
Race Detection and Reachability in Nearly Series-Parallel DAGs

Kunal Agrawal*
kunal@wustl.edu

Joseph Devietti†
devietti@cis.upenn.edu

Jeremy T. Fineman‡
jfineman@cs.georgetown.edu

I-Ting Angelina Lee*
angelee@wustl.edu

Robert Utterback*
robert.utterback@wustl.edu

Changming Xu*
c.xu@wustl.edu

Washington University in St. Louis

†University of Pennsylvania†

‡Georgetown University‡

Abstract
A program is said to have a determinacy race if logically
parallel parts of a program access the same memory location
and one of the accesses is a write. These races are generally
bugs in the program since they lead to non-deterministic
program behavior — different schedules of the program can
lead to different results. Most prior work on detecting these
races focuses on a subclass of programs with series-parallel
or nested parallelism.

This paper presents a race-detection algorithm for de-
tecting races in a more general class of programs, namely
programs that include arbitrary ordering constraints in addi-
tional to the series-parallel constructs. The algorithm per-
forms a serial execution of the program, augmented to detect
races, in O(T1 + k2) time, where T1 is the sequential run-
ning time of the original program and k is the number of non
series-parallel constraints.

The main technical novelty of this paper is a new data
structure, R-Sketch, for answering reachability queries in
nearly series-parallel (SP) directed acyclic graphs (DAGs).
Given as input a graph comprising an n-node series parallel
graph and k additional non-SP edges, the total construction
time of the data structure is O(n+ k2), and each reachability
query can be answered in O(1) time. The data structure is
traversally incremental, meaning that it supports the inser-
tion of nodes/edges, but only as they are discovered through
a graph traversal.

*Supported by NSF Grants CCF-1527692 and CCF-1439062.
†Supported by NSF Grant XPS-1337174.
‡Supported by NSF Grants CCF-1314633 and CCF-1617727.

1 INTRODUCTION
A determinacy race [20] (or general race [37]), occurs
when two or more logically parallel instructions access the
same memory location, and at least one access is a write.
Determinacy races can lead to nondeterministic program
behaviors, and as such they are often bugs.

Over the years, researchers have proposed several algo-
rithms [6,20,21,36,41,42,48] for performing race detection
“on the fly” as the program executes. These race detectors
perform a single execution of the program, augmented with a
race-detection algorithm, and they generally provide a fairly
strong correctness guarantee — for the given input, the race
detector reports a race if and only if the program contains a
race on that input.

A race detector can be thought of abstractly in the fol-
lowing terms. The valid schedules of a program on a partic-
ular input can be modeled by a directed acyclic graph, where
nodes correspond to sequential code and edges correspond
to dependencies between nodes. Executing the program cor-
responds to performing a traversal of the dag, where the race
detector may choose any valid execution order. Note that
the dag is not known a priori; rather, nodes are only dis-
covered as the traversal unfolds, i.e., as the program exe-
cutes. An on-the-fly race detector performs a dag traver-
sal while maintaining two key data structures: (1) An ac-
cess history stores a representative set of readers and writers
for each memory location; the access history for a location
may be updated when executing a node that accesses that lo-
cation. (2) A reachability data structure supports queries
that determine whether there is a directed path between two
already-discovered nodes in the dag. When a node v accesses
a memory location ℓ, the race detector performs a reachabil-
ity query between the node u stored in ℓ’s access history and

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

v. If there is a directed path u ↝ v, then u is must be sched-
uled before v in all valid executions and hence they cannot
be involved in a race with each other.

The key algorithmic challenge for efficient race detec-
tion is in designing an efficient reachability data structure.
For an on-the-fly race detector, the reachability data structure
must be traversally incremental, meaning that it must sup-
port updates as new nodes are discovered by a graph traver-
sal. A traversally incremental data structure may restrict the
type of graph traversal supported, which corresponds to re-
stricting the execution order of the program being tested.
The most common restriction, adopted in this paper and else-
where [18, 20], is a depth-first execution order.

In a race-detection application, each memory access
may require a query, whereas updates need only be per-
formed on parallel constructs. Thus, optimizing the query
cost is more important than the update cost; this paper fo-
cuses on supporting constant-time queries.

Most prior work focuses on programs with “nested
parallelism”, which means that the program can be modeled
by a series-parallel (SP) dag. Restricting the race detector
to SP dags greatly simplifies the reachability data structure,
giving rise to extremely efficient race detectors with only
a constant-factor overhead for both sequential [6, 21] and
parallel executions [48] of the program being tested.

Contributions. The key technical contribution of this paper
(Section 3) is a new, efficient, traversally incremental reach-
ability data structure, called R-Sketch, for a more general
family of graphs. Specifically, R-Sketch applies to a graph
formed by taking the union of an n-node series-parallel graph
with k arbitrary additional edges. The data structure per-
forms each reachability query in O(1) time and all updates
in O(n+ k2) total time.

To put this bound in perspective, in the case that the
graph is series parallel (k = 0), the SP-order algorithm [6]
supports all updates in O(n) time with constant-time queries.
If all edges are non-SP edges, i.e., k = Ω(n), it is possible
to maintain the transitive closure directly in O(k2) with
constant-time queries. The bound achieved by R-Sketch is
simply the sum of both features; therefore, the bound itself
should not be surprising, but achieving it (especially in the
traversally incremental setting) is not trivial.

Combining the new data structure with a simple access
history (Section 4) yields an efficient on-the-fly race detec-
tor for a more general class of parallel programs. In partic-
ular, the race detector supports languages with two comple-
mentary constructs for expressing parallelism: nested par-
allelism and arbitrary unstructured synchronization. Nested
parallelism is the primary form of parallelism in, e.g., the
Cilk family [8, 16, 25, 28, 32], OpenMP tasks [3], Intel’s
TBB [29], the Habanero family [5, 10], Task Parallel Li-
brary [34], X10 [10,12]. Arbitrary unstructured synchroniza-

tion may be expressed through constructs such as “put(x)”
and “await(x)” (see, e.g., [47]), with an edge in the dag
from the put to the await. This unstructured synchroniza-
tion can also be used to express other common constructs,
such as futures [4, 24]. Since their proposal in the late 70s,
futures have has been incorporated into various parallel plat-
forms [2, 10–12, 23, 26, 31, 35] and have become a popu-
lar way to extend nested parallelism. Specifically, detecting
races in these programs while executing the program sequen-
tially takes O(T1 + k2) time, where k is the number of put
and await calls and T1 is the sequential runtime of the pro-
gram — that is, the total asymptotic overhead is an additive
O(k2).

Key Related Work. Related to, but easier than, the prob-
lem addressed herein is the static offline problem of build-
ing a reachability oracle for a directed graph. For a specific
subfamily of n-node planar graphs, which includes SP dags
but not SP dags with arbitrary extra edges, Kameda’s algo-
rithm [30] builds a reachability oracle in O(n) construction
time and supports O(1)-time queries. In fact, Nudler and
Rudolph’s English-Hebrew labeling [38], which is the basis
of the traversally incremental SP-order algorithm [6], builds
on ideas similar to Kameda’s algorithm.

More closely related to our problem, but still static,
Wang et al. [51] provide an algorithm, called dual labeling,
that supports reachability queries on an n-node directed trees
with k non-tree edges added. Dual labeling requires O(n+
k2) space, O(n+ k3) construction time, and answers queries
in O(1) time. R-Sketch achieves the same space bound,
an improved construction time, generalizes the class of
graphs handled (sp-dags instead of trees), and is traversally
incremental.

Also related is the problem of labeling each vertex
(offline) such that reachability queries can be answered by
simply comparing vertex labels. The best practical algorithm
we are aware of uses 2-hop labels [15], but its construction
time is polynomial. In addition, for graphs with arbitrary
edges, no nontrivial bound is known for the label size (which
is related to the query time).

The only race detection algorithm that we are aware of
for nearly series-parallel programs with the addition of ar-
bitrary dependencies [46] has higher overheads (multiplica-
tive in the number of number of arbitrary edges) — the run-
ning time is O(T1(k+ 1)(g+ 1)), where k is the number of
await calls, g is the number of put calls and T1 is the se-
quential runtime of the program.Therefore, the overhead in
this case is multiplicative as opposed to the additive over-
head provided by R-Sketch. Some other race detectors, such
as FastTrack [22], do not differentiate between nested paral-
lelism and the unstructured parallelism. For a program with
sequential running time T1, n nested parallel constructs, and
k arbitrary additional edges, FastTrack achieves a running

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

time of O(T1 +(n+ k)2). R-Sketch would perform similar
to FastTrack’s if k = Ω(n), but is much better if most of the
parallelism in the program can be expressed through nested
parallelism.

Brief Overview of the Approach. If nodes u and v are related
by a directed path, any such path can be characterized in
three ways: (1) the path comprises only edges in the SP
graph, (2) the path comprises only non-SP edges, or (3)
the path includes both SP and non-SP edges. Paths of the
first type can be handled efficiently by using an efficient
reachability data structure on the series-parallel base graph.
The second type can also be addressed simply (though less
efficiently) by using a general reachability data structure
on the subgraph consisting of just the non-SP edges, e.g.,
maintaining the transitive closure explicitly. The challenge
is in capturing relationships through paths that include both
SP and non-SP edges. The algorithm for SP dags would
not apply if including the non-SP edges, and a general
reachability data structure would be too expensive for SP
edges.

