is small,

it is likely to select a fully-path-related pivot and the normal c-
factor progress of the c-reducing function can be applied. If on the

other hand p is large, then the c-reducing aspect is not applied, but

significant progress is made automatically.

This logic imposes an additional requirement on thewell-behaved

c-reducing functionψ . Specifically

p · c ·ψ (ᾱ , ¯β , ¯δ ) + (1 − p)ψ (ᾱ , ¯β , ¯δ ) ≤ c ·ψ (α , β,δ ) .

This condition is relatively easy to prove forψ (α , β ,δ ) = α + β + δ ,
which is only (3/4)-reducing. It is harder to prove that this condition

holds forψ (α , β,δ ) =
√
(α + β ) (δ + β ), but it does.

4.4.3 Impact of Fringe Nodes onψ . If using the linear function
ψ (α , β ,δ ) = α+β+δ , Lemma 4.5 also implies a bound on the impact

fringe nodes have to the potential. In particular, the expected num-

ber of path-active nodes increases by an additiveO ((α +β +δ )/NL ).
For NL = Ω(logn), this additive increase becomes a multiplicative

(1 +O (1/ logn)) factor, which is negligible given that the analysis

only considers O (logn) levels.
Bounding the impact of fringe nodes for more complex ψ is

much more difficult as the number of fringe nodes added does not

easily relate to the change inψ . The full analysis instead uses the

following potential function:

ψ (α , β ,δ ) =
√
(α + β ) (δ + β ) ·Cϕ + (α + β + δ ) , (2)

where Cϕ = Θ(log
3/2). The advantage of the linear term is that

it makes it easier to bound the impact of fringe nodes. But the

nonlinear term is weighted by more so that imbalance can still be

exploited in roughly the same way.

Lemma 4.6. The function ψ from Equation 2 is a well-behaved
c-reducing function, for c = (1/

√
2) (1 +O (1/ logn)), with overhead

Cϕ = Θ(log
3/2 n).

Moreover, bounding the impact of adding f = f1 + f2 + f3 fringe
nodes,ψ (α + f1, β+ f2,δ + f3) ≤ (1+O (1/ logn)) ·ψ (α , β ,δ )+3f C2

ϕ .

To make the additive impact of fringe nodes small enough, the

preceding lemma suggests choosing NL = Ω(C2

ϕ logn) = Ω(log
4 n).

4.4.4 Analyzing Layers in the Flattened Tree. Most of the remain-

der of the analysis, at least for the single-pivot case, is similar to

Section 3. However, there is one subtle challenge: Theorem 2.1 re-

quires that the potential Φ(Ir ) =
∑
s ∈Ir ϕ (s ) satisfy ϕ (Ir ) ≤ ϕ (Ir−1)

for all feasible sequences I0, I1, . . . of instances. The inclusion of

fringe nodes violates this requirement, since an unlucky outcome

can cause the potential to increase, and it is not even clear whether

such an increase is unlikely. The solution is to multiply the potential

by (1 + Θ(1/ logn))lgn−r . This extra slack causes the potential to

automatically decrease when moving to the next level in the tree,

unless the number of fringe nodes far exceeds the expectation. An

unlucky outcome can still cause the potential to increase, but with

the proper setup Theorem 2.1 can be applied.

4.4.5 Multiple Pivots. The main problem with using a single

pivot is that the number of iterations Nk is too large, and hence so

is the maximum search distance. With multiple pivots, however,

the graph may be searched from multiple places. Increasing the

number of pivots geometrically ensures the following:

Lemma 4.7. Restrict ϵπ to be 0 < ϵπ ≤ 1, and choose any γ ≥ 1.
Then for any iteration and vertexv : with probability at least 1−1/nγ ,
v is not visited more than O (γ logn) times.

Thus, the total number of fringe nodes may increases by a

O (logn) factor, which can be offset by increasing NL further.

The other consequence of selecting multiple pivots is that there

may bemultiple partly-path-related pivots, and the pathmay be sub-

divided into many pieces. For technical reasons, the analysis only

leverages reductions in potential arising from the first partly-path-

related pivot selected. But the number of path-related subproblems

generated cannot be ignored. The following lemma, used to bound

the fanout, says that conditioning on the fact that some path-related

pivot is chosen, the additional number of partly path-related pivots

selected is extremely small.

Lemma 4.8. Consider an iteration of the algorithm. Let x de-
note the number of partly-path-related pivots selected. Then E[x] =

O (ϵπ logn). More importantly, E[x |x ≥ 1] ≤ 1 +O (ϵπ logn).

Moreover, if x path-related pivots are selected, then the number

of path-relevant subproblems generated is at most x + 1. Thus, as

long as the total number of pivots selected in a level never exceeds

1 +O (1/ logn) times the number of subproblems, the number of

subproblems at level r is at most (2(1 +O (1/ logn)))r = O (2r ) for
r = O (logn). In short, for small-enough choice of ϵπ , the increased
fanout has no significant impact on the length of the shortcutted

path.

