Nearly Work-Efficient Parallel Algorithm for Digraph
Reachability

Jeremy T. Fineman
Georgetown University
Washington, District of Columbia, USA
jfineman@cs.georgetown.edu

ABSTRACT

One of the simplest problems on directed graphs is that of identi-
fying the set of vertices reachable from a designated source ver-
tex. This problem can be solved easily sequentially by performing
a graph search, but efficient parallel algorithms have eluded re-
searchers for decades. For sparse high-diameter graphs in particular,
there is no known work-efficient parallel algorithm with nontrivial
parallelism. This amounts to one of the most fundamental open
questions in parallel graph algorithms: Is there a parallel algorithm
for digraph reachability with nearly linear work? This paper shows
that the answer is yes.

This paper presents a randomized parallel algorithm for digraph
reachability and related problems with expected work O(m) and
span O(n?/3), and hence parallelism Q(m/n%/?) = Q(n'/3), on any
graph with n vertices and m arcs. This is the first parallel algorithm
having both nearly linear work and strongly sublinear span, i.e.,
span O(n'~€) for any constant € > 0. The algorithm can be extended
to produce a directed spanning tree, determine whether the graph
is acyclic, topologically sort the strongly connected components of
the graph, or produce a directed ear decomposition, all with work
O(m) and span O(n?/3).

The main technical contribution is an efficient Monte Carlo al-
gorithm that, through the addition of O(n) shortcuts, reduces the
diameter of the graph to O(n?/3) with high probability. While both
sequential and parallel algorithms are known with those combina-
torial properties, even the sequential algorithms are not efficient,
having sequential runtime Q(mn®W). This paper presents a surpris-
ingly simple sequential algorithm that achieves the stated diameter
reduction and runs in O(m) time. Parallelizing that algorithm yields
the main result, but doing so involves overcoming several other
challenges.

CCS CONCEPTS

« Theory of computation — Graph algorithms analysis; Shared

memory algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06...$15.00
https://doi.org/10.1145/3188745.3188926

KEYWORDS

Parallel algorithm, randomized algorithm, graph search, reachabil-
ity, shortcuts

ACM Reference Format:

Jeremy T. Fineman. 2018. Nearly Work-Efficient Parallel Algorithm for Di-
graph Reachability. In Proceedings of 50th Annual ACM SIGACT Symposium
on the Theory of Computing (STOC’18). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3188745.3188926

1 INTRODUCTION

There are essentially no good parallel algorithms known for the
most basic problems on general directed graphs, especially when
the graph is sparse. This paper yields several.

A good parallel algorithm should have polynomial parallelism
and be (nearly) work efficient. The work W (n) of a parallel algo-
rithm on a size-n problem is the total number of primitive operations
performed. Ideally, the work of the parallel algorithm should be
similar to the best sequential running time T*(n) known for the
problem. An algorithm is work efficient if W(n) € O(T*(n)) and
nearly work efficient if W(n) € O(T*(n)) = O(T*(n) -poly(log n)),
where O hides logarithmic factors.' (As a slight abuse of notation,
O(1) is used to mean O(poly(log n)), where the n should be clear
from context.)’ The span S(n), also called depth, of a parallel algo-
rithm is the length of the longest chain of sequential dependencies.’
By Brent’s scheduling principle [2], such an algorithm can gener-
ally be scheduled to run in O(W(n)/p) time on p < W(n)/S(n)
processors; adding more processors beyond that point does not
yield asymptotic speedup. The limit W (n)/S(n) is called the paral-
lelism of the algorithm; an algorithm is moderately parallel if the
parallelism is Q(n€), for some constant € > 0, and highly parallel
if the span is O(1). The goal is to achieve speedup with respect to
the best sequential algorithm, which is why work efficiency mat-
ters. A nearly work-efficient algorithm runs in O(T*(n)/ p) time on
p < W(n)/S(n) processors, but inefficient algorithms may require
enormous numbers of processors to beat the sequential algorithm.

Remark. Aside from the context provided in this introduction
and high-level ideas, most of the paper does not require any specific
knowledge of parallel algorithms; the challenge lies in producing

!In addition to uncluttering the bounds, ignoring logarithmic factors is particularly
convenient when comparing parallel algorithms — the precise bounds depend on the
specifics of the parallel model, but the bounds typically only vary by logarithmic
factors (see [11] for discussion) — allowing us to focus on the high-level discussion.
2The standard definition for soft-O is that f(n) € O(g(n)) if f(n) €
O(g(n) poly(log g(n))). This paper uses f(n) € O(g(n)) to mean f(n) €
O(g(n) poly(log n)), with the only relevant difference being the meaning of o(1).
30lder PRAM literature often characterizes algorithms by a number of processors and
parallel running time. Span here is generally equivalent to parallel time, and work
corresponds to the product of processors and time.

https://doi.org/10.1145/3188745.3188926
https://doi.org/10.1145/3188745.3188926

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

an algorithm with properties amenable to parallelization. Most
implementation details are straightforward, so the parallel model
and implementation details are deferred to Section 5.

Problem and history. Perhaps the most basic problem on directed
graphs is the single-source reachability problem: given a directed
graph G = (V,E) and source vertex s € V, identify the set of
vertices reachable by a directed path originating at s. Throughout,
let n = |V| be the number of vertices and m = |E| be the number
of arcs, and for conciseness assume that m € Q(n). This problem
has simple sequential solutions: both breadth-first search (BFS) and
depth-first search (DFS) solve the problem in O(m) time. There are
two natural parallel algorithms for the reachability problem, which
seem to be folklore. See Table 1 for a comparison. Parallel transitive
closure [11], which amounts to repeated squaring of the adjacency
matrix, is highly parallel but far from work efficient even for dense
graphs. Parallel BFS is similar to sequential BFS, except that arcs
from each layer (vertices with the same distance) are explored in
parallel. Parallel BFS is work efficient (see, e.g., [16]), but the span is
proportional to the diameter, which is ©(n) in the worst case. Both
algorithms fall short of our goals, but they are the state of the art.

The only other progress on general graphs are work/span trade-
offs. Ullman and Yannakakis [22] raised the question over 25 years
ago of whether it is possible to solve digraph reachability with
sublinear work without sacrificing work efficiency. Instead, their
algorithm [22], henceforth termed UY, and Spencer’s algorithm [20]
exhibit tradeoffs between work and span. Though not originally de-
scribed in the same terms, both algorithms can be parameterized by
avalue p, 1 < p < n. Table 1 summarizes the performance bounds.*
For p = 1, both algorithms are a parallel BFS. As p increases, the
span decreases but the work increases. When p = n, both algorithms
converge to transitive closure via regular ©(n®)-work matrix mul-
tiplication. They differ for intermediate p. Spencer’s algorithm is
deterministic and, for sufficiently dense graphs, can be nearly work
efficient with moderate parallelism. In contrast, UY is randomized
and never simultaneously work efficient and moderately parallel,
but it exhibits a better work/span tradeoff for sparse graphs.

Other work focuses on either restricted graph classes or sequen-
tial preprocessing. Kao and Klein [12] give an algorithm for reacha-
bility on planar digraphs with O(n) work and O(1) span. Klein [15]
gives an algorithm that preprocesses the graph in O(np) sequential
time, where p > 1 is a parameter; after the preprocessing, reacha-
bility can be solved in O(m/p) time on p processors.

1.1 Shortcutting Approach and Contributions

The high-level approach is intuitive: (1) reduce the diameter of the
graph through the addition of shortcuts, or arcs whose addition
does not change the transitive closure of the graph; (2) run parallel
BFS on the shortcutted graph. UY [22] fits this general strategy (and
parallel BFS and transitive closure are extreme cases), but Spencer’s
algorithm [20] does not.

4The work bound stated by Ullman and Yannakakis [22] is worse, for small p, than
the bound displayed in Table 1. The table shows the improved bound observed by
Schudy [19].

Jeremy T. Fineman

The number of shortcuts added is of utmost importance because
it corresponds to the work performed during the BFS phase. Specif-
ically if the BFS phase is to complete with O(m) work, then the
number of shortcuts must be limited to O(m).

To understand the limits of what could be achieved through this
approach, ignore for the now the cost of computing the shortcuts.
It is known that O(n) shortcuts are sufficient to achieve O(+/n)
diameter — UY [22] with p = /n, for example, accomplishes this
task. Except for logarithmic factors, this is the best diameter reduc-
tion known for general graphs using a linear number of shortcuts.
(Better bounds are known for, e.g., planar graphs [21].) Moreover,
as Hesse [9] shows, there exists a family of graphs that cannot have
their diameter reduced below ©(n'/17) without adding Q(mnt/17)
shortcuts. In a recent breakthrough, Huang and Pettie [10] show
a higher diameter lower bound of Q(n'/!) when limited to O(m)
shortcuts.” The main lesson is: if a nearly work-efficient parallel
algorithm for digraph reachability uses the shortcutting approach,
then its span must be polynomial (specifically at least Q(n!/11)).

The main technical challenge is to produce the shortcuts effi-
ciently, which is a challenge even ignoring parallelism. There is
no O(m)-time sequential algorithm known to reduce every graph’s
diameter to O(n'~€), for any constant ¢ > 0. For contrast, consider
the most natural approach (similar to UY [22]): sample /n vertices,
perform a graph search from each, and add shortcuts between all
related pairs of samples. It is straightforward to prove that the
resulting diameter is O(y/nlogn) with high probability, but the
running time of the 4/n independent searches is O(m+/n).

This paper has the following main contributions:

e (Section 3.) An O(m)-time sequential Monte Carlo algorithm
that shortens the diameter of any graph to O(n?/3), with
high probability, through the addition of O(n) shortcuts.

o (Sections 4 and 5.) A Monte Carlo parallel algorithm having
O(m) work and O(n?/3) span that shortens the diameter of
any graph to O(n?/3 log n), with high probability, through
the addition of O(n) shortcuts.

e Applying the diameter reduction then parallel BFS yields
a Las Vegas algorithm for single-source reachability with
O(m) work and O(n?/3) span, with high probability.

e (Deferred to full version.) An extension that finds a directed
spanning tree, i.e., a tree rooted at s containing all vertices
reachable from s and using only arcs from G.

Applying existing reductions yields the following Las Vegas ran-
domized parallel algorithms, both with O(m) work and O(n?/3)
span with high probability:

o An algorithm that identifies and sorts the strongly connected
components of the graph. (Use the new reachability algo-
rithm in Schudy’s algorithm [19].)

e An algorithm that finds a directed ear decomposition of any
strongly connected graph. (Use the new directed spanning
tree algorithm with Kao and Klein’s algorithm [12].)