Roughly speaking, R-Sketch essentially removes or
contracts regions of the series-parallel graph that are irrele-
vant for paths consisting of both SP and non-SP edges. If
there are k non-SP edges, R-Sketch contracts the original
n-node graph to a graph of O(k) important nodes. First,
for intuition’s sake, consider the static case where the dag
is known. The rough idea is as follows: (1) omit any re-
cursive series-parallel subdags that lack any non-SP edges,
and (2) contract any non-branching chains that remain. Sec-
tion 3.1 discusses the structural properties that would ensure
this static algorithm operates correctly.

Using the ideas from the static data structure to build
a traversally incremental data structure, however, adds sig-
nificant complexity. The challenge is that we do not know
if a subdag will contain a non-SP edge until traversing far
enough, so we cannot immediately be sure whether a node
should be contracted, omitted entirely, or kept. R-Sketch ex-
ploits indirection as well as some careful amortization.

Roadmap. The rest of the paper is organized as fol-
lows. Section 2 reviews and introduces terminology used
throughout the paper. Section 3 presents our reachability
data structure. Section 4 discusses the issues relating to the
modeling of parallel programs and race detection. Finally,
Section 5 overviews related work, and Section 6 draws con-
cluding remarks.

2 PRELIMINARIES
This section reviews series-parallel graphs, terminology, and
notation used throughout the paper.

Computations which use only nested parallelism can be
modeled as a special class of dags referred to as the series-
parallel dag (SP-dag) [49] that has a single source node with

no incoming edges and a single sink node with no out-going
edges, and can be constructed recursively as follows.

• Base Case: the dag consists of a single node that is both
the source and the sink.

• Series Composition: let G1 = (V1,E1) and G2 =
(V2,E2) be SP-dags on distinct vertices. Then the graph
G formed by taking the union of the two graphs, with
one additional edge from sink(G1) to source(G2), is
also series parallel. Moreover, G has source and sink
source(G) = source(G1) and sink(G) = sink(G2).

• Parallel Composition: let GL = (VL,EL) and GR =
(VR,ER) be SP-dags on distinct vertices. Then the fol-
lowing graph is also series parallel: the graph G formed
by the union of GL, GR, a fork node f with edges from
f to both sources, and a join node j with edges from
both sinks to j. source(G) = f and sink(G) = j. We
refer to GL and GR as the left subdag and right subdag,
respectively, of both the fork f and join j
This definition of series-parallel dags is one that has

binary forking, meaning that the out-degree (or in-degree)
or each fork (or join) node is exactly two. There are other,
more general, definitions of SP dags that allow for higher
degree. We use this definition for ease of exposition and
without loss of generality — any higher-degree SP dag
can be transformed into one with binary forking without
asymptotically increasing the size of the graph by simply
replacing each fork or join by a tree of forks or joins.

Notation and Other Definitions. We consider reachability
on a graph G = (V,ESP ∪ Enon), where G is formed by
taking a series-parallel graph GSP = (V,ESP) and adding an
arbitrary set Enon of edges, which we call the non-SP edges.
Such a graph would be said to have k = |Enon| arbitrary edges
added to it. Without loss of generality, we assume that non-
SP edges are not incident on fork or join nodes. We further
assume that the source node of the entire graph is not a
fork node. We assume throughout that the graph description
specifies which edges are part of ESP and which are the extra
edges Enon.1

We write u ≺G v to denote the presence of a directed
path from u to v in G and say that u is a predecessor of v
and v is a successor of u. (The path can be empty, i.e., we
always have v ≺ v.) We use u G

↝ v to refer to a (possibly
empty) directed path from u to v in G. We often omit the
subscript and superscript when we refer to the entire graph
G. In addition, we use u ≺SP v as a short hand for u ≺GSP v

and u SP
↝ v as a shorthand for u

GSP
↝ v.

Consider a node v. If x and y are both distinct predeces-
sors of v and x ≺ y, then we say that y is a nearer predecessor

1This assumption is realistic for on-the-fly race detection while execut-
ing the program — the different edge types would be generated by different
linguistic keywords.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

of v. Similarly, if x and y are both distinct successors of v,
and x ≺ y, then we say that x is a nearer successor. When we
use the term “nearer” in the next section, we always mean
with respect to the series-parallel graph GSP.

3 INCREMENTAL REACHABILITY IN NEARLY
SERIES-PARALLEL GRAPHS

This section presents a traversally incremental data structure,
R-Sketch, to answer reachability queries in nearly series-
parallel (SP) dags. More precisely, we consider an SP dag
into which k arbitrary edges have been added. The algorithm
builds a data structure to answer reachability queries in
O(n + k2) total time, where n is the number of vertices.
Queries themselves can be answered in O(1) time per query.

We are not aware of a data structure that has the same
bounds even in the offline setting, but we consider here a
particular online setting consistent with executing a parallel
program. In the online setting, the dag is fixed a priori, but
the algorithm is only initially aware of the first node in the
dag. The algorithm may choose to execute any node with
no unexecuted predecessors. When a node is executed, its
outgoing edges as well as the target vertices are revealed.

3.1 Overview of R-Sketch. We first provide the overview
of R-Sketch along with the key properties that guide the
design. This description directly suggests a family of static
(offline) data structures that answer queries in O(1)-time.
Section 3.3 describes how to efficiently build such a data
structure incrementally as the graph is executed. For now,
the reader can interpret the discussion herein as applying to
the static a posteriori graph. (It should be a straightforward
exercise to design an efficient algorithm for the static case,
but handling the incremental setting is harder.)

R-Sketch consists of two graphs accompanied by
data structures for answering reachability queries on those
graphs. The first graph is the series-parallel graph GSP =
(V,ESP). The second is an auxiliary graph which we denote
by R = (VR ,ER). Note that R is not series parallel, so it is
more expensive to build data structures that answer reacha-
bility queries on R .

At a high-level, R is used to query on reachability
between two nodes u and v when u G

↝ v involves non-
SP edges. On the other hand, GSP is used to query on
reachability between two nodes when the path contains
strictly SP edges. Since prior work has addressed how to
maintain a reachability data structure on GSP efficiently (see
Lemma 3.1), this section focuses on the properties of R
and how to maintain R on-the-fly. For now, treat both
reachability structures as a black box, with the following
performance characteristics.

LEMMA 3.1. There exists a data structure that supports
reachability queries on a series-parallel GSP = (V,ESP)

with the following performance characteristics: the data
structure can be constructed in O(|V |) total time, and it
supports queries in O(1) time.

Moreover, the data structure can be built traversally
incrementally, with the same total construction time, for any
valid execution order of the graph GSP.

Proof. The SP-order data structure [6] is one example of
such a data structure. (SP-order is overkill for the static case,
but it also applies to the traversally incremental setting.)

LEMMA 3.2. There exists a data structure that supports
reachability queries on a general graph R = (VR ,ER)
with the following performance characteristics: the data
structure can be constructed in time O(

⏐⏐VR
⏐⏐ ·⏐⏐ER

⏐⏐) time, and
it supports queries in O(1) time.

Moreover, the data structure can be built traversally
incrementally, with the same total construction time, for any
arbitrary ordering of vertex and edge insertions.

Proof. The offline algorithm trivially builds the transitive
closure by performing a graph search from each node.

It is nearly trivial to extend this to a traversally incre-
mental algorithm by storing at each vertex the set of prede-
cessors. When adding an edge (u,v), check if v has gained
any new predecessors by comparing u and v’s predecessor
sets. Whenever a vertex v gains a new predecessor (which
can happen at most

⏐⏐VR
⏐⏐ times), update the predecessors for

all of v’s neighbors.

It remains to specify R = (VR ,ER) and explain how
queries on G can be implemented with respect to GSP and
R . Since the reachability structure on R is expensive to
construct, the main challenge is developing a solution that
correctly answers queries while keeping R small.

Note that any data structure with a different query/up-
date tradeoff can be substituted as a black box instead of
Lemma 3.2, which would also directly impact the running-
time of the algorithm.

Properties of the Auxiliary Graph. Here we describe the
key features of the auxiliary graph R . We later consider the
specifics in more detail, but these properties are enough to
imply correctness of the query. Moreover, these properties
are the core motivations of algorithm design (both static and
incremental).

The vertices in R are a subset of nodes from the original
graph. We call these nodes VR ⊆ V the anchor nodes. The
set of anchor nodes comprises all nodes incident on the non-
SP edges Enon, as well as some (but not too many) other
nodes. The graph R is designed to ensure the following three
properties, the third motivating the extra anchor nodes:

PROPERTY 3.1. For any two anchor nodes u,v ∈ VR , we
have u ≺R v if and only if u ≺G v.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

PROPERTY 3.2.
⏐⏐VR

⏐⏐= O(|Enon|) and
⏐⏐ER

⏐⏐= Θ(|Enon|).

Each node v in G is associated with two specific anchor
nodes (possibly null): an anchor predecessor and anchor
successor, denoted PredAnchor(v) and SuccAnchor(v), re-
spectively. The key property of these anchor predecessor and
successors is as follows.

