A generalized cubic moment and the
Petersson formula for newforms

Ian Petrow & Matthew P. Young

Mathematische Annalen
ISSN 0025-5831

Math. Ann. Mathemat
DOI 10.1007/s00208-018-1745-1 Annalen

Band 330 Heft1 September 2004

Begriindet 1868 durch Alfred Clebsch - Carl Neumann
Fortgefiihrt durch Felix Klein - David Hilbert - Otto Blumenthal
Erich Hecke - Heinrich Behnke - Hans Grauert - Heinz Bauer
Herbert Amann

Herausgegeben von

Jean-Pierre Bourguignon, Bures-sur-Yvette - Héléne Esnault, Essen
Yoshikazu Giga, Sapporo - Nigel Hitchin, Oxford

W.B. Johnson, College Station, TX - Carlos E. Kenig, Chicago
Wolfgang Liick, Miinster - Ngaiming Mok, Hong Kong

Kenneth A. Ribet, Berkeley, CA

@ Springer

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag GmbH Germany, part of Springer
Nature. This e-offprint is for personal use only
and shall not be self-archived in electronic
repositories. If you wish to self-archive your
article, please use the accepted manuscript
version for posting on your own website. You
may further deposit the accepted manuscript
version in any repository, provided it is only
made publicly available 12 months after
official publication or later and provided
acknowledgement is given to the original
source of publication and a link is inserted

to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer



Mathematische Annalen

https://doi.org/10.1007/500208-018-1745-1 Mathematische Annalen

@ CrossMark

A generalized cubic moment and the Petersson formula
for newforms

lan Petrow'® - Matthew P. Young?

Received: 12 June 2018 / Revised: 6 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Using a cubic moment, we prove a Weyl-type subconvexity bound for the quadratic
twists of a holomorphic newform of square-free level, trivial nebentypus, and arbitrary
even weight. This generalizes work of Conrey and Iwaniec in that the newform that
is being twisted may have arbitrary square-free level, and also that the quadratic
character may have even conductor. One of the new tools developed in this paper is a
more general Petersson formula for newforms of square-free level.

Mathematics Subject Classification 11F11 - 11F37 - 11F66 - 11M99

1 Introduction
1.1 Cubic moments

Let x4 be a real, primitive character of conductor ¢ and ¢ = rad(g) its square-free
kernel. Let H (N) be the set of Hecke-normalized holomorphic newforms for Ij(N),
of weight «, and trivial central character. Our main result is

Theorem 1 For any square-free r with (r, q) = 1 we have

Do LU/2 [ ®xy) Kee (qr)' T )
feH!(rq")
q'lq
The estimate holds for any even k > 2, and depends polynomially on k.
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Corollary 1 For any holomorphic newform f of square-free level s and x, any real
primitive character of conductor q we have

5q 1/3+¢
L(1/2, f ® xg) K (—) : 2
(s, q)

Remark The conductor of L(1/2, f ® xg) is qu /(s, q). Therefore, the bound (2) is
a Weyl-type subconvexity bound in g-aspect, but does not reach the convexity bound
in the s-aspect. Note that the corollary holds without a relatively prime hypothesis on

s, q.

Corollary 1 gives a non-trivial bound when the root number € gy, = +1 (since
otherwise L(1/2, f ® x4) = 0). See Sect. 8.1, specifically Eq. (64) for a concrete
formula for the root number.

Our work here is a generalization of the cubic moment studied by Conrey and
Iwaniec [14], who obtained, in our notation, the case r = 1, k¥ > 12, and g odd. The
extension of their work to x > 2 was obtained by the first-named author [40]. It may
be somewhat surprising that, prior to Corollary 1, a Weyl-type subconvex bound in the
g-aspect was previously not known for any values of r besides 1 (nor for even ¢). The
caser = 1 has some pleasant simplifications; for one, the conductor of L(1/2, f ® x4)
is g2 for all f of level dividing ¢. Furthermore, the nth Fourier coefficient of f ® Xq
vanishes unless (7, g) = 1. For these reasons, Conrey and Iwaniec could use a formula
of Iwaniec, Luo, and Sarnak [26], who proved a Petersson formula that is applicable
to (1) with » = 1. The case r # 1 lacks these simplifications, so in order to approach
the proof of Theorem 1 we developed a more general form of the Petersson formula
that is applicable to (1) with any square-free r. This formula, which is of independent
interest, is described in Sect. 1.3.

Corollary 1 improves on a hybrid subconvexity result of Blomer and Harcos [8,
Theorem 2’], which holds more generally for f of arbitrary level and nebentype
character. In our notation (and assuming (g, ) = 1) the result of Blomer and Harcos
takes the form

L(1/2, f ® xg) < ¥ 41 2q 1 rg)". 3)

One may check that Corollary 1 is superior to (3), except in the range r = ¢!/2*to(D

where all the bounds are equalized. This result of Blomer and Harcos is more general
in that x, can be replaced by an arbitrary primitive Dirichlet character, f may be a
Maass form, and it is not restricted to the central point. In addition, the Blomer-Harcos
bound proceeds by bounding an amplified second moment, and is Burgess-quality in
the g-aspect for r fixed. If ¢ is fixed and r is large, then the cubic moment is not
the appropriate moment to use, and both Corollary 1 and (3) are weaker than the
convexity bound [specifically, (2) is superior to the convexity bound of (rg%)'/#*¢ for
r < qz_s].