5Closing the diameter gap between the n'/!! lower bound and v/ upper bound is an
interesting open question, but it is not addressed by this paper.

Nearly Work-Efficient Parallel Algorithm for Digraph Reachability

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Work Span Nearly ngmber of prf)cessors to achieve
work efficient? O(n/k) runtime, for m € O(n)
parallel BFS O(m) O(n) Yes Not Possible unless k = O(1)
parallel Trans. Closure O(M(n)) 0(1) No kM(n)/n> nk fork <n
Spencer’s [20] O(m + np?) O(n/p) if p = O(vm/n) K3 fork <n
UY [22]* O(mp + p/n) | O(n/p) if p=0(1) k2 fork <n?/31
This paper® O(m) O(n?/3) Yes k for k < n/3

Table 1: Comparison of parallel algorithms for single-source reachability. Two of the algorithms are parameterized by p, 1 <
p < n, which trades off work and span. M(n) is the work of the best highly parallel n X n matrix multiplication, which is at least

the current best sequential time of O(n?-3728%%) [17].

*: the algorithm is randomized. Bounds are with high probability.
T: for higher k, the dependence on k becomes worse and more complicated to state.

Algorithm 1: Sequential algorithm for shortcutting
SeqSC1(G = (V,E))

1 if V = 0 then return 0

2 select a pivot x € V uniformly at random

3 let R* denote the set of vertices reachable from x
4 let R~ denote the set of vertices that can reach x
5 S:={(x,v)|lveRY}U{(u,x)|ueR} // add shortcuts
6 VP:=R"\R"; Vg:=R\R*; Vy:=V\(RTUR")
7 return
S U SeqSC1(G[VF]) U SeqSC1(G[VE]) U SeqSC1(G[Vy)

1.2 Algorithm and Analysis Overview

The sequential algorithm is simple enough that the main subroutine
is given immediately. (See also Algorithm 1.) The algorithm is recur-
sive. First select a random vertex x, called the pivot. Perform graph
searches forwards and backwards from x to identify subsets R*
and R, respectively. Add shortcuts from R~ to x and from x to R*.
The graph is next partitioned into four subsets of vertices: (i) the
vertices reachable in both directions, (ii) the vertices Vg reachable
in the forward direction but not the backward direction, (iii) the
vertices Vg reachable in the backward direction but not the forward
direction, and (iv) the vertices Vi; that are unreachable in either
direction. Recurse on the subgraphs induced by the three subsets
VF, VB, and Vy; the vertices reached in both directions are ignored
because the shortcuts have already reduced the diameter of that
subgraph to 2 hops.

Ignoring the addition of shortcuts, Algorithm 1 is essentially the
divide-and-conquer algorithm for topologically sorting the strongly
connected components of a graph described by Coppersmith et
al. [4]. Their proof thus carries over to prove that this algorithm
runs in O(mlog n) sequential time in expectation, but they do not
address the diameter problem.

What should be surprising is that Algorithm 1 reduces the graph’s
diameter, captured by the following lemma. The proof'is not obvious
and leverages new insights and techniques.

LeEmMmaA 1.1. Let G = (V, E) be a directed graph, and consider any
verticesu,v € V such that there exists a directed path fromu tov in G.
Let S be the shortcuts produced by an execution of Algorithm 1. Then

with probability at least 1/2 (over random choices in Algorithm 1),
there exists a directed path fromu tov in Gs = (V,E U S) consisting
ofO(n2/3) arcs.

As a corollary (applying the union bound across at most n? related
pairs), the union of shortcuts across Q(log n) independent execu-
tions of Algorithm 1 is sufficient to reduce the diameter of the graph
to O(n?/3) with high probability. More precisely, with 21gn + k
runs, the failure probability is at most 1/ 2k,

Unusual aspects and insight. The analysis focuses on shortcut-
ting a particular path. But unlike most divide-and-conquer analyses,
the division step here does not seem to effect progress. Partition-
ing a graph is good for reducing the problem size (which is what
Coppersmith et al. [4] leverage), but it is not good for preserving
paths — and once vertices fall in different subproblems, there can
be no subsequent shortcuts between them. This feature is likely
why previous algorithms, such as UY [22], perform independent
searches on the original graph.

A key insight in the analysis is that the partitioning step also
reduces by a constant factor the number of vertices that could cause
the path to split again later. In doing so, the probability of splitting
the path goes down, and hence the probability of shortcutting it
goes up. The end effect is that the path is likely to be significantly
shortcutted before it is divided into too many pieces.

The proof of this filtering insight (Lemma 3.4) leverages anti-
symmetric relationships between certain vertices. Interestingly, the
lack of symmetry in directed graphs is exactly the feature that
makes good parallel algorithms for digraphs so elusive, but here
asymmetry is crucial to the proof.

Building a parallel algorithm. The main obstacle to parallelizing
Algorithm 1 is the graph searches employed to find R* and R™.
In fact, these searches are exactly the single-source reachability
problem that we want to solve. The obvious solution to try is to
instead limit the searches to a distance of O(n?/3), but unfortunately
doing so causes other problems. The parallel algorithm and the
analysis are thus more involved. Section 4 provides a sequential
algorithm with distance-limited searches. Given that, the parallel
implementation (discussed briefly in Section 5) is straightforward.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

2 PRELIMINARIES

This section provides definitions, notations, and the main proba-
bilistic tools used throughout.

The subgraph of G = (V,E) induced by vertices V' C V is
denoted by G[V'].

If there is a directed path (possibly empty) from u to v in digraph
G = (V,E), then u precedes v and v succeeds u, denoted u < v.
We say also that u can reach v and that v can be reached by u.
If u < v and/or v < u, then u and v are related; otherwise they
are unrelated. The successors or forward reach of x is the set
of nodes R™(G, x) = {v|x < v}. The predecessors or backwards
reach of x is the set R™ (G, x) = {u|u < x}.

A shortcut is any arc (u,v) such thatu < v in G.

Paths and nonstandard notation. The analysis considers paths
as well as the relationships between paths and vertices. A path
P = (vg,v1,...,vp) is denoted by the sequence of its constituent
vertices, with the arcs between consecutive pairs implied. For con-
venience, an path may be empty. The length of the path, denoted
length(P), is the number of arcs. For given path P, length(P) = {. An
empty path and a path comprising a single vertex both have length 0.
Splitting the path P into k pieces means partitioning it into k sub-
paths (vo, ..., 04), (Vij+15 - - -, Viy) 5 - - .,<vik71+1, .. .,vg>, where
0<ip<--<ip_q<t.

A vertex x and a path P can be compared in the following ways.
The vertex x is a bridge of P if x can reach and can be reached by
vertices on the path, i.e., if there exists v;, vj € P such that v; < x
and x < vj. Note that every vertex on the path is a bridge. A vertex
x is an ancestor of P if x can reach some vertex on the path, but
x cannot be reached by any vertex on the path. Similarly, x is a
descendant of P if x can be reached by some vertex on the path,
but x cannot reach any vertex on the path. The set of all bridges,
ancestors, and descendants of P are denoted Bridge(G, P), Anc(G, P),
and Desc(G, P), respectively. Note that these sets are all disjoint by
definition. If a vertex x is a bridge, ancestor, or descendant of the
path P, then x and P are related. Otherwise, they are unrelated.

Tools. The analysis employs one relatively uncommon proba-
bilistic tool — a special case of Karp’s [13] probabilistic recurrence
relations, restated next. Roughly speaking, this theorem relates two
processes: (1) a random process where in each round the problem
“size” (® in the theorem) reduces by a constant factor in expectation,
and (2) a deterministic process where the problem size reduces by
exactly that constant factor. The theorem says that if the random
process uses a few extra rounds, it is very likely to experience at
least the size reduction of the deterministic process.

THEOREM 2.1 (RESTATEMENT OF SPECIAL CASE OF THEOREM 1.3% 1N
[13]). Consider a random process of the following form. Let I denote
the set of all problem instances, and let Iy € I denote the initial
problem instance. In the rth round, the process makes random choices
and transforms the instance from I,_1 to I, (a random variable). Let
® : 7 — R be any function satisfying 0 < ®(I,) < ®(I,—1) for
Karp states the theorem very differently. The process described here corresponds
to his recurrence T(I) = a(®(I)) + T(h(I)), where a(x) =0, x < d and a(x) = 1,
x > d, ford = pk - ®(Iy). This recurrence counts the number of steps to reach
the target size. (Note that d depends only on the initial instance and is constant in

the recurrence.) The deterministic counterpart is 7(x) = a(x) + 7(px), which has
solution u(®(l)) = [log,,,(®(I)/d)1 < k +1.

Jeremy T. Fineman

all relevant r > 1 and all feasible sequences Iy, I1, I, . . . of instance
outcomes.

Suppose there exists some constant p < 1 such that for all instances
E[®(I)|, I1, ..., Ir—1] < p - ®(Ir-1), and consider any integers
k> 0 andw 2 0. Then Pr {®(Isny12) > p* - @)} < p™.

3 SEQUENTIAL DIAMETER REDUCTION

This section focuses on proving the following theorem. The unmod-
ified G is used to refer to subgraphs G = (V, E). When the original
input graph is intended, G is employed instead. Throughout, x de-
notes the pivot, and the vertex sets Vp (forward only), Vg (backward
only), and Vi (unrelated) are used as setup in Algorithm 1.

THEOREM 3.1. There exists a randomized sequential algorithm that
takes as input a directed graph G = (V, E) and failure parametery >
1 with the following guarantees, where n = |Vl, m= |E|, and without
loss of generality m > n/2: (1) the running time is O(ymlog? n), (2)
the algorithm produces a size-O(ynlog? n) set S* of shortcuts, and (3)
with probability at least 1 — 1/nY, the diameter of Gs+ = (V,E U §¥)
is O(n%/3).

As mentioned in Section 1, the algorithm entails taking the union of
shortcuts from ©(log n) runs of Algorithm 1. To make the running
time worst case, there will be one minor modification introduced
later: namely, an extra base case to truncate the recursion.

Sections 3.1 and 3.2 set up the main ideas for proof of Lemma 1.1
but instead prove a weaker distance bound of o(n'/ lg(8/ 3)) =
0O(n®-797)_ Section 3.3 tightens the distance bound to 0(n?/3),
thereby proving Lemma 1.1. It is worth emphasizing that Sec-
tions 3.2 and 3.3 use exactly the same algorithm — the only differ-
ence is the details of the analysis. Finally, Section 3.4 completes the
proof of Theorem 3.1 by analyzing the running time and number
of shortcuts.

3.1 Setup of the Analysis

Fix any simple path P = (vy, ..., v) in the graph up front. By
partitioning the graph, each call to SeqSC1 also splits the path into
subpaths. The analysis tracks a collection of calls whose subgraphs
contain subpaths of P.

