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Abstract
Using a cubic moment, we prove a Weyl-type subconvexity bound for the quadratic
twists of a holomorphic newform of square-free level, trivial nebentypus, and arbitrary
even weight. This generalizes work of Conrey and Iwaniec in that the newform that
is being twisted may have arbitrary square-free level, and also that the quadratic
character may have even conductor. One of the new tools developed in this paper is a
more general Petersson formula for newforms of square-free level.

Mathematics Subject Classification 11F11 · 11F37 · 11F66 · 11M99

1 Introduction

1.1 Cubic moments

Let χq be a real, primitive character of conductor q and q̃ = rad(q) its square-free
kernel. Let H∗

κ (N ) be the set of Hecke-normalized holomorphic newforms for Γ0(N ),
of weight κ , and trivial central character. Our main result is

Theorem 1 For any square-free r with (r , q) = 1 we have
∑

f ∈H∗
κ (rq ′)

q ′|q̃

L(1/2, f ⊗ χq)
3 �κ,ε (qr)1+ε. (1)

The estimate holds for any even κ ≥ 2, and depends polynomially on κ .
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I. Petrow, M. P. Young

Corollary 1 For any holomorphic newform f of square-free level s and χq any real
primitive character of conductor q we have

L(1/2, f ⊗ χq) �
(

sq

(s, q)

)1/3+ε

. (2)

Remark The conductor of L(1/2, f ⊗ χq) is sq2/(s, q). Therefore, the bound (2) is
a Weyl-type subconvexity bound in q-aspect, but does not reach the convexity bound
in the s-aspect. Note that the corollary holds without a relatively prime hypothesis on
s, q.

Corollary 1 gives a non-trivial bound when the root number ε f ⊗χq = +1 (since
otherwise L(1/2, f ⊗ χq) = 0). See Sect. 8.1, specifically Eq. (64) for a concrete
formula for the root number.

Our work here is a generalization of the cubic moment studied by Conrey and
Iwaniec [14], who obtained, in our notation, the case r = 1, κ ≥ 12, and q odd. The
extension of their work to κ ≥ 2 was obtained by the first-named author [40]. It may
be somewhat surprising that, prior to Corollary 1, aWeyl-type subconvex bound in the
q-aspect was previously not known for any values of r besides 1 (nor for even q). The
case r = 1 has some pleasant simplifications; for one, the conductor of L(1/2, f ⊗χq)

is q2 for all f of level dividing q. Furthermore, the nth Fourier coefficient of f ⊗ χq

vanishes unless (n, q) = 1. For these reasons, Conrey and Iwaniec could use a formula
of Iwaniec, Luo, and Sarnak [26], who proved a Petersson formula that is applicable
to (1) with r = 1. The case r �= 1 lacks these simplifications, so in order to approach
the proof of Theorem 1 we developed a more general form of the Petersson formula
that is applicable to (1) with any square-free r . This formula, which is of independent
interest, is described in Sect. 1.3.

Corollary 1 improves on a hybrid subconvexity result of Blomer and Harcos [8,
Theorem 2’], which holds more generally for f of arbitrary level and nebentype
character. In our notation (and assuming (q, r) = 1) the result of Blomer and Harcos
takes the form

L(1/2, f ⊗ χq) � (r1/4q3/8 + r1/2q1/4)(rq)ε. (3)

One may check that Corollary 1 is superior to (3), except in the range r 	 q1/2+o(1)

where all the bounds are equalized. This result of Blomer and Harcos is more general
in that χq can be replaced by an arbitrary primitive Dirichlet character, f may be a
Maass form, and it is not restricted to the central point. In addition, the Blomer-Harcos
bound proceeds by bounding an amplified second moment, and is Burgess-quality in
the q-aspect for r fixed. If q is fixed and r is large, then the cubic moment is not
the appropriate moment to use, and both Corollary 1 and (3) are weaker than the
convexity bound [specifically, (2) is superior to the convexity bound of (rq2)1/4+ε for
r � q2−ε].

The work of [14] treats both holomorphic forms and Maass forms, with similar
proofs. Provided one generalizes our newform Petersson formula to the setting of the
Bruggeman–Kuznetsov formula, then our methods should carry over to the Maass
case, as in [14]. Note added May 31, 2018: the Bruggeman–Kuznetsov formula for
newforms has now appeared in [46].

123

Author's personal copy



A generalized cubic moment and the Petersson formula for newforms

The type of sum appearing in Theorem 1may look somewhat unusual, but it is very
important for the proof. It is crucial in [14] that, after applying the Petersson formula,
the moduli of the Kloosterman sums are all divisible by q. The form of (1) is chosen
to group together the terms with q ′ | q to give a sum of Kloosterman sums with c ≡ 0
(mod q). As a rough sketch of what this means, and why it is important, one may
consider the case of prime level q. Very roughly, one naively expects the Petersson
formula to say

∑

f level 1

a f (m)a f (n)

〈 f , f 〉 +
∑

f new of level q

a f (m)a f (n)

〈 f , f 〉

↔ δm,n + 2π i−κ
∑

c≡0(mod q)

S(m, n; c)
c

. (4)

This is not quite correct because there are other types of oldforms not appearing on
the left hand side, but that does not affect the broader thrust of this discussion (the
reader interested in the correct version of this formula will find abundant discussion
throughout this paper!). Meanwhile, the sum over f of level 1 has a Petersson formula
in which all c ≥ 1 appear. Thus, by rearranging these expressions, we see that a
newform formula for f of level q should have all c ≥ 1 present. With the cubic
moment, one also has a factor χq(mn), and one wishes to apply Poisson in these
variables. The total modulus of χq(mn)S(m, n; c) is [q, c] which for q | c is still c,
but if (q, c) = 1 it is qc which is much larger. In this latter case, Poisson summation
is practically ineffectual.

Our proof of Theorem 1 in fact shows a stronger asymptotic result of the form

∑

f ∈H∗
κ (rq ′)

q ′|q̃

ω f L(1/2, f ⊗ χq)
3 = Rr ,q + O((qr)ε(r−1/2 + q−1/2r−1/4)), (5)

where ω f are certain positive weights satisfying ω f = (qr)−1+o(1) and Rr ,q is a
complicated main term arising from a residue calculation (see Sect. 8.4 for details).
The error term here is seen to be o(1) provided r � qδ for some fixed δ > 0. Conrey
and Iwaniec [14] express interest in finding the asymptotic of the cubic moment in
their case r = 1; it is perhaps surprising that deforming the problem slightly in the
r -aspect allows us to solve this problem in a hybrid range. In light of (5), perhaps it is
possible to amplify the moment in the r -aspect, and thereby improve the exponent of
s in (2).

1.2 Arithmetical applications of the cubic moment

The bound fromCorollary 1 implies a bound on the Fourier coefficients of half-integral
weight cusp forms, aswe nowdescribe. Suppose that g(z) =∑n c(n)e(nz) is aweight
κ+1
2 Hecke eigenform of nebentypus ψ and level 4r where r is odd and square-free,

and κ is even. The Shimura correspondence links g to a form f of weight κ, level 2r ,
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and nebentypus ψ2 , and Waldspurger’s formula gives under some local conditions

(see [43, Théorème 1]) that c(|D|)2 = c0|D| κ−1
2 L(1/2, f ⊗ ψ−1χD) where D is a

fundamental discriminant, and c0 is some constant of proportionality depending on
g. Note f ⊗ ψ−1 has trivial nebentypus. Since 2r is square-free, Corollary 1 applies,
and we deduce:

Theorem 2 Assume that ψ is a real character. With notation as above, we have

c(|D|) �g |D| κ−1
4 + 1

6+ε. (6)

Theorem 2 has applications to the representation problem for ternary quadratic
forms which has been studied by a number of authors, including [6,7,17,18,27] from
which we have drawn some of the following background material. Suppose that Q is
a positive ternary quadratic form with associated theta function θQ of level dividing
4N with N odd and square-free. For instance, any diagonal form ax2 + by2 + cz2

with abc odd and square-free satisfies these conditions. Then θQ = E + U + S
where E is a linear combination of Eisenstein series, U is a linear combination of
unary theta functions, and S is a linear combination of Hecke cusp forms. According
to this decomposition, write rQ(n) = cE (n) + cU (n) + cS(n) where rQ(n) is the
number of representations of n by Q, and c∗(n) is the nth Fourier coefficient of
∗ = E,U , S. For ease of exposition, suppose that n is square-free and coprime to the
level, which implies cU (n) = 0. If n is locally represented everywhere by Q, then
cE (n) �Q n1/2−ε. Theorem 2 implies cS(n) �Q n5/12+ε, which is an improvement
over that derived from the Burgess-quality subconvex bound of [8].

For some more advanced questions, one may desire to explicate the dependence
on g in Theorem 2. Blomer [7] remarks that in general this is difficult, and that Mao
[9, Appendix 2] has done this but at the expense of relating the Fourier coefficients to
twisted L-values of an auxiliary form f ⊗ ψ−1χ

κ/2
−4 , which is of level dividing 16r

2.
Our results here then may not apply to this auxiliary form .

However, if g is in Kohnen’s plus space, then the constant of proportionality is
given explicitly by the Kohnen–Zagier formula, and our results apply, as we now
explain. We gather some notation from Kohnen’s paper [30], paying careful attention
to normalizations. Let g be as defined in this section, in Kohnen’s plus space, and write

f (z) = ∑∞
n=1 n

κ−1
2 λ f (n)e(nz) with λ f (1) = 1. Define the Petersson inner product

by

〈 f , f 〉Kohnen = 1

[Γ0(1) : Γ0(r)]
∫

Γ0(r)\H
yκ | f (z)|2 dxdy

y2
.

(For the rest of the paper we will mainly use a different normalization of the inner
product.) Using [26, Lemma 2.5] [22,23], we have 〈 f , f 〉Kohnen = ro(1). Let D be a
fundamental discriminant with (−1)κ/2D > 0, coprime to r . By [30, Corollary 1], we
have

|c(|D|)|2
〈g, g〉Kohnen = 2ν(r)

(
κ
2 − 1

)!
πκ/2 |D| κ−1

2
L(1/2, f ⊗ χD)

〈 f , f 〉Kohnen ,
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under the assumption χD(p) = ηp( f ) for all p | r (here ηp( f ) is the eigenvalue of
the Atkin–Lehner operator). If χD(p) = −ηp( f ) for some p | r then c(|D|) = 0
while the right hand side may not vanish. As an aside, we mention that Baruch and
Mao [5] have generalized theKohnen–Zagier/Waldspurger formula by removing these
conditions on D, relating the central value to a Fourier coefficient of a different half-
integral weight cusp form. By Corollary 1, we have

|c(q)|2
〈g, g〉Kohnen �κ r

1
3+εq

κ−1
2 + 1

3+ε. (7)

It is also natural to inquire into the normalization of the form g. There is a slight
difficulty here in that we cannot scale g by taking c(1) = 1, since c(1) may vanish.
There exists a D0, polynomially bounded in r , so that L(1/2, f ⊗χD0) � ro(1) (e.g.,
see [21]). Then we may choose the constant of normalization so that |c(|D0|)|2 =
|D0| κ−1

2 . Then with this normalization, 〈g, g〉Kohnen � ro(1), and hence

|c(q)| �κ,ε r
1
6+εq

κ−1
4 + 1

6+ε. (8)

Theorem 1 itself can be used to improve many exponents in the results of [34].
In particular, we improve the rate of equidistribution of the reductions of CM elliptic
curves (see [34] for a full description of this arithmetical problem). For brevity, we
shall not repeat any material from [34], but will instead indicate which exponents may
be improved. The bound q1/8+εD7/16+ε in [34, (1.5)] may be replaced by qεD5/12+ε.
In [34, Corollary 1.3], the bound D � q18+ε may be replaced by D � q12+ε. In [34,
(1.10), (1.12)], the bound q7/8D7/16 may be replaced by q3/4D5/12. All these changes
result from a use of Theorem 1 to bound M2 defined by [34, (4.7), (3.1)] with

M2 � D1/2+ε

q1/3−ε

⎛

⎝
∑

f ∈H∗
2 (q)

L(1/2, f ⊗ χD)3

⎞

⎠
1/3

� qεD5/6+ε. (9)

If one can generalize Theorem 1 (and hence Corollary 1) to allow f to be a Hecke-
Maass cusp form, then there are additional applications. This is the setting required for
equidistribution of integral points on ellipsoids [16]. The various exponents appearing
in [33] would be updated similarly to the improvements to [34] described in the
previous paragraph. As another example in this vein, Folsom and Masri [19,35] have
improved the error term in the asymptotic formula for the partition function which
requires subconvexity for quadratic twists of a cusp form of level 6; the previous
bounds of [14] do not apply, and so the methods developed in this paper pave the way
for further improvements.

The second-named author [45] generalized the method of [14] allowing for large
weights (or spectral parameters, in theMaass case) giving aWeyl-type hybrid subcon-
vexity bound. This had applications to equidistribution problems on shrinking sets.
For simplicity, in this paper we have kept the weight κ fixed but it seems likely that
the methods of [45] could be combined with those in this paper to allow κ to vary.
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1.3 Petersson formula for newforms

Webeginwith an expanded discussion onwhy a newformPetersson formula is relevant
for Theorem 1.

One encounters a significant difficulty when attempting to generalize the method
of [14] to allow level structure of the base form, as we describe. One begins by using
an approximate functional equation of the L-function L(1/2, f ⊗ χq), which has
conductor rq2 when f is a newform of level rq ′ with (r , q) = 1 and q ′ | q. Next
one would wish to apply the Petersson formula to average over an orthogonal basis of
cusp forms. The problem is that this basis consists of oldforms as well as newforms,
which causes a variety of problems. Firstly, it is not clear what Dirichlet series to attach
to f ⊗ χq when f is an oldform. One could take this to mean that if f is induced
from a newform f ∗ of lower level, then we take L(1/2, f ∗ ⊗ χq). However, with
this definition the conductor of this L-function may be a divisor of rq2, in which case
there is some dependence on the level of f ∗ in the approximate functional equation.
The classical Petersson formula is unable to distinguish between these forms.

It is plausible that there is some trick that lets one set up the problem to prove
Theorem 1 using the classical Petersson formula, but the authors are not aware of one
(if the moment was an even power, this would be easy because of positivity; the fact
that the moment is an odd power in this application makes this more difficult).

The robust solution is to prove a Petersson formula for the newforms only, similarly
to the existence of averaging formulas for primitive Dirichlet characters of a given
modulus (see [25, (3.8)]). Iwaniec, Luo, and Sarnak have proven a Petersson formula
for newforms of square-free level [26, Proposition 2.8], but with some coprimality
conditions on the level and the Fourier coefficients of the modular forms, which in
our application are crucial to avoid. When working with 1-level density of zeros
of L-functions, it is easy to ensure coprimality because the log derivative of an L-
function is a sum over prime powers. However, the L-function itself is not so easily
treated, because altering a single Euler factor will ruin the functional equation. For
this reason, we have generalized the [26] formula to hold with square-free level and
arbitrary Fourier coefficients.

Suppose that N is a positive integer, and let Bκ(N ) denote an orthogonal basis
for the space of weight κ cusp forms for Γ0(N ). For f ∈ Bκ(N ), write f (z) =∑∞

n=1 a f (n)e(nz), and a f (n) = λ f (n)n
κ−1
2 . Let

ΔN (m, n) = cκ

∑

f ∈Bκ (N )

λ f (m)λ f (n)

〈 f , f 〉N , where cκ = Γ (κ − 1)

(4π)κ−1 , (10)

and where

〈 f , g〉N =
∫

Γ0(N )\H
yκ f (z)g(z)

dxdy

y2
.

Since the main interest here is in the level aspect, we often suppress the dependence
on the weight κ in the notation. The Petersson formula states
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ΔN (m, n) = δm=n + 2π i−κ
∑

c≡0(mod N )

S(m, n; c)
c

Jκ−1

(
4π

√
mn

c

)
. (11)

We have

Theorem 3 Let N be square-free, and let H∗
κ (N ) denote the set of Hecke-normalized

newforms on Γ0(N ) of trivial central character. Let

Δ∗
N (m, n) = cκ

∑

f ∈H∗
κ (N )

λ f (m)λ f (n)

〈 f , f 〉N . (12)

Then with ν(L) defined to be the completely multiplicative function satisfying ν(p) =
p + 1 for p prime, we have

Δ∗
N (m, n) =

∑

LM=N

μ(L)

ν(L)

∑

�|L∞

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

ΔM

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)
. (13)

Here c�(d) with d | � is jointly multiplicative, and cpn (p j ) = c j,n where

xn =
n∑

j=0

c j,nU j

( x
2

)
, (14)

and U j (x) are the Chebyshev polynomials of the second kind.

The constants c j,n arise from repeated application of the Hecke multiplicativity rela-
tions and we call them the Chebyshev coefficients. We describe some of their relevant
properties in Sect. 6, for instance, we shall show c j,n ≥ 0, and derive sharp bounds
on c j,n . Many of the bounds on the Chebyshev coefficients appearing in Sect. 6 arose
out of necessity for the proof of Theorem 1.

In Theorem 4,we give an approximate version of (13)with the additional restriction
� ≤ Y , which makes the right hand side a finite sum. For our application to the cubic
moment, we have found the approximate version most suitable.

The method of proof of [26] is to explicitly choose a basis Bk(N ) (see [26, Proposi-
tion 2.6]) that relates the oldforms to the newforms, and thereby deduce an arithmetic
formula for ΔN (m, n) in terms of Δ∗

M (m′, n′)’s, with M | N . An inversion of this
formula then gives their formula for Δ∗

N (m, n). As mentioned in [26], there are many
interesting choices of basis and it could be argued that their choice is ad-hoc. Other
authors have also constructed various bases. Choie and Kohnen [12, Proposition 2] use
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the same basis that we will use here. Rouymi [41] gave a basis for prime power level
and derived a newform Petersson formula from it. Building on Rouymi, Ng [37] and
Blomer and Milićević [11, (3.7)] gave a basis for arbitrary level, and Ng [37] and five
authors [4] have used this basis to give newform Petersson formulas for arbitrary level
(but with restrictive coprimality conditions on the level and the Fourier coefficients).
It is important for our work that there is no restriction onm, n appearing in Theorem 3.