PROPERTY 3.3. If not null, the anchor predecessor (or suc-
cessor) is a predecessor (or successor) in GSP, i.e., for
every node v there exists a path PredAnchor(v) SP

↝ v SP
↝

SuccAnchor(v).
Consider any non-SP edge (x,y) ∈ Enon. If there is a

path x → y SP
↝ v, then PredAnchor(v) is not null and there

exists a path of the form x → y SP
↝ PredAnchor(v) SP

↝ v. Simi-

larly, a path v SP
↝ x→ y implies a path v SP

↝ SuccAnchor(v) SP
↝

x → y.

In other words, PredAnchor(v) is nearer than all other
predecessors that have incoming non-SP edges. (It may
be null if there are no predecessors with incoming non-SP
edges.) Similarly, SuccAnchor(v) is nearer than all other
successors having outgoing non-SP edges. (It is null if there
are no successors with outgoing non-SP edges).

Reachability Queries. Assuming an auxiliary graph with
the aforementioned properties, querying whether u ≺G v
operates as follows:

PRECEDES(u,v)
1 if u ≺SP v // Query the reachability structure on GSP
2 return TRUE
3 elseif SuccAnchor(u) ̸= NULL,

PredAnchor(v) ̸= NULL, and
SuccAnchor(u)≺R PredAnchor(v)
// Query the reachability structure on R

4 return TRUE
5 else return FALSE

Note that the reachability structure on R is queried only if
u ̸≺SP v — this is important for correctness; the second query
may return the wrong answer if u ≺SP v.

The following lemma says that the query is correct.

LEMMA 3.3. Assuming Properties 3.1 and 3.3, the query
algorithm correctly returns u ≺ v if and only if there is a
path from u to v in G.

Proof. There are three cases, corresponding to each of the
returns. The first case is that u ≺SP v. Then the algorithm
trivially returns the correct answer (true).

The second case is that u ̸≺SP v and u ≺G v. Let
p = u G

↝ v be any path from u to v. Since there is no

path in GSP, p must use at least one non-SP arc. If there
is just one non-SP arc (a,y) on the path, then we can

rewrite the path as u SP
↝ a Enon−→ y SP

↝ v. Otherwise, let (a,b)
be the first non-SP arc on the path, and let (x,y) be the

last non-SP arc on the path. Then p = u SP
↝ a Enon−→ b G

↝

x Enon−→ y SP
↝ v. In either case, since a has an outgoing non-

SP arc, we can apply Property 3.3 to conclude that the
path u SP

↝ SuccAnchor(u) SP
↝ a. Similarly, there also exists

a path y SP
↝ PredAnchor(v) SP

↝ v. Splicing these paths to-
gether appropriately with p, we conclude that there exists
a path p′ = u SP

↝ SuccAnchor(u) G
↝ PredAnchor(v) SP

↝ v. Im-

portantly, there is a path SuccAnchor(u) G
↝ PredAnchor(v).

Thus, by Property 3.1 SuccAnchor(u) ≺R PredAnchor(v)
and the query correctly returns true.

Finally, suppose u ̸≺G v. We claim that
SuccAnchor(u) ̸≺G PredAnchor(v), and hence by Prop-
erty 3.1 SuccAnchor(u) ̸≺R PredAnchor(v) and the
query correctly returns false. We justify the claim by
contradiction—if there exists a path SuccAnchor(u) ↝

PredAnchor(v), then by Property 3.3 there also exists a
path u ↝ SuccAnchor(u)↝ PredAnchor(v)↝ v, and hence
u ≺G v, which is a contradiction.

The Auxiliary Graph. We now discuss the a posteriori
auxiliary graph. In reality, this graph is built-up incremen-
tally while executing G. But since nodes are never removed,
it is helpful to reason about the auxiliary graph as a static
entity. An example graph and auxiliary graph are shown in
Figure 1.

As already noted, VR includes all of the vertices in G
that are incident on non-SP edges. Also included in VR
are just enough fork and join nodes to make Property 3.3
feasible. In particular, the anchor nodes include all of the
following:

• all nodes incident on non-SP edges, which we call
principle anchors,

• the first node source(GSP) of the entire graph (to re-
move some corner cases),

• all fork nodes whose left and right subdags in GSP each
contain at least one principle anchor, and

• all join nodes whose left and right subdags in GSP each
contain at least one principle anchor.

In the example, fork node 7 and corresponding join node
26 are both anchor nodes because each of the left and
right subdags contain a principle anchor, namely 9 and 24,
respectively. In contrast, fork 6 and corresponding join 27
are not anchor nodes because only the left subdag contains
any principle anchors.

Note that which nodes are anchors depends only on
the series-parallel graph GSP and which nodes have incident
non-SP edges. How the nodes are related by non-SP edges

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

5"

6"

18"7"

8"

9" 10"

11"

12"

24"

25"

26"

13"

27"

19"

14"

15" 16"

21"
20"

22"

23"

28"

4"

2" 3"

1"

30"

17"

5"

7"

9" 24"

26"

19"

23"

28"

3"

30"

G R

29"

0" 0"

node anchor pred. anchor succ.

0 0 0
1 0 3
2 0 5
3 3 3
4 3 5
5 5 5
6 5 7
7 7 7
8 7 9
9 9 9
10 7 26
11 9 26
12 7 24
13 5 28
14 5 28
15 5 28
16 5 28
17 5 28
18 5 19
19 19 19
20 19 23
21 5 23
22 19 23
23 23 23
24 24 24
25 24 26
26 26 26
27 26 28
28 28 28
29 28 30
30 30 30

Figure 1: Example graph G (left), auxiliary graph R (middle), and the corresponding anchor predecessors/successors (right). The dashed
arrows correspond to the non-SP edges Enon; omitting the dashed (non-SP) edges from the graphs yields the series-parallel subgraphs GSP
and RSP, respectively. Nodes with thicker borders are the anchor nodes, and the magenta nodes are the principle anchors (those incident
on non-SP edges). The nodes are numbered by their execution order.

5"

6"

7"

8"

9" 10"

11"

12"

4"

2" 3"

1"

9"

3"

G

R

1"

0"

Figure 2: A partial execution of the dag from Figure 1 just
after node 12 has been executed. Only nodes that have been
processed are displayed.

5"

6"

7"

8"

9" 10"

11"

12"

4"

2" 3"

1"

G

24"

7"

24"

0"

9"

3"

R

1"

Figure 3: A partial execution of the dag from Figure 1 just
after processing node 24. Note that 24 cannot execute because
it has an unsatisfied incoming non-SP edge, so the node now
blocks and the execution would continue with 6’s other child.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

as well as the direction of the edges does not affect anything
except specific edges in R .

The reason for making certain join nodes anchors is to
make it possible to define anchor predecessors consistent
with Property 3.3. Otherwise, node 29 could not possibly
have an anchor predecessor, as there is no anchor node that
comes after both 19 and 24. Similarly, certain forks are made
into anchors to enable an anchor successor.

It is also important that R not be too large. By making
forks and joins anchors only when both subdags have prin-
ciple anchors, it is possible to bound the number of anchor
nodes. Proof of the following lemma follows the same ideas
as bounding the number of internal nodes in a full binary
tree with respect to the number of leaves. The “tree” here is
nesting subdags of anchored forks.

LEMMA 3.4. There are O(|Enon|+ 1) anchor nodes (which
are exactly the vertices in R).

Proof. Let p be the number of principle anchors. There are
(at most) two principle anchors induced by each non-SP arc,
so we have p ≤ 2 |Enon|. If p = 0, the only anchor is the first
node in the graph. The rest of this lemma considers the case
that p ≥ 1.

To count the total number of anchors, we consider
a collection of series-parallel graphs inductively over the
series/parallel compositions used to create GSP, starting from
the base case singleton nodes. The idea is to count the
number x of graphs containing principle anchors. Initially,
x = p as each principle anchor is in a separate graph. This
number can only decrease when graphs are composed, since
compositions do not create principle anchors.

The key observation is that whenever a composition
rule results in more (fork or join) anchors, the number
x of graphs with principle anchors decreases by one. In
particular, anchors are only created on parallel composition
of two graphs having principle anchors. In this case, 2 new
anchor nodes are created. But two graphs with principle
anchors are combined into one, so x decreases by 1. Thus,
this case can occur at most p− 1 times overall. No other
cases results in anchor nodes being created, so the total
number of anchor nodes including the source node is at most
p+2(p−1)+1 = 3p−1.

Defining the anchor predecessor and successor.
There is some flexibility in how to choose the anchor pre-
decessor and successor of each node u in GSP, as there may
be multiple nodes that meet the requirements of Property 3.3.
The algorithm chooses the nearest such node:

DEFINITION 1. The anchor predecessor of v, denoted
PredAnchor(v), is the node y such that (1) y ∈ VR is an an-
chor node, (2) y ≺SP v is a predecessor of v in GSP, and (3)
y is nearer, with respect to GSP, than all other anchor nodes

preceding v; that is, for all other anchor nodes x ≺SP v, we
have x ≺SP y. Since the first node of the graph is an anchor
node, the anchor predecessor is never null.

The anchor successor is defined symmetrically except
that it may be null if v has no successors that are anchor
nodes.