More precisely, a path-relevant subproblem, denoted by pair
(G, P), corresponds to a call SeqSC1(G) and an associated nonempty
subpath P of P to shortcut. The starting subproblem is (G, P). The
path-relevant subproblems are the subproblems for which GNP # 0,
except that the base case occurs when a subpath P is shortcutted
to two hops — all recursive subproblems arising beyond that point
are not path relevant. The following lemma characterizes the path-
relevant subproblems that arise when executing the call SeqSC1(G)
with associated path P.

It is worth emphasizing that the algorithm has no knowledge
of the path P; associating the subpath with the subproblem is an
analysis tool only.

LEMMA 3.2. Let P = (vy,...,v¢) be a nonempty path in G =
(V,E), and consider the effect of a single call SeqSC1(G) in Algo-
rithm 1. The following are the outcomes depending on pivot x:

(1) (Base case.) If x is a bridge of P, then the shortcuts (vo, x) and

(x,vp) are created. There are no path-relevant subproblems.

Nearly Work-Efficient Parallel Algorithm for Digraph Reachability

(2) Ifx and P are unrelated, then P is entirely contained in G[Vy];
the one path-relevant subproblem is thus (G[Vy7], P).

(3) If x is an ancestor of P, then there exists some v € P such
that Py = {vq,...,vi_1) is fully contained in G[Vy] and
Py = (vg, ..., vp) is fully contained in G[Vg]. There are thus
at most two path relevant subproblems: if Py is nonempty,
(G[Vu], P1) is path relevant; if Py is nonempty, (G[VFg], P2) is
path relevant.

(4) Ifx is adescendant of P, then there exists somevy. € P such that
(vo, . .., vk) is fully contained in G[Vg] and (Vi 41, ..., 0V¢)
is fully contained in G[Viy]. This case gives rise to at most two
path-relevant subproblems, as above.

Proor. The proof follows from the definitions. Consider for
example the last case, that x is a descendant of P. Here vy is the
latest vertex on the path such that vy < x. Then by transitivity,

v; 2 v < x forall i < k. Thus, P; is entirely contained in Vg. All
vj with j > k are unrelated to x and hence in V. O

Cases 3 and 4 seem like bad cases because the number of path-
relevant subproblems, and hence unshortcutted arcs in the final
path, increases. Section 3.2 argues that these cases do make progress.

The path-relevant subproblems that arise during the execution
of the algorithm induce a path-relevant subproblem tree, where
each node s corresponds to a call of SeqSC1 on some path-relevant
subproblem s = (G, P). For the analysis, it is convenient to consider
the flattened path-relevant tree, where each node corresponding
to Case 2 in Lemma 3.2 is merged with its only child. Viewed algo-
rithmically, a node in the flattened path-relevant tree corresponds
to interpreting the algorithm as sampling multiple pivots x (and
discarding some of the graph) until finally getting one that is related
to the path P.

The analysis considers levels in the flattened path-relevant tree
in aggregate. The point is to later fit the analysis to Theorem 2.1.
Specifically, the analysis consists of a sequence of rounds, where
the instance I, in round r is the collection of subproblems defined
by the nodes at depth r in the flattened path-relevant tree. We have
the following lemma immediately. All that remains is bounding the
remaining subpath lengths (Section 3.2).

LEMMA 3.3. Consider any graph G = (V, E) and any path P from
u to v. Consider an execution of Algorithm 1, let S be the short-
cuts produced, and let {(G1, P1), . . ., (G, Px)} denote the set of path-
relevant subproblems at level/depth r in the flattened path-relevant
tree. Then there is a u-to-v path in Gs = (V,E U S) of length at most
242t 3K length(P;).

Proor. Let L; denote the set of paths associated with leaves in
the tree at depth i. Then a simple induction over levels proves that:
the set of paths {Py, ..., Pr}U (U;:_ll Li) constitute a splitting (par-
tition) of path P. (To perform the inductive step, apply Lemma 3.2
at each internal node.)

It remains to bound the path-length in Gg by positing a specific
path: the concatenation of the shortcutted paths for the leaves and
the full unshortcutted paths for the remaining subproblems. Each
concatenation adds 1 arc, each leaf’s path uses 2 shortcuts, and each
remaining non-leaf path P; has length(P;) arcs. Since the degree of
each node is at most 2 (Lemma 3.2), the number of leaves above level

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

r is at most 2”1, and the number of internal nodes (concatenations)
above level r is also is at most 2. Adding everything together
gives the bound. O

3.2 Asymmetry Leads to Progress

This section proves that with probability at least 1/2, the distance
between u and v is at most O(n!/1°8(8/3)). The main tools are The-
orem 2.1 and a proof that the number of path-related vertices de-
creases by a constant fraction, on average, with each level in the
flattened path-relevant tree. More precisely, a vertex v is path ac-
tive at level r if (1) v is part of some path-relevant subproblem
at level r in the flattened tree, and (2) v is related to the path in
that subproblem. The goal is to argue that the expected number of
path-active vertices decreases with each level.

Recall that the each node in the flattened tree corresponds to
sampling multiple pivots until finally drawing a pivot x that is path
related. The analysis focuses on this path-related choice of x. Instead
of reasoning about x as being drawn uniformly at random from
path-related vertices, instead consider the following equivalent
process for selecting x. First, toss a weighted coin to determine
whether x is a bridge, ancestor, or descendant. Second, choose
the specific pivot vertex from within the selected set uniformly at
random.

The following lemma considers the effect of choosing x uni-
formly from all path ancestors. Choosing from path descendants is
symmetric.

LEMMA 3.4. Consider any subproblem (G, P). Suppose that x is
drawn uniformly at random from Anc(G, P), let « = |Anc(G, P)|, and
let &’ be denote the number of vertices in Anc(G, P) that remain path
active after recursing. Then E[a’|x € Anc(G, P)] < /2.

Proor. Define the following binary relation over vertices in
Anc(G, P): u preserves u’ means that if x = u, then u’ remains
path active. The relation is irreflexive by virtue of the fact that
x € (R (G, x) NR*(G, x)) and hence not contained in any subprob-
lems. The goal is to prove that it is also antisymmetric. Assuming
the asymmetry, the total number of pairs satisfying the preserves
relation is at most (‘;) The number of vertices preserved by x is

denoted by @’, and hence E[a’] < (’;)/a = (a — 1)/2. It remains
only to prove that the preserves relation is antisymmetric.

Let P = (vg,v1,...,v¢). Consider any ancestor u € Anc(G, P)
and let vy be the earliest vertex in P such that u < v. Similarly,
consider any other ancestor vertex u’ # u and let vy be its earliest
related vertex in P.

The main claim is the following: u preserves u’ only if one of
the following holds:

e u<u andu’ A u,or

e y and u’ are unrelated and k’ < k.
This claim alone directly implies the antisymmetry. Specifically,
if u and u’ are related, then they can only preserve each other in
one direction. If u and v’ are unrelated, the inequality is strict so
preservation can also only be in at most one direction.

To prove the claim, consider the case that u is chosen as pivot,
and let Vg, Vg, and V7, denote the backward, forward, and unrelated
vertex sets, respectively, as defined in Algorithm 1. For u to preserve
u’, u’ must be active in its subproblem, i.e., #’ must be in a recursive

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

subproblem that contains a subpath, and u’ must be related to that
subpath. Since u is an ancestor of the path, none of the path falls in
Vpg. Thus, for u to preserve u’, at least one of the following must
be true: (1) u’ € Vg, or (2) u’ € Vy and v’ is related to P;. The first
condition directly implies u < u’. As for the second, Lemma 3.2
states that P; = (v, . . ., vg_q) fallsin V7, so u” related to P implies
K <k-1<k w

Lemma 3.4 states that if an ancestor is selected as pivot, the
number of path-active ancestors decreases by half in expectation.
The following lemma extends that reduction to the total number of
path-active vertices. The worst case is that the number of ancestors
equals the number of descendants, in which case the analysis is
tight (to within additive constants).

LEMMA 3.5. Let n denote the total number of path-active vertices in
some level-(r — 1) subproblem (G, P), and lety’ be a random variable
denoting the number of those vertices that are path active at level-r.
Then E[5'] < (3/4)n.

Proor. The analysis considers the following steps, which may
afford the adversary more power. (1) To model any unrelated pivots,
vertices and arcs may be removed adversarially. This step only
reduces n further so is ignored. (2) A path-related pivot is selected
uniformly at random, first by determining whether the pivot is
an ancestor, bridge, or descendant, then by choosing uniformly
at random from that set. If a bridge is selected, there are no path-
related subproblems, so ” = 0. Otherwise, filtering occurs as per
Lemma 3.4. This step is analyzed in more detail below.

At the start of step (2), let @, 5, and § denote the number of
ancestors, bridges, and descendants, respectively, of path P in G,
with @+ +§ = . Scaling by the probabilities of selecting ancestors
or descendants, we have:

Elp']= (%) E[n|x € Anc(G,P)] + (g) - E[n’|x € Desc(G, P)]

< (%) (a/2+ﬁ+5)+(§)(0(+,5+5/2) (Lemma 3.4)
_ (a+0)(a/2+p+6/2) . a_5

n n
_ 2
_(ﬂ;;n+ﬁ>+w?> (n=a+p+0)
2 2
< Z_U + w (AM-GM inequality)
< (3/4)n. o

For subproblem s = (G, P), define ¢(s) to be the number of
path-active vertices in s. Define ®(I;) = X c1, ¢(s), where I is
the collection of subproblems at level-r in the flattened tree. Then
we have the following. Applying Theorem 2.1 then gives the main
lemma.

COROLLARY 3.6. For every possible collection I, 1 of subproblems,
E[(D(Ir)urfl] < (3/4)(I)(Ir71)-

PRrROOF. Lemma 3.5 states that for each s € I,_1, we have E[¢(s1)+
#(s2)] < (3/4)$(s), where s and sy are random variables for the
(at most) two path-relevant subproblems of s. The claim follows by
linearity of expectation over all s. O

Jeremy T. Fineman

LemMa 3.7. Let G = (V, E) be a directed graph, and consider any
vertices u,v € V such that there exists a directed path from u tov in
G. Let S be the shortcuts produced by an execution of Algorithm 1 and
letn = |V| Then with probability at least 1/2, there exists a directed

path fromu tov in Gs = (V,E U S) consisting ofO(nl/Ig(8/3)) ares.