Nelson [36] has described a method for proving a Petersson formula for newforms
without explicitly choosing a basis, and gives such a formula when the level N is
divisible by the cube of each prime dividing it.

Our proof takes a different path from [4,11,26,37,41] in that we choose our basis
to be eigenfunctions of the Atkin–Lehner operators, which for square-free level is
enough to diagonalize the basis. This choice is natural and leads to many pleasant
simplifications. Our method of proof of Theorem 3 most naturally shows

ΔN (m, n) =
∑

LM=N

1

ν(L)

∑

�|L∞

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

Δ∗
M

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)
. (15)

We deduce Theorem 3 from (15) in Sect. 4 below.
In this introduction, we have not presented the Petersson formula that is required for

the proof of Theorem 1. What we need is a kind of hybrid formula for modular forms
of level rq that in the r -aspect restricts to newforms of level r , and in the q-aspect
groups together all the newforms of level dividing q, in accordance with the setup of
Theorem 1. This formula appears in Sect. 5.

The newform formula of [26, Proposition 2.8] has coprimality assumptions of the
form (m, N ) = 1 and (n, N 2) | N , which on the face of it is rather restrictive, however,
one may reduce to this case as follows. Firstly, using that λ f (d)λ f (p) = λ f (dp) for
any d ∈ N, and p | N , one may write λ f (m)λ f (n) = λ f (m′)λ f (n′) where mn =
m′n′, and (m′, N ) = 1. Secondly, we have λ f (p2d) = λ f (p)2λ f (d) = p−1λ f (d)

(see (63)), which by repeated applications allows one to reach the case (n, N 2) | N .
It is not obvious how to use the [26] newform formula to derive our hybrid version
presented in Sect. 5 below. The problem is that the above factorizations of m and n
depend on the ambient level, and so summing over different levels introduces some
complications.

1.4 Structure of the paper

Sections 2–7 are devoted to proving a number of versions of the Petersson formula
with newforms as well as some estimates for the Chebyshev coefficients. This part of
the paper is self-contained.
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In Sects. 8–11, we prove the cubic moment bound, that is, Theorem 1.

2 Atkin–Lehner theory

2.1 Construction of basis

We briefly review some of the theory developed by Atkin and Lehner [2]. Throughout
we assume that the level N is square-free. For a matrix in GL+

2 (Z), define

f∣∣( a b
c d

)(z) = (ad − bc)κ/2(cz + d)−κ f

(
az + b

cz + d

)
.

Atkin and Lehner showed that

Sκ(N ) =
⊕

LM=N

⊕

f ∈H∗
κ (M)

Sκ(L; f ),

where Sκ(L; f ) is the span of forms f|A�
, with � | L , where A� =

(
� 0
0 1

)
. They call

Sκ(L; f ) the oldclass associated to f . Observe f|A�
(z) = �κ/2 f (�z), so Sκ(L; f ) =

span{ f (�z) : � | L}. Our goal here is to construct an explicit orthogonal basis of
Sκ(L; f ), in the case that N is square-free.

We turn to the Atkin–Lehner operators Wd . Suppose that d | N , N = LM , and let

Wd =
(
dx y
Nz dw

)
, (16)

where x, y, z, w ∈ Z are chosen so that det(Wd) = d (such a choice exists because
(d, N/d) = 1, since N is square-free, and the forthcoming properties of Wd are
independent of the choices of x, y, z, w). If d | M and f ∈ H∗

κ (M) then f is an
eigenfunction of Wd (see [2, Theorem 3 (iii)]), so suppose now that d | L . Let

V =
(

1 0
−LM
d 1

)
∈ Γ0(M). (17)

Note that taking x = z = 1 in the definition of Wd we have

VWd =
(
d y
0 1

)
.

Therefore, if f ∈ H∗
κ (M) and d | L , then

f|Wd = f|V |Wd = f|VWd = dκ/2 f (dz + y) = f|Ad . (18)
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This calculation easily shows that Sκ(L; f ) is preserved by allWd with d | L , that each
Wd is an involution, and that theWd commute with each other. Therefore, the group of
transformations of Sκ(L; f ) generated by theWd is isomorphic to (Z/2Z)ω(L), where
ω(n) is the number of prime divisors of n. Note 2ω(L) = τ(L). Furthermore, the Wd

are Hermitian with respect to the Petersson inner product (see [2, Lemma 25]). By
some simple character theory, we can show that Sκ(L; f ) has an explicit orthogonal
basis of common eigenfunctions of the Wd .

We briefly describe a more abstract statement. Let G be a group isomorphic to
(Z/2Z)n , and let φ be a character on G, which we denote by φ ∈ Ĝ. There are 2n such
characters. For each g ∈ G, suppose there exists an involution Wg acting on some
vector space of functions, and such that Wg1Wg2 = Wg1g2 . For each f in the vector
space and character φ ∈ Ĝ, define

fφ =
∑

g∈G
φ(g)Wg f . (19)

It is easy to see that
Wg fφ = φ(g) fφ.

Therefore, each fφ is an eigenfunction of all theWg . Also, the fφ are distinct because
any two choices of fφ have a different eigenvalue for some Wg . This also means
that if the Wg are Hermitian with respect to some inner product, then all the fφ are
orthogonal. In the case of Sκ(L; f ), which has dimension 2ω(L) = τ(L), there are
2ω(L) eigenfunctions fφ , so by dimension counting, the fφ form a basis. Finally, we
derive a useful formula for 〈 fφ, fφ〉:

〈 fφ, fφ〉 =
∑

g1,g2∈G
φ(g1)φ(g2)〈Wg1 f ,Wg2 f 〉

=
∑

g1,g2∈G
φ(g1g2)〈Wg1g2 f , f 〉 = |G|

∑

g∈G
φ(g)〈Wg f , f 〉. (20)

Returning to Sκ(L; f ), by [26, Lemma 2.4] (which in turn follows closely a proof
in [1]), we have

〈 f|Wd , f 〉 = 〈 f|Ad , f 〉 = λ f (d)

ν(d)
d1/2〈 f , f 〉.

We endow the set of divisors d | L with the group structure (Z/2Z)ω(L) and define
characters on it by φ(d) = ∏

p|d φ(p), where φ(p) is chosen to be +1 or −1 inde-
pendently for each prime divisor of L . In this way, we obtain

〈 fφ, fφ〉=|G|〈 f , f 〉
∑

d|L
φ(d)

λ f (d)

ν(d)
d1/2=τ(L)〈 f , f 〉

∏

p|L

(
1 + φ(p)λ f (p)p1/2

ν(p)

)
.

(21)
All of the above inner products are 〈 , 〉N .
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2.2 Dirichlet series of the basis of oldforms

To lend some support to the assertion that our choice of basis of Sκ (L; f ) given above is
natural, here we describe some pleasant features of the Dirichlet series corresponding
to these modular forms. Let λ fφ (n) be the Fourier coefficients of fφ and define

D(s, fφ) =
∞∑

n=1

λ fφ (n)

ns
. (22)

The reader should beware that this is not a character twist of f , because φ is not a
Dirichlet character (in fact φ is only defined on the divisors of L). We show here that
D(s, fφ) satisfies a functional equation similar to that of a level N newform.

By a direct calculation with the Fourier expansion, we have

λ fφ (m) =
∑

u|(m,L)

φ(u)u1/2λ f (m/u), (23)

Therefore, we have

D(s, fφ) = L(s, f )
∏

p|L

(
1 + φ(p)

ps−1/2

)
. (24)

Then define the “completed” Dirichlet series

Ns/2Γ f (s)D(s, fφ) = Λ(s, f )Ls/2
∏

p|L

(
1 + φ(p)

ps−1/2

)
, (25)

where

Γ f (s) = π−sΓ

(
s + (κ − 1)/2

2

)
Γ

(
s + (κ + 1)/2

2

)

is the gamma factor associated to L(s, f ) and Λ(s, f ) = Ms/2Γ f (s)L(s, f ). This
satisfies the functional equationΛ(s, f ) = ε f Λ(1− s, f ). Meanwhile, the secondary
factor satisfies

g(s) := Ls/2
∏

p|L

(
1 + φ(p)

ps−1/2

)
=
∏

p|L

(
ps/2 + φ(p)p

1−s
2

)
= φ(L)g(1 − s).

Therefore, D(s, fφ) satisfies the functional equation

N
s
2 Γ f (s)D(s, fφ) = ε f φ(L)N

1−s
2 Γ f (1 − s)D(1 − s, fφ). (26)
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3 Manipulations with sums of Fourier coefficients

The goal of this section is to prove (15).
We begin by describing (10) for the basis chosen in Sect. 2.1. We have

ΔN (m, n) = cκ

∑

LM=N

∑

f ∈H∗
κ (M)

∑

φ

λ fφ (m)λ fφ (n)

〈 fφ, fφ〉N . (27)

We therefore need to evaluate the inner sum over φ, namely

T (m, n) :=
∑

φ

λ fφ (m)λ fφ (n)

〈 fφ, fφ〉N

= 1

τ(L)〈 f , f 〉 N
∑

φ

λ fφ (m)λ fφ (n)
∏

p|L

(
1+ φ(p)λ f (p)p1/2

ν(p)

)−1

, (28)

where we have used (21). We multiply and divide by
∏

p|L(1− φ(p)λ f (p)p1/2

ν(p) ), giving
that

T (m, n) = 1

τ(L)ρ f (L)〈 f , f 〉 N
∑

φ

λ fφ (m)λ fφ (n)
∑

t |L

μ(t)φ(t)λ f (t)t1/2

ν(t)
,

where as in [26], we define

ρ f (L) =
∏

p|L

(
1 − p

λ f (p)2

(p + 1)2

)
. (29)

The formula (23) implies

T (m, n) = 1

τ(L)ρ f (L)〈 f , f 〉 N
∑

φ

∑

u|(m,L)

∑

v|(n,L)

×
∑

t |L
φ(u)u1/2λ f (m/u)φ(v)v1/2λ f (n/v)

μ(t)φ(t)λ f (t)t1/2

ν(t)
,

where we have used that λ f (n) is real to remove the complex conjugate symbols. The
sum over φ detects if uvt is a square, precisely

∑

φ

φ(u)φ(v)φ(t) =
{

τ(L), if uvt = �,

0, otherwise.
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Since u and v are square-free, and so is t , the condition uvt = � determines t uniquely,
namely

t = uv

(u, v)2
= u

(u, v)

v

(u, v)
.

One may compare this with Lemma 2.4 of [26]. Therefore, T (m, n) equals

1

ρ f (L)〈 f , f 〉 N
∑

u|(m,L)

∑

v|(n,L)

u1/2λ f (m/u)v1/2λ f (n/v)
μ( uv

(u,v)2
)λ f

(
uv

(u,v)2

) (
uv

(u,v)2

)1/2

ν
(

uv
(u,v)2

) .

(30)

To check this against [26], suppose that (m, n, N ) = 1. Thismeans ((m, L), (n, L))

= (m, n, L) | (m, n, N ) = 1, so in particular, (u, v) = 1. Hence

T (m, n) = 1

ρ f (L)〈 f , f 〉 N
∑

u|(m,L)

μ(u)u

ν(u)
λ f (u)λ f (m/u)

∑

v|(n,L)

μ(v)v

ν(v)
λ f (v)λ f (n/v),

(31)

which equals

A f (m, L)A f (n, L)

ρ f (L)〈 f , f 〉N , where A f (m, L) :=
∑

u|(m,L)

μ(u)u

ν(u)
λ f (u)λ f (m/u),

as in [26, p.76]. Since f is on Γ0(M), we have 〈 f , f 〉N = ν(N )
ν(M)

〈 f , f 〉M =
ν(L)〈 f , f 〉M . So, if (m, n, N ) = 1, then

ΔN (m, n) = cκ

∑

LM=N

∑

f ∈H∗
κ (M)

A f (m, L)A f (n, L)

ρ f (L)ν(L)〈 f , f 〉M . (32)

From this we may quickly derive (2.48) of [26].
We continuewith the calculation ofΔN (m, n), without the assumption (m, n, N ) =

1. The formula (30) shows

ΔN (m, n) = cκ

∑

LM=N

∑

f ∈H∗
κ (M)

1

ν(L)ρ f (L)〈 f , f 〉M

×
∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

) λ f

(m
u

)
λ f

(
u

(u, v)

)
λ f

(n
v

)
λ f

(
v

(u, v)

)
.

Recall that the Hecke relation for a newform of level M with trivial nebentypus is

λ f (m)λ f (n) =
∑

d|(m,n)
(d,M)=1

λ f

(mn

d2

)
.
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In our desired application, u and v divide L and (M, L) = 1, so any divisor of u or v

is automatically coprime to M . Using the Hecke relation, we then deduce

ΔN (m, n) = cκ

∑

LM=N

∑

f ∈H∗
κ (M)

1

ν(L)ρ f (L)〈 f , f 〉M

×
∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

λ f

(
m

a2(u, v)

)
λ f

(
n

b2(u, v)

)
.

(33)

The tricky part of our analysis of ΔN (m, n) is to express ρ f (L)−1 in terms of
Fourier coefficients of f . We have

1

ρ f (L)
=
∏

p|L

(
1 − p

λ f (p)2

(p + 1)2

)−1

=
∑

�|L∞
�
λ∗
f (�)

2

ν(�)2
, (34)

where λ∗
f (�) is the completely multiplicative version of λ f (n), that is,

λ∗
f (�) =

∏

pn ||�
λ f (p)

n .

Using only the weak bound |λ f (p)| ≤ pθ + p−θ with some θ < 1/2 shows that the
product and sum in (34) converge absolutely.

Define the Chebyshev coefficients c j,n by

λ f (p)
n =

n∑

j=0

c j,nλ f (p
j ), (35)

where p is coprime to the level of f . Let Uk(x) denote the degree k Chebyshev
polynomial of the second kind (defined below). Then

xn =
n∑

j=0

c j,nU j

( x
2

)
,

where the c j,n can be written in various ways using that the Uj form a system of
orthogonal polynomials. Here the Uj can be defined concisely by the generating
function

(1 − 2yx + x2)−1 =
∞∑

j=0

Uj (y)x
j .
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For instance, since U4(x/2) = x4 − 3x2 + 1, U2(x/2) = x2 − 1, and U0(x) = 1, we
get

x4 = U4(x/2) + 3U2(x/2) + 2U0(x/2).

An alternative formula is Uj (cos(θ)) = sin(( j+1)θ)
sin θ

. The orthogonality of the Uj

implies that

c j,n =
∫ π

0
Uj (cos θ)(2 cos θ)n 2

π
sin2 θdθ. (36)

We will develop some properties of the Chebyshev coefficients in Sect. 6.
With this notation in hand, we have for f a newform of level M with (�, M) = 1,

that

λ∗
f (�) =

∏

pn ||�

⎛

⎝
n∑

j=0

c j,nλ f (p
j )

⎞

⎠ =:
∑

d|�
c�(d)λ f (d), (37)

where
c�(d) =

∏

p j ||d
pn ||�

c j,n .

Moreover, we have

1

ρ f (L)
=
∑

�|L∞

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)λ f (d1)λ f (d2). (38)

Inserting (38) into (33), we get

ΔN (m, n) = cκ

∑

LM=N

∑

�|L∞

�

ν(�)2ν(L)

∑

d1,d2|�
c�(d1)c�(d2)

∑

f ∈H∗
κ (M)

1

〈 f , f 〉M

× λ f (d1)λ f (d2)
∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)
∑

a
∣∣( m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

λ f

(
m

a2(u, v)

)
λ f

(
n

b2(u, v)

)
.

Now we can use the Hecke relations one final time (again the divisors are coprime to
M), to give

ΔN (m, n) = cκ

∑

LM=N

∑

�|L∞

�

ν(�)2ν(L)

∑

d1,d2|�
c�(d1)c�(d2)

∑

f ∈H∗
κ (M)

1

〈 f , f 〉M

×
∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)
∑

a
∣∣( m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

λ f

(
md1

a2e21(u, v)

)
λ f

(
nd2

b2e22(u, v)

)
.

This is precisely the desired formula (15), after a rearrangement.
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4 Inversion

In this section, we show how to deduce (13) from (15). We work in greater generality
than what is immediately required, which will be useful in Sect. 5. Suppose that F and
G are two arithmetic functions that we write in the form F(m, N ),G(m, N ) where
N is a positive square-free integer, and m = (m1, . . . ,md) is a tuple of integers. We
assume there is a relation of the form

F(m, N ) =
∑

LM=N

∑

a|L∞
A(a,mL)G

(
α(a,mL)

m

mL
, M

)
, (39)

where: A is somemultiplicative arithmetical function,mL denotes the part ofm having
common factors with L , so mL | L∞ and (m/mL , L) = 1, and α is some integer-
valued multiplicative function having the property that α(pi1 , . . . , pik ) | p∞ for all
primes p. Furthermore, a is shorthand for some tuple (a1, . . . , aJ ), and the condition
a | L∞ means that ai | L∞ for all i = 1, . . . , J .

We can derive that F(m, 1) = G(m, 1) for all m, by taking N = 1 in (39). The
main topic of this section is to prove

Lemma 1 For square-free N we have the inversion formula

G(m, N ) =
∑

LM=N

μ(L)
∑

a|L∞
A(a,mL)F

(
α(a,mL)

m

mL
, M

)
. (40)

Lemma 1 implies Theorem 3, since (39) encompasses (15), as we now explain. The
tuple (m1, . . .md) in (39) takes the form (m, n) in (15). The tuple a appearing in
(39) is of the form (�, d1, d2, u, v, a, b, e1, e2), where note that all these entries divide
L∞. The arithmetical function A(a,mL) accounts for 1

ν(L)
, �

ν(�)2
, . . . , 1

ν(uv/(u,v)2)
,

as well as all the summation conditions in (15), in which (m, n) may be replaced by
(mL , nL). Finally, we have α(a, (mL , nL)) = ( mLd1

a2e21(u,v)
, nLd2
b2e22(u,v)

), andG(x, y, M) =
Δ∗

M (x, y).