The work of [14] treats both holomorphic forms and Maass forms, with similar
proofs. Provided one generalizes our newform Petersson formula to the setting of the
Bruggeman—Kuznetsov formula, then our methods should carry over to the Maass
case, as in [14]. Note added May 31, 2018: the Bruggeman—Kuznetsov formula for
newforms has now appeared in [46].
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A generalized cubic moment and the Petersson formula for newforms

The type of sum appearing in Theorem 1 may look somewhat unusual, but it is very
important for the proof. It is crucial in [14] that, after applying the Petersson formula,
the moduli of the Kloosterman sums are all divisible by g. The form of (1) is chosen
to group together the terms with ¢’ | g to give a sum of Kloosterman sums with ¢ = 0
(mod ¢g). As a rough sketch of what this means, and why it is important, one may
consider the case of prime level ¢g. Very roughly, one naively expects the Petersson
formula to say

ag(myay(n) ay(m)ay(n)
it RSt a SN
Z (£ ) f new%evelq (> 0

S(m, n; c)

flevel 1

< Sy +2mwi " Z
c=0@mod gq)

“

This is not quite correct because there are other types of oldforms not appearing on
the left hand side, but that does not affect the broader thrust of this discussion (the
reader interested in the correct version of this formula will find abundant discussion
throughout this paper!). Meanwhile, the sum over f of level 1 has a Petersson formula
in which all ¢ > 1 appear. Thus, by rearranging these expressions, we see that a
newform formula for f of level ¢ should have all ¢ > 1 present. With the cubic
moment, one also has a factor x,(mn), and one wishes to apply Poisson in these
variables. The total modulus of x,(mn)S(m, n; c) is [q, c] which for g | ¢ is still c,
but if (¢, ¢) = 1 itis gc which is much larger. In this latter case, Poisson summation
is practically ineffectual.
Our proof of Theorem 1 in fact shows a stronger asymptotic result of the form

Y wrL(1/2. f @ X)) = Reg+ O 7247 A7), (5)
feHi(rq"
q'lq

where wy are certain positive weights satisfying wy = (gr)~ oM and R, 4 is a
complicated main term arising from a residue calculation (see Sect. 8.4 for details).
The error term here is seen to be o(1) provided r > ¢° for some fixed § > 0. Conrey
and Iwaniec [14] express interest in finding the asymptotic of the cubic moment in
their case r = 1; it is perhaps surprising that deforming the problem slightly in the
r-aspect allows us to solve this problem in a hybrid range. In light of (5), perhaps it is
possible to amplify the moment in the r-aspect, and thereby improve the exponent of
s in (2).

1.2 Arithmetical applications of the cubic moment

The bound from Corollary 1 implies a bound on the Fourier coefficients of half-integral
weight cusp forms, as we now describe. Suppose that g(z) = ), c(n)e(nz) is a weight
KT“ Hecke eigenform of nebentypus i and level 4r where r is odd and square-free,
and « is even. The Shimura correspondence links g to a form f of weight «, level 2r,
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and nebentypus 2 , and Waldspurger’s formula gives under some local conditions
(see [43, Théoreme 1)) that ¢(|D])*> = c0|D|%L(1/2, f @ v~ lxp) where D is a
fundamental discriminant, and cg is some constant of proportionality depending on
g. Note f ® ¥~ has trivial nebentypus. Since 27 is square-free, Corollary 1 applies,
and we deduce:

Theorem 2 Assume that  is a real character. With notation as above, we have
k—1 1
c(ID]) K¢ |D| T T6te, (6)

Theorem 2 has applications to the representation problem for ternary quadratic
forms which has been studied by a number of authors, including [6,7,17,18,27] from
which we have drawn some of the following background material. Suppose that Q is
a positive ternary quadratic form with associated theta function 8¢ of level dividing
4N with N odd and square-free. For instance, any diagonal form ax? + by? + cz?
with abc odd and square-free satisfies these conditions. Then g = E + U + S
where E is a linear combination of Eisenstein series, U is a linear combination of
unary theta functions, and S is a linear combination of Hecke cusp forms. According
to this decomposition, write rg(n) = cg(n) + cy(n) + cs(n) where rp(n) is the
number of representations of n by Q, and c,(n) is the nth Fourier coefficient of
x = E, U, S. For ease of exposition, suppose that n is square-free and coprime to the
level, which implies cy(n) = 0. If n is locally represented everywhere by Q, then
ce(n) >0 n'/2=¢_Theorem 2 implies cg(n) <0 n/12%¢ which is an improvement
over that derived from the Burgess-quality subconvex bound of [8].

For some more advanced questions, one may desire to explicate the dependence
on g in Theorem 2. Blomer [7] remarks that in general this is difficult, and that Mao
[9, Appendix 2] has done this but at the expense of relating the Fourier coefficients to
twisted L-values of an auxiliary form f @ y~'x*/?, which is of level dividing 16r2.
Our results here then may not apply to this auxiliary form .