Proor. Choose an arbitrary simple path P from u to v in G. At
most every vertex is path active, so ®(Iy) < n. By Theorem 2.1 with
Corollary 3.6, Pr {®(I;4+5) > (3/4)"n} < 1/2. Observe that ®(I,45)
is at least the number of bridge nodes that are still active in round
r + 5, and each node on an active subpath is a bridge node. Thus,
by Lemma 3.3, running the algorithm to level r + 5 is enough
to yield a shortcutted path length of at most O(2") + ®(I;45) <
O(2") + (3/4)" n, with probability at least 1/2. Setting both terms
equal and solving for r gives r = logg 5 n. Thus, with probability
at least 1/2, the shortcutted path has length O(2") = O(zlogii/3 " =
O(nl/lg(S/S)). O

3.3 A Tighter Path-Length Bound (Lemma 1.1)

This section tightens the path-length bound to O(n?/3), thereby
proving Lemma 1.1.

The main difference versus Section 3.2 is a better potential func-
tion associated with subproblems. The 3/4 bound reduction in the
number of path-active vertices, as stated in Lemma 3.5, is indeed
tight in the worst case. But the worst case only occurs when the
number of ancestors is equal to the number of descendants. When
there is imbalance between the two, the reduction is better. Con-
sider, for example, the extreme that there are no descendants —
then the number of path active vertices reduces by 1/2 according
to Lemma 3.4.

It turns out that leveraging the numbers of ancestors «, bridges
B, and descendants § is useful, but there is no requirement that
potential merely take the sum of these three terms as in Lemma 3.5.
In general, the potential function may be any function of the terms.
In particular, this section defines a potential function ¢ on subprob-
lems as follows:

if s is not path-relevant

0
9(s) = {1//(0(, B,8) otherwise

where a = |Anc(G, P)|, § = |Bridge(G, P)|, § = |Desc(G, P)|, and
is a function that obeys certain properties defined next.

; 1)

Definition 3.8. Let : R XR>0 X R0 — Ry be any function
mapping three nonnegative real numbers to a nonnegative real
number. The function ¢ is well-behaved if the following apply:

(i) (Converting bridges to ancestors/descendants only helps):

V(a+k1,p,0 +k2) <y(a,p+ ki + kg, 0), forall ki, kz > 0.

(ii) (Bridges are a lower bound): y(a, §,5) > p.

(iii) (Monotonicity): ¥(a’, p’,8’) < ¥(a,B,8), for all @’ < «,
B’ < B,and §’ < 6.

(iv) (Splittable): For 1 > 0 and 2 > 0 (both strictly positive),
(a1, f1,01) + ¥(az, P2, 82) < Ylay + ag, f1 + P2, 61 + O2).

(v) (Concavity): treating and § as constant, the resulting uni-
variate function with respect to variable « is concave. Sim-
ilarly, treating a and f as constant, the function on § is
concave.

Nearly Work-Efficient Parallel Algorithm for Digraph Reachability

A well-behaved function ¢ is c-reducing, for constant 0 < ¢ < 1,
if the following holds forally = a + f + 6 > 0:

(a/n) -y(a/2,B,8) + (6/n) - ¥(a,B.56/2) < c-Y(a, B,5) .
Finally, a well-behaved function ¢ has o-overhead, for ¢ > 1, if
V(a,p,0) <o-n.

The function (a, §,8) = a + p + § is well-behaved with over-
head 1. As Lemma 3.5 shows, it is also (3/4)-reducing. The goal of
this section is to first extend the analysis to any c-reducing well-
behaved function, and then to show that there exists a function
with ¢ < 3/4.

LEMMA 3.9. Suppose that there exists a c-reducing well-behaved 1,
and define ¢ as in Equation 1. Consider any path-relevant subproblem
s = (G, P), and let s; and s be random variables denoting any child
path-relevant subproblems. Then E[$(s1) + ¢(s2)] < ¢ - ¢(s).

Proor. The outline of the proof is the same as that of Lemma 3.5.
(1) Allow the adversary to arbitrarily remove any vertices or arcs.
By Definition 3.8-iii, removing path-related vertices entirely only re-
duces the potential. By Definition 3.8-i, removing relationships that
thereby convert a bridge to an ancestor or descendant also can only
reduce the potential. (2) A path-related pivot is selected uniformly
at random, first by determining whether the pivot is an ancestor,
bridge, or descendant, then by choosing uniformly from that set. If
a bridge is selected, there are no path-related subproblems, so the
resulting potential is 0. Otherwise, consider the expected reduction
to the number of path-active ancestors or descendants and that
impact on the potential. This step is analyzed in more detail below.
(3) Adversarially divide the path-active vertices across up to two
path-relevant subproblems. To be path-relevant, there must be at
least one vertex on the path and hence at least one bridge. Thus
Definition 3.8-iv can be applied, and any partitioning only reduces
the potential further.

The remainder of the proof thus focuses on step (2). When the
path-related pivot is selected, let A = Anc(G, P) and a = |A], let
B = Bridge(G, P) and f§ = |B|, and let D = Desc(G, P) and § = |D|.
Letn = a+ f+6.Leta’, f’, and 8’ be random variables denoting
the number of vertices in A, B, and D, respectively, that are also
path-active in any child subproblems.

E[y(a’. f'.6")]
= (%) E[y(a’, f.8")|x € A] + (g) E[y(a’, f'.8")|x € D]

< (%) E[y(a’,B,8)x € A] + (g) E[y(a,B,8")|x € D]
(by Definitions 3.8-iii and 3.8-i)
1)

< (%) Y(E[a]. B.6) + (;) Y(a, B.E[5"])
(by concavity, i.e., Definition 3.8-v, and Jensen’s inequality)
< (&) viarz.p0)+ () viapor)

(by Lemma 3.4 and Definition 3.8-iii)
<c-y(a,p,o)

To complete the proof, as already noted ¢(s1) +P(s2) < ¥(a’, f’,8")
by Definition 3.8-iv. O

(by definition of c-reducing)

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

As before, define ®(I;) = Yse1, ¢(s), where I, is the collection of
subproblems at level-r in the flattened tree. Linearity of expectation
yields the following:

CoROLLARY 3.10. Suppose that there exists a c-reducing well-
behaved function . Then given any collection I,_1 of subproblems,
E[Q(Ip)r-1] < ¢+ @(Ir-1).

The following lemma, analogous to Lemma 3.7, completes the
argument. Note that the c-reducing function ¢ is used only in the
analysis, so exhibiting a better function automatically strengthens
the bound.

LEMMA 3.11. Suppose that there exists some c-reducing well-behaved
function , for constant c, with overhead o.

Let G = (V,E) be a directed graph, and consider any vertices
u,v € V such that there exists a directed path from u tov in G. Let
S be the shortcuts produced by an execution of Algorithm 1 and let
n= |V| Then with probability at least 1/2, there exists a directed
path fromu tov in Gs = (V,E U S) consisting ofO((crn)l/lg(z/C))
arcs.

Proor. The proof is similar to that of Lemma 3.7. Choose an
arbitrary simple path P from u to v in G. Let I, be the collection of
path-relevant subproblems at level-r in the flattened tree. At most
every vertex is path active, so @ + f§ + § < n. Since the function has
overhead o, it follows that ®(Ip) = ¥(a, $,9) < on.

Letr’ = r+log,(1/2) + 2 = r + ©(1). By Theorem 2.1 and Corol-
lary 3.10, Pr{®(I,») > c"on} < 1/2. That is, with probability > 1/2:
chon > @(Iyr) = Ys=(G,P)el, $(5) = Ys=(G,P)el, |Bridge(G, P)
where the last inequality follows from Definition 3.8-ii.

Thus, by Lemma 3.3, running the algorithm to level r’ is enough
to yield a shortcutted path of length at most O(2r/) + ®(lr) <
O(2") + ¢" on with probability at least 1/2. Setting both terms equal
and solving for r gives r = log,,.(on). Substituting back, with

probability at least 1/2, the path length is O((on)/18(2/)y, O

>

3.3.1 A Better c-Reducing Function, and Proof of Lemma 1.1. The
main idea of the potential is to capture any local imbalance between
ancestors and descendants. A good choice of function is

Y(a, f,6) = \J(a+ p) (S +),

which captures imbalance through a geometric mean. The inclusion
of § in both the @ and f terms is primarily meant to capture both the
constraint that converting a bridge to an ancestor/descendant does
not increase the potential, and the constraint that /(a, §, §) > p.
The remaining goal is to show that the function is well-behaved
and (1/v2)-reducing. As long as that is true, Lemma 3.11 directly
implies Lemma 1.1, because 1/1g(2/(1/\/§)) = 2/3. Proof of the
following lemma is deferred to the full version of the paper.

LEmMA 3.12. The function y(a,B,8) = +/(a+p)(§+p) isa
(1/V2)-reducing, well-behaved function with overhead 1.

3.4 Runtime and Number of Shortcuts

This section completes the proof of Theorem 3.1 by analyzing the
running time and number of shortcuts added. As stated, however,

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Algorithm 2: Modified sequential algorithm for shortcutting

$eqSC2(G = (V,E))
1 if the recursion depth is1gn then return

2 5:=0
3 while V # 0 do
4 select a vertex x € V uniformly at random

5 R := R*(G,x)

6 R™ :=R (G,x)

7 S:=SU{(x,v)|lve R} U{(u,x)lue R} // shortcuts
8 Ve:=R'\R™; Vg:=R\R"; Vy:=V\(RTUR")

9 S := S USeqSC2(G[VF]) U SeqSC2(G[Vg])

10 G = G[W]

11 return S

the running time of Algorithm 1 is not worst case, so it does not
meet the promise of a Monte Carlo algorithm.

This section instead analyzes Algorithm 2. Algorithm 2 is ob-
tained from Algorithm 1 by replacing one of the recursive calls
(specifically SeqSC1(G[Vy7])) with a loop. There is also a new base
case after lg n levels of recursion to make the bounds worst case,
where (as always) n here refers to the number of vertices in the
original graph G. Aside from this one change, Algorithm 1 and
Algorithm 2 are equivalent.

The following lemma indicates that the main path-length lemmas
(e.g., Lemma 3.11) still hold even with the truncated execution.
More precisely, proof of those lemmas only relies on the execution
reaching a depth much less than Ig n in the flattened path-relevant
tree.

LEmMmA 3.13. Consider an execution of Algorithm 1 and the corre-
sponding flattened path-relevant tree. When mapped to an execution
of Algorithm 2 with the same random choices, the firstlgn — 1 levels
of the flattened tree all have recursion depth < 1gn in Algorithm 2.

Proor. The flattened tree only merges some of the calls corre-
sponding to G[Vy7]. Algorithm 2 merges all such nodes, which can
only reduce the depth of nodes further. O

The next lemmas bound the number of shortcuts and running
time.