Proof If N = 1, then (40) is true, by an easy calculation.
Now induct on the number of prime factors of N . We replace N by N P with P a

prime (whence (P, N ) = 1), giving

F(m, N P) = G(m, N P) +
∑

LM=N P
L �=1

∑

a|L∞
A(a,mL)G

(
α(a,mL)

m

mL
, M

)
.

Since M has fewer prime factors than N P , we can use the induction hypothesis to
give
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F(m, N P) = G(m, N P) +

⎡

⎢⎢⎣
∑

LM=N P
L �=1

∑

a|L∞
A(a,mL)

×
∑

CD=M

μ(C)
∑

b|C∞
A(b,mC )F

(
α(b,mC )

α(a,mL) m
mL

mC
, D

)
⎤

⎥⎥⎦ .

Here we have used that (
α(a,mL)

m

mL

)

C
= mC ,

which follows from (L,C) = 1. Next we put back L = 1 and subtract it off again,
giving

F(m, N P) = G(m, N P) −
∑

CD=N P

μ(C)
∑

b|C∞
A(b,mC )F

(
α(b,mC )

m

mC
, D

)

+
⎡

⎣
∑

LM=N P

∑

a|L∞
A(a,mL )

∑

CD=M

μ(C)
∑

b|C∞
A(b,mC )F

(
α(b,mC )

α(a,mL ) m
mL

mC
, D

)⎤

⎦ .

We need to show that the term in square brackets equals F(m, N P), since we can then
solve for G(m, N P), giving (40). We have

[. . . ]=
∑

CDL=N P

μ(C)
∑

a|L∞
A(a,mL)

∑

b|C∞
A(b,mC )F

(
α(b,mC )

α(a,mL) m
mL

mC
, D

)
.

Using multiplicativity of A and α, and that (C, L) = 1, we get

[. . . ] =
∑

CDL=N P

μ(C)
∑

c|(LC)∞
A(c,mCL)F

(
α(c,mCL)

m

mCL
, D

)
.

We can write this as

[. . . ] =
∑

D|N P

∑

c|(N P/D)∞
A(c,mNP/D)F(α(c,mNP/D)

m

mNP/D
, D)

∑

CL=N P/D

μ(C).

The inner sum over C gives D = N P , which simplifies as [. . . ] = F(m, N P), as
desired. ��

5 Hybrid formulas

We desire a formula that is intermediate between ΔN (m, n) and Δ∗
N (m, n), in order

to capture the weights appearing in Theorem 1. See the discussion surrounding (4) for
motivation for this goal.
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For square-free AB, define

Δ̃A,B(m, n) = cκ

∑

CD=B

∑

f ∈H∗
κ (AD)

1

ν(C)

1

ρ f (C)

λ f (m)λ f (n)

〈 f , f 〉AD . (41)

Note that Δ̃A,1(m, n) = Δ∗
A(m, n). Provided (mn, B) = 1, we have A f (m,C) =

λ f (m) for m coprime to C , and then by (32) and we get Δ̃1,B(m, n) = ΔB(m, n).
Hence Δ̃A,B(m, n) interpolates between ΔAB(m, n) and Δ∗

AB(m, n), provided
(mn, B) = 1.

Because of our application to the cubic moment problem, we are interested in the
case where qN is square-free, and (mn, q) = 1. In (33) we substitute N → Nq, and
factor L = LN Lq with LN | N and Lq | q, giving

ΔNq(m, n) = cκ

∑

LN |N

1

ν(LN )

∑

u|(m,LN )
v|(n,LN )

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

×
∑

LN LqM=Nq
Lq |q

∑

f ∈H∗
κ (M)

λ f

(
m

a2(u,v)

)
λ f

(
n

b2(u,v)

)

ν(Lq)ρ f (Lq)ρ f (LN )〈 f , f 〉M .

Here we used that (mn, Lq) = 1 to simplify the divisiblity conditions. Next we use
(38) on 1

ρ f (LN )
, and use the Hecke relation again, giving now

ΔNq (m, n) =
∑

LN |N

∑

�|L∞
N

�

ν(LN )ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,LN )
v|(n,LN )

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣( m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

cκ

∑

Lq |q

∑

f ∈H∗
κ

(
N
LN

q
Lq

)

λ f

(
md1

a2e21(u,v)

)
λ f

(
nd2

b2e22(u,v)

)

ν(Lq )ρ f (Lq )〈 f , f 〉 Nq
LN Lq

.

With A = N/LN , B = q, C = Lq , and D = q/Lq , we can write the sum over Lq | q
above as Δ̃N/LN ,q(m′, n′), for m′ and n′ the obvious integers. Therefore, this shows

ΔNq(m, n) =
∑

LN |N

∑

�|L∞
N

�

ν(LN )ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,LN )
v|(n,LN )

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

v
, u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

Δ̃ N
LN

,q

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)
.
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At this point, we replace the condition LN | N by LM = N (i.e. rename LN by
just L , and then call M the complementary divisor). This gives

ΔNq(m, n) =
∑

LM=N

∑

�|L∞

�

ν(L)ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

Δ̃M,q

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)
. (42)

Now we fix q, and suppress it in the following notation. Set F(m, n, N ) =
ΔNq(m, n), and likewise G(m, n, N ) = Δ̃N ,q(m, n). Then the relation (42) is essen-
tially the same formula as (15), and, more precisely, is encompassed by (39). By
Lemma 1, we therefore have (recall (mn, q) = 1, and Nq is square-free)

Δ̃N ,q(m, n) =
∑

LM=N

μ(L)

ν(L)

∑

�|L∞

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

ΔMq

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)
. (43)

6 Formulas and estimates with Chebyshev coefficients

We begin with a combinatorial evaluation of c j,n . From (36), combined with the

formula Uj (cos θ) = sin(( j+1)θ)
sin θ

, we have

c j,n = 1
2

∫ π

−π

sin(( j + 1)θ)(2 cos(θ))n 2
π
sin θdθ. (44)

Writing everything in terms of eiθ , we get

c j,n = 1

π

1

(2i)2

∫ π

−π

(
n∑

r=0

(
n

r

)
eiθ(n−2r))(ei( j+2)θ − ei jθ − e−i jθ + e−i( j+2)θ

)
dθ.

At this point it is clear that c j,n = 0 if j �≡ n (mod 2), so assume j ≡ n (mod 2).
We also see that c j,n = 0 if j > n. For j = n, it is easy to check that cn,n = 1, since
the only values of r for which the integral does not vanish are r = 0, and r = n. If
j ≤ n − 2, then we deduce that
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c j,n =
(

n
n+ j
2

)
−
(

n
n+ j
2 + 1

)
, (45)

which in fact agrees with cn,n too, since
( n
n+1

) = 0. One may find this sequence of
Chebyshev coefficients in the OEIS [38] which thereby leads to interesting connec-
tions. For instance, the list (where we omit terms with j �≡ n (mod 2))

c0,0, c1,1, c0,2, c2,2, c1,3, c3,3, c0,4, c2,4, c4,4, . . .=1, 1, 1, 1, 2, 1, 2, 3, 1, 5, 4, 1, 5 . . .

is the same as Catalan’s triangle ordered along diagonals in reverse order.
From (45), we deduce c j,n ≥ 0 for all j, n, and we have

n∑

j=0

c j,n =
{( n

n/2

)
, n even,

( n
(n+1)/2

)
, n odd,

(46)

since the sum telescopes. Let δ ∈ {0, 1}, δ ≡ n (mod 2). Note that Stirling’s formula
gives (

n
n+δ
2

)
∼ 2n√

πn/2
. (47)

Lemma 2 Let c�(d) be as defined in Sect. 3, and suppose γ ≥ 0. Then

∑

d|�
c�(d)dγ ≤

∏

pn ||�
(p−γ + pγ )n .

Remark For γ = 0, this bound is slightly worse than that implied by (46), in view of
(47).

Proof We have
∑

d|�
c�(d)dγ =

∏

pn ||�

n∑

j=0

pγ j c j,n, (48)

so it suffices to show for x > 0 that

n∑

j=0

c j,nx
j ≤ (x−1 + x)n . (49)

From (45), we obviously have that

c j,n ≤
(

n
n+ j
2

)
. (50)
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From this, we shall deduce (49), as we presently explain. On the one hand, we have
from (50) that

n∑

j=0

c j,nx
j ≤ xn +

(
n

n − 1

)
xn−2 + · · · +

(
n

n+δ
2

)
xδ, (51)

and on the other hand, we have

(x−1 + x)n = xn +
(

n

n − 1

)
xn−2 + · · ·+

(
n

n+δ
2

)
xδ +

(
n

n+δ
2 − 1

)
xδ−2 + · · ·+ x−n .

(52)
In words, the positive powers of x appearing in (52) precisely match the upper bound
on (51). ��

For later use, we require an estimate for the following expression:

S(L,Y ) :=
∑

�|L∞
�≤Y

�

ν(�)2

⎛

⎝
∑

d|�
c�(d)d1/2

⎞

⎠
2

. (53)

Lemma 3 We have
S(L,Y ) �ε Y ετ (L). (54)

Proof Without the restriction � ≤ Y , the estimate in Lemma 2 would barely fail to
show the sum converges, since

p(p−1/2 + p1/2)2

(1 + p)2
= 1.

However, using Rankin’s trick and Lemma 2 we obtain

S(L,Y ) ≤
∑

�|L∞

(
Y

�

)ε

= Y ε
∏

p|L
(1 − p−ε)−1 ≤ C(ε)Y ετ (L),

where we have used the following:

∏

p|L
(1 − p−ε)−1 ≤

⎛

⎜⎜⎝
∏

p|L
pε≥2

2

⎞

⎟⎟⎠

⎛

⎜⎜⎝
∏

p|L
pε<2

(1 − p−ε)−1

⎞

⎟⎟⎠ ≤ τ(L)C(ε), (55)

where C(ε) =∏p:pε<2(1 − p−ε)−1. ��
We will additionally need the following bound.
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Lemma 4 Let c�(d) be as defined in Sect. 3. Then

∑
d|� c�(d)

ν(�)
≤ �

− log(3/2)
log 2 = �−0.5849.... (56)

Proof By Lemma 2, we have

�
log(3/2)
log 2

∑
d|� c�(d)

ν(�)
≤
∏

pn ||�

(
2

(p + 1)
p

log(3/2)
log 2

)n

. (57)

Let

fδ(x) = 2xδ

x + 1
,

where x ≥ 2 and 0 < δ < 1. If δ = log(3/2)
log 2 is such that fδ(x) is decreasing for x ≥ 2,

and fδ(2) ≤ 1, then this will show that the product on the right hand side of (57) is
≤ 1, which suffices to prove the desired bound. It is easy to check with basic calculus
that the desired properties hold for fδ(x). ��

Remark The exponent occurring in (56) is mainly controlled by the powers of 2 divid-
ing �. If � = 2n , and n is even, then in fact

∑
d|� c�(d) = ( n

n/2

) 	 2n/n1/2, while

ν(�) = 3n , so if � = 2n then (56) is sharp up to the factor n−1/2 = (log2 �)−1/2. If �

has no small prime divisors then the exponent can be improved.

Corollary 2 Let γ0 = log(3/2)
log 2 − 1

2 = 0.0849625 . . . , and suppose ε > 0 is small. Then

∑

�|L∞
�>Y

�1+ε

ν(�)2

⎛

⎝
∑

d|�
c�(d)

⎞

⎠
2

�ε Y−2γ0+2ετ (L). (58)

Proof By Lemma 4, we have

�1+ε

ν(�)2

⎛

⎝
∑

d|�
c�(d)

⎞

⎠
2

≤ �ε−2γ0 .

Then, we have by Rankin’s trick and (55), that

∑

�|L∞
�>Y

�−2γ0+ε ≤ Y−2γ0+2ε
∑

�|L∞
�−ε = Y−2γ0+2ε

∏

p|L
(1 − p−ε)−1 �ε Y−2γ0+2ετ (L).

��
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7 Approximate Petersson formulas

Our main Petersson formula, (13), has a technical problem arising from the fact that
the sum over � | L∞ is not a finite sum. Iwaniec, Luo, and Sarnak encountered a
similar difficulty in [26]. The idea is to truncate the sum at some large parameter Y ,
and estimate the tail trivially.

To this end, we begin with some simple bounds. Throughout this section we assume
the weight κ is fixed, and do not display any κ-dependence in the error terms. First,
we claim the crude bound

|ΔN (m, n)| �κ (m, N )1/2(n, N )1/2τ3(m)τ3(n), (59)

for fixed weight κ .

Proof We use (27). Using (23) and the Deligne bound, we have

|λ fφ (m)| ≤
∑

u|(m,L)

u1/2τ(m/u) ≤ (m, L)1/2τ3(m) ≤ (m, N )1/2τ3(m).

Therefore, by the fact that λ fφ (1) = λ f (1) = 1, we have

|ΔN (m, n)| ≤ (m, N )1/2(n, N )1/2τ3(m)τ3(n)ΔN (1, 1).

One can then apply the Kloosterman sum formula for ΔN (1, 1) to show (e.g. see [26,
Corollary 2.3])

ΔN (1, 1) = 1 + O

(
τ(N )

N 3/2

)
� 1.

��

Now we state an approximate version of Theorem 3.

Theorem 4 Let γ0 = log(3/2)
log 2 − 1

2 = 0.0849625 . . . , and suppose ε > 0 is small. We
have

Δ∗
N (m, n) =

∑

LM=N

μ(L)

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

ΔM

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)

+O((mnNY )εNY−2γ0). (60)
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Proof It suffices to bound the tail of the sum over �, namely the terms with � > Y .
Using (59), we have that the difference between Δ∗

N (m, n) and the main term sum on
the right hand side of (60) is

�
∑

LM=N

1

ν(L)

∑

�|L∞
�>Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

1

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

(
M,

md1
a2e21(u, v)

)1/2 (
M,

nd2
b2e22(u, v)

)1/2

τ3(md1)τ3(nd2).

(61)

We use the weak bound (M,m′) ≤ M (for any integerm′), and use τ3(md1) � (m�)ε,
and similarly for τ3(nd2), and trivially estimate the sums over u, v, a, b, e1, e2 to give
that (61) is

� (mn)εN
∑

L|N

Lε

ν(L)

∑

�|L∞
�>Y

�1+ε

ν(�)2

⎛

⎝
∑

d|�
c�(d)

⎞

⎠
2

.

The desired bound then follows from Corollary 2. ��

The same method of proof applies verbatim to Δ̃N ,q(m, n):

Theorem 5 Suppose (mnN , q) = 1. We have

Δ̃N ,q(m, n) =
∑

LM=N

μ(L)

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|(m,L)
v|(n,L)

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a
∣∣(m

u , u
(u,v)

)

b
∣∣( n

v
, v
(u,v)

)

∑

e1
∣∣(d1, m

a2(u,v)

)

e2
∣∣(d2, n

b2(u,v)

)

ΔMq

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)

+O((mnNY )εNY−2γ0). (62)

In our desired application, we shall take Y to be a very large power of the level,
in which case the error term is very small. For this reason, we made no attempt to
optimize the error term.
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8 Initial structural steps

8.1 Invariants of the twisted L-functions

We begin by calculating the root number and conductor of L(s, f ⊗ χq), which is
apparently somewhat difficult to locate in the literature. Our proof of Theorem 1 does
not require any formula for the root number of the twisted L-function, but it is helpful
for interpreting Corollary 1.

More generally, suppose that g is a weight κ newform of level N with trivial central
character. Also recall the definition of the Atkin–Lehner operators (16). Then g is an
eigenform for the Wd , and we write its eigenvalue as g|Wd = ηd(g)g. Then the sign
of the functional equation for Λ(s, g) is given by iκηN (g). Since the Atkin–Lehner
operators satisfy g|Wd1

|Wd2
= g|Wd1d2

for (d1, d2) = 1, it suffices to consider the
eigenvalues of Atkin–Lehner operartors ηQ(g)where Q is a prime power dividing the
conductor of g.

Let χq be a primitive quadratic Dirichlet character of conductor q = qoqe with qo

odd and qe a power of 2. Explicitly, χq(n) =
(

n
qo

)
χqe(n) where

(
n
qo

)
is the Jacobi

symbol and χqe(n) is either 1, χ4, or one of the two primitive quadratic characters of
conductor 8. Recall we set q̃ = rad(q) the largest square-free divisor of q. Let f be a
newform of square-free level rq ′, where (r , q) = 1 and q ′ | q̃ . We also take q ′′ | q to
be such that q ′′ | q ′∞ and (q/q ′′, q ′) = 1. Let us write f ⊗ χq = ( f ⊗ χq ′′) ⊗ χq/q ′′ .
We have by [3, Theorem 4.1] and e.g. [25, Proposition 14.20] that f ⊗χq ′′ and f ⊗χq

are newforms of conductors rq ′′2 and rq2, respectively.
We have by [15, (5.5.1)] that for each p | r that

ηp( f ⊗ χq ′′) = χq ′′(p)ηp( f )

where in Deligne’s notation a(V ) = 1 by our square-free hypothesis on r and
dim(V ) = 2. We found the exposition by Pacetti [39] particularly helpful for these
calculations. For each p | q ′′ we write P for the power of p dividing q ′′. Now we have

ηP2( f ⊗ χq ′′) = χP (−1),

by Atkin-Li Theorem 4.1 [3], and where we have written χq ′′ =∏p|q ′ χP . Therefore
we have shown that

ηrq ′′2( f ⊗ χq ′′) = ηr ( f )χq ′′(r)χq ′′(−1).

Now by Sect. 3 of Li [32] or Proposition 14.20 of [25] we have since χq/q ′′ is real that

ηrq2( f ⊗ χq) = χq/q ′′(−rq ′′2)ηrq ′′2( f ⊗ χq ′′)

= χq/q ′′(−rq ′′2)χq ′′(r)χq ′′(−1)ηr ( f )

= χq(−r)ηr ( f ).
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Note ηr ( f ) is the eigenvalue of the Atkin–Lehner operator Wr on f . In our case, f is
of trivial central character and square-free conductor rq ′. In this case one can compute
for each p | rq ′ that

ηp( f ) = −p1/2λ f (p), (63)

for which see the proof of Theorem 2.1 of [3].
In summary, if we let εg denote the root number of a newform g, this shows

ε f⊗χq = iκχq(−r)μ(r)r1/2λ f (r)

= χq(−r)μ(q ′)q ′1/2λ f (q
′)ε f ,

(64)

where recall λ f (n) is normalized to be bounded by the divisor function of n.
Now let

ω f := cκ

1

ν(q̃/q ′)ρ f (q̃/q ′)〈 f , f 〉rq ′
, (65)

where ρ f was defined in (29), and ω f in particular satisfies

ω f = (rq)−1+o(1),

since by [26, Lemma 2.5] [22,23] we have

〈 f , f 〉rq ′ = (rq ′)1+o(1).