However, if g is in Kohnen’s plus space, then the constant of proportionality is
given explicitly by the Kohnen—Zagier formula, and our results apply, as we now
explain. We gather some notation from Kohnen’s paper [30], paying careful attention
to normalizations. Let g be as defined in this section, in Kohnen’s plus space, and write
flz) = 220:1 n%)»f (n)e(nz) with A r(1) = 1. Define the Petersson inner product
by

1

(f, f)Kohnen = m /Fo(r)\Hy | f ()|

rdxdy
y2

(For the rest of the paper we will mainly use a different normalization of the inner
product.) Using [26, Lemma 2.5] [22,23], we have (f, f)Kohnen = r°D Let D be a
fundamental discriminant with (—1)"/ D > 0, coprime to r. By [30, Corollary 1], we
have

cdDDP vy (5= 1) p7t LU/2. £ ® xp)

(g, &)Kohnen mk/? (f f)Kohnen

@ Springer



A generalized cubic moment and the Petersson formula for newforms

under the assumption xp(p) = n,(f) forall p | r (here n,(f) is the eigenvalue of
the Atkin—Lehner operator). If xp(p) = —n,(f) for some p | r then ¢(|D|) = 0
while the right hand side may not vanish. As an aside, we mention that Baruch and
Mao [5] have generalized the Kohnen—Zagier/Waldspurger formula by removing these
conditions on D, relating the central value to a Fourier coefficient of a different half-
integral weight cusp form. By Corollary 1, we have

le(q)I?

L r%+8q%+%+a. )

(€ &)Kohnen
It is also natural to inquire into the normalization of the form g. There is a slight
difficulty here in that we cannot scale g by taking c(1) = 1, since ¢(1) may vanish.
There exists a Dy, polynomially bounded in r, so that L(1/2, f ® xp,) > r°M (e.g.,
see [21]). Then we may choose the constant of normalization so that |c(|D0|)|2 =

k—1
|Do| = . Then with this normalization, (g, g)Kohnen << r°("), and hence

1 k=1, 1
lc(q)] Lk, r6+5qT+6+5, 8)

Theorem 1 itself can be used to improve many exponents in the results of [34].
In particular, we improve the rate of equidistribution of the reductions of CM elliptic
curves (see [34] for a full description of this arithmetical problem). For brevity, we
shall not repeat any material from [34], but will instead indicate which exponents may
be improved. The bound ¢!/3+2 D7/16+¢ in [34, (1.5)] may be replaced by ¢ D>/12+¢.
In [34, Corollary 1.3], the bound D > ¢'8+¢ may be replaced by D > ¢'>*¢.1n [34,
(1.10), (1.12)], the bound ¢”/8 D7/16 may be replaced by ¢/ D3/12. All these changes
result from a use of Theorem 1 to bound M defined by [34, (4.7), (3.1)] with

1/3
pl/2+e
My<——| Y L2 fex?| <«q DV ©)

1/3—¢
a feHy(q)

If one can generalize Theorem 1 (and hence Corollary 1) to allow f to be a Hecke-
Maass cusp form, then there are additional applications. This is the setting required for
equidistribution of integral points on ellipsoids [16]. The various exponents appearing
in [33] would be updated similarly to the improvements to [34] described in the
previous paragraph. As another example in this vein, Folsom and Masri [19,35] have
improved the error term in the asymptotic formula for the partition function which
requires subconvexity for quadratic twists of a cusp form of level 6; the previous
bounds of [14] do not apply, and so the methods developed in this paper pave the way
for further improvements.

The second-named author [45] generalized the method of [14] allowing for large
weights (or spectral parameters, in the Maass case) giving a Weyl-type hybrid subcon-
vexity bound. This had applications to equidistribution problems on shrinking sets.
For simplicity, in this paper we have kept the weight « fixed but it seems likely that
the methods of [45] could be combined with those in this paper to allow « to vary.
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1.3 Petersson formula for newforms

We begin with an expanded discussion on why a newform Petersson formula is relevant
for Theorem 1.

One encounters a significant difficulty when attempting to generalize the method
of [14] to allow level structure of the base form, as we describe. One begins by using
an approximate functional equation of the L-function L(1/2, f ® x4), which has
conductor r¢? when f is a newform of level r¢’ with (r,¢) = 1 and ¢’ | ¢. Next
one would wish to apply the Petersson formula to average over an orthogonal basis of
cusp forms. The problem is that this basis consists of oldforms as well as newforms,
which causes a variety of problems. Firstly, it is not clear what Dirichlet series to attach
to f ® x4 when f is an oldform. One could take this to mean that if f is induced
from a newform f* of lower level, then we take L(1/2, f* ® x,). However, with
this definition the conductor of this L-function may be a divisor of rq2, in which case
there is some dependence on the level of f* in the approximate functional equation.
The classical Petersson formula is unable to distinguish between these forms.

It is plausible that there is some trick that lets one set up the problem to prove
Theorem 1 using the classical Petersson formula, but the authors are not aware of one
(if the moment was an even power, this would be easy because of positivity; the fact
that the moment is an odd power in this application makes this more difficult).