LEMMA 3.14. Consider a graph G= (V, E), and letn = |V| Each
execution of Algorithm 2 creates O(nlog n) shortcuts.

Proor. Consider a call to SeqSC2(G) on G = (V, E). Each short-
cut added removes a vertex: if, e.g., (x,v) is created, then either
v € Vg or v € Vg, both of which sets are removed from G at the
end of the iteration. Thus, there can be at most |V| arcs added.

There are potentially many recursive subproblems, but by the
same argument they are all disjoint subgraphs. Thus, the total
number of arcs added at each level of recursion is O(n). There are
O(lg n) levels by construction, which completes the proof. O

LeEMMA 3.15. Consider a graph G = (V, E), and letn = |V| and

m= |E| Algorithm 2 can be implemented to run in O(mlogn) time.

Jeremy T. Fineman

PRrOOF. Proof is similar to Lemma 3.14, getting O(m) total time
at each level of recursion, assuming that the call SeqSC2(G) can be
made to run in O(|V| + |E|) time. Given a pivot x € V, it is straight-
forward to implement each search, and build the induced subgraphs,
to run in time O(a) where a is the number of arcs explored. Each
arc is only explored by one search in each direction, so the total
number of arcs visited is O(|E|). Finally, sampling vertices can be
achieved by randomly permuting the vertices up front, iterating
over that list, and checking whether the vertex has already been
visited by a search. This takes a total of O(]V]) time. O

Proof of Theorem 3.1. The full algorithm consists of (2 + y) lgn
independent runs of Algorithm 2. For each related pair u < v, each
run has probability > 1/2 of reducing the distance between those
vertices to O(n?/3) by Lemma 1.1. Thus, the probability that all runs
fail is at most 1/2(+Y)187 = 1/(n%nY). Since there are at most n?
related pairs, a union bound across runs gives a failure probability
of 1/nY for the overall diameter. The running time and number of
shortcuts are obtained by multiplying the bounds from Lemmas 3.15
and 3.14 by the ©(y log n) runs. O

4 AN ALGORITHM WITH
DISTANCE-LIMITED SEARCHES

This section presents a modified algorithm that is more amenable
to being parallelized. For now, this algorithm can be viewed as a
sequential algorithm — discussion of the parallel implementation
is deferred to Section 5 and the full version of the paper. The main
ideas are guided by certain sequential bottlenecks. As in Section 3,
G=(V,E)andn = |V| are used only to refer to the original graph.

There are two main obstacles to parallelizing Algorithm 2, but the
first is more serious. Finding the set R™(G, x) or R* (G, x) entails
a graph search, which can have linear span in a high-diameter
graph. The solution for this problem is to modify the algorithm to
use a D-limited BFS, returning only the vertices within D hops
of the source x, but doing so introduces some other difficulties.
This section thus focuses on modifying the algorithm to work with
distance-limited searches for appropriate distance D.

The second obstacle is best exhibited by the loop in Algorithm 2.
If there are no arcs in the graph, for example, the loop requires Q(n)
iterations. The solution is to perform multiple pivots in parallel,
but in a controlled way that does not sacrifice much performance.
This second obstacle is commonly addressed in parallel algorithms.
Most related, Schudy [19] and Blelloch et al. [1] also use multiple
pivots to parallelize the divide-and-conquer algorithm for strongly
connected components [4], which is itself structurally identical to
Algorithm 1. (Their algorithms, however, assume reachability as a
black box; they do not address the first challenge.)

The full algorithm is given in pseudocode as Algorithm 3. Sec-
tion 4.1 walks through the ideas incrementally, guided by rough
intuitions behind the analysis. The key performance lemma, analo-
gous to Lemma 1.1, is the following:

LemMA 4.1. Let G = (V,E) be a directed graph, let n = |\7

m= ‘E‘ and assume without loss of generality that m > n/2.

Consider any directed path P from u to v with length(P) < D, for
D = 0(n?/3logn). Let S be the shortcuts produced by an execution

, let

Nearly Work-Efficient Parallel Algorithm for Digraph Reachability

of Algorithm 3 on G starting with h = lgn. Then with probability
at least 1/2: (1) there exists a path from u tov in Gg = (V,E usSs)
with length at most D/2, (2) the number of shortcuts produced is
|S| =0O(n log2 n), and (3) the total number of vertices and arcs visited
by searches is O(mlog? n). Moreover, the maximum distance used for
any search is O(n®/3 log'? n);

Using multiple runs of Algorithm 3 (see Section 4.2) yields the
following:

THEOREM 4.2. There exists a randomized algorithm that takes as
input a directed graph G = (V, E) and uses distance-limited searches
with the following guarantees. Let n = |\7‘ m= |E| and without loss
of generalitym > n/2. Lety > 1 be a parameter controlling failure
probability. Then (1) the maximum distance used for any search is
O(n?/3 log12 n); (2) the algorithm produces a size-O(yn log4 n) set
S* of shortcuts; (3) the total number of vertices and arcs visited by
searches is O(ymlog? n + y?nlog® n), and the searches dominate the
overall number of primitive operations performed; and (4) with failure
probability at most 1/nY , the diameter of Gs is O(n?/3 log n),

The remainder of this section is organized as follows. Section 4.1
describes the main subroutine, namely Algorithm 3. Section 4.2
extends the algorithm to perform multiple passes, thereby obtaining
Theorem 4.2. Finally, Section 4.4 gives an overview of the interesting
issues that arise in the analysis. Due to space constraints, details
and all proofs are deferred to the full version of the paper.

Updated Notation. If there exists a path of length at most d from
utov,thenu <4 v.Ifu <5 vorv <4 u, thenu and v are d-related.
All other notations and definitions in Section 2 that depend on <
(i.e., successors, predecesors, ancestors, descendents, bridges) are
augmented with the term “d-limited” and a subscript d to indicate
that the < in the definition should be replaced by <. For example,
R; (G, x) = {v]x =4 v} denotes the d-limited successors of x.

4.1 The Algorithm

The main goal is to replace the searches R* (G, x) in Algorithms 1
and 2 with D-limited searches, for D = O(n?/3). The good news is
that some version of Lemma 3.4 still holds when restricted to pivots
drawn from D-limited ancestors. The bad news is that Lemma 3.2
does not hold. For concreteness, consider a path (vg, vy, ..., v¢).
It is possible, for example, that x <p vy but x Ap vgg4 for
all 0 < k < ¢/2. Thus all the even vertices would be in Vg and all
the odd ones would be in Vy, splitting the path into ©(¢) pieces
with no potential to shortcut them later. In contrast, when the
search is not D-limited, x < vy implies x < v; forall j > k, so Vg
contains a single contiguous subpath.

The solution is to extend the search a little further and duplicate
vertices. That is, start with a distance of dD, for some d = O(1).
Any vertices reached this way are called core vertices, and they are
treated similarly to reached vertices in Algorithm 1. Then extend the
search a little farther: to a distance of (d+1)D. Vertices discovered in
the extended search are called fringe vertices, denoted by F* and
F~ in the code. Fringe vertices F* and incident arcs are duplicated
(similarly for F~), belonging to both to the unrelated subproblem
G[Vy] and the forwards subproblem G[Vp U F*].

The addition of fringe vertices fixes the path-splitting prob-
lem, giving an analog of Lemma 3.2, at least for paths of length

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Algorithm 3: Shortcutting algorithm with distance-limited
searches.
ParsC(G = (V,E), h)

/* The value h indicates how many more levels of
recursion to perform. €5, Nr, Nr, and D are
global parameters (independent of subproblem)
set later. */

1 if h = 0 then return

25:=0

3 randomly permute V, giving vertex sequence
X = x1,x%2,...,%|y|. Mark each x; live

4 split X into subsequences X1, X1, . . ., Xy, with
1Xi| = [Xg_j+1] = L(1 + €7)?] for i < k and

Xkl = Xl < L1+ ex)F)

5 fori:=1to 2k do

6 dmin = 1+ hNi. Ny — iNp, // offset
dmax = dmin + NL -1
7 choose random d € {dpin, dmin + 1, . ., dmax — 1}
8 foreach live x; € X; do
9 R]T = R;D(G,xj)
R;F = R:;D(G,xj) // core vertices
10 Fj = R(d+1)D(G’xj)\Rj ;
Ff = Rzrd+1)D(G’xj)\R}r // fringe vertices
11 S::SU{(xj,v)IvER;TUF;}U{(u,xj)IuER]TUFj_}
// add shortcuts
12 append a tag of j to all vertices in R; U RJT
13 foreach live xj € X; do
14 remove vertices with tag < j from R;.', RJT, F;’, Fj_
// first core search wins
e P\ P . = po\RY
5 Vej = RE\RS 5 Vp,j = R;\R!
16 S :=S5UParsC(G[VF,; U F;r], h-1) U
ParSC(G[Vp,; U Fj_],h -1 // include fringe
17 mark all vertices in (J; (R;.r UR7) as dead in X
18 Vu =V\ Uj(R}' UR]T)
1 | G:=G[W]

o return S

I

¢ < D. Consider again the bad example where x <;p vy but
x A4p Vzk41- All of the even vertices are core vertices, but now
all of the odd vertices are fringe vertices. Thus, the entire path is
indeed contained in the subgraph G[Vy U F*]. The analysis still
treats the path as being partitioned across subproblems, but any
fringe vertices on the path can be treated as belonging to whichever
subproblem is better.

Unfortunately, duplicating fringe vertices introduces another
problem — path-related fringe vertices can be active in multiple
subproblems, thereby destroying the progress bound on . In the
worst case, almost all of the active vertices could be fringe ver-
tices, and the total number of active vertices could thus increase
drastically after partitioning around pivot x.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

The solution is to select d (for search distance dD) randomly
from the range d € {1,2,..., Ny — 1}, for some N = O(1) to be
chosen later.” Any vertices in the fringe for distance dD are in the
core for distances d’D, d’ > d. Thus, on average, only an O(1/Np)
fraction of vertices are on the fringe. For large enough Ny, the
addition of these fringe vertices does not impact ¢(s) much.

It is also important that the distances searched never increases.
This is because any progress towards the number of active vertices
is with respect to a particular search distance dD. The algorithm
therefore selects the distance to search from the N — 1 options
{dmin>dmin + 1, . - ., dmax — 1}, where dpax = dmin + N — 1, and
dmin 1s offset by some value to allow for later decreases. With each
choice of pivot(s), the offset decreases by at least Ny . More precisely,
as in Algorithm 2, the main subroutine consists of a sequence of
iterations, where some pivots are chosen in each iteration. The
total number of iterations is bounded by some value Ny, meaning
that the full range of distances effectively owned by a single call
has size N Np. Each time the recursion depth increases, the offset
decreases accordingly by N Ny. We thus use an initial offset dyjn =
1+ hNi N, and more generally dpyin = 1 + hNp N — iNL, where h
is the number of levels of recursion to perform and i is the iteration
number. As long as h = O(1), N, = O(1), and N = O(1), the
maximum distance searched is O(D) = O(n?/3) as desired.