Note that with these weights we have

∑

f ∈H∗
κ (rq ′)

q ′|q̃

ω f λ f (m)λ f (n) = Δ̃r ,q̃(m, n),
(66)

where recall Δ̃r ,q(m, n) was defined in (41).

8.2 Approximate functional equation

Recall that our goal is the bound (1), which we write as

M(r , q) :=
∑

f ∈H∗
κ (rq ′)

q ′|q̃

ω f L(1/2, f ⊗ χq)
3 � (qr)ε. (67)
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We have for Re(s) > 1 that L(s, f ⊗ χq) =∑n≥1
χq (n)λ f (n)

ns and

L(s, f ⊗ χq)
2 =

∑

m≥1

∑

n≥1

λ f (m)λ f (n)χq(mn)

(mn)s
=
∑

m≥1

∑

n≥1

χq(mn)

(mn)s

∑

d|(m,n)
(d,qr)=1

λ f

(mn

d2

)

=
∑

(d,qr)=1

1

d2s
∑

m≥1

∑

n≥1

λ f (mn)χq(mn)

(mn)s
=

∑

(d,qr)=1

∑

n≥1

τ(n)χq(n)λ f (n)

(d2n)s
.

Then we have by standard approximate functional equations that

L(1/2, f ⊗ χq) = (1 + ε f ⊗χq )
∑

n≥1

λ f (n)χq(n)

n1/2
V1

(
n

q
√
r

)
,

and

L(1/2, f ⊗ χq)
2 = 2

∑

(d,qr)=1

∑

m≥1

λ f (m)τ (m)χq(m)

d
√
m

V2

(
d2m

rq2

)
,

where V1 and V2 are certain bounded smooth functions of rapid decay (see (81), (82)
below for formulas). Therefore,

M(r , q) = 2
∑

f ∈H∗
κ (R)

r |R|r q̃

ω f (1 + ε f ⊗χq )
∑

d,m,n≥1
(d,qr)=1

λ f (m)τ (m)λ f (n)χq(mn)

d
√
mn

×V1

(
n

q
√
r

)
V2

(
d2m

q2r

)
. (68)

In (68), we may replace (1 + ε f⊗χq ) by 2, because if ε f ⊗χq = −1, then the other
factor L(1/2, f ⊗ χq)

2 vanishes anyway. Using this and (66), we derive

M(r , q) = 4
∑

(d,qr)=1

1

d

∑

n≥1

∑

m≥1

τ(m)χq(mn)√
mn

V1

(
n

q
√
r

)
V2

(
d2m

q2r

)
Δ̃r ,q̃(m, n).

(69)
The contribution from m � r1+εq2+εd−2 or n � r1/2+εq1+ε is very small by trivial
bounds.

8.3 Exercises with arithmetical functions

Equation (69) gives

M(r , q) = 4
∑

(d,qr)=1

1

d
Br ,q(α, β) + O((qr)−A), (70)
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where
Br ,q(α, β) =

∑

m,n≥1

αmβnΔ̃r ,q̃(m, n),

with

αm = τ(m)χq(m)√
m

V2

(
d2m

rq2

)
, βn = χq(n)√

n
V1

(
n

q
√
r

)
. (71)

Now we work in more generality than what is required.

Proposition 1 Let α and β be two sequences of complex numbers of rapid decay, and
let Y be some large power of qr . Then

Br ,q(α, β) =
∑

LR=r

μ(L)

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|L
v|L

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

B′ + O(‖αmm
ε‖1‖βnn

ε‖1(rq)−100), (72)

where

B′ =
∑

m≥1

∑

n≥1

αau
e1(

e1, u
a(u,v)

)mβbv
e2(

e2, v
b(u,v)

) n

×ΔRq̃

(
d1
e1

u

(u, ae1(u, v))
m,

d2
e2

v

(v, be2(u, v))
n

)
(73)

Proof Using (62), and pulling the sums over m and n to the inside, we obtain

Br ,q(α, β) =
∑

LR=r

μ(L)

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

∑

u|L
v|L

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)

×
∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

∑

m≡0

(
mod au

e1(
e1, u

a(u,v)

)

)

n≡0

(
mod bv

e2(
e2, v

b(u,v)

)

)

αmβnΔRq̃

(
md1

a2e21(u, v)
,

nd2
b2e22(u, v)

)

+O

⎛

⎝
∑

m≥1

∑

n≥1

|αmm
ε||βnn

ε|(rq)1+εY−2γ0+ε

⎞

⎠ ,
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where we have used the following elementary observations: we have

{
u|m
a|mu

⇔ m ≡ 0 (mod au)

and for any integers a, b, x we have ax ≡ 0 (mod b) if and only if x ≡ 0 (mod b
(a,b) )

so that

m

a2(u, v)
≡ 0 (mod e1)

⇔ m

au

u

a(u, v)
≡ 0 (mod e1)

⇔ m

au
≡ 0

⎛

⎝mod
e1(

e1,
u

a(u,v)

)

⎞

⎠

⇔ m ≡ 0

⎛

⎝mod au
e1(

e1,
u

a(u,v)

)

⎞

⎠ .

We now make the change of variables

m �→ au
e1(

e1,
u

a(u,v)

)m n �→ bv
e2(

e2,
v

b(u,v)

)n,

which gives the desired formula. ��

Continuing with our more general set-up, let γ1, γ2, δ1, δ2 be positive integers that
divide L∞, and set

B′
γ1,γ2,δ1,δ2

=
∑

m,n≥1

αγ1mβγ2nΔRq̃(δ1m, δ2n). (74)

In our application of interest, we have

γ1 = au
e1(

e1,
u

a(u,v)

) , γ2 = bv
e2(

e2,
v

b(u,v)

) , (75)

and

δ1 = d1
e1

u

(u, ae1(u, v))
, δ2 = d2

e2

v

(v, be2(u, v))
. (76)

We now use the α and β specific to our situation. In anticipation of some future
maneuvers, we use a Hecke relation on the divisor function implicit in α, namely
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τ(γm) = ∑h|(γ,m) τ (γ /h)τ (m/h)μ(h). This gives (for an arbitrary function f such
that the sums converge absolutely)

∑

m≥1

αγm f (m) =
∑

m≥1

τ(γm)χq(γm)√
γm

V2

(
d2γm

q2r

)
f (m)

= χq(γ )√
γ

∑

h|γ

τ
( γ
h

)
μ(h)χq(h)√

h

∑

m≥1

χq(m)τ (m)√
m

V2

(
d2γ hm

q2r

)
f (hm).

With this, and by inserting the definition of β, we have

B′
γ1,γ2,δ1,δ2

= χq(γ1γ2)√
γ1γ2

∑

γ3|γ1

τ(
γ1
γ3

)μ(γ3)χq(γ3)√
γ3

B′′, (77)

where

B′′ =
∑

m,n≥1

χq(mn)τ (m)√
mn

V1

(
γ2n

q
√
r

)
V2

(
d2γ1γ3m

q2r

)
ΔRq̃(δ1γ3m, δ2n). (78)

Applying the Petersson formula (11), we obtain

B′′ = D′′ + 2π i−κS,

where

D′′ =
∑

δ1γ3m=δ2n

χq(mn)τ (m)√
mn

V1

(
γ2n

q
√
r

)
V2

(
d2γ1γ3m

q2r

)
, (79)

and

S =
∑

m,n≥1

χq(mn)τ (m)√
mn

V1

(
γ2n

q
√
r

)
V2

(
d2γ1γ3m

q2r

)

×
∑

c≡0(mod q̃ R)

S(Am, Bn; c)
c

Jκ−1

(
4π

√
ABmn

c

)
, (80)

with
A = δ1γ3, B = δ2.

According to this, we write B′ = D′ + B′
S , and similarly, B = D + BS . It may be

helpful to record that c ≡ 0 (mod q̃ R), that (qR, L) = 1, and that AB|L∞, so that
(AB, qR) = 1.

The main technical result proved in the rest of the paper is the following
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Proposition 2 With α and β as above, we have

S �
(√

AB√
R

+ r3/4√
qR

)
(qr)ε.

From Proposition 2, we deduce bounds on B′
S , then BS . We have

B′
S � 1√

γ1γ2

∑

γ3|γ1

1√
γ3

(√
δ1δ2γ3√

R
+ r3/4

q1/2R

)
(qr)ε �

(√
δ1δ2√
R

+ r3/4

q1/2R

)
(qr)ε√
γ1γ2

.

Therefore, we get the following bound on BS :

BS � (qr)ε
∑

LR=r

1

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

×
∑

u|L
v|L

uv

(u, v)

∣∣∣μ
(

uv
(u,v)2

)∣∣∣

ν
(

uv
(u,v)2

)
∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

(√
δ1δ2√
R

+ r3/4

q1/2R

)
1√
γ1γ2

.

Note that

δ1

γ1
= d1

e1

u

(u, ae1(u, v))

(
e1,

u
a(u,v)

)

aue1
= d1

e21a
2(u, v)

,

and so by symmetry
δ2

γ2
= d2

e22b
2(u, v)

,

and thus (
δ1δ2

γ1γ2

)1/2

= (d1d2)1/2

e1e2ab(u, v)
.

We also use 1√
γ1γ2

≤ 1√
uv

≤ 1
(u,v)

. With these observations, we have

∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

(√
δ1δ2√
R

+ r3/4

q1/2R

)
1√
γ1γ2

� (qr)ε

(u, v)

(
(d1d2)1/2

R1/2 + r3/4

q1/2R

)
.

The inner sum over u and v gives a divisor bound, so now we get

BS � (qr)ε
∑

LR=r

1

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

(
(d1d2)1/2

R1/2 + r3/4

q1/2R

)
.
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By Lemma 4, we bound the second part of this sum by

(qr)ε
r3/4

q1/2
∑

LR=r

1

ν(L)R

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

� (qr)ε
r3/4

q1/2
∑

LR=r

1

ν(L)R

∑

�|L∞
�≤Y

�−2γ0 � q−1/2+εr−1/4+ε.

Recalling the definition (53) and using Lemma 3 we have

BS � (qr)ε
(
∑

LR=r

S(L,Y )

ν(L)R1/2 + r−1/4q−1/2

)
� (qr)ε

(
r−1/2 + r−1/4q−1/2

)
.

Finally, we have from (70) that

M(r , q) = M0(r , q) + O
(
(qr)ε(r−1/4q−1/2 + r−1/2)

)
,

where M0(r , q) is the contribution to M(r , q) from the diagonal term D. It is easy
to see that M0(r , q) � (rq)ε, following the proof of the bounds on BS .

We summarize this discussion with

Corollary 3 Proposition 2 implies Theorem 1.

This is appealing because it lets us reduce the number of variables to consider from
this point onward.

8.4 Diagonal terms

In this section, we evaluate M0(r , q) which along with Proposition 2 leads to (5).
The functions V1 and V2, are given explicitly by

Vi (y) = 1

2π i

∫

(2)
Wi (ui )y

−ui dui , (81)

where

W1(u) = (2π)−u Γ
(
u + κ

2

)

Γ
(

κ
2

)
u

, W2(u) = (2π)−2u Γ
(
u + κ

2

)2

Γ
(

κ
2

)2
u

. (82)

Then recalling (70), (72), (77), and (79) we have that

M0(r , q) =
∫

(1)

∫

(1)
W1(u1)W2(u2)(q

2r)
u1
2 +u2ζ(1 + 2u2)ζ(1 + u1 + u2)

2

×Fr ,q,Y (u1, u2)
4du1du2
(2π i)2

,
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where

Fr ,q,Y (u1, u2) =
∑

LR=r

μ(L)

ν(L)

∑

�|L∞�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2)

×
∑

u|L
v|L

uv

(u, v)

μ
(

uv
(u,v)2

)

ν
(

uv
(u,v)2

)
∑

a| u
(u,v)

b| v
(u,v)

∑

e1|d1
e2|d2

χq(γ1γ2)

γ
1/2+u2
1 γ

1/2+u1
2

×
∑

γ3|γ1

τ
(

γ1
γ3

)
μ(γ3)χq(γ3)

γ
1/2+u2
3

×
∏

p|qr (1 − p−1−2u2)

ζ(1 + u1 + u2)2
∑

δ1γ3m=δ2n

χq(mn)τ (m)

m1/2+u2n1/2+u1
,

and where recall (75) and (76) for the definitions of γ1, γ2, δ1, δ2, which depend on
a, b, u, v, e1, e2, d1, d2.

Our plan is to shift the contours past the poles. We claim Fr ,q,Y (u1, u2) is holo-
morphic in the region Re(ui ) = σi ≥ −1/2, for i = 1, 2, and satisfies the bound

|Fr ,q,Y (u1, u2)| � (qr)ε. (83)

Proof By a simple argument with Euler factors, it is not hard to see that we have the
bound

ζ(1 + u1 + u2)
−2

∑

δ1γ3m=δ2n

χq(mn)τ (m)

m1/2+u2n1/2+u1
� (qr)ε, (84)

and that the left hand side of (84), and hence Fr ,q,Y , is holomorphic in the desired
region.

Using divisor-type bounds on the inner sums, we have

|Fr ,q,Y (u1, u2)| � (qr)ε
∑

LR=r

1

ν(L)

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2).

By Lemma 4, we have

∑

�|L∞
�≤Y

�

ν(�)2

∑

d1,d2|�
c�(d1)c�(d2) � Lε,

and hence (83) follows. ��
The proof given above, combined with Corollary 2, shows that

Fr ,q,Y = lim
Y→∞ Fr ,q,Y + O((qr)εY−2γ0+2ε),
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so for the rest of the calculation of M0(r , q) we take Y = ∞, and define Fr ,q =
limY→∞ Fr ,q,Y .

Rather than attempting to obtain the strongest error term, we take the easiest path
that gives some power saving. We begin by taking σ1 = 1/2+ ε, and σ2 = 1/2. Next
we shift u2 to the line σ2 = −1/2, crossing a double pole at u2 = 0 only. On the new
line, we have

∫

(σ1)

∫

(σ2)

|W1(u1)W2(u2)(q
2r)u1/2+u2ζ(1 + u1 + u2)

2ζ(1 + 2u2)

×Fr ,q(u1, u2)||du1du2| � (rq2)−1/4+ε.

Some thought shows that

Resu2=0W2(u2)(q
2r)u2ζ(1 + u1 + u2)

2ζ(1 + 2u2)Fr ,q(u1, u2)

= Fr ,q(u1, 0)P1(log q
2r)ζ 2(1 + u1) + cζ ′(1 + u1)ζ(1 + u1)Fr ,q(u1, 0)

+ c′ζ 2(1 + u1)F
(0,1)
r ,q (u1, 0), (85)

where c, c′ are constants and P1 is a degree 1 polynomial.
The residue is now a single integral over u1, and we shift this contour to σ1 =

−1/2+ ε. The new integral is bounded by (q2r)−1/4+ε, again. The residue at u1 = 0
takes the form

Rr ,q :=
∑

0≤i≤2
0≤ j≤1

Pi, j (log q
2r)F (2−i,1− j)

r ,q (0, 0), (86)

where Pi, j is a polynomial of degree ≤ i + j .
Gathering this discussion together, we have shown

M0(r , q) = Rr ,q + O((q2r)−1/4+ε).

It would be better to study the main terms in the style of [13] using shifts, which for
the sake of brevity we leave for another occasion.

8.5 Dyadic subdivisions

We return to estimating S defined by (80). Next, we open the divisor function τ(m) =∑
n1n2=m 1 and apply a dyadic partition of unity to the sums over n1, n2, n = n3, and

c. This gives

S =
∑

N1,N2,N3,C

1

(N1N2N3)1/2C
SN1,N2,N3,C + O((qr)−10),
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where N1, N2, N3,C run over dyadic numbers and where

SN1,N2,N3,C =
∑

c≡0(mod q̃ R)

wC (c)
∑

n1,n2,n3≥1

χq(n1n2n3)

×S(An1n2, Bn3; c)Jκ−1

(
4π

√
ABn1n2n3
c

)
wN1,N2,N3(n1, n2, n3).

(87)

Here the weight functions wC (x) and wN1,N2,N3(x1, x2, x3) satisfy

w
( j)
C (x) � x− j , w

( j1, j2, j3)
N1,N2,N3

(x1, x2, x3) � x− j1
1 x− j2

2 x− j3
3 ,

and are supported on x 	 C , xi 	 Ni , i = 1, 2, 3.
By the Weil bound, and using Jκ−1(x) � x , the contribution to S from c ≥ C is

� (qr)ε√
N1N2N3C

(√
ABN1N2N3

C

)
C3/2

qR
N1N2N3 =

√
ABN1N2N3

C1/2qR
(qr)ε.

This is satisfactory for Proposition 2 for C � (N1N2N3)
2

q2R
. Thus we may restrict the

variables by

qR � C � (N1N2N3)
2

q2R
, N1N2 � (q2r)1+ε

d2γ1γ3
, N3 � (qr1/2)1+ε

γ2
. (88)

Let us also write (87) as

SN1,N2,N3,C =
∑

c≡0(mod q̃ R)

wC (c)S ′
N1,N2,N3,c. (89)

8.6 Poisson summation

Let [c, q] = lcm(c, q). We have

S ′
N1,N2,N3,c =

∑

m1,m2,m3∈Z
GA,B(m1,m2,m3; c)K (m1,m2,m3; c), (90)

where

GA,B(m1,m2,m3; c) = 1

[c, q]3
∑

x1,x2,x3(mod [c,q])
χq(x1x2x3)

×S(Ax1x2, Bx3; c)e
(
x1m1 + x2m2 + x3m3

[c, q]
)

, (91)
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and

K (m1,m2,m3; c) =
∫

R3
Jκ−1

(
4π

√
ABt1t2t3
c

)
e

(−m1t1 − m2t2 − mt3
[c, q]

)

×wN1,N2,N3(t1, t2, t3)dt1dt2dt3. (92)

When A = B = 1 and q is odd and square-free, this is precisely as in [14] (though the
reader should be aware of our slightly different normalization of G by [c, q]−3), so
this appears at first glance to be a fairly minor generalization of their work, however
the calculations become rather intricate.