The robust solution is to prove a Petersson formula for the newforms only, similarly
to the existence of averaging formulas for primitive Dirichlet characters of a given
modulus (see [25, (3.8)]). Iwaniec, Luo, and Sarnak have proven a Petersson formula
for newforms of square-free level [26, Proposition 2.8], but with some coprimality
conditions on the level and the Fourier coefficients of the modular forms, which in
our application are crucial to avoid. When working with 1-level density of zeros
of L-functions, it is easy to ensure coprimality because the log derivative of an L-
function is a sum over prime powers. However, the L-function itself is not so easily
treated, because altering a single Euler factor will ruin the functional equation. For
this reason, we have generalized the [26] formula to hold with square-free level and
arbitrary Fourier coefficients.

Suppose that N is a positive integer, and let B, (N) denote an orthogonal basis
for the space of weight « cusp forms for IH(N). For f € B, (N), write f(z) =

Yool ar(n)e(nz), and ay(n) = )»f(n)n%. Let

Apmig) T 1)
’ K (4]T)K_1 ’

An(m,n) = ¢, Z

(10)
feB(N) <f7 f)N

and where

P ——dxdy
o= [ et
To(N)\H y

Since the main interest here is in the level aspect, we often suppress the dependence
on the weight « in the notation. The Petersson formula states
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S(m, n; 4/
An(m,n) = 8p—y +2mwi ™" Z (mcn %) Je—1 < Cmn) . (11)

c=0(mod N)

We have

Theorem 3 Let N be square-free, and let H(N) denote the set of Hecke-normalized
newforms on I'y(N) of trivial central character. Let

Ap(m)dg(n)

12
Ffin (12)

AN (m,n) = ¢, Z

SeHE(N)

Then with v(L) defined to be the completely multiplicative function satisfying v(p) =
p + 1 for p prime, we have

m G
Ay = Y By 22 3 cldedd) Yy 2 (air)

iy V) e VO ulmy 0 v ((u“:f)z)
v|(n,L) ’

md1 ndz
x Y > AM<a2e%(u,u)’b2e§(u,v))' (13)
(- wm) ol (0 225)
(5-)

o)
Here c¢(d) with d | € is jointly multiplicative, and c pn (ph) = Cj.n Where

n
X
=3l (3) (14)
=0

3

az(u,v)

e ’ dy, —"—
2 ( 2 bz(u,v)

=z

and U j(x) are the Chebyshev polynomials of the second kind.

The constants c; , arise from repeated application of the Hecke multiplicativity rela-
tions and we call them the Chebyshev coefficients. We describe some of their relevant
properties in Sect. 6, for instance, we shall show ¢; , > 0, and derive sharp bounds
on ¢ . Many of the bounds on the Chebyshev coefficients appearing in Sect. 6 arose
out of necessity for the proof of Theorem 1.

In Theorem 4, we give an approximate version of (13) with the additional restriction
£ <Y, which makes the right hand side a finite sum. For our application to the cubic
moment, we have found the approximate version most suitable.

The method of proof of [26] is to explicitly choose a basis By (N) (see [26, Proposi-
tion 2.6]) that relates the oldforms to the newforms, and thereby deduce an arithmetic
formula for Ay (m,n) in terms of A%, (m’, n’)’s, with M | N. An inversion of this
formula then gives their formula for A%, (m, n). As mentioned in [26], there are many
interesting choices of basis and it could be argued that their choice is ad-hoc. Other
authors have also constructed various bases. Choie and Kohnen [12, Proposition 2] use
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the same basis that we will use here. Rouymi [41] gave a basis for prime power level
and derived a newform Petersson formula from it. Building on Rouymi, Ng [37] and
Blomer and Milicevic¢ [11, (3.7)] gave a basis for arbitrary level, and Ng [37] and five
authors [4] have used this basis to give newform Petersson formulas for arbitrary level
(but with restrictive coprimality conditions on the level and the Fourier coefficients).
It is important for our work that there is no restriction on m, n appearing in Theorem 3.

Nelson [36] has described a method for proving a Petersson formula for newforms
without explicitly choosing a basis, and gives such a formula when the level N is
divisible by the cube of each prime dividing it.

Our proof takes a different path from [4,11,26,37,41] in that we choose our basis
to be eigenfunctions of the Atkin—Lehner operators, which for square-free level is
enough to diagonalize the basis. This choice is natural and leads to many pleasant
simplifications. Our method of proof of Theorem 3 most naturally shows

1 ¢ uv ’*((ut,‘;)ﬂ)
avinn = 2 5 2o T e B G ey

LM=N | L>® dy,dy |t u|(m,L) (u,0)2
v|(n,L) ’

md, nd,
X Z Z A*M (aze]Z(u’v)’ b2€%(u,v)> . (15)
“’(%*(fu)) el’(dl’azg.v))
(3t el (4 )

We deduce Theorem 3 from (15) in Sect. 4 below.

In this introduction, we have not presented the Petersson formula that is required for
the proof of Theorem 1. What we need is a kind of hybrid formula for modular forms
of level rq that in the r-aspect restricts to newforms of level r, and in the g-aspect
groups together all the newforms of level dividing ¢, in accordance with the setup of
Theorem 1. This formula appears in Sect. 5.