5 PARALLEL VERSION
This section briefly discusses the parallel version of Algorithm 3

and Algorithm 4, with details deferred to the full version of the

paper. This section assumes the reader is comfortable enough with

parallel algorithms to infer the details, instead focusing only on the

interesting issues.

The main results are as follows.

Theorem 5.1. There exists a randomized parallel algorithm taking
as input a directed graph Ĝ = (V̂ , Ê) with the following guarantees.
Let n = ���V̂

���,m =
���Ê
���, and without loss of generality assumem ≥ n/2.
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Then (1) the algorithm produces a size-O (n log
4 n) set S∗ of shortcuts;

(2) the algorithm has O (m log
6 n + n log

10 n) work; (3) the algorithm
has O (n2/3

log
19 n) span; and (4) with high probability, the diameter

of GS∗ = (V̂ , Ê ∪ S∗) is O (n2/3
logn).

Corollary 5.2. There exists a randomized parallel CREW algo-
rithm for digraph reachability that has work O (m log

6 n + n log
10 n)

work and O (n2/3
log

19 n) span, both with high probability.

Proof. Perform the diameter reduction algorithm, then run a

standard parallel BFS but limited to O (n2/3
logn) hops. The work

and span of the diameter reduction dominates. If the BFS com-

pletes in the prescribed number of rounds, the algorithm terminates.

Otherwise, keep repeating the diameter reduction and BFS until

successful. □

Model. This paper adopts the now de facto standard work-span
model [5], also called work-time [11] or work-depth model, which

abstracts low-level details of the machine such as the number of

processors or how parallel tasks are scheduled. The work-span

model allows algorithms to be expressed through the inclusion of

parallel loops, i.e., a parallel foreach. A parallel foreach indicates

that each task corresponding to a loop iteration may execute in

parallel, and that all parallel tasks must complete before continuing

to the next step after the loop. It is generally straightforward to

map algorithms from the work-span model to a PRAM model; see,

e.g., [11, 14]. Like the asynchronous PRAM model [7], the work-

span model requires that algorithmic correctness not be tied to any

assumptions about how tasks are scheduled beyond the explicit

ordering imposed by the loops. That is to say, it should not be

assumed that the instructions across iterations execute in lock step.

The work of an algorithm is the same as the sequential running

time in a RAM model (replacing all parallel loops by sequential

loops). When multiple tasks are combined through a parallel loop,

the combined span is the maximum of the span of the individual

subproblems, plus the span of the loop itself. There are several

variants to the work-span model. In a binary-forking model such
as [5], the span of a k-way loop is Θ(lgk ). Much of the literature

on parallel algorithms, however, adopts an unlimited-forking
model, where the span of launching k parallel tasks adds O (1) to
the span. Since many of the subroutines employed are analyzed

in the latter model, this paper adopts the unlimited-forking model.

PRAM algorithms, for example, correspond to an unlimited forking

model. Both models only differ by logarithmic factors in the span.

The algorithm is a concurrent-read exclusive-write (CREW )

algorithm. CREW means that multiple parallel tasks may read the

same data, but they may not write to the same location.
8

Performing Concurrent Searches. The key subroutine in Algo-

rithm 3 are the dD-limited searches to find, e.g., R+j . One might

simply replace the foreach loops by parallel loops, but the question

is how the bookkeeping should be performed. Ordinarily, a BFS

keeps track of already-visited vertices by either annotating vertices

in the graph directly, or equivalently by keeping an extra array

indexed by vertex. A natural way to perform multiple searches in

8
CREW is usually a restriction applied to the PRAM [6, 8, 18] machine model, e.g., a

CREW PRAM. In contrast, the work-span model is an algorithmic cost model, not a

machine model. This paper proposes lifting the CREW qualifier to the work-span level

rather than the PRAM level.

parallel using a CREW algorithm would thus be to duplicate the

bookkeeping efforts for each parallel search, but doing so would

increase the work dramatically just to copy the graph or initialize

the arrays.

The key property that allows an efficient implementation is

Lemma 4.7 — with high probability, no vertex is visited by more

than O (logn) parallel searches. The implementation may assume

that this is the case, and just abort by returning immediately if a

vertex gets visited too many times.

The main goal is to support the following for each call to ParSC.

Lemma 5.3. Consider an iteration i in call to ParSC on graph
G = (V ,E). Let ne be the total number of arcs traversed by searches,
counting an arc for each search that reaches it. There exists an al-
gorithm implementing the iteration having O (ne log

2 n + |Xi | logn)

work and O (n2/3
log

13) span.

The remainder of the section is devoted to exhibiting an algo-

rithm that proves Lemma 5.3, focusing only on the core search.

Extending to fringe searches is not much harder.

The set of searches from Xi (in one direction) are grouped to-

gether as a single modified BFS. Rather than marking a vertex with

a single bit indicating whether it has been discovered, a vertex is

tagged with a list of IDs of the pivots that have reached it. Every

time this list of IDs changes, the vertex may be re-added to the

frontier and all of its outgoing arcs explored again. Since a vertex

is not visited too many times, the overhead is not too high.