It should be straightforward to see that, if the above def-
inition is well-defined, i.e., if such a node always exists, then
this definition of anchor predecessor and anchor successor
satisfies Property 3.3. What may or may not be obvious is
that the definition is well-defined.

LEMMA 3.5. The definition of anchor predecessor (or suc-
cessor) is well-defined. That is to say, for every node with
any predecessors (or successors) that are anchors, there is
exactly one such anchor node that is nearer than all others.
Thus, the conditions of Property 3.3 are satisfied.

Proof. Consider the anchor predecessor. (The argument for
successor is similar.) Suppose for the sake of contradiction
that there exists some node v for which the PredAnchor(v)
is ill-defined, i.e., there is no node meeting the require-
ments. Then there must be at least two distinct anchor nodes
x1,x2 ≺SP v such that: there is no anchor node closer to v than
x1 or x2. Consider any paths p1 = x1

SP
↝ v and p2 = x2

SP
↝ v.

Let u be the earliest node at which these paths cross (and
possibly u = v). Then u must be a join node having anchor
nodes in both of its subdags, so u would be an anchor node
and x1,x2 ≺SP u. This contradicts the assumption that there
is no anchor node nearer to v than x1 or x2.

The edges in R . The edges in ER consist of all of the
non-SP edges Enon plus just enough edges to ensure that the
anchor nodes have the same transitive closure in both G and
R (Property 3.1). Specifically, R consists of a series-parallel
minor RSP = (VR ,ERSP) of GSP, plus the non-SP edges Enon.
Moreover, an anchor node is a fork or join in RSP if and only
if it is also a fork or join in GSP.

For each anchor, its edges in RSP are:
• For a non-join anchor node v, let (u,v) be the only

incoming edge in GSP. Then v has exactly one incoming
edge in RSP: the edge (PredAnchor(u),v).

• For a join anchor node j, let (ℓ, j) and (r, j) be the
two incoming edges in GSP. Then j has exactly two
incoming edges in RSP: the edges (PredAnchor(ℓ), j)
and (PredAnchor(r), j).

• For a fork anchor node f , let (f , ℓ) and (f ,r) be the
two outgoing edges in GSP. Then f has exactly two
outgoing edges in RSP: the edges (f ,SuccAnchor(ℓ))
and (f ,SuccAnchor(r)).
With the exception of the black-box reachability struc-

ture and making nodes into principle anchors, R-Sketch en-
tirely ignores Enon, so we will generally reason about RSP.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

We note that the only two black-box reachability structures
are with respect to GSP and R ; no query ever checks reach-
ability on RSP (after all, these would return the same answer
as queries in GSP but restricted to anchor nodes).

LEMMA 3.6. This definition of R is well-defined. Moreover,
it satisfies Property 3.1. That is, for any two anchor nodes
u,v ∈VR , we have u ≺R v if and only if u ≺G v.

Proof. We start by showing that R is well defined. The only
issue is with respect to the forks. We need to verify (1) that
R-Sketch does not add any arcs of the form (f ,NULL), and
(2) that there are exactly two outgoing arcs. The latter is
not immediately obvious given that arcs are also defined in
the other direction. (1) follows from the fact that a fork
is only an anchor if both subdags have anchors, and hence
by Lemma 3.5 the sources ℓ and r of each subdag has an
anchor successor. Moreover, for (2), SuccAnchor(ℓ) and
SuccAnchor(r) are “between” ℓ and r, respectively, and all
other succeeding anchors. Thus, no other anchor would have
an incoming arc originating at f .

We next show Property 3.1.
(⇒) We will show the contrapositive. By definition,

the anchor predecessor of a node precedes that node in GSP.
Similarly, the anchor successor is a successor of the node.
By inspection of arcs added, RSP only includes arcs between
nodes that have the proper relationship in GSP. That is to say,
if u ̸≺GSP v then u ̸≺RSP v.

(⇐) Suppose u ≺G v. Then there exists a path p from
u to v. Choose p to be the path that goes through the
most possible anchors, and partition it at every anchor; that
is, p : u = x0

G
↝ x1

G
↝ · · · G

↝ xk−1
G
↝ xk = v. We claim

that for each subpath, pi : xi ≺R xi+1, which is enough to
imply u ≺R v. To prove the claim, suppose first that the
xi ↝ xi+1 contains a non-SP arc. The it consists of a single
arc xi

Enon−→ xi+1 because both endpoints of non-SP arcs are
anchors. Otherwise, xi

SP
↝ xi+1. By choice of p, xi must be the

anchor predecessor of the node that immediately precedes
xi+1 on the path. (Or else there is a longer path.) Thus, the
arc (xi,xi+1) ∈ RSP.

3.2 Traversally Incremental Construction Overview.
This section outlines issues relating to constructing R-Sketch
efficiently while executing the graph sequentially. The algo-
rithm proceeds through the following steps: select a node
u that has not yet executed; process u, by which we mean
update the data structures; if all of u’s predecessors have
been executed, execute u, which corresponds to executing
the original instructions in the program.2 After executing u,

2Executing a node is where the race detector would perform queries into
the data structure.

the outgoing edges from u and corresponding nodes are re-
vealed to the algorithm and may be selected. Initially, only
the source node is available to select.

The main algorithm is in processing the nodes, which
is where all the data-structural updates occur. In particular,
we need to: keep track of the anchor predecessor; maintain
the anchor successor; add nodes and edges GSP, R , and
RSP as appropriate; and update both reachability structures.
The reachability structures are a black box implied by the
underlying graphs GSP and R , so it suffices to specify when
vertices and edges are added. The bulk of this section is
devoted to discussing this processing step.

Note that the anchors, anchor predecessor, anchor suc-
cessor, and R , are all defined as in Section 3.1 but with re-
spect to the subgraph of nodes processed thus far. R-Sketch
maintains RSP and R explicitly, but we shall describe only
RSP—R is formed by adding the non-SP edges Enon.

As it turns out, maintaining the anchor predecessor is
relatively easy, but keeping track of the anchor successor is
more complicated. The algorithm does not keep the anchor
successor directly, instead using a level of indirection. To
achieve the performance bound, R-Sketch requires that the
dag be traversed in a specific depth-first execution order,
discussed next.

Execution Order. Where possible, R-Sketch selects nodes
in the dag in depth-first, left-to-right order with respect
to the series-parallel graph GSP. That is to say, always
process and execute as much of the left subdag of a fork
node as possible before starting to process the right subdag
of that fork. If there are no non-SP edges, this would
mean executing the left subdag entirely before starting the
right subdag, completing both before continuing to the join.
However, because nodes are only ready to execute after
their predecessors, it may be necessary to delay certain
nodes due to dependencies on non-SP edges. We call such
delays blocking. A blocked node is executed whenever its
dependencies are satisfied.

For concreteness, the execution operates as follows. Let
S denote the depth-first, left-to-right sequential ordering of
GSP (i.e., ignoring any dependencies in Enon). On each step
of the algorithm select the unexecuted, unblocked node u that
is earliest in S.

For example, the nodes in Figure 1 are labeled according
to their execution order used by R-Sketch. After executing
node 12, we process the node 24. But node 24 cannot finish
executing due to a dependency on 23. As such, 24 blocks
and we continue with node 13 in depth-first order. After 23
is executed, 24 unblocks and can we resume the depth-first
execution from there.

Challenges. The biggest challenge is that when a fork node
is first encountered, it is impossible to predict if it will be

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

an anchor. A fork node only becomes an anchor when a
principle anchor has been processed in both of the fork’s
subdags. Dealing with joins is easier because both subdags
have executed completely before the corresponding join is
processed, so we know immediately whether a join should
be an anchor node.

Forks becoming anchors has a few ramifications. First,
we must ensure that a fork node f is spliced into the right
place in RSP. Second, arbitrarily many nodes may now have
f as their anchor predecessor. Third, arbitrarily many nodes
may now have f as their anchor successor. The worry is that
all of these updates would be too expensive.

Consider, for example, the partial execution shown in
Figure 2, just following node 12’s execution. Next, node
24 is processed (but not executed because it blocks), so the
structures should be updated as in Figure 3. Many changes
have occurred due to the discovery of this new principle
anchor. The fork node 7 becomes an anchor node, so it must
be added to RSP, spliced in between 3 and 9. The newly
discovered principle anchor 24 must also be added to R , but
this case is easier because it hangs off the end of the graph.
In addition, many nodes have a new anchor predecessor or
anchor successor. Specifically, the anchor predecessor of 7,
8, 10 and 12 changes from 3 to 7. The anchor successor of 2,
4, 5, 6, and 7 changes from 9 to 7. And the anchor successor
of 12 changes from NULL to 24.

Anchor Predecessor/Successor and Proxies. R-Sketch
stores the anchor predecessor explicitly and updates it
through a graph search when new anchors are created. We
shall argue that a node’s anchor predecessor cannot change
more than a constant number of times due to the depth-first
execution order.

Maintaining anchor successors explicitly, however,
would be too expensive. Consider again the running exam-
ple. The anchor successors of 2, 4, and 5 change when 7
becomes an anchor. Looking at the a posteriori dag in Fig-
ure 1, we can see that these nodes will be updated again when
5 becomes an anchor. In fact, with a long chain of forks,
the anchor successor may change a superconstant number of
times.