The newform formula of [26, Proposition 2.8] has coprimality assumptions of the
form (m, N) = land (n, N 2) | N, which on the face of it is rather restrictive, however,
one may reduce to this case as follows. Firstly, using that A s (d) ¢ (p) = A r(dp) for
any d € N, and p | N, one may write A s(m)Ay(n) = Ay(m')Ay(n’) where mn =
m'n’, and (m’, N) = 1. Secondly, we have A (p?d) = A7 (p)?rs(d) = p~'is(d)
(see (63)), which by repeated applications allows one to reach the case (n, N 2) | N.
It is not obvious how to use the [26] newform formula to derive our hybrid version
presented in Sect. 5 below. The problem is that the above factorizations of m and n
depend on the ambient level, and so summing over different levels introduces some
complications.

1.4 Structure of the paper
Sections 2—7 are devoted to proving a number of versions of the Petersson formula

with newforms as well as some estimates for the Chebyshev coefficients. This part of
the paper is self-contained.
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In Sects. 8—11, we prove the cubic moment bound, that is, Theorem 1.

2 Atkin-Lehner theory
2.1 Construction of basis

We briefly review some of the theory developed by Atkin and Lehner [2]. Throughout
we assume that the level N is square-free. For a matrix in GL;' (Z)), define

— _ K/2 —K az+b>
f|(‘jf})(z) (ad — bc)“'“(cz +d) f(cz—i—d .

Atkin and Lehner showed that

Ssi= @B @ S .

LM=N feH*(M)

where S, (L; f) is the span of forms fj4,, with £ | L, where Ay = ((l; (1)) They call

S (L; f) the oldclass associated to f. Observe fja,(z) = E"/zf(ﬁz), so Se(L; f) =
span{ f(£z) : £ | L}. Our goal here is to construct an explicit orthogonal basis of
Se(L; f), in the case that N is square-free.

We turn to the Atkin—Lehner operators W,. Suppose thatd | N, N = LM, and let

_(dx y

where x, y, z, w € Z are chosen so that det(W;) = d (such a choice exists because
(d,N/d) = 1, since N is square-free, and the forthcoming properties of W, are
independent of the choices of x, y,z, w). If d | M and f € H}(M) then f is an
eigenfunction of W, (see [2, Theorem 3 (iii)]), so suppose now thatd | L. Let

V= (ﬁ (1)) e y(M). (17)
d

Note that taking x = z = 1 in the definition of W; we have
_ (4
VW = <0 1) .
Therefore, if f € H}(M) andd | L, then

fiwy = fiviwg = fivwy, =d*? fdz+y) = fia, (18)
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This calculation easily shows that S, (L; f) is preserved by all W, withd | L, thateach
W, is an involution, and that the W; commute with each other. Therefore, the group of
transformations of S, (L; f) generated by the Wy is isomorphic to (Z/ 27)*L) where
w(n) is the number of prime divisors of n. Note 2¢(L) = ¢(L). Furthermore, the Wy
are Hermitian with respect to the Petersson inner product (see [2, Lemma 25]). By
some simple character theory, we can show that S, (L; f) has an explicit orthogonal
basis of common eigenfunctions of the W;.

We briefly describe a more abstract statement. Let G be a group isomorphic to
(Z/27Z)", and let ¢ be a character on G, which we denote by ¢ € G. There are 2" such
characters. For each ¢ € G, suppose there exists an involution W, acting on some
vector space of functions, and such that Wy, Wy, = W, ,. For each f in the vector
space and character ¢ € 6, define

fo=Y_ oW, f. (19)

geG

It is easy to see that

Wefo = ¢(2) fo-

Therefore, each f; is an eigenfunction of all the W,. Also, the f are distinct because
any two choices of fj; have a different eigenvalue for some Wy. This also means
that if the W, are Hermitian with respect to some inner product, then all the fj are
orthogonal. In the case of S,(L; f), which has dimension 20(L) = ¢(L), there are
2¢(L) eigenfunctions fo, so by dimension counting, the fy form a basis. Finally, we
derive a useful formula for (fy, fo):

(for f5) = D $@B () (We, [, We, f)
81.82€G
= > @)W f, [) =Gl Y_ @ (W f, f).  (20)
81,82€G geG

Returning to S, (L; f), by [26, Lemma 2.4] (which in turn follows closely a proof

in [1]), we have

A r(d)
(Fiwgs £) = (fiag, f) = ﬁd”%ﬁ ).

We endow the set of divisors d | L with the group structure (Z/27)®") and define

characters on it by ¢ (d) = ]_[p‘d ¢ (p), where ¢ (p) is chosen to be +1 or —1 inde-
pendently for each prime divisor of L. In this way, we obtain

_ Ar(d) 1) ( ¢(p))»f(p)pl/2>

o) =1GI(f, d)y———=d'"*=t(L)(f, | o AP T
(fo, fo)=IGI(f, f) d§|L¢( ) @) T(L)(f f>p||L| + o 0)

21

All of the above inner products are (, ).
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2.2 Dirichlet series of the basis of oldforms

To lend some support to the assertion that our choice of basis of S, (L; f) given above is
natural, here we describe some pleasant features of the Dirichlet series corresponding
to these modular forms. Let A o (n) be the Fourier coefficients of f; and define

A
D(s, fp) = Z 'f¢(n). (22)

nS

n=1

The reader should beware that this is not a character twist of f, because ¢ is not a
Dirichlet character (in fact ¢ is only defined on the divisors of L). We show here that
D(s, fy) satisfies a functional equation similar to that of a level N newform.