In more detail, the algorithm is as follows. At the start of the

call to ParSC, initialize Θ(logn) space for each vertex to record the

ID tags, initally all null. Use an array to store the frontier vertices

along with the ID of the pivot from which this search originated;

a vertex may appear in the frontier multiple times from different

pivots. Save all frontiers so as to identify all vertices reached by the

searches at the end and also to record all new shortcuts.

To start a set of searches from |Xi |, copy all live pivots x j to the

frontier array and associate with each pivot its own ID as the search

originator. Also update each pivot’s tag list to include itself.

Each round of the BFS operates as follows. Foreach vertex in

the frontier in parallel, identify the number of outgoing arcs. Next,

perform parallel prefix sums so that each arc has a distinct index

in the next frontier array. Foreach arc (u,v ) in parallel, let x j be
the associated pivot ID. Check whether v’s ID set includes x j ; this
check can be performed inO (logn) sequential time (both work and

span) by scanning through v’s tag list. If x j is not present, record v
and x j in (u,v )’s slot in the next frontier; otherwise record null.

At this point, a vertex may appear many times in the frontier

list, even from a single search. Sort the frontier list by vertex (high

priority) and pivot ID (lower priority). Remove duplicate entries

with a compaction pass. Now each vertex appears at most once for

each search, so O (logn) times in total. For each slot j in the next

frontier in parallel, let v be the vertex stored there. Check whether

this is the first slot for vertex v , i.e., if j − 1 stores a different vertex.

If so, scan through the O (logn) next slots (sequentially), and for

each entry of v append the pivot tag to v’s tag list.
Repeat this process for the number of rounds dictated by the

distance dD for the core searches. When the searches complete,

sort the arrays of all vertices reached by core searches. Foreach

vertex v in core searches, in parallel, identify the lowest ID pivot
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reachingv . Again use parallel prefix sums and then copy the lowest-

ID occurrence ofv to a new array for the recursive searches. Finally,

sort the new array by pivot ID so that all vertices in the same

induced subgraph are adjacent. Building the induced subgraphs for

recursive calls can again be accomplished with arc counting, prefix

sums, and sorting.

Updating G[VU ]. One could build G[VU ] explicitly, but doing

so would require processing the full graph. The goal expressed

by Lemma 5.3 is to have work proportional to the number of arcs

reached, but G[VU ] could be much larger. Instead, simply mark

vertices inV as dead when they have been reached by a core search.

Augment the search to ignore dead vertices.

Completing the proof of Lemma 5.3. The basic subroutines used in

each round such as prefix sums, compaction, etc, can all be per-

formed in linear work and O (logn) span. (See e.g., [11].) Scanning
the list of tags also requires O (logn) work per arc on the fron-

tier and O (logn) span as it is performed sequentially. Using Cole’s

merge sort [3], the cost of a sort isO (logn) work per element sorted

andO (logn) span. Multiplying the search distance byO (logn) thus
gives the overall span bound. Since each arc may be reached by

O (logn) searches, the bound is O (log
2 n) work per arc visited. □

Aborting Algorithm 3. To make the work (and shortcut) bound

deterministic, Algorithm 4 needs the ability to abort any runs of

Algorithm 3 that exceed the target work bound. (Exceeding the

shortcut bound can be handled by simply discarding the result — a

true abort is not necessary there.)

Unfortunately, the proof of Lemma 4.1 examines the work in

aggregate across levels in the recursion tree. It is not clear how to

make local abort decisions. One natural alternative is to augment

the algorithm to check the elapsed time, and to return immediately

if some threshold has been reached. Technically, however, this

solution violates the work-span model as the target time bound

would depend on both on how efficiently the program is scheduled

and on the number of processors employed.

Nevertheless, it is possible to augment the algorithm to imple-

ment aborts as needed in the work-span model.

6 CONCLUSIONS
This work makes the first major progress toward work-efficient

parallel algorithms for directed graphs, but it also exposes several

new questions. First, can the performance be improved? Shaving

logarithmic factors would be nice, but doing so seems premature

— it is quite likely that Õ (n2/3) is not the final answer. I would

conjecture that an n1/2+o (1)
-diameter reduction is possible using a

more sophisticated algorithm based on the one presented herein.

Is true work efficiency, i.e.,O (m) work, possible for the diameter-

reduction problem? Achieving that would require first producing

an O (m)-time sequential algorithm for the problem.

Hesse’s lower bound provides a lower bound on work-efficient

diameter reduction, but that is not a general lower bound on digraph

reachability. Can digraph reachability be improved by relaxing the

shortcutting requirements, perhaps by adopting some ideas from

Spencer’s algorithm? Are there good general lower bounds for

work/span tradeoffs of these algorithms?

Finally, can the algorithm be extended to solve unweighted short-

est paths? Solving the exact problem is likely difficult, but even an

approximate solution would be progress.
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