9 Arithmetic part

Let (ε1, ε2, ε3) ∈ {±1}3, δ = 1, 2, 4, or 8, and write qe for the even part of q. Let

Z (ε1,ε2,ε3)
δ,R,q (s1, s2, s3, s4)

=
∑

εi mi≥1
i=1,2,3

∑

c≡0(mod Rq̃)
(c,qe)=δ

cqGA,B(m1,m2,m3; c)eAB[c,q]3/c2(−m1m2m3)

|m1|s1 |m2|s2 |m3|s3
(

c
Rq̃

)s4 . (93)

One of the key ingredients of the Conrey-Iwaniec method (when A = B = 1 and
q is odd) is that the additive character eAB[c,q]3/c2(−m1m2m3) nicely combines with
G(m1,m2,m3; c), allowing for an efficient decomposition into multiplicative charac-
ters.

To avoid over-burdening the already burdened notation we only give proofs in the
case (ε1, ε2, ε3) = (1, 1, 1) and denote this case simply Zδ,R,q , the other cases being
treated similarly. Note that we have (AB) � (qr)L for some fixed but possibly large
L > 0 (see Proposition 1) so that (AB)ε � (qr)ε

′
.

The main goal of this section is the following proposition.

Proposition 3 For each choice of (ε1, ε2, ε3) and δ there is a decomposition Zδ,R,q =
Z (ε1,ε2,ε3)

δ,R,q (s1, s2, s3, s4) = Z0 + Z ′, where Z0 and Z ′ have the following properties.
Here Z0 is analytic in Re(si ) ≥ 1 + σ for i = 1, 2, 3, 4, σ > 0 and in this region it
satisfies the bound

Z0 �σ,ε

(qr)ε

AB
. (94)

The function Z ′ is analytic for Re(si ) ≥ 1
2 + σ for i = 1, 2, 3, 4, any σ > 0, and in

this region satisfies the bound

|Z ′| �σ,ε q3/2(AB)1/2(qr)ε
4∏

j=1

(1 + |s j |)1/4+ε. (95)
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Moreover, if s j = 1/2 + ε + i(y j + t) for j = 1, 2, 3, s4 = 1/2 + ε + i(y4 − t), and
y j � (qr)ε for j = 1, 2, 3, 4, then we have

∫

|t |≤T
|Z ′(1/2 + ε + i(y1 + t), 1/2 + ε + i(y2 + t), 1/2 + ε + i(y3 + t), 1/2 + ε + i(y4 − t))|dt

� q3/2(AB)1/2T (qrT )ε. (96)

We begin by reducing the evaluation of GA,B into cases. First, write c = c1c2 with
c2|(AB)∞, and (c1, AB) = 1. As r = RL is square-free and (r , q) = 1 we have
(qR, AB) = 1, hence (qR, c2) = 1. By a calculation with the Chinese remainder
theorem, we have

GA,B(m1,m2,m3; c1c2) = χq(AB)G1,1
(
m1,m2, ABc2m3; c1

)

×GA,B

(
m1,m2, [c1, q]3c21m3; c2

)
, (97)

where in the definition of GA,B(m1,m2,m3; c2) for c2 | (AB)∞ we implicitly take
q = 1. Write q = qoqe where qo is odd and qe ∈ {1, 4, 8}. We further decompose c1
by c1 = coce where co is odd and ce is a power of 2. Another short calculation with
the Chinese remainder theorem shows

G1,1(�1, �2, �3; coce) = G1,1(�1, �2, [ce, qe]3c2e�3; co)G1,1(�1, �2, co�3; ce). (98)

Next we evaluate the three types of GA,B sums in a form most relevant for our
further calculations. The case with modulus co was derived by [14, §10]. Following
the notation found in [14], write

co = qoso.

Lemma 5 (Conrey and Iwaniec) We have for qo, so ∈ N with (qo, 2) = 1 that

coqoe

(−a1a2a3
co

)
G1,1(a1, a2, a3; co) =

∑

D1D2hk=qo
h=(qo,so)

k=(a1a2a3,qo)
(h,a1a2)=1

1

ϕ(D2)

×
∑

ψ(mod D2)

gD1,D2,h,k,ψψ(a1a2a3)ψ(so)

Rk(a1)Rk(a2)Rk(a3), (99)

where Rk(n) = S(n, 0; k) is the Ramanujan sum, and g is some function satisfying

|gD1,D2,h,k,ψ | � D3/2+ε
2 , (100)

and where in addition we must have (a3, so) = 1, otherwise G vanishes. In case ψ is
principal, then |gD1,D2,h,k,ψ | � Dε

2 .
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Conrey and Iwaniec in fact give a more precise formula that we describe within the
proof.

Next we evaluate the case with modulus c2|(AB)∞.

Lemma 6 Suppose c2|(AB)∞. Suppose that a1a2a3 �= 0 and write ai = uivi where
(ui , AB) = 1 and vi |(AB)∞. Then

c2e

(−a1a2a3
c2AB

)
GA,B(a1, a2, a3; c2)

= δ((A, c2)|v1)δ((A, c2)|v2)δ((B, c2)|v3)
×

∑

g1g2| c2
(A,c2)

g1=
(

v1
(A,c2)

,
c2

(A,c2)

)

g2=
(

v2
(A,c2)

,
c2

g1(A,c2)

)

∑

D| c2 AB

(c2,A)2(c2,B)

1

ϕ(D)

∑

η(mod D)

γηη(u1u2u3), (101)

were γη = γv1,v2,g1,g2,c2,A,B,D,η is some function satisfying the bound

|γv1,v2,g1,g2,c2,A,B,D,η| � (A, c2)(B, c2)D
1/2. (102)

In case η is principal then with A = (A, c2)A′ and B = (B, c2)B ′, we have

|γη|
D

� (qr)ε(A, c2)(B, c2)

(
v1v2v3

(A,c2)2(B,c2)
, A′B ′

)

A′B ′ . (103)

Again the point is that we get a short linear combination of multiplicative functions.
Finally, we consider the case of ce. For this, we have

Lemma 7 Suppose ce is a power of 2. Suppose a1a2a3 �= 0 and write each ai = ei fi
where ei is a power of 2, and fi is odd. Then

qecee

( −a1a2a3
[ce, qe]3/c2e

)
G1,1(a1, a2, a3; ce) =

∑

Δ|64

1

ϕ(Δ)

∑

χ(mod Δ)

gχχ( f1 f2 f3),

(104)
where gχ = ge1,e2,e3,qe,ce,χ,Δ is bounded by an absolute constant.

As in the previous two cases, we have a much more precise formula for G1,1, which
we shall describe within the proof.

Proof (of Lemma 5) First we note that our G1,1 is scaled differently from G defined
by [14], precisely G1,1(a1, a2, a3; co) = c−3

o G(a1, a2, a3; co), as in [14, (8.2)]. In the
notation of [14], make the definitions co = qoso, h = (qo, so), k = (a1a2a3, qo),
D = qo

hk . The sum G1,1 vanishes unless (h, a1a2) = 1 and (s0, a3) = 1, in which case
by [14, Lemma 10.2], we have
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G1,1(a1, a2, a3; co)
= e

(
a1a2a3
co

)
hχkD(−1)

coqoφ(k)
Rk(a1)Rk(a2)Rk(a3)H(sohka1a2a3; D). (105)

We do not need the exact formula for H , but rather the fact that it essentially depends
on the variables as a block, and the decomposition into character sums. Specifically,
Conrey and Iwaniec [14, (11.7), (11.9)] showed

H(w; D) =
∑

D1D2=D

μ(D1)χD1(−1)H∗(D1w; D2), (106)

and

H∗(w; D2) = 1

ϕ(D2)

∑

ψ(mod D2)

τ (ψ)g(χD2 , ψ)ψ(w). (107)

The crucial fact about g(χD2 , ψ) is that

|g(χD2 , ψ)| � D1+ε
2 , (108)

which requires the Riemann Hypothesis for varieties, i.e., Deligne’s bound.
From here it is a matter of bookkeeping to derive (99).
In case ψ = ψ0 is the principal character, then |g(χD2 , ψ0)| ≤ d(D2) (the divisor

function) and τ(ψ0) = μ(D2). Indeed, one may show that if ψ = ψ0 is the principal
character modulo an odd prime p, then g(χp, ψ0) = 2 if p ≡ 1 (mod 4), and = 0 if
p ≡ 3 (mod 4). Furthermore, g(χq , ψ0) is multiplicative in q.1 ��
Proof (of Lemma 6) We will evaluate GA,B in precise terms. We will not use the
assumption a1a2a3 = 0 until indicated later in the proof. Since c2|(AB)∞ and
(q, AB) = 1, the quadratic character is not present in the sum, and specifically we
have

GA,B(a1, a2, a3; c2)
= 1

c32

∑∗

u(mod c2)

∑

x1,x2,x3(mod c2)

e

(
Ax1x2u + Bx3u + x1a1 + x2a2 + x3a3

c2

)
.

Summing over x1, we detect the congruence Ax2u ≡ −a1 (mod c2), while the sum
over x3 detects Bu ≡ −a3 (mod c2). Therefore,

GA,B(a1, a2, a3; c2) = 1

c2

∑∗

Bu≡−a3(mod c2)

∑

Ax2u≡−a1(mod c2)

e

(
x2a2
c2

)
.

Note that Bu ≡ −a3 (mod c2) and Ax2u ≡ −a1 (mod c2) are solvable if and only
if

(B, c2) = (a3, c2), and (A, c2)|a1. (109)

1 This corrects a claimed formula for g(χq , ψ0) of [14, p.1212].
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By symmetry, we expect that in addition that we will require (A, c2)|a2, and indeed
we will recover this condition later in the analysis. From now on, we assume the
conditions (109) hold, otherwise the sum is 0.

Next we make the definitions

A = (A, c2)A
′, B = (B, c2)B

′, c2 = (B, c2)c
′
2, a3 = (a3, c2)ã3. (110)

Now the congruence Bu ≡ −a3 (mod c2) is equivalent to u ≡ −B ′ã3 (mod c′
2).

Next write x2 = −A′ a1
(A,c2)

u + c2
(A,c2)

t with t running mod (A, c2). Inserting this into
the exponential sum, we obtain

GA,B(a1, a2, a3; c2) = 1

c2

∑∗

u(mod c2)
u≡−B′ã3

(
mod c′

2

)

∑

t(mod (A,c2))

e

⎛

⎝
a2(−A′ a1

(A,c2)
u + c2

(A,c2)
t)

c2

⎞

⎠.

The sum over t vanishes unless (A, c2)|a2, in which case we obtain

GA,B(a1, a2, a3; c2) = (A, c2)

c2

∑∗

u(mod c2)
u≡−B′ã3(mod c′

2)

e

(−A′ a1
(A,c2)

a2
(A,c2)

u
c2

(A,c2)

)
.

To proceed further, we make some additional definitions, namely

g1 =
(

a1
(A, c2)

,
c2

(A, c2)

)
, a1 = g1(A, c2)ã1, g2 =

(
a2

(A, c2)
,

c2
g1(A, c2)

)
,

a2 = g2(A, c2)ã2, c′′
2 = c2

(A, c2)g1g2
.

Thus (ã1,
c2

g1(A,c2)
) = 1, and (A′ã1ã2, c′′

2) = 1, and with this notation the formula
becomes

GA,B(a1, a2, a3; c2) = (A, c2)

c2

∑∗

u(mod c2)
u≡−B′ã3(mod c′

2)

e

(
−A′ã1ã2u

c′′
2

)
.

The tricky part in the analysis is that there is no apparent divisibility relationship
between c′

2 = c2
(B,c2)

and c′′
2 = c2

(A,c2)g1g2
, and so it is necessary to proceed by cases.

Although it is not globally true that c′
2|c′′

2 , or vice versa, we may factor the moduli
corresponding to which prime power of c′

2 or c
′′
2 is larger, which motivates the forth-

coming factorization. For p a prime and n a nonzero integer, define νp(n) = d if
pd ||n. Then we set c2 = czc f cg where
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cz =
∏

pβ ||c2
1≤νp(c′

2)<νp(c′′
2 )

pβ, c f =
∏

pβ ||c2
νp(c′′

2 )≤νp(c′
2)

pβ, cg =
∏

pβ ||c2
νp(c′

2)=0
νp(c′′

2 )≥1

pβ.

According to this factorization, we also write c′
2 = c′

zc
′
f c

′
g and c′′

2 = c′′
z c

′′
f c

′′
g where

c′∗ = (c∗, c′
2) and c′′∗ = (c∗, c′′

2) with ∗ = z, f , g. Note from the definitions that
cz, c f , cg are all pairwise relatively prime, and also that c′′

f |c′
f , and c′

g = 1.
Using the Chinese remainder theorem, we factor GA,B as

GA,B(a1, a2, a3; c2) = (A, c2)

c2

∑∗

ue(mod cz)
ue≡−B′ã3(mod c′

z)

e

(
−A′ã1ã2ue(c f cg)c f cg

c′′
z c

′′
f c

′′
g

)

×
∑∗

u f (mod c f )

u f ≡−B′ã3
(
mod c′

f

)

e

(
−A′ã1ã2u f (czcg)czcg

c′′
z c

′′
f c

′′
g

)

×
∑∗

ug(mod cg)

ug≡−B′ã3
(
mod c′

g

)

e

(
−A′ã1ã2ug(czc f )czc f

c′′
z c

′′
f c

′′
g

)
.

Let us examine each of these three sums in turn. We begin by writing the sum over ue
more suggestively as follows:

∑∗

u(mod cz)
u≡−B′ã3(mod c′

z)

e

⎛

⎝
−A′ã1ã2u(

c f cg
c′′
f c

′′
g
)c f cg

c′′
z

⎞

⎠ .

For each prime p dividing cz , we have p|c′
z , and p| c′′

z
c′
z
. Therefore, we may write

u = −B ′ã3 + c′
z t , where t runs over all residue classes modulo c′′

z /c
′
z . But then the

sum over t vanishes, because the factor in the numerator is relatively prime to the
denominator. Thus we obtain that G vanishes unless cz = 1. We henceforth make this
assumption in the next computations of the c f and cg moduli sums.

For the sum over u f (mod c f ), since c′′
f |c′

f , the congruence uniquely determines

u f modulo c′′
f , so we get, using (cg/c′′

g)cg = c′′
g :

∑∗

u(mod c f )

u≡−B′ã3
(
mod c′

f

)

e

(
−A′ã1ã2ucgcg

c′′
f c

′′
g

)
= e

(
A′B ′ã1ã2ã3c′′

g

c′′
f

)
∑∗

u(mod c f )

u≡−B′ã3
(
mod c′

f

)

1.
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We also have ∑∗

u(mod c f )

u≡−B′ã3
(
mod c′

f

)

1 = ϕ(c f )

ϕ(c′
f )

,

as can be checked as follows. Firstly, we see that both sides of the purported identity
are multiplicative, so it suffices to check this on prime powers. If c′

f = 1, then the

identity follows easily. If c′
f = pβ ′

, and c f = pβ , and β ′ ≥ 1, then the left hand side

is pβ−β ′ = ϕ(pβ)

ϕ(pβ′
)
, as desired.

Finally, we examine the sum modulo cg . We have c′
g = 1 (directly from the def-

inition, as remarked earlier), so the congruence condition is vacuous. The sum then
simplifies as Rcg (

cg
c′′
g
), using that c f and everything else in the numerator in the expo-

nential is relatively prime to cg .
Putting all these calculations together, we have shown that if c2 = c f cg , (B, c2) =

(a3, c2), and (A, c2) | (a1, a2), then

GA,B(a1, a2, a3; c2) = (A, c2)

c2
Rcg

(
cg
c′′
g

)
ϕ(c f )

ϕ(c′
f )
e

(
A′B ′ã1ã2ã3c′′

g

c′′
f

)
, (111)

and otherwise GA,B vanishes. So far the assumption a1a2a3 �= 0 was not used.
To estimate this expression for G, we have c′

f = (c′
2, c f ) = ( c2

(B,c2)
, c2
cg

) and

cg | (B, c2), so in fact c′
f = c2

(B,c2)
= c′

2. Then

∣∣∣∣∣Rcg

(
cg
c′′
g

)∣∣∣∣∣
ϕ(c f )

ϕ(c′
f )

≤ ϕ(cg)
ϕ(c f )

ϕ(c′
f )

= ϕ(c2)

ϕ(c2/(c2, B))
≤ (B, c2). (112)

Our goal now is to use Dirichlet characters to decompose

ec2(−a1a2a3)GA,B(a1, a2, a3; c2).

Switching to the new notation used in (111), we have

e

(−a1a2a3
ABc2

)
= e

(
−ã1ã2ã3
A′B ′c′′

f c
′′
g

)
,

and by reciprocity, we have

c2e

(−a1a2a3
ABc2

)
GA,B(a1, a2, a3; c2) = (A, c2)Rcg

(
cg
c′′
g

)
ϕ(c f )

ϕ(c′
f )
e

(−ã1ã2ã3c′′
f

c′′
g A

′B ′

)
.

Let

g3 = (ã1ã2ã3, c
′′
g A

′B ′).
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Then we have

c2e

(−a1a2a3
ABc2

)
GA,B(a1, a2, a3; c2)

= (A, c2)Rcg

(
cg
c′′
g

)
ϕ(c f )

ϕ(c′
f )

1

ϕ
(
c′′
g A

′B′
g3

)
∑

η

(
mod

c′′g A′B′
g3

)
τ(η)η(−ã1ã2ã3c′′

f /g3).