Instead, R-Sketch maintains the anchor successors
through a level of indirection. For each node u, R-Sketch
stores a proxy node proxy(u), defined as follows:

1. If u’s anchor successor is null, then proxy(u) = NULL.
2. If u is an anchor node, then proxy(u) = u.
3. If u has an anchor successor, and there exists a join node

j satisfying all of the following three properties, then
proxy(u) = PredAnchor(j). The properties are (1) u is
in one of j’s subdags, (2) that subdag does not contain
any anchor nodes, and (3) the other subdag does contain
at least one anchor node. (This is a case when j is not
an anchor.)

4. Otherwise, proxy(u) = PredAnchor(u).
In the example, proxy(2) = proxy(4) = proxy(5) =
proxy(6) = 3 both before and after processing 24. Note that
node 2 falls in the third case, whereas nodes 4, 5, and 6 fall
in the fourth.

Given the proxy, anchor successor is computed as fol-
lows. The idea is to look at the proxy’s outgoing edge in
RSP. If there is more than one, i.e., the proxy is a fork, then
look in the direction that would lead to the node.

GETSUCCANCHOR(u)
1 if u is an anchor node
2 return u
3 elseif proxy(u) = NULL
4 return NULL
5 else if proxy(u) is not a fork node
6 return target of proxy(u)’s only out edge in RSP
7 elseif u is in proxy(u)’s left subdag in GSP

// i.e., check if proxy(u).left ≺GSP u
8 return target of proxy(u)’s left out edge in RSP
9 else return target of proxy(u)’s right out edge in RSP

In the example, 5’s proxy does not change after processing
24, but the target of the proxy’s outgoing edge does change in
R . This is exactly why the indirection of the proxy helps us
— updates to R implicitly capture the changes to the anchor
successor. For example, proxy(5).out = 9 before processing
24, and proxy(5).out = 7 after processing 24. We can see that
for this example at least, GETSUCCANCHOR(5) returns the
correct answer. The following lemma says that it is correct
in general.

LEMMA 3.7. Assuming proxy(u) is maintained as defined,
GETSUCCANCHOR(u) correctly returns SuccAnchor(u).

Proof. The cases that proxy(u) = NULL or u is an anchor are
trivial.

(Case 3.) Suppose the proxy(u) is chosen according to
the third (join-node) case. Then we claim that j and u have
the same anchor successor. In particular, since u is in j’s
subdag, every path u SP

↝ v to a successor v of j must pass
through j. Thus, the only way u and j can have different
anchor successors is if there is an anchor node on a path
u SP
↝ j. That contradicts the assumption that we fall in this

case.
Moreover, j must fall into the fourth case, i.e.,

proxy(j) = PredAnchor(j) = proxy(u). The reason is that
(i) j has an anchor successor, (ii) one of j’s subdags contains
an anchor, eliminating case 3 for j, and (iii) j is not an an-
chor join because its other subdag does not have an anchor.
Thus, finishing case 3 reduces to applying case 4 on j.

(Case 4.) Suppose proxy(u) = PredAnchor(u). Let
x be the returned value from GETSUCCANCHOR. If x =

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

SuccAnchor(u), we are done. Because R preserves reacha-
bility (Lemma 3.6), we must have PredAnchor(u)≺R x ≺R
SuccAnchor(u). By definition of anchor predecessor and
anchor successor and correctness of R , the only options
possible are x = SuccAnchor(u) and u ̸≺SP x,x ̸≺SP u. If
x = SuccAnchor(u), we are done, so suppose instead that x
and u are not related. Then the paths from PredAnchor(u)
to u and x must diverge at some point, i.e., there must
be some fork f ̸= PredAnchor(u) and corresponding join
j ̸= SuccAnchor(u) with PredAnchor(u) ≺SP f ≺SP x ≺SP
j ≺SP SuccAnchor(u) and PredAnchor(u) ≺SP f ≺SP u ≺SP
j ≺SP SuccAnchor(u). Since the fork and join are not an-
chors, u’s branch must not have an anchor node. This is a
contradiction as it would make u fall in Case 3.

3.3 Algorithm to Process Nodes. This section describes
the algorithm for processing a node. Recall from Sec-
tion 3.2 that the algorithm constructs R explicitly (adding
nodes whenever new anchors are revealed), directly main-
tains PredAnchor(u), and also maintains a value proxy(u)
that helps to determine the anchor successor. This section
describes the changes to these structures when processing a
node. We do not describe the reachability structures here —
when we insert an edge or vertex into RSP or R , we implic-
itly mean to update the reachability structure on R as a black
box. Moreover, the query algorithm was already described in
Section 3.1, and the only remaining obstacle to correctness
is ensuring that the algorithm correctly maintains what it is
supposed to.

We break-up the description into multiple cases depend-
ing on the type of node being processed.

Case 1: Processing a node v that is neither a principle
anchor nor a join. This is the easiest case. Let (u,v) ∈ ESP
be the only incoming SP edge in GSP. Set PredAnchor(v) :=
PredAnchor(u) and proxy(v) := NULL. Note that this case
captures v being a fork as well.

Case 2: Processing a join node j. Then there are
two incoming edges (ℓ, j),(r, j) ∈ ESP, coming from the
sinks of the j’s left and right subdags in GSP, respectively.
Set proxy(v) := NULL. Next, we determine if j should
become an anchor and set PredAnchor(j) := p j, where p j is
computed as follows. Note that u ≺SP u, so either of the first
two cases covers equality:
(3.1)

p j =

⎧⎪⎨⎪⎩
PredAnchor(r) if PredAnchor(ℓ)≺SP PredAnchor(r)
PredAnchor(ℓ) if PredAnchor(r)≺SP PredAnchor(ℓ)
j otherwise

If p j ̸= j, then we are done.
Otherwise (p j = j), j is made into an anchor.

Add the vertex j and the edges (PredAnchor(ℓ), j) and
(PredAnchor(r), j) to RSP. Update proxy(j) := j.

Finally, perform a backwards graph search in GSP from
ℓ and r, only visiting nodes x for which proxy(x) = NULL,
i.e., those predecessors with no anchor successor. Set
proxy(x) := PredAnchor(ℓ) for those nodes encountered
searching back from ℓ, and proxy(x) := PredAnchor(r) for
nodes encountered when searching back from r.3

Case 3: Processing a (non-join) node v that is inci-
dent on a non-SP edge. In the following, let (u,v) be v’s
only incoming edge in GSP. This is the most complicated
case because a fork can become an anchor node and anchor
predecessors and successors for other nodes can change. We
have two cases depending on whether a fork becomes an an-
chor. Following both cases, we deal with the impact of mak-
ing v an anchor on other nodes.

Case 3a: PredAnchor(u) has no outgoing edges in RSP.
In our example, this case occurs, e.g., when processing node
9. (Figure 2 shows R after processing 9.)

In this case, no fork is made into an anchor. Simply
add v and the edge (PredAnchor(u),v) to RSP, and set
PredAnchor(v) := v and proxy(v) := v.

Case 3b: PredAnchor(u) has an outgoing edge in RSP.
In our example (see Figures 2 and 3), this case occurs when
processing node 24.

First, identify the fork node by performing a backwards
graph search from v in GSP until reaching a node f with
proxy(f) ̸= NULL.

Second, add f and v to R as follows. For the sub-
sequent step, it will be convenient to reference certain
old values, so temporarily store p f := PredAnchor(f) and
s f := GETSUCCANCHOR(f). Add f and v to RSP; re-
place the edge (f ,v) by edges (p f , f) and (f ,s f); add the
edge (f ,v).4 The nodes f and v are now anchors, so set
PredAnchor(f) := f , proxy(f) := f , PredAnchor(v) := v,
and proxy(v) := v.

Next, update any nodes whose anchor predecessor and
proxy should change. Specifically, perform a graph search
forward from f in GSP, truncating the search whenever
reaching nodes x with PredAnchor(x) ̸= p f . Consider each
node x reached during the search with PredAnchor(x) = p f .
For each of these nodes, update PredAnchor(x) := f . Also
for each of these nodes, if proxy(x) = p f , update it to
proxy(x) := f .

In both cases: Add the non-SP edge to the reachability
structure for R . Perform a backwards graph search in GSP
from u, only visiting those nodes x for which proxy(x) =
NULL. Set proxy(x) := PredAnchor(u) for those nodes.

3For all of these updated nodes, the anchor successor will never change
again. We could explicitly store SuccAnchor(x) := j in these cases. But
since we need the proxy for other situations, we use it here as well.

4We do not have to remove the redundant edge (p f ,s f) from the non-SP
graph R as it does not change the transitive closure.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Correctness. The main correctness argument boils down to
showing that the values maintained by the algorithm match
the definitions. We have already shown that the defined
structures are sufficient to support queries, so we get overall
correctness as a corollary. The proof is tedious, with cases
matching each case of the algorithm, but there is nothing
surprising therein.

LEMMA 3.8. The algorithm correctly maintains anchors,
anchor predecessors, proxies, and the graph RSP according
to the definitions specified in Sections 3.1 and 3.2.

Proof. By induction over processing nodes, with each case
of the algorithm considered separately. Note that a non-
anchor node has no impact on R , the anchor predecessor,
or the anchor successor of other nodes. Moreover, a node
being processed has no successors. Thus, Case 1 trivially
does what it needs to—update the info for the node v itself.