Searches from Multiple Pivots. In addition to being more par-
allelizable, searching from multiple pivots is also necessary to
keep the maximum number of iterations Ny = O(logy, . _n) =
O(logn/ex) low, where 0 < €, < 11is chosen later.

A single recursive call ParSC consists of a sequence of iterations,
like Algorithm 2 flattening the recursion of G[Vi]. Each iteration
proceeds as follows. First, sample a set {Xj} of pivots and perform
independent searches from each of them, determining both the dD-
limited core (R;.r and R}) and the (d + 1)D-limited fringe (F;r and
F;') of each pivot. Add shortcuts to and from all reached vertices. To
roughly simulate the effect of selecting one pivot at a time, if a vertex
is part of x;’s core, then it is removed from the core and fringe sets
for any x]f with j* > j. Next, calculate the forward and backwards
sets VF, j and Vg j, respectively, as in Algorithms 1 and 2. Then
launch the recursive subproblems G[Vg ; U FJT] and G[Vg ;j U F;r],
each including the fringe nodes found in that direction. Finally,
remove all core vertices from the graph and start the next iteration.

Algorithm 3 uses the following process to control the pivot sam-
pling. Randomly permute all of the vertices at the start of the call,
creating a sequence xi, X2, . . . of pivots to consider. All pivots are
initially live; the live pivots are those still in the graph. In each
iteration, select the next group of pivots from the sequence, where
the size of the group is discussed below. Perform searches from
each live pivot, and ignore the dead ones. When a core vertex is
removed from the graph, the vertex is also marked dead in the pivot
sequence.

Number of pivots. The number of pivots (live or dead) selected
in each iteration is controlled by the parameter 0 < €; < 1. For
the first ©(1/e¢,) iterations, only one pivot is used. In subsequent
iterations, the number of pivots increases geometrically by roughly
(1 + e). Were the only goal to keep the number of times a vertex

"Read N as “number of layers”.

Jeremy T. Fineman

Algorithm 4: Diameter reduction with distance-limited
searches.
ParDiam(G = (\7, E, 14))
/* The value y > 1 controls failure probability =/
1G =(V,E):=G
2 fori:=1to O(logn) do
3 foreachj € {1,2,...,0(ylogn)} do
4 L S; := ParSC(G’,1gn), aborting if number of shortcuts

or work exceeds Lemma 4.1
s | E=EU(U;S)

6 return G’

// add more arcs to G’

is reached in a search to O(log n), setting €, = 1 and following the
geometric increase would be sufficient. To bound the number of
times a path can split in a single iteration, however, it is important
to achieve a tighter bound. There are 2k iterations total, where k
is chosen to be large enough to include all vertices according to
the following group sizes. The first k iterations follow a geometric
increase, and the next k iterations follow a symmetric geometric
decreases. More precisely, the number of pivots considered in both
iteration i and 2k — i + 1is [(1 + €;)*]; the middle iterations 2k and
2k + 1 can be smaller.

4.2 Full Diameter-Reduction Algorithm and
Proof of Theorem 4.2

Like the algorithm in Section 3, to achieve diameter reduction with
high probability requires multiple passes of Algorithm 3. But now
more passes are necessary. The full algorithm, shown in Algo-
rithm 4, is as follows. Perform ©(log n) iterations. In each iteration,
perform ©(y log n) independent executions of Algorithm 3 on the
current graph. Add to the graph all of the shortcuts produced thus
far, and continue to the next iteration on the updated graph.

The main reason for the extra passes of Algorithm 3 is that, due
to the O(D)-limited searches, the analysis only considers paths of
length D. The distance D is chosen to be large enough so that each
iteration is enough to reduce the length of the path to D/2, with
high probability, but a longer path needs to be subdivided.

Proof of Theorem 4.2, Assuming Lemma 4.1. Consider any two
vertices u < v € V. Let A; denote the length of the shortest path
from u to v in the graph after iteration i of the outer loop of Algo-
rithm 4. The main claim is that with probability at least 1 — /n®*Y,
for all i we have A; < D - maxn/(D2!),1. For i = Q(logn), i.e.,
when the main procedure returns, this reduces to A; < D. Finally,
taking a union bound across up to n? pairs u, v, the diameter bound
is met with failure probability 1/n¥.

The proof'is by induction on i. For i = 0, the length of the shortest
path is at most n, so Ag < n = D - n/(D2°). For the inductive step
(going from iteration i to i + 1), consider the shortest path P from u
to v in the current graph. If length(P) < D, then the path is already
short enough. Otherwise, subdivide the path into at most (n/(D2}))
subpaths, each of length at most D. Consider each subpath. By
Lemma 4.1, a single execution of Algorithm 3 shortens the subpath’s
length to D/2 with constant probability. Thus, for failure probability
1/n**Y can be achieved by repeating for 41g n + y Ig n runs. Taking

Nearly Work-Efficient Parallel Algorithm for Digraph Reachability

a union bound over all < n subpaths gives failure probability for
this iteration of at most 1/n3*¥ . If no failure occurs, concatenating
the subpaths yields a path of length (D/2) - n/(D2%) = n/(D2*1)
as desired.

Taking a union bound for failures across all ®(log n) iterations
of the outer loop, the failure probability overall for this pair is at
most 1/n%*Y,

The search distance follows directly from Lemma 4.1. The num-
ber of shortcuts follows from Lemma 4.1 by multiplying by the
number of ©(y logn) runs. As for the bound on total number of
arcs visited, observe that the graph size is at most E + O(ynlog? n)
at the end. Thus, by Lemma 4.1, each run of Algorithm 3 visits
O((m+ynlog* n)(log? n)) = O(mlog? n+ynlog® n) arcs. Multiply-
ing by ©(y log? n) runs completes the proof. O

4.3 Notation and Shorthand

It is often convenient to refer to iterations of the loop in Algorithm 3.
During iteration i, quite a bit happens: some pivots are processed,
some searches are performed, some induced subgraphs are built,
etc., and the claims throughout refer to those objects. Defining every
term concretely in every lemma statement or proof gets tedious and
unwieldy. Instead, this paper adopts some notational conventions
consistent with the pseudocode in Algorithm 3, using the variables
to implicitly adopt the meaning of the code.

Concretely, for iteration i on graph G = (V, E), the following
notations are used with the same meaning as the pseudocode: h, X;
meaning the pivot sequence, and d meaning the random distance
chosen. Moreover, for each x; € X;, whenever notations R}', RjT,

F }r, F j_’ VF, j, or Vp j appear, they should also be interpreted to have
the meaning laid out in the pseudocode.

Min and max distances. In each iteration i, the algorithm chooses
a random distances in some size-(Np — 1) range, but at an offset
that depends on the iteration. Specifically, the distance is drawn
uniformly at random from d € {dpin, dmin + 1, - - - s dmax — 1}. The
minimum possible search distance for a core search is dp,jn D. The
maximum possible search distance for a core search is (dmax — 1)D,
and the maximum possible distance for a fringe search is dmaxD.
Note that the offset used for dijn and dmax both rely on the current
iteration i and recursion height h.

These min and max distances are useful for classifying vertex
relationships as follows:

Definition 4.3. Consider any iteration i of Algorithm 3. To un-
clutter the notation, <, is used to denote <4 . p, where dpjy =
1+ hNi N - iN[. Similarly, <jax similarly denotes <4 p.

e Vertices u and v are never related if u ﬁmax vando ﬁmax u.
o Vertices u and v are partly related if u <max v Or U Jmax U.
e Vertices u and v are fully related if u <pj, v or v <piy u.

If u and v are fully related, then they are also partly related.

When comparing a vertex v and a path P, the same terms apply in
the natural way. For example, if v is fully related with any vertex
in P, then v and P are fully related.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

4.4 Overview of the Analysis

This section outlines the issues that arise in the analysis of Algo-
rithm 3. The complete analysis appears in the full version of the
paper.

For most of the main ideas, it is convenient to consider a version
of the algorithm where in each iteration, only one pivot is selected.
(This would be the case if, e.g., €, = ©(1/n) for appropriate choice
of constant.) Using a larger number of pivots is indeed important
for some aspects of the analysis, addressed in Section 4.4.5.

An analog of Lemma 3.4 is easy to show. The statement is com-
plicated by the fact that this lemma does not count the impact of
fringe vertices. Specifically:

LEMMA 4.4. Consider any iteration of the algorithm on remaining
subproblem (G, P). Let dD be an arbitrary distance.

Suppose that a pivot x is selected uniformly at random from A =
Ancgp(G,P). Let « = |A| and let a’ denote the total number of
vertices in A that are either (i) reached by the forward core search
and still path-active in the forward recursive subproblem, or (ii) not
reached by the core search and still path-active in the next iteration.
Then E[a’] < a/2.

When bounding the progress with respect to ¢, however, one
must incorporate the impact of fringe nodes. It is fairly easy to
prove the following lemma bounding the number of fringe nodes.

LEmMMA 4.5. Consider any iteration of the algorithm on remaining
subproblem (G, P). Let V' be any subset of vertices, e.g., all path-
related vertices. Let x be an arbitrary choice of pivot.

Suppose that the search distance d is chosen uniformly at random
from {dmin, - - -, dmax — 1}. Then the expected number of vertices in
V' that are fringe vertices is at most O(|V’| /NL).

These preliminary lemmas expose several issues, outlined in each
of Sections 4.4.1-4.4.4. Section 4.4.5 revisits the multiple pivots.

4.4.1 The Flattened Path-Relevant Tree. Naturally, each node in
the unflattened path-relevant tree should correspond to an iteration
of the algorithm, and more specifically the graph G on which that
algorithm is operating along with a path P to shortcut. The big
question is how to setup the flattened tree, which was essential for
the analysis in Section 3.

The natural choice would be to flatten any nodes selecting piv-
ots that are dD-unrelated to the path P. Unfortunately, this choice
effects some subtle changes to the distributions assumed in Lem-
mas 4.4 and 4.5. Consider, for example, the process where random
pivots and random distances are sampled until finally selecting a
pivot that happens to be dD-path-related. Then one cannot assume,
as in Lemma 4.5, that d is chosen uniformly.

The solution is reinterpret the random process as follows:

(1) Toss a weighted coin to determine whether the pivot is never
path related or partly path related. Repeat until getting a
partly-path-related pivot, i.e., flatten the iterations corre-
sponding to never-path-related pivots. Pessimistically as-
sume that two path-relevant subproblems are created.