Finally, we argue that this expression is of the desired form for Lemma 6. Recall
we write ai = uivi where (ui , AB) = 1 and vi |(AB)∞. As originally written, the
gi depend on the ai , but in fact they only depend on the vi since the gi are divi-
sors of c2, and c2|(AB)∞. By writing the dependence of the gi on the vi explicitly
as summation conditions, we see the presence of the first sum in (101). A careful
scrutiny of the changes of variables throughout the proof shows that the variables
cg, c′′

g, c f , c′
f , A

′, B ′, g3 are functions of c2, the vi and g1, g2, and are independent of
the ui . We may also extract from ã1ã2ã3 the factor u1u2u3. We obtain the bound on
γη by (112), and using the standard bound on the Gauss sum. We note that

c′′
g A

′B ′

g3
|c′′
2 A

′B ′, and c′′
2 A

′B ′| c2AB

(A, c2)2(B, c2)
,

which gives the divisibility condition on D.
The only remaining statement to prove is (103). In this case, the Gauss sum is

bounded by 1, and by (112) we have

(A, c2)

∣∣∣∣∣Rcg

(
cg
c′′
g

)∣∣∣∣∣
ϕ(c f )

ϕ(c′
f )

1

ϕ
(
c′′
g A

′B′
g3

) � (qr)ε(A, c2)(B, c2)
g3

c′′
g A

′B ′ .

By tracing back the definitions, we see that

g3 =
(

v1v2v3

g1g2(A, c2)2(B, c2)
, c′′

g A
′B ′
)

≤ c′′
g

(
v1v2v3

(A, c2)2(B, c2)
, A′B ′

)
,

which implies the bound (103). ��

Proof (of Lemma 7) Now we evaluate G1,1(a1, a2, a3; ce). To do so we break into
cases. First assume that qe � ce. Under the condition qe � ce there are only finitely
many possibilities for qe, ce, a1, a2, a3. A brute force computation with Sage [42] then
shows that if ce = 1, 2 then

G1,1(a1, a2, a3; ce) = 1

q2e
χqe(−1)τ (χqe )χqe (a1a2a3), (113)
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and if qe = 8 and ce = 4 then

G1,1(a1, a2, a3; ce) = 1

32
χqe(−1)τ (χqeχ4)χqeχ4(a1a2a3). (114)

Now we assume that qe | ce. We write ce = qese where se is a power of 2. Following
the same steps as [14, Section 10] we have that if qe | ce then

G1,1(a1, a2, a3; ce) = δ(a3,se)=1χqe (−1)

q2e se
e

(
a1a2a3
ce

)
Hse (a1, a2, a3, qe), (115)

where Hs is defined in [14, (10.2)]. Assume now both qe | ce and qe | se (so that in
fact q2e | ce). Following the proof of Lemma 10.1 of [14] we find in this case that

Hse (a1, a2, a3, qe) = χqe(a1a2a3)
2τ(χqe)

2. (116)

Having dealt with this case, we may now assume that qe | ce and qe � se. Now there
are only finitely many choices for qe, ce, a1, a2, a3 which permits us to conclude the
following lemma by another Sage computation.

Lemma 8 Suppose that qe | ce and let se = ce/qe. If se = 1 we have

Hse (a1, a2, a3, qe) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 Rqe (a1)Rqe (a2)Rqe (a3) if qe = 4
1
4 Rqe(a1)Rqe(a2)Rqe(a3) if qe = 8 and 4|a1, a2, a3,
16iχ4

( a1a2a3
8

)
if qe = 8 and 2||a1, a2, a3,

0 otherwise.
(117)

If 2 | se then

Hs(a1, a2, a3, qe) =

⎧
⎪⎨

⎪⎩

χqe(a1a2a3)
2τ(χqe)

2 if qe | se
−χqe (a1a2a3)

2τ(χqe )
2 if 2se = qe

iτ(χqe )
2χ4(a1a2a3) if se = 2 and qe = 8.

(118)

Ifqe | ce then the additive character on the left hand side ofLemma7cancels identically
with the additive character appearing in (115). On the other hand, if qe � ce then
the additive character e[ce,qe]3/c2e (−a1a2a3) = eq3e /c2e

(−a1a2a3) must be expressed in
terms of multiplicative characters. Recall, if a1a2a3 �= 0 we factor ai = ei fi with ei
a power of 2 and fi odd. We have

eq3e /c2e
(−a1a2a3) = 1

ϕ(q3e /c
2
e (q

3
e /c

2
e , a1a2a3))

∑

θ

(
mod q3e

c2e (q3e /c2e ,a1a2a3)

)
τ(θ)θ

(
− a1a2a3

(q3e /c
2
e , a1a2a3)

)
,

(119)

where by convention we take θ (mod 1) to be identically 1.
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Having computed G1,1(a1, a2, a3; ce) we now argue that the resulting expressions
are of the desired form for Lemma 7. In similar fashion to the proof of Lemma 6, note
that for each fixed qe, ce we have that ceqeG ′(a1, a2, a3; ce) is of the form (104) by
inspecting (119), (113), (114), (117) and (118). Now allowing the function g to depend

on qe, ce and seeing that q3e
c2e (q

3
e /c2e ,a1a2a3)

| 64 in all cases, we conclude the statement

of Lemma 7. ��
Proof (of Proposition 3) Let

G ′
A,B(m1,m2,m3; c) = GA,B(m1,m2,m3; c)e

( −m1m2m3

AB[c, q]3/c2
)

.

Then by (97) and (98) we have

cqG ′
A,B(m1,m2,m3; c) = χq(AB)coqoG

′
1,1

(
m1,m2, ABc2[ce, qe]3c2em3; co

)

×c2G
′
A,B

(
m1,m2, co[ce, qe]3c2em3; c2

)

×ceqeG
′
1,1

(
m1,m2, ABc2com3; ce

)
.

Now we factor mi = m′
im

′′
i , where (m′

i , AB) = 1 and m′′
i | (AB)∞, and then

further factor m′
i = mo

i m
e
i where m

o
i is odd and m

e
i is a power of 2. By Lemmas 5, 6,

and 7, we have

cqG ′
A,B(m1,m2,m3; c)

= δ
(
(A, c2) | (m′′

1,m
′′
2

))
δ
(
(B, c2) | m′′

3

) ∑

g1g2| c2
(A,c2)

g1=
(

m′′
1

(A,c2)
,

c2
(A,c2)

)

g2=
(

m′′
2

(A,c2)
,

c2
g1(A,c2)

)

∑

D1D2hk=qo
h=(qo,so)

k=(mo
1m

o
2m

o
3,q)

(h,mo
1m

o
2)=1

(mo
3,co/qo)=1

1

ϕ(D2)

×
∑

ψ(mod D2)

∑

Δ|64

1

ϕ(Δ)

∑

χ(mod Δ)

∑

D| c2 AB

(c2,A)2(c2,B)

1

ϕ(D)

∑

η(mod D)

G∗

×(ψχη)
(
mo

1m
o
2m

o
3so
)
Rk
(
mo

1

)
Rk
(
mo

2

)
Rk
(
mo

3

)
, (120)

where G∗ is the product of the g, γ , and g arising in Lemmas 5, 6, and 7 along with
various miscellaneous factors of unit size, such as χq(AB). The exact form of G∗ is
not important. Rather, all that matters is a bound on its absolute value, and the fact
that it does not depend on mo

1, m
o
2, m

o
3, so, qo, co. Specifically, we have it is of size

G∗ � D1/2(A, c2)(B, c2)D
3/2+ε
2 (121)

and if ψ, χ, and η are all the principal character then with A = (A, c2)A′ and
B = (B, c2)B ′
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G∗
D

� (qr)ε(A, c2)(B, c2)

(
m′′
1m

′′
2m

′′
3

(A,c2)2(B,c2)
, A′B ′

)

A′B ′ .
(122)

Now we are ready to sum G ′
A,B over the mi and c. We must break into two cases

to handle the condition (c, qe) = δ.
First suppose that q is odd i.e., qe = 1. Then since (c, qe) = 1 we have that the sum

over c is empty unless δ = 1, and if δ = 1 the the condition (c, qe) = δ is true for all
c. We factor R = ReRo where Ro is odd and Re is a power of 2 and write co = toq Ro

and ce = te Re. Then for any function f for which the sums converge absolutely we
have

∑

c≡0(mod q̃ R)
(c,qe)=δ

f (c) = δ(δ = 1)
∑

c2|(AB)∞

∑

te|2∞
(te,AB)=1

∑

(to,2AB)=1

f (c2toq Rote Re).

Now we suppose that qe = 4 or 8. Then R must be odd as (R, q) = 1. Recall
that (AB, qR) = 1 so that (c2, Rq̃) = 1, and also that q̃/qo = 2. Then we write
co = toqoR and ce = 2te. Then we have

∑

c≡0(mod q̃ R)
(c,qe)=δ

f (c) = δ(δ | qe)
∑

c2|(AB)∞

∑

te|2∞
(te,AB)=1

δ|2te(
2te
δ

,
qe
δ

)
=1

∑

(to,2AB)=1

f (2c2toqoRte),

for any f for which the sums converge absolutely. We treat only this last case for
the remainder of the section, as the other cases are strictly simpler. Applying this
decomposition to G ′

A,B we find if δ | qe that

Zδ,R,q =
[ ∑

c2|(AB)∞

∑

te|2∞
(te,AB)=1

δ|2te(
2te
δ

,
qe
δ

)
=1

∑

m′′
1,m

′′
2,m

′′
3 |(AB)∞

∑

me
1,m

e
2,m

e
3|2∞

(me
1m

e
2m

e
3,AB)=1

×
∑

(to,2AB)=1

∑

(mo
1m

o
2m

o
3,2AB)=1

cqG ′
A,B(m1,m2,m3; c)

ms1
1 m

s2
2 m

s3
3 (c2teto)s4

]

=
[ ∑

c2,te,m′′
1,m

′′
2,m

′′
3,m

e
1,m

e
2,m

e
3

(A,c2)|(m′′
1,m

′′
2), (B,c2)|m′′

3, (... )

∑

g1g2| c2
(A,c2)

g1=
(

m′′
1

(A,c2)
,

c2
(A,c2)

)

g2=
(

m′′
2

(A,c2)
,

c2
g1(A,c2)

)

∑

Δ|64

1

ϕ(Δ)

∑

χ(mod Δ)

×
∑

D1D2hk=qo

1

ϕ(D2)

∑

ψ(mod D2)

∑

D| c2 AB

(c2,A)2(c2,B)

1

ϕ(D)

∑

η(mod D)

G ′∗Y
]
, (123)
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where G ′∗ satisfies (121) and (122), the conditions (. . . ) in the first (large) summand
following the second equals sign are the same conditions as on the first line of (123),
and

Y =
∑

(mo
1m

o
2m

o
3to,2AB)=1

h=(qo,Roto)
k=(mo

1m
o
2m

o
3,qo)

(h,mo
1m

o
2)=1

(mo
3,Roto)=1

(ψχη)(mo
1m

o
2m

o
3to)Rk(mo

1)Rk(mo
2)Rk(mo

3)

(mo
1)

s1(mo
2)

s2(mo
3)

s3 t s4o
.

Our next goal is to obtain meromorphic continuation of Y inside the critical strip,
and a bound on Y both slightly to the right of the critical lines, and slightly to the right
of the edge of absolute convergence. First we note the following formal combinatorial
identity:

∑

(n1n2n3,qo)=k

f (n1, n2, n3)

=
∑

k1k2k3=k

∑
(
n1,

qo
k1

)
=1

∑
(
n2,

qo
k1k2

)
=1

∑
(
n3,

qo
k1k2k3

)
=1

f (k1n1, k2n2, k3n3).

With this, we have (with someminor simplifications arising from (qo, AB) = 1 which
means for instance that (k, AB) = 1)

Y =
∑

k1k2k3=k

(ψχη)(k1k2k3)

ks11 ks22 ks33

∑

(to,k3AB)=1
(to,qo)=h

×
∑

(
mo
1,hAB

qo
k1

)
=1

(
mo
2,hAB

qo
k1k2

)
=1

(mo
3,Roto AB

qo
k )=1

(ψχη)(mo
1m

o
2m

o
3to)

(mo
1)

s1(mo
2)

s2(mo
3)

s3 t s4o
Rk(k1m

o
1)Rk(k2m

o
2)Rk(k3m

o
3).

(124)

The condition (k1k2, h) = 1 is automatic, because k1k2k3 = k, (so, qo) = h, hk | qo,
and qo is square-free, so (h, k) = 1.

Now let a, b ∈ N and suppose that a′′ | a′ | a, with a′ square-free, and χ is a
Dirichlet character mod a. Then for Re(s) > 1 we have

∑

(n,b)=1

Ra′(a′′n)χ(n)

ns
= μ(a′/a′′)φ(a′′)Lb(s, χ), (125)

where Lb(s, χ) is the Dirichlet L-function with Euler factors at primes dividing b
omitted. To see this, observe that if a′ is square-free thenμ(a′)Ra′(n) is amultiplicative
function of n, and that the summand on the left side of (125) vanishes whenever
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(n, a′′) �= 1 because a′′ | a. One can then factor out a Ramanujan sum from the left
hand side and use the fact that μ(a′)Ra′(n) = 1 if (n, a′) = 1.

From this, we easily get the meromorphic continuation of Y to, say Re(si ) > 1/2,
i = 1, 2, 3, 4. Moreover, Y is analytic except for possible poles at si = 1 in case ηψχ

is the principal character (which then implies all ofχ , η, andψ are principal, since their
respective moduli are coprime). Assuming Re(si ) = σ > 1/2 for all i = 1, 2, 3, 4,
and σ �= 1, we have

|Y | �σ k1−σ h−σ (qr)ε|L(s1, ψχη)L(s2, ψχη)L(s3, ψχη)L(s4, ψχη)|. (126)

Now let Zδ,R,q = Z0 + Z ′ where Z0 corresponds to the terms with ηχψ principal,
and Z ′ corresponds to the terms with ηχψ nonprincipal.

Taking σ = 1 + ε, we bound Z0 as follows:

|Z0| � (qr)ε
∑

m′′
1,m

′′
2,m

′′
3,c2|(AB)∞

(A,c2)|(m′′
1,m

′′
2)

(B,c2)|m′′
3

1

(m′′
1m

′′
2m

′′
3c2)

σ

∑

D1D2hk=qo

∑

g1g2| c2
(A,c2)

g1=
(

m′′
1

(A,c2)
,

c2
(A,c2)

)

g2=
(

m′′
2

(A,c2)
,

c2
g1(A,c2)

)

× 1

ϕ(D2)

∑

D| c2 AB

(c2,A)2(c2,B)

(A, c2)(B, c2)

(
m′′
1m

′′
2m

′′
3

(A,c2)2(B,c2)
, A′B ′

)

A′B ′ k1−σ h−σ .

Next we change variables m′′
i = ni (A, c2) for i = 1, 2 and m′′

3 = (B, c2)n3. We have

∑

n|(AB)∞

(n, Q)

n
=
∏

p|AB

∞∑

j=0

(p j , Q)

p j
� (ABQ)ε. (127)

Using this successively on n1, n2, n3, and trivially summing over g1, g2, D, we obtain

|Z0| � (qr)ε
∑

c2|(AB)∞

1

cσ
2

∑

D1D2hk=qo

1

ϕ(D2)

(A, c2)(B, c2)

(A, c2)2(B, c2)

1

A′B ′ k
1−σ h−σ .

We use the estimate (127) again on the sum over c2 to get

|Z0| � (qr)ε

AB

∑

D1D2hk=qo

k1−σ h−σ D−1
2 � (qr)ε

AB
.

This proves the bound (94), as desired.
Next we turn to Z ′. For this, we use the large sieve inequality to give a bound on

the 4th moment of Dirichlet L-functions. Following e.g. [40, Lemma 8] we find that
for σ = 1/2 + ε, we have
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1

φ(Q)

∑

χ(mod Q)

|L(s, χ)|4 � Qε(1 + |s|)1+ε. (128)

Using Hölder’s inequality, we have for σi = 1/2 + ε for i = 1, 2, 3, 4, that

|Z ′| � (qr)ε
∑

m′′
1,m

′′
2,m

′′
3,c2|(AB)∞

(A,c2)|(m′′
1,m

′′
2)

(B,c2)|m′′
3

1

(m′′
1m

′′
2m

′′
3c2)

1/2+ε

∑

D1D2hk=q

∑

g1g2| c2
(A,c2)

g1=
(

m′′
1

(A,c2)
,

c2
(A,c2)

)

g2=
(

m′′
2

(A,c2)
,

c2
g1(A,c2)

)

×
∑

D| c2 AB

(c2,A)2(c2,B)

(A, c2)(B, c2)D
1/2D3/2

2 k1−σ h−σ
4∏

j=1

(1 + |s j |)1/4+ε.

Using similar methods to estimate the sums over the m′′
i and c2 as in the bound on Z0,

we obtain

|Z ′| � (qr)εq3/2+ε(AB)1/2
4∏

j=1

(1 + |s j |)1/4+ε.

Finally, we show (96). The proof is essentially the same as before, except we use a
hybrid large sieve in place of (128), as in [20], namely

∫

|t |≤T

∑

χ(mod q)

|L(1/2 + i t, χ)|4dt � (qT )1+ε.

��
We conclude this section by studying GA,B(m1,m2,m3; c) when some mi = 0.

The formulas greatly simplify.

Lemma 9 Suppose some a j = 0. If ai �= 0 write ai = a′′
i a

′
i where a

′′
i | (2AB)∞ and

(a′
i , 2AB) = 1, and if ai = 0 write a′′

i = a′
i = 0. Then

cqφ(q)GA,B(a1, a2, a3; c) = g
(
a′′
1 , a

′′
2 , a

′′
3 , A, B, c, q

)
Rqo

(
a′
1

)
Rqo

(
a′
2

)
Rqo

(
a′
3

)
,

where g is a function satisfying the bound

∣∣g
(
a′′
1 , a

′′
2 , a

′′
3 , A, B, c, q

)∣∣ ≤ 64(A, c)(B, c).