(Case 2.) The join j should only become an anchor if
both subdags have anchors. If both subdags have an anchor,
then those anchors cannot be related to each other. Thus,
p j = j if and only if both subdags have anchors.

If p j ̸= j, then j correctly chooses its predecessor
by inheriting the nearer anchor predecessor from its two
incoming arcs. Nothing else changes.

If p j = j, then j indeed becomes an anchor, and the
arcs added to RSP are exactly as defined. Since j has no
successors, no other node’s predecessor should change. But
j may be the anchor successor of some nodes—specifically,
only predecessors with no current anchor successors. If a
node has an anchor successor, then so do all its predecessors,
so the search can truncate at nodes with defined proxies.
Consider just the search on the left subdag (the other being
symmetric). For each node reached x, the backward path
from j to x either lies along a path to PredAnchor(ℓ) or
not. Note that no diverging path can have an anchor by
definition of anchor predecessor. Thus, if x is on the path to
the predecessor, x should have proxy(x) = PredAnchor(x) =
PredAnchor(ℓ). If x is not on the path, then the path to x
must follow a different branch from a join j′, and x’s branch
cannot have any anchors, so we should have proxy(x) =
PredAnchor(j′) = PredAnchor(ℓ). Either way, the proxy is
set correctly.

(Claim: if a node has proxy(x) set to a non-
predecessor (i.e., the join case), then its proxy should never
change again.) Let j′ be the join such that proxy(x) =
PredAnchor(j′). All predecessors of j′ have already exe-
cuted, so x’s situation with respect to j′ cannot change.

The implication is that we only need to worry about
updating the proxy again if it satisfies the other situations.
Most notably, if proxy(x) = PredAnchor(x), then proxy(x)
should change when PredAnchor(x) changes.

(Case 3.) We first argue that case 3a and 3b cor-
rectly identify when a fork should become an anchor. If

PredAnchor(v) does not have any outgoing arcs in RSP, then
there is no fork between PredAnchor(v) and v with any an-
chor successor. If PredAnchor(v) does have such an arc, then
the path to the target of the arc must diverge at some fork f
from the path to v. The backwards search finds the point of
divergence: the nearest predecessor to v with an anchor suc-
cessor. Thus, cases 3b correctly anchorizes fork nodes. In
both cases 3a and 3b, the arcs added to R correspond ex-
actly to the definition.

Adding f as an anchor only changes the anchor prede-
cessor for those nodes that formerly had PredAnchor(f) as
their anchor predecessor. Since these must all be connected,
the forward search corrects these. Moreover, according to
the claim, the proxy should continue to track the anchor pre-
decessor. No proxy or anchor predecessor for any node pre-
ceding f should change.

Making v itself an anchor is similar to (but slightly
simpler than) case 2.

COROLLARY 3.1. For any two already-processed nodes
u,v ∈ V , the QUERY(u,v) correctly returns TRUE if u ≺G v
and FALSE otherwise.

Proof. By Lemma 3.3, we just need Properties 3.1 and 3.3.
These are implied by Lemmas 3.5, 3.6 and 3.7 as long as the
algorithm satisfies Lemma 3.8

3.4 Performance Analysis. This section argues that the
construction of R-Sketch takes total time O(n + k2) when
using the black-box routines from Lemmas 3.1 and 3.2,
where n = |V | is the number of vertices and k = |Enon| is
the number of non-SP edges.

The most worrisome part of the algorithm is that it
performs graph searches which may, in the worst case,
traverse the entire graph. Here we provide some lemmas that
charge these searches against certain changes that can only
occur a constant number of times.

The following lemma charges the cost of a backwards
search against changing the node’s proxy from NULL, which
can only happen once. The key observation for Case 3 is that
both backwards searches touch the same nodes.

LEMMA 3.9. If backwards graph search (in Case 2 or Case
3) visits r nodes, then there are Ω(r) nodes whose proxies
change from NULL to non-null.

Proof. The backwards graph searches occur in Case 2 and
Case 3. The former is easier as the search directly changes
the proxy. The only nodes visited are those with proxy(x) =
NULL (and their neighbors to decide when to stop). Since the
series-parallel graph has in-degree zero, this is Ω(1) nodes
per change.

Case 3 performs up to two backwards search. The first
does not directly change any proxies. However, it still only

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

traverses nodes with a NULL proxy. These nodes will all be
visited again in the second graph search, which matches the
case. The cost here thus increases by a constant factor.

Bounding the cost of forward searches is less obvious.
We state the two key helper lemmas here, followed by the
main result: each node can only be involved in two forward
searches, once when it is in the right subdag of a fork that
becomes an anchor, and once when it is in the left subdag of
a fork that becomes an anchor. An important assumption for
these proofs is the depth-first execution order.

LEMMA 3.10. Suppose the graph is processed in the spec-
ified depth-first order. Let f be a fork and let fℓ be a fork
nested in f ’s left subdag. Suppose that both forks eventually
become anchors. Then either the nested fork fℓ becomes an
anchor before f does, or f becomes an anchor before pro-
cessing the node fℓ.

Proof. Suppose first we have not yet started processing f ’s
right subdag at the point that fℓ is processed. Then by depth-
first order, we cannot process any of f ’s right subdag until
both of fℓ’s subdags execute to the point they either complete
(which means processing anchors by assumption) or block
(also processing an anchor). So fℓ becomes an anchor before
fr.

Suppose instead that f ’s right subdag has started pro-
cessing. Then at least one anchor must have already been
processed in f ’s left subdag. The execution only jumps out
of f ’s right subdag if a principle anchor is processed, either
because that principle anchor is blocked or because some
other node becomes unblocked. In either case, f has anchors
in both subdags, so f becomes an anchor.

LEMMA 3.11. Suppose the graph is processed in the spec-
ified depth-first order. Let f be a fork and let fr be a fork
nested in f ’s right subdag. Suppose that both forks even-
tually become anchors. Then f becomes an anchor before
processing any of fr’s right subdag.

Proof. The right subdag of f only starts executing when the
left subdag has completed (having processed an anchor) or
is blocked on anchors. In either case, by the time the first
principle anchor is processed in fr, f becomes an anchor.
That would be while still processing fr’s left subtree.

LEMMA 3.12. If processing nodes in the specified depth-
first order, each node can be visited by at most 2 forward
searches.

Proof. Consider a particular node x. We claim that the two
times x can be visited by forward searches are: (1) the first
time that x is in the right subdag of a fork that becomes an
anchor, and (2) the first time that x is in the left subdag of a
fork that becomes an anchor.

By inspection, forwards searches only occur when forks
become anchors. Moreover, there must be a new anchor in
one of the fork’s subdags to trigger the anchoring. Thus
the corresponding join cannot have executed yet, and we
need not worry about the forward search exiting the fork’s
subdags.

(Right subdag.) Suppose for the sake of contradiction
that a particular node x is visited by two forward searches,
from f and fr, while in the right subdag of both forks.
Without loss of generality, let fr be in the right subdag of
f . (Parallel composition has to nest.) Then by Lemma 3.11,
f becomes an anchor before x is processed. This contradicts
the assumption that x was involved in both searches.

(Left subdag.) Suppose for the sake of contradiction that
a particular node x is visited by two forward searches, from
f and fℓ, while in the left subdag of both forks. Without
loss of generality, let fℓ be in the left subdag of f . Then by
Lemma 3.10, we have two options. If fℓ becomes an anchor
before f , then the forwards search from f would not pass
through f , contradicting the assumption that both searches
reach x. If not, f becomes an anchor before processing fℓ
and hence before processing x, and the forward search from
f cannot touch x.

We now give the main performance theorem. Substitut-
ing in the bound from Lemma 3.2, we get a total construction
time of O(n+ k2) and query time of O(1).

THEOREM 3.1. Let n = |V | be the number of vertices and
let k = |Enon| be the number of non-SP edges in the input
graph G.

Consider any traversally incremental data structure that
supports reachability queries on general graphs, supporting
both edge insertions and queries. Let I be the total time to
perform Θ(k) edge insertions, and let Q be the the time per
query.

Then construction algorithm for R-Sketch runs in a total
of O(n+ I) time, and R-Sketch answers reachability queries
on any two already-processed nodes in O(Q) time.

Proof. Almost all of the steps in construction algorithm to
process each node is clearly constant time (e.g., looking at
pointers, updating pointers, etc.). The exceptions are the
following: (1) a constant number of insertions into R-Sketch
for GSP, (2) a constant number of insertions into R-Sketch
for R , (3) a constant number of reachability queries on GSP,
(4) the call to GETSUCCANCHOR, which is dominated by
a reachability query on GSP, and (5) the graph searches.
Using an efficient data structure for the base SP graph (as
in Lemma 3.1), all steps except the graph searches and the
insertions into R require constant time per node processed.

The total number of arcs in R is a constant per node
anchor node for the arcs in RSP, plus k for the non-SP arcs.
By Lemma 3.4, the total number of arcs is thus O(k), and
hence the total cost of construction is O(I).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

To bound the backward searches in aggregate, we apply
Lemma 3.9. Each only changes from proxy = NULL once
over the course of the construction, so we can charge the
searches to those changes. The total cost of backward
searches is thus O(n).