By a direct calculation with the Fourier expansion, we have

hpymy =Y ¢p@u'Prs(m/u), (23)
ul(m,L)
Therefore, we have
DGs. f) = L(s. H] | (1 + ¢(_117)2> . (24)
pIL p

Then define the “completed” Dirichlet series

N*2Tp(s)DGs, f5) = AGs, L] | <1 + p‘f(‘]’/)2> : (25)
pIL
where
Fos)=2=T <s + (Kz_ 1)/2) r <s + (K2+ 1)/2)

is the gamma factor associated to L(s, f) and A(s, f) = M“/ZFf(s)L(s, f). This
satisfies the functional equation A(s, f) = € A(1 —s, f). Meanwhile, the secondary
factor satisfies

g(s):= L] (1 + pf(’fL) =TT(r" +owp ™) = ¢Lrgd - ).

pIL pIL

Therefore, D(s, fy) satisfies the functional equation

1—s

N3Ty(5)D(s, fp) = € (LYN 2 T'p(1 —s)D(1 — s, f). (26)
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3 Manipulations with sums of Fourier coefficients

The goal of this section is to prove (15).
We begin by describing (10) for the basis chosen in Sect. 2.1. We have

Axmmy =cc 3 3% M‘l’(m)'\’q’(n). 27)
LM=N feH:(M) ¢ {fo: Joln

We therefore need to evaluate the inner sum over ¢, namely

)\ftb (m))\f(b (n)
T(m,n) = _
0. ) %: (fo. foIN

O] f A Zkfd’(m)kfd’(”)r[(

pIL

Ae 172\ !
¢(p)vf(;1)7)p ) 8

d(p)rs(p)p'/?

where we have used (21). We multiply and divide by ] o= ) ), giving
that
T(m.n) = ZA ) Y OO OR O
’ (L)Pf(L) o)y o A vy
where as in [26], we define
Ay (p)?
L)= l-p——— ). 29
ps(L) 1"[( p(p+1)2> (29)
pIL
The formula (23) implies
ron.m = DY
(L)Pf(L) 5 NG i iy
1/2
x 3 bl on g 030! 2oy 2P IO

1L

where we have used that A ¢ (n) is real to remove the complex conjugate symbols. The
sum over ¢ detects if uvz is a square, precisely

t(L), ifuvt =00,

0, otherwise.

Z¢<u>¢(v)¢>(r) =
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A generalized cubic moment and the Petersson formula for newforms

Since u and v are square-free, and so is 7, the condition vt = [J determines 7 uniquely,

namely
uv u v

T w? W) ()

One may compare this with Lemma 2.4 of [26]. Therefore, T (m, n) equals

1/2
1 H( uvz))\f( uvz)( uvz)
Z Z Ml/z)\f(m/u)vl/z)\f(n/v) (u,v) (u,v) (u,v) .
pr(LSfS )y w
ul(n,L) v|(,L) v Gz

(30)

To check this against [26], suppose that (m, n, N) = 1. Thismeans ((m, L), (n, L))
= (m,n,L) | (m,n, N) =1, so in particular, (#, v) = 1. Hence

1 w(u Mm@
Tm,n) = ——— Ar(u)Ar A
) = DTy 2 Gy WA D SCh ks o),

N y|(m,L) v|(n,L)
(3D

which equals

As(m,L)As(n, L)
PSS fIn

p(uu
v (u)

, where Ar(m,L):= Z
ul(m,L)

Af@yp(m/u),

as in [26, p.76]. Since f is on IH(M), we have (f, f)n =
v(L)(f, f)m. So, if (m,n, N) = 1, then

B m =

Ap(m,LYAs(n, L)
. . 32
vomm = LA;N fe%M) pr LWV, Flm .

From this we may quickly derive (2.48) of [26].
We continue with the calculation of Ay (m, n), without the assumption (m, n, N) =
1. The formula (30) shows

An(m,n) = ¢ Z Z U(L),Of(L)<f fim

LM=N feH*(M)

M u,v
> b 0 () (o ()

ul(m,L) 2
vl(n,L) @v)

Recall that the Hecke relation for a newform of level M with trivial nebentypus is

iy = 3 Ay (%) .

d|(m,n)
d,M)=1
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In our desired application, u and v divide L and (M, L) = 1, so any divisor of u or v
is automatically coprime to M. Using the Hecke relation, we then deduce

An(@m, n) = ¢, Z Z v(L),Of(L) fs fim

LM=N feH*(M)

# ()
> (uu,vwv((u_u)z) > xf(azz,v))”<b2<Z,v>>'

u\(m,L) (M’U)Z u

v|(n.L) w.9)
v

o)