(2) Toss a weighted coin to decide if the pivot is fully path related
or not. If not, Lemma 4.4 will not be applied — a different
argument is necessary.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

(3) Select the pivot uniformly from the appropriate set. If the
pivot is fully path-related, apply Lemma 4.4, but with respect
to distance din, D — the actual distance is not yet known.

(4) Select the random distance and determine the number of
fringe nodes. No information about the distance has yet been
revealed, so Lemma 4.5 may be applied.

4.4.2 Balancing Fully and Partly Path-Related Pivots. The poten-
tial function incorporates all partly path-related vertices, e.g., using
a = |Ancdmax p(G, P)|. A nice consequence of reducing distances
with each subsequent subproblem is as follows: any partly but not
fully path-related vertex v is never path related in any child sub-
problems. Thus, regardless of random choices, v is not included in
the potential in any subproblems.

The argument outlined in Section 4.4.1 considers the fully path-
related vertices separately. In more detail, let , 8, and § denote the
numbers of partly path-related ancestors, bridges, and descendants,
respectively. Let @, B, and § denote the fully-path-related numbers,
andlet p = (@ + f + 8)/(a + B + 5). The idea is that if p is small,
it is likely to select a fully-path-related pivot and the normal c-
factor progress of the c-reducing function can be applied. If on the
other hand p is large, then the c-reducing aspect is not applied, but
significant progress is made automatically.

This logic imposes an additional requirement on the well-behaved
c-reducing function . Specifically

pre Y@ p.é) +(1-py(@p.d) <c y(ap.o).

This condition is relatively easy to prove for (a, ,6) = a + f + 6,
which is only (3/4)-reducing. It is harder to prove that this condition

holds for ¥/ (a, f,8) = +/(a + B)(S + B), but it does.

4.4.3 Impact of Fringe Nodes on . If using the linear function
V(a, B,0) = a+p+5, Lemma 4.5 also implies a bound on the impact
fringe nodes have to the potential. In particular, the expected num-
ber of path-active nodes increases by an additive O((a + f +8)/NL).
For N1 = Q(log n), this additive increase becomes a multiplicative
(1+ O(1/logn)) factor, which is negligible given that the analysis
only considers O(log n) levels.

Bounding the impact of fringe nodes for more complex ¢ is
much more difficult as the number of fringe nodes added does not
easily relate to the change in . The full analysis instead uses the
following potential function:

Y(a,p,8) = \J(@a+)6+ p)-Cy + (a+ f+5), @)

where Cy = @(log3/ 2). The advantage of the linear term is that
it makes it easier to bound the impact of fringe nodes. But the
nonlinear term is weighted by more so that imbalance can still be
exploited in roughly the same way.

LEMMA 4.6. The function from Equation 2 is a well-behaved
c-reducing function, for c = (1/¥2)(1 + O(1/ log n)), with overhead
Cy = O(log*?).

Moreover, bounding the impact of adding f = fi + fo + f3 fringe
nodes, Y (a+ f1, B+ f2, 0+ f3) < (1+0(1/logn))-y(a, B, 5)+3fC§S.

To make the additive impact of fringe nodes small enough, the
preceding lemma suggests choosing N = Q(C;S logn) = Q(log* n).

Jeremy T. Fineman

4.4.4 Analyzing Layers in the Flattened Tree. Most of the remain-
der of the analysis, at least for the single-pivot case, is similar to
Section 3. However, there is one subtle challenge: Theorem 2.1 re-
quires that the potential ®(I;) = X eg, ¢(s) satisfy ¢(Ir) < ¢(Ir-1)
for all feasible sequences Iy, Ii, . . . of instances. The inclusion of
fringe nodes violates this requirement, since an unlucky outcome
can cause the potential to increase, and it is not even clear whether
such an increase is unlikely. The solution is to multiply the potential
by (1 +©(1/log n))!8 =" This extra slack causes the potential to
automatically decrease when moving to the next level in the tree,
unless the number of fringe nodes far exceeds the expectation. An
unlucky outcome can still cause the potential to increase, but with
the proper setup Theorem 2.1 can be applied.

4.4.5 Multiple Pivots. The main problem with using a single
pivot is that the number of iterations Ny is too large, and hence so
is the maximum search distance. With multiple pivots, however,
the graph may be searched from multiple places. Increasing the
number of pivots geometrically ensures the following:

LEMMA 4.7. Restrict €; to be 0 < €5 < 1, and choose anyy > 1.
Then for any iteration and vertex v: with probability at least 1 —1/nY
v is not visited more than O(y log n) times.

Thus, the total number of fringe nodes may increases by a
O(log n) factor, which can be offset by increasing N further.

The other consequence of selecting multiple pivots is that there
may be multiple partly-path-related pivots, and the path may be sub-
divided into many pieces. For technical reasons, the analysis only
leverages reductions in potential arising from the first partly-path-
related pivot selected. But the number of path-related subproblems
generated cannot be ignored. The following lemma, used to bound
the fanout, says that conditioning on the fact that some path-related
pivot is chosen, the additional number of partly path-related pivots
selected is extremely small.

LEMMA 4.8. Consider an iteration of the algorithm. Let x de-
note the number of partly-path-related pivots selected. Then E[x] =
O(ex log n). More importantly, E[x|x > 1] < 1+ O(ex logn).

Moreover, if x path-related pivots are selected, then the number
of path-relevant subproblems generated is at most x + 1. Thus, as
long as the total number of pivots selected in a level never exceeds
1+ O(1/logn) times the number of subproblems, the number of
subproblems at level r is at most (2(1 + O(1/logn)))" = O(2") for
r = O(log n). In short, for small-enough choice of €., the increased
fanout has no significant impact on the length of the shortcutted
path.

5 PARALLEL VERSION

This section briefly discusses the parallel version of Algorithm 3
and Algorithm 4, with details deferred to the full version of the
paper. This section assumes the reader is comfortable enough with
parallel algorithms to infer the details, instead focusing only on the
interesting issues.

The main results are as follows.

THEOREM 5.1. There exists a randomized parallel algorithm taking
as input a directed graph G = (V, E) with the following guarantees.
Letn = |V

,m= |E| and without loss of generality assume m > n/2.

Nearly Work-Efficient Parallel Algorithm for Digraph Reachability

Then (1) the algorithm produces a size-O(nlog* n) set S* of shortcuts;
(2) the algorithm has O(mlog® n + nlog!® n) work; (3) the algorithm
has O(n?/3 log'® n) span; and (4) with high probability, the diameter
of Gs« = (V,E U §*) is O(n?/3 log n).

COROLLARY 5.2. There exists a randomized parallel CREW algo-
rithm for digraph reachability that has work O(mlog® n + nlog!® n)
work and O(n?/3 1og'® n) span, both with high probability.

Proor. Perform the diameter reduction algorithm, then run a
standard parallel BFS but limited to O(n?/3 log n) hops. The work
and span of the diameter reduction dominates. If the BFS com-
pletes in the prescribed number of rounds, the algorithm terminates.
Otherwise, keep repeating the diameter reduction and BFS until
successful. O

Model. This paper adopts the now de facto standard work-span
model [5], also called work-time [11] or work-depth model, which
abstracts low-level details of the machine such as the number of
processors or how parallel tasks are scheduled. The work-span
model allows algorithms to be expressed through the inclusion of
parallel loops, i.e., a parallel foreach. A parallel foreach indicates
that each task corresponding to a loop iteration may execute in
parallel, and that all parallel tasks must complete before continuing
to the next step after the loop. It is generally straightforward to
map algorithms from the work-span model to a PRAM model; see,
e.g., [11, 14]. Like the asynchronous PRAM model [7], the work-
span model requires that algorithmic correctness not be tied to any
assumptions about how tasks are scheduled beyond the explicit
ordering imposed by the loops. That is to say, it should not be
assumed that the instructions across iterations execute in lock step.

The work of an algorithm is the same as the sequential running
time in a RAM model (replacing all parallel loops by sequential
loops). When multiple tasks are combined through a parallel loop,
the combined span is the maximum of the span of the individual
subproblems, plus the span of the loop itself. There are several
variants to the work-span model. In a binary-forking model such
as [5], the span of a k-way loop is ©(lg k). Much of the literature
on parallel algorithms, however, adopts an unlimited-forking
model, where the span of launching k parallel tasks adds O(1) to
the span. Since many of the subroutines employed are analyzed
in the latter model, this paper adopts the unlimited-forking model.
PRAM algorithms, for example, correspond to an unlimited forking
model. Both models only differ by logarithmic factors in the span.

The algorithm is a concurrent-read exclusive-write (CREW)
algorithm. CREW means that multiple parallel tasks may read the
same data, but they may not write to the same location.’®

Performing Concurrent Searches. The key subroutine in Algo-
rithm 3 are the dD-limited searches to find, e.g., R}'. One might
simply replace the foreach loops by parallel loops, but the question
is how the bookkeeping should be performed. Ordinarily, a BFS
keeps track of already-visited vertices by either annotating vertices
in the graph directly, or equivalently by keeping an extra array
indexed by vertex. A natural way to perform multiple searches in

8CREW is usually a restriction applied to the PRAM [6, 8, 18] machine model, e.g., a
CREW PRAM. In contrast, the work-span model is an algorithmic cost model, not a
machine model. This paper proposes lifting the CREW qualifier to the work-span level
rather than the PRAM level.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

parallel using a CREW algorithm would thus be to duplicate the
bookkeeping efforts for each parallel search, but doing so would
increase the work dramatically just to copy the graph or initialize
the arrays.

The key property that allows an efficient implementation is
Lemma 4.7 — with high probability, no vertex is visited by more
than O(log n) parallel searches. The implementation may assume
that this is the case, and just abort by returning immediately if a
vertex gets visited too many times.

The main goal is to support the following for each call to ParSC.

LEMMA 5.3. Consider an iteration i in call to ParSC on graph
G = (V,E). Let ne be the total number of arcs traversed by searches,
counting an arc for each search that reaches it. There exists an al-
gorithm implementing the iteration having O(n log? n + |X;|log n)
work and O(n?/3 log'®) span.

The remainder of the section is devoted to exhibiting an algo-
rithm that proves Lemma 5.3, focusing only on the core search.
Extending to fringe searches is not much harder.

The set of searches from X; (in one direction) are grouped to-
gether as a single modified BFS. Rather than marking a vertex with
a single bit indicating whether it has been discovered, a vertex is
tagged with a list of IDs of the pivots that have reached it. Every
time this list of IDs changes, the vertex may be re-added to the
frontier and all of its outgoing arcs explored again. Since a vertex
is not visited too many times, the overhead is not too high.