We bound forward searches using Lemma 3.12, which
says that each node can only be visited twice. Again we have
a total cost of O(n).

4 THE FULL RACE DETECTION ALGORITHM
The previous section discussed how to maintain the reach-
ability data structure R-Sketch in a traversally incremental
manner as the program executes. This section discusses how
R-Sketch can be used to perform race detection in a paral-
lel program with arbitrary synchronization and/or futures.
In order to do so, we first review how a parallel program
with particular programming constructs is modeled as a se-
ries parallel program with additional edges. We then discuss
the other aspect of race-detection, namely the access history
— for each memory location ℓ, the access history maintains
enough information about the previous accesses to ℓ so that
future accesses to ℓ can detect races.

Parallel programming constructs. As mentioned in Sec-
tion 1 many parallel programming platforms support con-
structs for creating nested or fork-join parallelism. In this
model, function F can spawn off a child function G, invok-
ing the child without suspending the parent, thereby creating
parallelism; similarly, F can invoke sync, joining together
all previously spawned children within the functional scope.
The details of primitives differ, but at a high-level, the de-
pendence structure generated is a series-parallel dag.

This paper considers on-the-fly race detection for a more
general class of programs — programs that employ fu-
tures [4, 24]. Conceptually, the use of future involves two
parallel primitives: create future for creating parallelism,
and get future for joining parallel computation associated
with the future. By preceding a function call to G in F
with create future, we create a future task. The state-
ment returns immediately with a future handle that promises
to deliver the result of executing G without suspending F .
Thus, F may continue to execute, possibly in parallel with
G. In that regard, create future and spawn share some
similarities. Unlike spawn, however, parallel subcomputa-
tions (future tasks) created via create future escape the
scope of a sync — a subsequent sync joins together previ-
ously spawned functions but does not wait for future tasks
(functions created by calls preceded by create future) to
return. Instead, one can invoke get future on the future
handle returned by create future to join with the corre-
sponding future task, and get future blocks until the cor-
responding future task (G, in this case) finishes and a result
is obtained. In short, the only guarantee is that the future task

associated with a future handle h will finish executing before
the invocation of get future on h returns.

We now argue that our algorithm can be applied to
programs that use futures — recall that our reachability data
structure assumes that it gets a single series parallel dag
with k extra arbitrary edges. It is pretty straightforward to
see that a future task corresponds to a sub-SP-dag between
create future and get future edges, whose other end
is the node making the call. Therefore, a a program with
that uses spawn, sync, create future and get future

calls is essentially a set of series parallel dags connected to
each other via edges corresponding to create future and
get future calls. We can convert this to a single series
parallel dag with extra edges by (a) adding an additional
source and an additional sink node, and (b) artificially adding
SP edges from each the this new source to the first node of
each future task and from the last node of each future task to
the new sink. This yields an SP-dag with extra non-SP edges
for create-future and get-future calls. (The artificial edges
are less restrictive than create/get edges, so adding them
doesnt change the dags meaning. They are for modeling
purposes only; the detector only needs to know a futures
existence when create-future is called.) Now the root can
have out-degree > 2, but this can be easily remedied. The
total number of extra edges added is the total number of calls
to create future and get future.

In order to perform race detection, simply execute the
program sequentially in a left-to-right depth-first order —
in particular, on a spawn or create future of a function
G, simply execute the function G eagerly while doing the
appropriate book-keeping indicated by the algorithm. If
get future blocks, switch to the node that is next in the
left-to-right depth first order. Note that eager execution
guarantees that a sync never blocks. While executing the
program, maintain another data structure, called the access
history for every memory location — this is described next.

A different, but related paradigm, consists of using put

and await constructs [9, 47] — a node that calls await(x)
has a dependence from a node that calls put(x). It is easy to
see that a programming model that allows these two calls in
addition to spawn and sync allows series parallel dags with
additional edges enforced due to put and await. Therefore,
R-Sketch can also be used to detect races for these programs.

Access History. When performing race detection in a series
parallel program, it is sufficient to store a constant number
(1 for serial race detection, 2 for parallel race detection) of
previous reader nodes and a single previous writer node in
the access history [20,36]. When a node s accesses memory,
it checks if some subset (based on whether s is reading
or writing) of these previous nodes are in parallel with s.
Therefore, each memory access leads to at most a constant
number of queries into the reachability data structure.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

This property no longer holds for programs with fu-
tures, however. In particular, the access history for mem-
ory location ℓ still holds only one writer node, namely the
most recent writer last-writer(ℓ). However, it must now
store an arbitrarily large reader-list. Race detection pro-
ceeds as follows. Whenever a node s reads from the mem-
ory location ℓ, the race detector checks the reachability data
structure to determine whether s is logically parallel with
last-writer(ℓ); if so, a race is reported. Otherwise, s is
added to reader-list(ℓ). When a node s writes to a mem-
ory location ℓ, the race detector must check s against all read-
ers in reader-list(ℓ) and with last-writer(ℓ). If s is in
parallel with any of them, then it declares a race. Otherwise,
the reader list is set to and s is stored as last-writer(ℓ).
Emptying the reader list in the absence of races does not miss
future races, because anything that executes later that would
be in parallel with these readers must also be in parallel with
s (which is the new last-writer(ℓ)) and the race will be
reported with s.

THEOREM 4.1. The total running time of race detection for
programs with k get future calls is O(T1 + k2).

Proof. By Lemma 3.2 and Theorem 3.1, the total cost of
maintaining the reachability data structure is O(V +

⏐⏐VR
⏐⏐ ·⏐⏐ER

⏐⏐) where V is the total number of nodes in the computa-
tion, and VR and ER are both O(k). In addition, the cost of
each query is O(1).

Queries are only performed at memory accesses. Each
read requires one query — checking the reachability between
the last writer and the current node. Each write may perform
many queries — against all of the readers in the reader list.
Note, however, that when a write occurs, all the readers in
the reader-list are removed. Therefore, each read leads
to at most two queries, once when the read itself occurs
and once when a subsequent write to the same memory
location occurs and the total number of queries are bounded
by 2×number of reads. The total number of reads is at most
T1. Therefore, the total cost of race detection is O(T1 + k2).

5 RELATED WORK
On-the-fly Race detection. As mentioned in Section 1,

there is a large body of work on race detection for fork-join
programs. Other structured computations have also been
considered; Dimitrov et al. [18] propose an algorithm for
race detection on computations that look like grids while
Lee and Schardl [33] propose a race detector for fork-join
computations that use a special kind of reduction mecha-
nism. Recently, Surendran and Sarkar [45] proposed the first
race detection algorithm for programs that use futures. Their
reachability data structure has significantly more overhead
than R-Sketch, however; in particular, the running time in-
creases quadratically with the number of futures (that is mul-
tiplicatively instead of additively as for R-Sketch). There are

two important distinctions between our approaches. First,
their reachability data structure does not encode paths that in-
clude both SP and non-SP edges. Therefore, to answer a sin-
gle reachability question of whether u ≺ v, they must make
multiple queries to the reachability data structure. Second,
their reachability data structure explicitly stores a dag and
each reachability query does a search on the dag; therefore,
each query to the reachability data structure can take more
than constant time.

In addition to race-detection for programs with struc-
tured parallelism and futures, there is a rich literature on dy-
namic race detection for programming models that generate
computations with nondeterministic dependence structures,
such as ones that involve locks [13, 14, 17, 19, 22, 39, 40, 43,
50, 52]. For such models, since the output necessarily de-
pends on the schedule, the best correctness guarantee that a
race detector can provide is for a given program, for a given
input, and for a given schedule.

The Use of Futures. Blelloch et al. [7] propose to use
futures to generate “non-linear pipelines,” another form of
parallelism that creates deterministic dependence structure
and study scheduling bound for such programs. Their use of
future falls under the structured use of futures. Others have
looked at cache efficiency when one employs constructs that
generate arbitrary dependencies such as unstructured use of
futures [1, 44]. More recently, Herlihy and Liu [27] showed
that, by restricting the use of futures, one can obtain a better
cache efficiency than the unstructured use suggested by prior
work. Their definition of structured futures is more restricted
than ours — in particular, they enforce that future handles
can only be passed as parameters to functions, but can not be
returned as return values.

6 CONCLUSION
This paper provides a race-detection algorithm for futures
that runs in O(T1 + k2) time, with an additive overhead
quadratic in the number of get future operations. This
algorithm uses a traversally incremental data structure, R-
Sketch, for performing reachability queries. R-Sketch has
a construction time of O(n+ k2), where n is the number of
nodes in the program dag and k is the number of future edges.
Moreover, R-Sketch has a constant query time.

Note that if one is not careful, a program with futures
can deadlock. Such a deadlock is deterministic, however,
and does not depend on the schedule. In such cases, our
algorithm race detects until the execution deadlocks.

Currently, R-Sketch requires that the dag be traversed
in depth first order. Therefore, the race-detection algorithm
must execute the computation serially. An interesting av-
enue of future work is how to parallelize race detection for
programs with future. This would require a traversally incre-
mental data structure that can support (1) a non-depth first in-
sertion order; and (2) concurrent inserts and queries. There-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

fore, this extension appears to be non-trivial. Another avenue
of future work is to implement the race detector and evaluate
it in practice.