Proof We have according to (97) and (98) that

GA,B(a1, a2, a3; c) = χq(AB)G1,1

(
a1, a2, ABc2[ce, qe]3c2ea3; co

)

×G1,1
(
a1, a2, ABc2coa3; ce

)
GA,B

(
a1, a2, [c1, q]3c21a3; c2

)
.
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We treat each of these in turn. Let us begin with G1,1(a1, a2, ABc2[ce, qe]3c2ea3; co).
The evaluation (105) of G1,1 did not require a1a2a3 �= 0. Inspecting (105), and noting
h = 1, k = qo under the assumption a1a2a3 = 0, we have

G1,1

(
a1, a2, ABc2[ce, qe]3c2ea3; co

)

=
{

χqo (−1)
coqoφ(qo)

Rqo(a1)Rqo(a2)Rqo(a3) if
(
co
qo

, a3
)

= 1 and (qo,
co
qo

, a1a2) = 1

0 else.

Next consider G1,1(a1, a2, ABc2coa3; ce). An inspection of the proof of Lemma 7
shows that when a1a2a3 = 0 that

G1,1
(
a1, a2, ABc2coa3; ce

) =

⎧
⎪⎨

⎪⎩

1
qeceφ(qe)

χqe (−1)Rqe (a1)Rqe (a2)Rqe (a3) if qe = ce
1

qeceφ(qe)
δ(a3,ce)=1 if qe = 1

0 else,

where note that in the case qe = ce = 8, a1a2a3 = 0, the third case in (117) may be
discarded, and in the second case of (117), the condition 4|a1, a2, a3 may be dropped
since theRamanujan sumvanishes otherwise. This function only depends on qe ,ce, and
the 2-part of a1, a2, a3 and is bounded above by 64/qeceφ(qe), since each Ramanujan
sum is bounded by 4 in absolute value.

Lastly, consider GA,B(a1, a2, [c1, q]3c21a3; c2). As mentioned in the proof of
Lemma 6, (111) is valid without the assumption that a1a2a3 �= 0. We have that

GA,B(a1, a2, [c1, q]3c21a3, c2) only depends on a′′
1 , a

′′
2 , a

′′
3 , A, B, and c2. In particu-

lar, by (112) we have

|GA,B(a1, a2, [c1, q]3c21a3; c2)| ≤ (A, c2)(B, c2)

c2
.

Therefore

GA,B(a1, a2, a3; c) = g(a′′
1 , a

′′
2 , a

′′
3 , A, B, c, q)

1

cqφ(q)
Rq(a

′
1)Rq(a

′
2)Rq(a

′
3),

and |g(a′′
1 , a

′′
2 , a

′′
3 , A, B, c, q)| ≤ (A, c2)(B, c2). ��

10 Weight functions

10.1 Inert functions

We begin this section by quoting a definition of [28].
Let F be an index set and X = XT : F → R≥1 be a function of T ∈ F .
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Definition 1 A family {wT }T∈F of smooth functions supported on a product of dyadic
intervals in R

d
>0 is called X -inert if for each j = ( j1, . . . , jd) ∈ Z

d≥0 we have

C( j1, . . . , jd) := sup
T∈F

sup
(x1,...,xd )∈Rd

>0

X− j1−···− jd
T

∣∣∣x j1
1 · · · x jd

d w
( j1,..., jd )
T (x1, . . . , xd)

∣∣∣ < ∞.

(129)

We often abbreviate the sequence of constants C( j1, . . . , jd) associated to a family
of inert functions by CF . We will most often use the definition of X -inert with X =
XT = 1, although occasionally (e.g., in the proof of Lemma 12) X will be slightly
larger than 1, with X � (qr)ε.

The purpose of this definition is to encode natural conditions on a weight function
that lets us separate variables efficiently. For instance, if wT satisfies (129), then by
Mellin inversion,

wT (x1, . . . , xd) = 1

(2π)d

∫

Rd
w̃T (i t1, . . . i td)x

−i t1
1 . . . x−i td

d dt1 . . . dtd , (130)

where

w̃T (s1, . . . , sd) =
∫

(0,∞)d
wT (x1, . . . , xd)x

s1
1 . . . xsdd

dx1
x1

. . .
dxd
xd

.

Integrating by parts shows for any choices of j1, . . . , jd = 0, 1, . . . , we have

w̃T (s1, . . . , sd) =
⎛

⎝
d∏

a=1

ja−1∏

b=0

−1

sa + b

⎞

⎠
∫

(0,∞)d
w

( j1,..., jd )
T (x1, . . . , xd)x

s1+ j1
1

. . . xsd+ jd
d

dx1
x1

. . .
dxd
xd

.

Therefore, by (129), we have

|w̃T (i t1, . . . , i td)| ≤
(
XT

|t1|
) j1

. . .

(
XT

|td |
) jd

C( j1, . . . , jd)(log 2)
d .

If |ti | ≥ XT , then we take ji as unspecified (arbitrarily large), while if |ti | < XT , we
choose ji = 0. In this way, we obtain

|w̃T (i t1, . . . , i td)| ≤
(
1 + |t1|

XT

)− j1
. . .

(
1 + |td |

XT

)− jd
C ′( j1, . . . , jd), (131)

where C ′ is some other sequence depending only on C . Our interpretation of this
estimate combined with (130) is thatwT can have its variables separated “at cost” Xd

T ,
meaning that each integral has essential length � XT .
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10.2 Integration by parts

Often an integral can be shown to be small by repeated integration by parts. For this,
we quote [10, Lemma 8.1] with some slight changes of notation and terminology.

Lemma 10 [10]Suppose thatw = wT (t) is a family of X-inert functions,with compact
support on [Z , 2Z ], so that w( j)(t) � (Z/X)− j . Also suppose that φ is smooth and
satisfies φ( j)(t) � Y

Z j for some Y/X2 ≥ R ≥ 1 and all t in the support of w. Let

I =
∫ ∞

−∞
w(t)eiφ(t)dt .

If |φ′(t)| � Y
Z for all t in the support of w, then I �A Z R−A for A arbitrarily large.

10.3 Stationary phase

Now we quote the main theorem from [28] which extends [10, Proposition 8.2].

Theorem 6 [28] Suppose wT is X-inert in t1, . . . td , supported on t1 	 Z and ti 	 Xi

for i = 2, . . . , d. Suppose that on the support of wT , φ = φT satisfies

∂a1+a2+···+ad

∂ta11 . . . ∂tadd
φ(t1, t2, . . . , td) �CF

Y

Za1

1

Xa2
2 . . . Xad

d

, (132)

for all a1, . . . , ad ∈ Z≥0. Suppose φ′′(t1, t2, . . . , td) � Y
Z2 , (here and below, φ′ and

φ′′ denote the derivative with respect to t1) for all t1, t2, . . . , td in the support of wT ,
and there exists t0 ∈ R such that φ′(t0, t2, . . . , td) = 0 with some t0 ∈ R depending
on t2, . . . , td (note t0 is necessarily unique). Suppose that Y/X2 ≥ R ≥ 1. Then

I =
∫

R

eiφ(t1,...,td )wT (t1, . . . , td)dt1 = Z√
Y
eiφ(t0,t2,...,td )WT (t2, . . . , td)

+OA(Z R−A), (133)

for some X-inert family of functions WT , and where A > 0 is arbitrarily large. The
implied constant in (133) depends only on A and CF .

10.4 The integral transform

Here we obtain useful expressions for K , which was defined in (92). The key is
not an exact formula for K , but rather a Mellin formula with the variables separated.
Throughout the remainder of this section,wT will denote a member of a 1-inert family
of functions, which may change from line-to-line without explicit mention. We also
recall that [c, q] = c qe

(c,qe)
, where qe

(c,qe)
takes the possible values 1, 2, 4.
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Lemma 11 (Oscillatory case) Suppose that |mi | 	 Mi for i = 1, 2, 3, and c 	 C,
with q̃|c. Suppose that √

ABN1N2N3

C
� (qr)ε. (134)

Then

K (m1,m2,m3, c) =
C3/2(N1N2N3)

1/2e
(−m1m2m3c2

AB[c,q]3
)

(M1M2M3)1/2
L(m1,m2,m3, c)

+O((qr)−1/ε
3∏

i=1

(1 + |mi |)−2), (135)

where L has the following properties. Firstly, L vanishes (meaning K is very small)
unless

Mi 	 (ABN1N2N3)
1/2

Ni
, i = 1, 2, 3, (136)

and all the mi have the same sign. Moreover, we have with

P = M1M2M3

ABC
. (137)

that

L(m1,m2,m3, c) = 1

P1/2

∫

|u|�(qr)ε

∫

|y|�(qr)ε
F(u; y)

( |m1m2m3|c2
[c, q]3

)iy

×
(

M1

|m1|
)u1 ( M2

|m2|
)u2 ( M3

|m3|
)u3 (C

c

)u4
dudy, (138)

where F = FA,B,C,N1,N2,N3,M1,M2,M3 is entire in terms of u, and satisfies
F(u; y) �Re(u) (1 + |u|)−J (1 + |y|)−J , for J arbitrarily large. Here F addition-
ally depends on the choice of signs of the mi , and on the values qe, (c, qe).

Lemma 12 (Non-oscillatory case) Suppose that |mi | 	 Mi for i = 1, 2, 3, c 	 C,
and √

ABN1N2N3

C
� (qr)ε. (139)

Then

K (m1,m2,m3, c)

= N1N2N3

(√
ABN1N2N3

C

)κ−1

e

(−m1m2m3c2

AB[c, q]3
)∫

|u|�(qr)ε
F(u)

∫

|t |�(qr)ε+P
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× f (t)

( |m1m2m3|c2
[c, q]3

)i t (
M1

|m1|
)u1 ( M2

|m2|
)u2 ( M3

|m3|
)u3 (C

c

)u4
dtdu

+O((qr)−1/ε
3∏

i=1

(1 + |mi |)−2), (140)

where P is given by (137), f (t) � (1 + |t |)−1/2, and F(u) �J ,Re(u)

∏4
�=1(1 +

(qr)ε

|u�| )−J . Moreover, f vanishes (meaning, K is small) unless

M1N1

C
� (qr)ε,

M2N2

C
� (qr)ε,

M3N3

C
� (qr)ε. (141)

If P � (qr)ε, the function f may be chosen to have support on |t | 	 P.

Lemma 13 (Other cases) Suppose some mi = 0. If (134) holds, then K is small. If
(139) holds, then K is small unless |m j | � C

N j
(qr)ε for j = 1, 2, 3, in which case

K (m1,m2,m3; c) �
(√

ABN1N2N3

C

)κ−1

N1N2N3. (142)

If say m3 = 0 but m1m2 �= 0, then with N = N1N2N3, we have a Mellin formula

K (m1,m2, 0; c) =
(√

ABN

C

)κ−1

N
∫

|v1|�(qr)ε

∫

|v2|�(qr)ε

(
C

N1|m1|
)v1

×
(

C

N2|m2|
)v2

R(v1, v2, c)dv1dv2 + O((qr)−1/ε
3∏

i=1

(1 + |mi |)−2),

(143)

where R(v1, v2, c) is analytic in Re(vi ) > 0 for i = 1, 2, and satisfies the bound

R(v1, v2, c) �J ,Re(v1),Re(v2)

2∏

j=1

(
1 + (qr)ε

|v j |
)−J

.

Here R depends on the choices of sign of the mi , but we suppress it from the notation.
Similar formulas hold when m1 = 0 or m2 = 0.

If two mi = 0 but the other mi is nonzero, then a formula similar to (143) holds,
but with one of the integrals omitted.

Proof We prove all three lemmas.
Truncations As our first step, we integrate by parts three times in each of the ti for

which mi �= 0, allowing us to obtain a crude bound of the form

K (m1,m2,m3, c) � P(q, r , N1, N2, N3, c)
3∏

i=1

(1 + |mi |)−3,
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where P is some fixed polyomial (which may as well be taken to be some polynomial
in qr by (88)). This bound is sufficient for the lemmas when some |mi | is � (qr)A

′

for some large A′ depending polynomially on 1/ε. For the rest of the proof, suppose
that |mi | � (qr)A

′
for some A′, and each i .

In the oscillatory case (i.e., if (134) holds), then using the fact that Jκ−1(x) =
eixW+(x) + e−i xW−(x) where W±(x) have controlled derivatives (cf. Watson [44,
Page 205]), we see that repeated integration by parts (Lemma 10) shows that K is very
small unless (136) holds, and moreover, all themi must have the same sign. Similarly,
in the non-oscillatory case where (139) holds, then repeated integration by parts shows
that K is small unless (141) holds. ��
Proof of Lemma 11 Now we show the expression (135), with L given by (138). Using
the Fourier integral (valid for n an odd integer)

Jn(x) =
∑

±

±1

π i

∫ π/2

0
sin(nv)e±i x sin vdv,

we have

K = K (m1,m2,m3; c)
=
∑

±

±1

π i

∫ π/2

0
sin((κ − 1)v)

∫

R3
e

(±2
√
ABt1t2t3
c

sin(v)

)

×e

(−m1t1 − m2t2 − m3t3
[c, q]

)
wT (t1, t2, t3)dt1dt2dt3dv.

Next we change variables t3 = u N1N2
t1t2

, giving

K =
∑

±

±1

π i

∫ π/2

0
sin((κ − 1)v)

∫ ∞

0
e

(±2
√
ABuN1N2

c
sin(v)

)
I (u)dudv,

where

I (u) =
∫

R2
e

(−m1t1 − m2t2 − m3
uN1N2
t1t2

[c, q]

)
wT (t1, t2, u)dt1dt2.

The conditions (134) and (136) imply that

Mi Ni

C
	

√
ABN1N2N3

C
� (qr)ε.

Recall that we already showed, in the paragraphs following the statement of Lemma
13, that under the assumption of (134), K is small unless (136) holds. The conditions
are now in place to analyze the inner t1, t2 integrals using stationary phase. Evaluating
the t1-integral first, we find a stationary point at t01 = (m3uN1N2

m1t2
)1/2. Following this, the
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stationary point in terms of t2 occurs at t02 = m−2/3
2 (m1m3uN1N2)

1/3. We therefore
deduce

I (u) = C

(N1N2M1M2)1/2
e

(−3(m1m2m3uN1N2)
1/3

[c, q]
)

wT (u,m1,m2,m3, c)

+O((qr)−1/ε
3∏

i=1

(1 + |mi |)−2), (144)

where wT is 1-inert in all variables and T stands for the tuple

(M1, M2, M3, N1, N2, N3,C, qe, (c, qe))

and supported on u 	 N3. The condition that m1,m2,m3 must all have the same sign
may be encoded in the support of the inert function. If all three terms are negative, we
naturally interpret the expression (m1m2m3)

1/3 as −(|m1m2m3|)1/3. Therefore

K =
[
∑

±

±1

π i

C

(N1N2M1M2)1/2

∫ π/2

0
sin((κ − 1)v)

×
∫ ∞

0
e

(±2
√
ABuN1N2

c
sin(v)

)
e

(−3(um1m2m3N1N2)
1/3

[c, q]
)

wT (u, ·)dudv

]

+O

(
(qr)−1/ε

3∏

i=1

(1 + |mi |)−2

)
. (145)

Herewe use the notationwT (u, ·) to denote a functionwherewe are currently focusing
on the variable u only, and so do not display the other variables.

Finally, we study

K0(v) := C

(N1N2M1M2)1/2

∫ ∞

0
e

(±2
√
ABuN1N2

c
sin(v)

)

×e

(−3(um1m2m3N1N2)
1/3

[c, q]
)

wT (u, ·)du.

We will presently show that

K0(v) = C3/2(N1N2N3)
1/2

(M1M2M3)1/2
e

( −m1m2m3c2

AB[c, q]3 sin2 v

)
wT (sin v, ·)

+O((qr)−1/ε
3∏

i=1

(1 + |mi |)−2), (146)

where wT (sin v, ·) is part of a 1-inert family of functions of sin v,m1,m2,m3, c, with
T as before but in addition depending on the choice of ± sign.
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This integral defining K0(v) is small unless there is a stationary point (by Lemma
10 again), which occurs at

u = u0 = (m1m2m3)
2c6

N1N2(AB)3 sin6 v[c, q]6 ,

under the additional assumption that the choice of± signmatches the sign ofm1m2m3
(which in turn has the same sign as each individual mi ). Note that for this stationary
point to lie inside the support of the inert function, we need

sin v 	 (M1M2M3)
1/3

(AB)1/2(N1N2N3)1/6
=: V . (147)

Thus we obtain, in both cases of ± sign, that

K0(v) = (scaling factor)e

( −m1m2m3c2

AB sin2 v[c, q]3
)

wT (sin v, ·)

+O((qr)−1/ε
3∏

i=1

(1 + |mi |)−2).

A short calculation shows the scaling factor is 	 C3/2(N1N2N3)
1/2

(M1M2M3)1/2
, proving the claimed

expression for K0(v).
Thus we obtain

K = C3/2(N1N2N3)
1/2

(M1M2M3)1/2

∫ π/2

0
sin((κ − 1)v)e

( −m1m2m3c2

AB sin2 v[c, q]3
)

wT (sin v, ·)dv,

plus an error of size O((qr)−1/ε∏
i (1 + |mi |)−2), where the support of the inert

function is given by (147).
Next we factor out the desired exponential, giving now

K = e

(−m1m2m3c2

AB[c, q]3
)
C3/2(N1N2N3)

1/2

(M1M2M3)1/2

×
∫ π/2

0
sin((κ − 1)v)e

(
m1m2m3c2

AB[c, q]3
(
1 − 1

sin2 v

))
wT (sin v, ·)dv,

plus a small error term. Define

K00(x) :=
∫ π/2

0
sin((κ − 1)v)e

(
x

(
−1 + 1

sin2 v

))
wT (sin v, ·)dv. (148)

Note that for our particular values of the parameters, we have

x

V 2 � (qr)ε.

123

Author's personal copy



I. Petrow, M. P. Young

Nowwe asymptotically evaluate K00(x). First we dispense with the case where the
support of the inert function is so that the integrand vanishes unless v ≤ π

2 − π
100 , say.

Thus cos(v) 	 1 and sin(v) 	 v 	 V in the support of the integrand. We claim that
K00(x) � (qr)−A in this case. To see this, we first note that it suffices to bound

∫ ∞

−∞
wT (sin v, ·)e(φ(v))dv, where φ(v) = ±κ − 1

2π
v + x

cos2 v

sin2 v
.