* (u,v

ez =3

b

(33)

The tricky part of our analysis of Ay(m, n) is to express p f(L)’] in terms of
Fourier coefficients of f. We have

*r(p) B MOk
pf<L> H( (p+1)2) _sz(eﬂ’ G4

rIL £IL*>

where )L} () is the completely multiplicative version of A 7 (n), that is,

Wy = [T ar

prile

Using only the weak bound |1 s (p)| < p? + p~? with some 6 < 1/2 shows that the
product and sum in (34) converge absolutely.
Define the Chebyshev coefficients ¢ , by

rp(p)" =" cjnhs(ph). (39)

where p is coprime to the level of f. Let Ux(x) denote the degree k Chebyshev
polynomial of the second kind (defined below). Then

n
X
n _ ch’nt <§) N
j=0

where the c; , can be written in various ways using that the U; form a system of
orthogonal polynomials. Here the U; can be defined concisely by the generating
function

(1 =2yx +x*)~" =Y " Uj(yxl.

@ Springer



A generalized cubic moment and the Petersson formula for newforms

For instance, since Us(x/2) = x* —3x2 4+ 1, U»(x/2) = x* — 1, and Up(x) = 1, we
get

x* = Uy(x/2) + 3Ua(x/2) + 2Uo(x/2).

An alternative formula is Uj(cos()) = Sin(g{ﬂ#. The orthogonality of the U;
implies that
b
Cjn= / Uj(cos0)(2cos 9)"% sin® 6d6. (36)
0

We will develop some properties of the Chebyshev coefficients in Sect. 6.
With this notation in hand, we have for f a newform of level M with (¢, M) = 1,
that

n

SO =TT 1D cimrsr®) ] =) cedirs@), (37)
pre \j=0 dle
where
co(d) = 1_[ Cjn-
pllld
rlle
Moreover, we have
1 l
oD = ;ojo L > cld)ee(d)hydihy(da). (38)
L dy,dy|¢

Inserting (38) into (33), we get
l 1
An(m,n) = ¢ Z Z m Z ce(dr)ce(da) Z F m

LM=N (|L® dy.da |t fEHE(M)

7 oo
g dDhd) Y (:UU)M 2. M (ﬂ(ﬁv))kf (bz<Z,v>>'

gt W) al (% at)
)

Now we can use the Hecke relations one final time (again the divisors are coprime to
M), to give

axmm = Y Y s 3 atdnatdy Y

LM=N ¢|L> di.da|t feH*(M)
Z uv M ((;5)2> Z Z N mdy N ndy
x _ .
(u,v) (L) 4 a?e? (u, v) 4 b2e3(u, v)
ul(m,L) @) a wﬁ) 61|<dl’az;ﬂﬁ)

v|(n,L)
o|(255) el (@2 72)

1=

b

1

This is precisely the desired formula (15), after a rearrangement.
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4 Inversion

In this section, we show how to deduce (13) from (15). We work in greater generality
than what is immediately required, which will be useful in Sect. 5. Suppose that F' and
G are two arithmetic functions that we write in the form F(m, N), G(m, N) where
N is a positive square-free integer, and m = (my, ..., mg) is a tuple of integers. We
assume there is a relation of the form

Fm,Ny= Y > A(a.m.)G <a(a,mL)mﬂL,M>, (39)

LM=N a|L>®

where: A is some multiplicative arithmetical function, m 1, denotes the part of m having
common factors with L, so my | L* and (m/my, L) = 1, and « is some integer-

valued multiplicative function having the property that a(p'!, ..., p*) | p* for all
primes p. Furthermore, a is shorthand for some tuple (ay, ..., ay), and the condition
a | L* means thata; | L° foralli =1,...,J.

We can derive that F(m, 1) = G(m, 1) for all m, by taking N = 1 in (39). The
main topic of this section is to prove

Lemma 1 For square-free N we have the inversion formula

G(m,N) = Z w(L) Z A(a,mp)F (a(a,mL)mﬂL,M>. (40)

LM=N a|L>

Lemma 1 implies Theorem 3, since (39) encompasses (15), as we now explain. The
tuple (mq, ...my) in (39) takes the form (m, n) in (15). The tuple a appearing in
(39) is of the form (¢, dy, d», u, v, a, b, e1, e3), where note that all these entries divide
L®°. The arithmetical function A(a, my) accounts for ﬁ L 1

V(027 v(uv/(u,0)?)’
as well as all the summation conditions in (15), in which (m, n) may be replaced by
(mr,ny).Finally, we have a(a, (my,ny)) = (244 2d y and G(x, y, M) =

azef (u,v)’ bze% (u,v)

A (x, y).