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe.
The data locality of work stealing. In Proceedings of the
12th ACM Annual Symposium on Parallel Algorithms and
Architectures, pages 1–12, 2000.

[2] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-
structures: Data structures for parallel computing. ACM
Transactions on Programming Languages and Systems,
11(4):598–632, October 1989.

[3] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoe-
flinger, Yuan Lin, Frederico Massaioli, Xavier Teruel, Priya
Unnikrishnan, and Guansong Zhang. The design of OpenMP
tasks. IEEE Transactions on Parallel and Distributed Sys-
tems, 20(3):404–418, March 2009.

[4] Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage
collection of processes. SIGPLAN Notices, 12(8):55–59,
1977.

[5] Rajkishore Barik, Zoran Budimlić, Vincent Cavè, Sanjay
Chatterjee, Yi Guo, David Peixotto, Raghavan Raman, Jun
Shirako, Sağnak Taşırlar, Yonghong Yan, Yisheng Zhao, and
Vivek Sarkar. The Habanero multicore software research
project. In Proceedings of the 24th ACM SIGPLAN Confer-
ence Companion on Object Oriented Programming Systems
Languages and Applications, pages 735–736, 2009.

[6] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and
Charles E. Leiserson. On-the-fly maintenance of series-
parallel relationships in fork-join multithreaded programs. In
16th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 133–144, 2004.

[7] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Gir-
ija J. Narlikar. Space-efficient scheduling of parallelism with
synchronization variables. In 9th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 12–23, 1997.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.
Cilk: An efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55–69, 1996.

[9] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen
Knobe, Geoff Lowney, Ryan Newton, Jens Palsberg, David
Peixotto, Vivek Sarkar, Frank Schlimbach, and Sağnak
Taşırlar. Concurrent collections. Journal of Scientific Pro-
gramming, 18(3-4):203–217, August 2010.

[10] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
Habanero-Java: the new adventures of old X10. In Proceed-
ings of the 9th International Conference on Principles and
Practice of Programming in Java, pages 51–61, 2011.

[11] Rohit Chandra, Anoop Gupta, and John L. Hennessy. COOL:
An object-based language for parallel programming. IEEE
Computer, 27(8):13–26, August 1994.

[12] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,

Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 519–538, 2005.

[13] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson,
Keith H. Randall, and Andrew F. Stark. Detecting data races
in Cilk programs that use locks. In Proceedings of the 10th
ACM Symposium on Parallel Algorithms and Architectures,
1998.

[14] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert
O’Callahan, Vivek Sarkar, and Manu Sridharan. Efficient and
precise datarace detection for multithreaded object-oriented
programs. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementa-
tion, pages 258–269, 2002.

[15] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 937–946, 2002.

[16] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leis-
erson. Programming with exceptions in JCilk. Science of
Computer Programming, 63(2):147–171, December 2008.

[17] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze,
Dan Grossman, and Shaz Qadeer. RADISH: Always-on
sound and complete race detection in software and hardware.
In Proceedings of the 39th Annual International Symposium
on Computer Architecture, pages 201–212, 2012.

[18] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. Race
detection in two dimensions. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures,
pages 101–110, 2015.

[19] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt,
and Kirk Olynyk. Effective data-race detection for the kernel.
In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, 2010.

[20] Mingdong Feng and Charles E. Leiserson. Efficient detection
of determinacy races in Cilk programs. Theory of Computing
Systems, 32(3):301–326, 1999.

[21] Jeremy T. Fineman. Provably good race detection that runs
in parallel. Master’s thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer
Science, Cambridge, MA, August 2005.

[22] Cormac Flanagan and Stephen N. Freund. FastTrack: Ef-
ficient and precise dynamic race detection. SIGPLAN Not.,
44(6):121–133, June 2009.

[23] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw.
Implicitly threaded parallelism in manticore. Journal of
Functional Programming, 20(5-6):537–576, November 2010.

[24] Daniel P. Friedman and David S. Wise. Aspects of applicative
programming for parallel processing. IEEE Transactions on
Computers, C-27(4):289–296, 1978.

[25] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, pages
212–223, 1998.

[26] Robert H. Halstead, Jr. Multilisp: A language for concurrent

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

symbolic computation. ACM Transactions on Programming
Languages and Systems, 7(4):501–538, October 1985.

[27] Maurice Herlihy and Zhiyu Liu. Well-structured futures and
cache locality. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, pages 155–166, Orlando, Florida, USA, 2014.

[28] Intel® Cilk™ Plus. https://www.cilkplus.org, 2013.
[29] Intel Corporation. Intel(R) Threading Building Blocks, 2009.

Available from http://www.threadingbuildingblocks.

org/documentation.php.
[30] T. Kameda. On the vector representation of the reachability

in planar directed graphs. Information Processing Letters,
3(3):75–77, 1975.

[31] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr.
Mul-T: A high-performance parallel Lisp. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 81–90, 1989.

[32] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and
Charles E. Leiserson. Using memory mapping to support cac-
tus stacks in work-stealing runtime systems. In Proceedings
of the 19th International Conference on Parallel Architectures
and Compilation Techniques, pages 411–420, 2010.

[33] I-Ting Angelina Lee and Tao B. Schardl. Efficiently detecting
races in Cilk programs that use reducer hyperobjects. In
Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’15, pages 111–122,
Portland, Oregon, USA, June 2015. ACM.

[34] Daan Leijen and Judd Hall. Optimize managed code for
multi-core machines. MSDN Magazine, 2007. Available
from http://msdn.microsoft.com/magazine/.

[35] Li Lu, Weixing Ji, and Michael L. Scott. Dynamic enforce-
ment of determinism in a parallel scripting language. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 519–529,
2014.

[36] John Mellor-Crummey. On-the-fly detection of data races for
programs with nested fork-join parallelism. In Proceedings of
the 1991 ACM/IEEE Conference on Supercomputing, pages
24–33, 1991.

[37] Robert H. B. Netzer and Barton P. Miller. What are race
conditions? ACM Letters on Programming Languages and
Systems, 1(1):74–88, March 1992.

[38] Itzhak Nudler and Larry Rudolph. Tools for the efficient de-
velopment of efficient parallel programs. In Proceedings of
the First Israeli Conference on Computer Systems Engineer-
ing, May 1986.

[39] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic
data race detection. In Proceedings of the Ninth ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 167–178, 2003.

[40] Eli Pozniansky and Assaf Schuster. MultiRace: Efficient on-
the-fly data race detection in multithreaded C++ programs:
Research articles. Concurrency and Computation: Practice
and Experience, 19(3):327–340, March 2007.

[41] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin
Vechev, and Eran Yahav. Efficient data race detection for
async-finish parallelism. In Runtime Verification, volume
6418 of Lecture Notes in Computer Science, pages 368–383.

Springer Berlin / Heidelberg, 2010.
[42] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin

Vechev, and Eran Yahav. Scalable and precise dynamic
datarace detection for structured parallelism. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 531–542, 2012.

[43] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. Eraser: A dynamic race de-
tector for multi-threaded programs. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles,
October 1997.

[44] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and
Robert Harper. Beyond nested parallelism: Tight bounds on
work-stealing overheads for parallel futures. In Proceedings
of the Twenty-first Annual Symposium on Parallelism in Algo-
rithms and Architectures, pages 91–100, 2009.

[45] Rishi Surendran and Vivek Sarkar. Automatic parallelization
of pure method calls via conditional future synthesis. In Pro-
ceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 20–38, 2016.

[46] Rishi Surendran and Vivek Sarkar. Dynamic Determinacy
Race Detection for Task Parallelism with Futures, pages 368–
385. Springer International Publishing, 2016.

[47] Sağnak Taşırlar and Vivek Sarkar. Data-driven tasks and their
implementation. In Proceedings of the 2011 International
Conference on Parallel Processing, pages 652–661, 2011.

[48] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-
Ting Angelina Lee. Provably good and practically efficient
parallel race detection for fork-join programs. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 83–94, 2016.

[49] Jacobo Valdes. Parsing Flowcharts and Series-Parallel
Graphs. PhD thesis, Stanford University, December 1978.
STAN-CS-78-682.

[50] Christoph von Praun and Thomas R. Gross. Object race de-
tection. In Proceedings of the 16th ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages,
and Applications, pages 70–82, 2001.

[51] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu
Yu. Dual labeling: Answering graph reachability queries
in constant time. In Proceedings of the 22nd International
Conference on Data Engineering, ICDE ’06, pages 75–75,
April 2006.

[52] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: Effi-
cient detection of data race conditions via adaptive tracking.
In Proceedings of the Twentieth ACM Symposium on Operat-
ing Systems Principles, pages 221–234, 2005.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited

https://www.cilkplus.org
http://www.threadingbuildingblocks.org/documentation.php
http://www.threadingbuildingblocks.org/documentation.php
http://msdn.microsoft.com/magazine/

	Introduction
	Preliminaries
	Incremental Reachability in Nearly Series-Parallel Graphs
	Overview of R-Sketch.
	Traversally Incremental Construction Overview.
	Algorithm to Process Nodes.
	Performance Analysis.

	The Full Race Detection Algorithm
	Related Work
	Conclusion