We have

φ(v) = ±κ − 1

2π
v + x

v2

(
1 + c2v

2 + c4v
4 + · · ·

)
,

for certain constants ci . Then we have

φ′(v) 	 x/v2

v
, φ( j)(v) � x/v2

v j
, j = 2, 3, . . . ,

using x
v3

� x
v2

� (qr)ε � κ−1, since κ is fixed. By Lemma 10 yet again, the integral
is very small. If the inert function has support on an interval containing π/2, then the
above argument breaks down. So now suppose that the inert function has support on
v ≥ π/4, so in particular V 	 1 and x � (qr)ε. Change variables v = π/2 − u,
giving

K00(x) = (−1)
κ−2
2

∫ π/4

0
cos((κ − 1)u)e

(
x
sin2 u

cos2 u

)
wT (cos u, ·)du. (149)

Next we argue that the main part of this integral comes from u � x−1/2(qr)ε,
provided we use a smooth truncation. Let us apply a partition of unity, and consider
the portion of the integral with u 	 U (with U � 1), which we denote KU

00(x). By
Lemma 10 yet again, if xU 2 � (qr)ε, then KU

00(x) is small. We may also use that the
integrand is even to extend to −π/4 to π/4, giving

K00(x) =
∫ π/4

−π/4
W (u)e(x tan2 u)du,

plus a small error term, where W has support on |u| � U with U = x−1/2+ε.
We may now derive an asymptotic expansion of K00, with leading term

c0W (0)x−1/2, where c0 is some absolute constant. By developing this expansion care-
fully, we have that for x � (qr)ε, K ( j)

00 (x) � x−1/2− j , and so by Mellin inversion,
we have that

K00(x) = x−1/2
∫ ∞

−∞
f (t)xit dt,

plus a small error term, where | f (t)| �A (1 + |t |)−A, with A > 0 arbitrarily large.
In our application, we may thus truncate at |t | � (qr)ε.
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The previous discussion gives a formula for K of the form (135), where L takes
the form

L(m1,m2,m3, c) = 1

P1/2

∫

|t |�(qr)ε
wT (t,m1,m2,m3, c)

( |m1m2m3|c2
[c, q]3

)i t
dt,

where wT is 1-inert in the variables m1,m2,m3, c and has rapid decay in t , uniformly
in all other parameters. We may then write

wT (t,m1,m2,m3, c) =
∫

F(u; t)
(

M1

|m1|
)u1 ( M2

|m2|
)u2 ( M3

|m3|
)u3 (C

c

)u4
du,

where the integral is over four vertical lines in the complex plane, one for each of the
ui , i = 1, 2, 3, 4. By the rapid decay of F beyond (qr)ε, due to the fact that wT is
inert, we may truncate the integrals at |u| � (qr)ε. This expression gives (138), and
so completes the proof of Lemma 11. ��
Proof of Lemma 12 Now suppose (139) holds. As previously mentioned in the para-
graphs following Lemma 13, K is small unless (141) holds, a condition that we assume

henceforth. Assuming x � X = 1+
√
ABN1N2N3

C , we have that Jκ−1(x) = xκ−1W (x)
where W is a smooth function satisfying x jW ( j)(x) � X j . That is, W satisfies the
same derivative bounds as an X -inert function, and so it may be absorbed into the
definition of the inert function. Therefore, by the separation of variables discussion
from Sect. 10.1, we have

K = N1N2N3

(√
ABN1N2N3

C

)κ−1 ∫

|u|�(qr)ε
F(u)

(
M1

|m1|
)u1 ( M2

|m2|
)u2

×
(

M3

|m3|
)u3 (C

c

)u4
du + O((qr)−A

3∏

i=1

(1 + |mi |)−2), (150)

where F(u) �J ,Re(u)

∏4
�=1(1 + X

|u�| )
−J .

We also want to factor out the exponential term eAB[c,q]3/c2(−m1m2m3). It is not
clear whether

P := M1M2M3

ABC

is � 1 or � 1, so we treat both cases separately.
If P � (qr)ε, then essentially the exponential term eAB[c,q]3/c2(m1m2m3) is not

oscillatory, so by Mellin inversion there exists a simple formula of the form

e

(
m1m2m3c2

AB[c, q]3
)

w

(
±m1m2m3c2/(AB[c, q]3)

P

)

=
∫

|t |�(qr)ε

( |m1m2m3|c2
[c, q]3

)i t
f (t)dt + O((qr)−1/ε), (151)
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where f A,B,C,M1,M2,M3,±(t) = f (t) � 1 and w(t) is a smooth function of compact
support on (0,∞), that is identically 1 on the support of the inert function wT in the
definition of K .

If P � (qr)ε, then we claim that a formula like (151) holds, but with |t | 	 P
and f (t) � |t |−1/2. For this, we argue as follows. By Mellin inversion, we have
eixw(x/P) = ∫∞

−∞ f (t)xit dt , where f (t) = 1
2π

∫∞
0 eixw(x/P)xit−1dx . Since the

support on w causes x 	 P , repeated integration by parts shows f (t) is very small
except when |t | 	 P . A standard stationary phase bound gives f (t) � |t |−1/2.

In either case, we obtain (140).

Proof of Lemma 13 The claims that if (134) holds, then K is small, and that if (139)
holds, K is small unless |mi | � C

Ni
(qr)ε for i = 1, 2, 3 have already been shown in

the previous analysis. It remains to show the integral formula.
Suppose that m3 = 0, m1,m2 �= 0, and (139) holds. The idea is to apply an analog

of (150), but only in the m1,m2 variables. This case is easier because the exponential
factor simplifies as 1, so there is no need to separate out eAB[c,q]3(m1m2m3c2). By
taking a Mellin transform in the m1,m2 variables, we get

K (m1,m2, 0; c)

=
(√

ABN1N2N3

C

)κ−1

N1N2N3

∫

|v1|�(qr)ε

∫

|v2|�(qr)ε

(
C

N1|m1|
)v1

(
C

N2|m2|
)v2

×R(v1, v2, c)dv1dv2 + O

(
q−A

3∏

i=1

(1 + |mi |)−2

)
,

where R(v1, v2, c) is analytic in Re(vi ) > 0 for i = 1, 2, and satisfies the bound

R(v1, v2, c) �J ,ε,Re(v1),Re(v2)

2∏

j=1

(
1 + (qr)ε

|v j |
)−J

.

This bound on R is precisely analogous to the bound on F(u) in the proof of Lemma
12. This completes the proof. ��

11 Recombination

Now we prove Proposition 2. Recall formulas (87), (89), and (90). Let us write S =
S0 + S1 where S0 corresponds to the terms with some mi = 0, while S1 corresponds
to the terms with all mi �= 0.

11.1 BoundingS0

Lemma 14 We have S0 � R−1(qr)ε.
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Proof From Lemma 13, we see that K , and hence S0, is small unless (139) holds. By
(139) and (88) we have that A, B, and C are each bounded by (qr)10, say. This allows
us to replace several factors of (AB)ε and Cε by (qr)ε in the following.

Let us further decompose S0 = S00 + S01 + S02 where S02 corresponds to the
terms with exactly two of themi �= 0, S01 corresponds to the terms with precisely one
of the mi �= 0, and S00 corresponds to the terms with m1 = m2 = m3 = 0.

We first boundS02. Suppose for the sake of argument thatm3 = 0, andm1,m2 ≥ 1,
the other cases being similar, and let S+

02 denote these terms. For i = 1, 2, let mi =
m′

im
′′
i where (m′

i , 2AB) = 1 and m′′
i | (2AB)∞. Then by Lemmas 9 and 13 we have

|S+
02| �

∑

N1,N2,N3,C

√
N

C

(√
ABN

C

)κ−1

×
∑

c≡0(mod q̃ R)
c	C

1

qc

∣∣∣∣∣∣

∑

m1,m2≥1

g(m′′
1,m

′′
2, 0, A, B, c, q)Rqo(m

′
1)Rqo(m

′
2)

×
∫

|v1|�(qr)ε

∫

|v2|�(qr)ε

(
C

N1m1

)v1
(

C

N2m2

)v2

R(v1, v2, c) dv1 dv2

∣∣∣∣∣∣
,

(152)

plus a small error term.
The goal is to formDirichlet series overm′

1,m
′
2. Since qo is square-free and coprime

to 2AB, we have that

Qqo(s) :=
∑

(m,2AB)=1

Rqo(m)

ms
= μ(qo)ζ

(2AB)(s)
∏

p|qo
(1 − p1−s).

Then factoring mi = m′′
i m

′
i , and using the bound on g from Lemma 9 we have

|S+
02| �

∑

N1,N2,N3,C

√
N

C

(√
ABN

C

)κ−1 ∑

c≡0(mod q̃ R)
c	C

(A, c)(B, c)

qc

∑

m′′
1 ,m

′′
2 |(2AB)∞

×
∣∣∣∣∣∣

∫∫

|v1|�(qr)ε

|v2|�(qr)ε

(
C

N1m′′
1

)v1
(

C

N2m′′
2

)v2

Qqo(v1)Qqo(v2)R(v1, v2, c) dv1 dv2

∣∣∣∣∣∣
,

(153)

plus a small error term.
We may assume without loss of generality that q > 8, so that qo > 1. Note that

under the assumption that qo > 1, the function Qqo(s) is holomorphic in Re(s) > 0.
On the Re(s) = ε line, it satisfies Qqo(s) � (1+ |s|)1/2φ(qo)(qr)ε. So we can move
the vertical contour integrals to the lines Re(v1) = Re(v2) = ε. The short horizontal
segments created in doing so are extremely small by the bounds on R(v1, v2, c) from
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Lemma 13. From the vertical lines of integration we obtain S02(N1, N2, N3, c) �
(qr)εφ(q)2(A, c)(B, c). Therefore we have

|S+
02| � (qr)ε

∑

N1,N2,N3,C

√
N

C

(√
ABN

C

)κ−1 ∑

c≡0(mod q̃ R)
c	C

φ(q)2

qc
(A, c)(B, c),

(154)
plus a small error term.

Using (qR, AB) = 1, Cauchy’s inequality, and

∑

n≤x

(d, n)2 � xτ(d)d, (155)

we derive ∑

c≡0(mod q̃ R)
c	C

(A, c)(B, c) � C

qR
(AB)1/2(qr)ε.

Therefore by (88) and (139)

|S+
02| �

∑

N1,N2,N3,C

(qr)ε
N AB

C2R
� (qr)ε

R
, (156)

which is sufficient for the bound in the statement of the lemma. By a symmetry
argument, this shows the desired bound on S02.

Similarly to the method used to bound S02, we have in analogy with (153), the
bound

|S+
01| �

∑

N1,N2,N3,C

(qr)ε√
NC

(√
ABN

C

)κ−1

N
∑

c≡0(mod q̃ R)
c	C

(A, c)(B, c)φ(q)

cq

×
∑

m′′
1 |(2AB)∞

∣∣∣∣
∫

|v|�(qr)ε

(
C

N1m′′
1

)v

Qqo(v)R(v, c)dv

∣∣∣∣ ,

where Qqo(v)R(v, c) is analytic in Re(v) > 0, and satisfies the bound

Qqo(v)R(v, c) �Re(v) (1 + |v|)1/2(qr)εφ(qo).

We move the contour to the line Re(v) = ε. The short horizontal segment created
in doing so is extremely small by the bounds on R(v, c) from Lemma 13. From the
vertical segment we get
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|S+
01| �

∑

N1,N2,N3,C

(qr)ε√
NC

(√
ABN

C

)κ−1

N
∑

c≡0(mod q̃ R)
c	C

(A, c)(B, c)

cq
φ(q)2

(157)
plus a small error term. This is precisely the same bound as (154), and so our final
bound on S01 is identical to the bound on S02.

Finally, we bound S00, which is the easiest case. Using only the upper bound (142)
and the upper bound from Lemma 9, we obtain a bound on S00 of the exact same
shape as (154), so the proof is complete. ��

11.2 BoundingS1

Here we show the desired bound

S1 � (qr)ε
(

(AB)1/2

R1/2 + r3/4

q1/2R

)
. (158)

Let us write S1 = ∑ε1,ε2,ε3∈{±} S
ε1,ε2,ε3
1 where this sum is restricted to εimi > 0 for

i = 1, 2, 3. The same method will apply to each of these terms, so for simplicity we
estimate S+,+,+

1 , which we denote with shorthand by S+
1 .

We have

S+
1 =

∑

M1,M2,M3
N1,N2,N3,C

1

N 1/2C

∑

mi	Mi

∑

c≡0(mod q̃ R)

wC (c)

(
e

( −m1m2m3

AB[c, q]3/c2
)
GA,B(m1,m2,m3; c)

)(
e

(
m1m2m3

AB[c, q]3/c2
)
K (m1,m2,m3; c)

)
.

There are two main cases to consider, depending on if (134) holds, or if (139) holds,
and we correspondingly write S+

1 = T + U .
Case T . ByLemma11,we have (with shorthandM = M1M2M3, andMi satisfying

(136))

T �
∑

N1,N2,N3,C
M1,M2,M3

∣∣∣∣∣∣∣∣

C3/2N 1/2

C2q
√
MN

∑

c≡0(mod q̃ R)
c	C

×
∑

m1,m2,m3

(
e

( −m1m2m3

AB[c, q]3/c2
)
cqGA,B(m1,m2,m3; c)

)
1

P1/2

∫

|u|�(qr)ε

∫

|y|�(qr)ε

× F(u; y)
(
m1m2m3c2

[c, q]3
)iy (

M1

m1

)u1 (M2

m2

)u2 (M3

m3

)u3 (C
c

)u4
dudy

∣∣∣∣∣∣∣∣
,
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plus a small error term. Assume that Re(ui ) = 1 + ε for all i = 1, 2, 3, 4. Then by
(93), we have

T �
∑

N1,N2,N3,C

∣∣∣∣∣∣∣∣

C−1/2

q(PM)1/2

∫

|u|�(qr)ε

∫

|y|�(qr)ε
F(u; y)

∑

(ε1,ε2,ε3)∈{±1}3
δ∈{1,2,4,8}

(
δ3

q̃ Rq3e

)iy

× Z (ε1,ε2,ε3)
δ,R,q (u1 − iy, u2 − iy, u3 − iy, u4 + iy)Mu1

1 Mu2
2 Mu3

3

(
C

q̃R

)u4
dudy

∣∣∣∣∣∣∣∣
,

plus a small error term. Nowwe decompose further by Z = Z0+ Z ′, as in Proposition
3, and write T = T0 + T ′. For T0 we have

T0 � C1/2

(PM)1/2

M

q2RAB
(qr)ε.

Recall P = M
ABC , M 	 (AB)3/2N 1/2, C � √

N AB(qr)ε, and N � (q2r)3/2+ε

giving

T0 � C

q2R(AB)1/2
(qr)ε � N 1/2

q2R
(qr)ε � 1√

q

r3/4

R
(qr)ε. (159)

For T ′, we move the contours to Re(ui ) = 1/2 + ε for i = 1, 2, 3, 4. The short
horizontal segments created in doing so are extremely small by the bounds on F(u; y)
from Lemma 11. Then we obtain

T ′ � (qr)ε
∑

N1,N2,N3,C

C−1/2

q(PM)1/2
q3/2

√
ABM1/2

(
C

qR

)1/2

� (qr)ε
∑

N1,N2,N3,C

√
AB

P1/2R1/2 .

Since P � 1, we have

T ′ � (qr)ε
(AB)1/2

R1/2 ,

as desired.
Case U . Here we obtain from Lemma 12 the bound
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U �
∑

N1,N2,N3,C
M1,M2,M3

∣∣∣∣∣∣∣∣∣

N
(√

ABN
C

)κ−1

C2q
√
N

∫

|u|�(qr)ε

∫

|y|�(qr)ε+P
F(u) fP (y)

×
∑

(ε1,ε2,ε3)∈{±1}3
δ∈{1,2,4,8}

(
δ3

q̃ Rq3e

)iy
Z (ε1,ε2,ε3)

δ,R,q (u1 − iy, u2 − iy, u3 − iy, u4 + iy)

Mu1
1 Mu2

2 Mu3
3

(
C

q̃R

)u4
dudy

∣∣∣∣ , (160)

plus a small error term. As in the case of T , write U = U0 +U ′. Consider first the case
U ′. As in case T , we move the contours to Re(ui ) = 1/2 + ε. The short horizontal
segments created in doing so are extremely small by the bounds on F(u; y) from
Lemma 12. Using (96), we get

U ′ � (qr)ε
N

√
AB

C3q

√
ABq3/2M1/2

(
C

qR

)1/2

(1 + P1/2)

� (qr)ε
N ABM1/2

R1/2C5/2

(
1 +

(
M

ABC

)1/2
)

.

Now M � C3

N (qr)ε, and (139) holds, so after simplification this leads to

U ′ � (AB)1/2R−1/2(qr)ε,

as desired.
Finally, we turn to the case of U0. To start, we suppose that Re(ui ) = 1 + ε for

i = 1, 2, 3, 4.
Consider the case where P � (qr)ε with sufficiently large implied constant. Then

we shift contours to Re(ui ) = 1/2+ ε, for all i . No poles are encountered in doing so,
since |ui | < |y| throughout the integral (160) if fP (y) has support |y| 	 P . The short
horizontal segments created in preforming this contour shift are extremely small by
the bounds on F(u) from Lemma 12. The contribution to U0 of the integral along the
vertical segments is certainly bounded by the same bound we obtained on U ′, since
the bound on Z0 appearing in Proposition 3 is much stronger than the bound on Z ′.
Therefore, U0 is bounded in a satisfactory way for P � (qr)ε.

Now suppose P � (qr)ε. Then by (94), we have

U0 � (qr)ε
∑

N1,N2,N3,C
M1,M2,M3

N
(√

ABN
C

)κ−1

C2q
√
N

MC

qRAB

� (qr)ε
∑

N1,N2,N3,C
M1,M2,M3

N 1/2

(√
ABN

C

)
M

ABCq2R
. (161)
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Since P = M
ABC � (qr)ε now, and

√
ABN
C � (qr)ε too, we obtain

U0 � (qr)εN 1/2q−2R−1 � (qr)ε(q3r3/2)1/2q−2R−1 � (qr)εq−1/2 r
3/4

R
.

This is the same bound as (159), which completes the proof of (158).
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