In more detail, the algorithm is as follows. At the start of the
call to ParSC, initialize ©(log n) space for each vertex to record the
ID tags, initally all null. Use an array to store the frontier vertices
along with the ID of the pivot from which this search originated,;
a vertex may appear in the frontier multiple times from different
pivots. Save all frontiers so as to identify all vertices reached by the
searches at the end and also to record all new shortcuts.

To start a set of searches from |X;], copy all live pivots x; to the
frontier array and associate with each pivot its own ID as the search
originator. Also update each pivot’s tag list to include itself.

Each round of the BFS operates as follows. Foreach vertex in
the frontier in parallel, identify the number of outgoing arcs. Next,
perform parallel prefix sums so that each arc has a distinct index
in the next frontier array. Foreach arc (u,v) in parallel, let x; be
the associated pivot ID. Check whether v’s ID set includes x;; this
check can be performed in O(log n) sequential time (both work and
span) by scanning through v’s tag list. If x; is not present, record v
and x; in (u,v)’s slot in the next frontier; otherwise record null.

At this point, a vertex may appear many times in the frontier
list, even from a single search. Sort the frontier list by vertex (high
priority) and pivot ID (lower priority). Remove duplicate entries
with a compaction pass. Now each vertex appears at most once for
each search, so O(log n) times in total. For each slot j in the next
frontier in parallel, let v be the vertex stored there. Check whether
this is the first slot for vertex v, i.e., if j — 1 stores a different vertex.
If so, scan through the O(log n) next slots (sequentially), and for
each entry of v append the pivot tag to v’s tag list.

Repeat this process for the number of rounds dictated by the
distance dD for the core searches. When the searches complete,
sort the arrays of all vertices reached by core searches. Foreach
vertex v in core searches, in parallel, identify the lowest ID pivot

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

reaching v. Again use parallel prefix sums and then copy the lowest-
ID occurrence of v to a new array for the recursive searches. Finally,
sort the new array by pivot ID so that all vertices in the same
induced subgraph are adjacent. Building the induced subgraphs for
recursive calls can again be accomplished with arc counting, prefix
sums, and sorting.

Updating G[Vy7]. One could build G[Vi;] explicitly, but doing
so would require processing the full graph. The goal expressed
by Lemma 5.3 is to have work proportional to the number of arcs
reached, but G[Vy] could be much larger. Instead, simply mark
vertices in V as dead when they have been reached by a core search.
Augment the search to ignore dead vertices.

Completing the proof of Lemma 5.3. The basic subroutines used in
each round such as prefix sums, compaction, etc, can all be per-
formed in linear work and O(log n) span. (See e.g., [11].) Scanning
the list of tags also requires O(logn) work per arc on the fron-
tier and O(log n) span as it is performed sequentially. Using Cole’s
merge sort [3], the cost of a sort is O(log n) work per element sorted
and O(log n) span. Multiplying the search distance by O(log n) thus
gives the overall span bound. Since each arc may be reached by
O(log n) searches, the bound is O(log2 n) work per arc visited. O

Aborting Algorithm 3. To make the work (and shortcut) bound
deterministic, Algorithm 4 needs the ability to abort any runs of
Algorithm 3 that exceed the target work bound. (Exceeding the
shortcut bound can be handled by simply discarding the result — a
true abort is not necessary there.)

Unfortunately, the proof of Lemma 4.1 examines the work in
aggregate across levels in the recursion tree. It is not clear how to
make local abort decisions. One natural alternative is to augment
the algorithm to check the elapsed time, and to return immediately
if some threshold has been reached. Technically, however, this
solution violates the work-span model as the target time bound
would depend on both on how efficiently the program is scheduled
and on the number of processors employed.

Nevertheless, it is possible to augment the algorithm to imple-
ment aborts as needed in the work-span model.

6 CONCLUSIONS

This work makes the first major progress toward work-efficient
parallel algorithms for directed graphs, but it also exposes several
new questions. First, can the performance be improved? Shaving
logarithmic factors would be nice, but doing so seems premature
— it is quite likely that O(n?/3) is not the final answer. I would
conjecture that an n!/2*°()_diameter reduction is possible using a
more sophisticated algorithm based on the one presented herein.

Is true work efficiency, i.e., O(m) work, possible for the diameter-
reduction problem? Achieving that would require first producing
an O(m)-time sequential algorithm for the problem.

Hesse’s lower bound provides a lower bound on work-efficient
diameter reduction, but that is not a general lower bound on digraph
reachability. Can digraph reachability be improved by relaxing the
shortcutting requirements, perhaps by adopting some ideas from
Spencer’s algorithm? Are there good general lower bounds for
work/span tradeoffs of these algorithms?

Jeremy T. Fineman

Finally, can the algorithm be extended to solve unweighted short-
est paths? Solving the exact problem is likely difficult, but even an
approximate solution would be progress.

ACKNOWLEDGEMENTS

Special thanks to Cal Newport and Justin Thaler for some useful
discussions. This work is supported in part by NSF grants CCF-
1718700, CCF-1617727, and CCF-1314633.

REFERENCES

[1] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Parallelism in
Randomized Incremental Algorithms. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures. 467-478. https://doi.org/10.1145/
2935764.2935766

[2] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions.
7. ACM 21, 2 (April 1974), 201-206.

[3] Richard Cole. 1988. Parallel Merge Sort. SIAM J. Comput. 17, 4 (Aug. 1988),
770-785. https://doi.org/10.1137/0217049

[4] Don Coppersmith, Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. 2005. A
divide-and-conquer algorithm for identifying strongly connected components. Tech-
nical Report RC23744. IBM Research.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to Algorithms (2nd ed.). MIT Press, Cambridge, MA, USA.

[6] Steven Fortune and James Wyllie. 1978. Parallelism in Random Access Machines.
In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing.
114-118. https://doi.org/10.1145/800133.804339

[7] P.B. Gibbons. 1989. A More Practical PRAM Model. In Proceedings of the First
Annual ACM Symposium on Parallel Algorithms and Architectures. 158-168. https:
//doi.org/10.1145/72935.72953

[8] Leslie M. Goldschlager. 1978. A Unified Approach to Models of Synchronous
Parallel Machines. In Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing. 89-94. https://doi.org/10.1145/800133.804336

[9] William Hesse. 2003. Directed Graphs Requiring Large Numbers of Shortcuts.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. 665-669. http://dlLacm.org/citation.cfm?id=644108.644216

[10] Shang-En Huang and Seth Pettie. 2018. Lower Bounds on Sparse Span-

ners, Emulators, and Diameter-reducing shortcuts. ArXiv e-prints (Feb. 2018).

arXiv:cs.DS/1802.06271

Joseph JaJa. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.

] M.-Y. Kao and P. N. Klein. 1990. Towards Overcoming the Transitive-closure

Bottleneck: Efficient Parallel Algorithms for Planar Digraphs. In Proceedings of

the Twenty-second Annual ACM Symposium on Theory of Computing. 181-192.

https://doi.org/10.1145/100216.100237

Richard M. Karp. 1994. Probabilistic Recurrence Relations. J. ACM 41, 6 (Nov.

1994), 1136-1150. https://doi.org/10.1145/195613.195632

Richard M. Karp and Vijaya Ramachandran. 1988. A Survey of Parallel Algorithms

for Shared-Memory Machines. Technical Report UCB/CSD-88-408. EECS Depart-

ment, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/

TechRpts/1988/5865.html

Philip N. Klein. 1993. Parallelism, Preprocessing, and Reachability: A Hybrid

Algorithm for Directed Graphs. J. Algorithms 14, 3 (May 1993), 331-343. https:

//doi.org/10.1006/jagm.1993.1017

Philip N Klein and Sairam Subramanian. 1997. A Randomized Parallel Algorithm

for Single-Source Shortest Paths. J. Algorithms 25, 2 (Nov. 1997), 205-220. https:

//doi.org/10.1006/jagm.1997.0888

Francois Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In

Proceedings of the 39th International Symposium on Symbolic and Algebraic Com-

putation. 296-303. https://doi.org/10.1145/2608628.2608664

Walter J. Savitch and Michael J. Stimson. 1979. Time Bounded Random Access

Machines with Parallel Processing. J. ACM 26, 1 (Jan. 1979), 103-118. https:

//doi.org/10.1145/322108.322119

Warren Schudy. 2008. Finding Strongly Connected Components in Parallel

Using O(log? n) Reachability Queries. In Proceedings of the Twentieth Annual

Symposium on Parallelism in Algorithms and Architectures. 146-151. https://doi.

org/10.1145/1378533.1378560

Thomas H. Spencer. 1997. Time-work Tradeoffs for Parallel Algorithms. . ACM

44, 5 (Sept. 1997), 742-778. https://doi.org/10.1145/265910.265923

Mikkel Thorup. 1993. On shortcutting digraphs. In Graph-Theoretic Concepts

in Computer Science, Ernst W. Mayr (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 205-211.

[22] Jeffrey D. Ullman and Mihalis Yannakakis. 1991. High Probability Parallel
Transitive-closure Algorithms. SIAM J. Comput. 20, 1 (Feb. 1991), 100-125.
https://doi.org/10.1137/0220006

==
LM

(13

[14

[15

[16

(17

(18

[19

™
=

[21

https://doi.org/10.1145/2935764.2935766
https://doi.org/10.1145/2935764.2935766
https://doi.org/10.1137/0217049
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/72935.72953
https://doi.org/10.1145/72935.72953
https://doi.org/10.1145/800133.804336
http://dl.acm.org/citation.cfm?id=644108.644216
http://arxiv.org/abs/cs.DS/1802.06271
https://doi.org/10.1145/100216.100237
https://doi.org/10.1145/195613.195632
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/5865.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/5865.html
https://doi.org/10.1006/jagm.1993.1017
https://doi.org/10.1006/jagm.1993.1017
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/322108.322119
https://doi.org/10.1145/322108.322119
https://doi.org/10.1145/1378533.1378560
https://doi.org/10.1145/1378533.1378560
https://doi.org/10.1145/265910.265923
https://doi.org/10.1137/0220006

	Abstract
	Introduction
	Shortcutting Approach and Contributions
	Algorithm and Analysis Overview

	Preliminaries
	Sequential Diameter Reduction
	Setup of the Analysis
	Asymmetry Leads to Progress
	A Tighter Path-Length Bound (Lemma 1.1)
	Runtime and Number of Shortcuts

	An Algorithm with Distance-Limited Searches
	The Algorithm
	Full Diameter-Reduction Algorithm and Proof of Theorem 4.2
	Notation and Shorthand
	Overview of the Analysis

	Parallel Version
	Conclusions
	References