Proof If N = 1, then (40) is true, by an easy calculation.
Now induct on the number of prime factors of N. We replace N by NP with P a
prime (whence (P, N) = 1), giving

Fm,NP)=Gm,NP)+ Y 3 Ala.mp)G <a(a,mL)m£, M).
L

LM=NP a|L®
L£1

Since M has fewer prime factors than N P, we can use the induction hypothesis to
give
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F(m,NP)=G@m NPy +| Y > Ala.mp)
LM=NP a|L>®
L]

x 3 w©) Y A me)F <a(b,mc)M,D>

m
CD=M b|C® ¢

Here we have used that

m
ala,mp)— | =mc,

which follows from (L, C) = 1. Next we put back L = 1 and subtract it off again,
giving

F(n,NP) = G(m, NP) — Z w(C) Z A(b, mc)F (a(b, me) 2L D)
CD=NP p|C® me

(a,mp) =
J{ Z ZA(a,mL) Z w(C) ZA(b,mc)F (a(b,mc)aar:l;m,D>:|.

LM=NP a|L® CD=M b|c>®

We need to show that the term in square brackets equals F (m, N P), since we can then
solve for G(m, N P), giving (40). We have

ala,mp) -
[..0= ) w(@© Y Alamy)y  Ab.mc)F (a(b, mc)#, D).
CDL=NP a|lLo® b|Co® nc

Using multiplicativity of A and «, and that (C, L) = 1, we get

L= Y wo) Y A(c,mCL)F<a(c,mCL)mla,D>.

CDL=NP c|(LC)y®

We can write this as

[..1=Y_ >  Alc,mypp)F(alc,mypp)

D|NP c|(NP/D)>®

D) Y o).

m
NP/D CL=NP/D

The inner sum over C gives D = N P, which simplifies as [...] = F(m, NP), as
desired. |

5 Hybrid formulas
We desire a formula that is intermediate between Ay (m, n) and A’;\,(m, n), in order

to capture the weights appearing in Theorem 1. See the discussion surrounding (4) for
motivation for this goal.
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For square-free A B, define

N - 1 1 Apm)rg(n)
App(m,n) = ce Z Z v(C) pr(C) (f, flap

CD=B feH*(AD)

(41)

Note that Ay 1(m,n) = A%(m,n). Provided (mn, B) = 1, we have A¢(m, C) =
Af(m) fg m coprime to C, and then by (32) and we get A; p(m,n) = Ap(m, n).
Hence Ay4 p(m,n) interpolates between Ayp(m,n) and A”A g(m, n), provided
(mn, B) = 1.

Because of our application to the cubic moment problem, we are interested in the
case where g N is square-free, and (mn, g) = 1. In (33) we substitute N — Ng, and
factor L = LyLy with Ly | N and L, | g, giving

uv
1 uv M((u v)z)
A m,n) = ¢ — ’
Nglmm) = e D v(LN) 2. (u, v) V( m ) >
Ly|N i‘,"((’,ﬁ'fﬁ; w.v)?) a

< 7

n
( v’ (u,v)

o () o ()

X § : 2 : a”(u,v) b%(u,v) .

LyLyM=Ngq feHr (M) v(Lg)pr(Ly)pr (LS, fim
Lylg

Here we used that (mn, L,;) = 1 to simplify the divisiblity conditions. Next we use
(38) on ——, and use the Hecke relation again, giving now

pr(Ln)’
' M( uv2>
_ uv (u,v)
Anglm,ny = 3" %" TR D cldeed) Y RSN ATRY
Ly|N Z\L‘])VC dy,d> |l u||((m,£N)) Y @7
vl(n,Ln

mdy nd
)Lf (a%f(u,v))lf (h%%(u,v))

V(Lg)pr (L) (f ) ng_

m _u m Lqlq q LyL
I’(’“’))el|(dl’az(um)) B Ly Lq N
n
v

WithA = N/Ly,B =¢q,C = Ly, and D = g/L,, we can write the sum over Ly | g
above as Ay /1 y.q(m’,n"), for m’” and n’ the obvious integers. Therefore, this shows

l,l/ uv
Ang(m, n) = Z Z m Z co(dy)eo(dn) Z uv <(u,v)2>

u,v uv
LyIN €L didale alomiyy &V v (0,,,))2)
v|(n,Ly)

5 Z Z X md, ndy
i \ a2 (u, v)’ b2e2(u,v) )
a | (%’ (ulfv)) el | (dl ’ HZEZ.U))
b‘(% (uljv)) 62|(d2’b2(’;,v))
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At this point, we replace the condition Ly | N by LM = N (i.e. rename Ly by
just L, and then call M the complementary divisor). This gives

n _uv__
ANq(m’n)Z Z Z\)(L;W Z co(dy)ce(dr) Z uv M

LM=N ¢|L>® dy,dy|t ul(m,L) (. v) % ((u U)z)
v|(n,L) ’

~ md1 nd2
x Yy Yo Aug (a2e%(u,u)’b2e§(u,u))' (42)
( )
(

Now we fix ¢, and suppress it in the following notation. Set F(m,n, N) =
Apng(m, n), and likewise G(m, n, N) = ZN,q (m, n). Then the relation (42) is essen-
tially the same formula as (15), and, more precisely, is encompassed by (39). By
Lemma 1, we therefore have (recall (mn, g) = 1, and Ngq is square-free)

uv
~ (L) V4 uv M((u,vﬂ)
A q(m.n) = T 3 S 3 cded) Y o T\
LM=N Lo dy,da b ul(m,L) *7 "0V ((u v)Z)

v|(n,L) ’

md, nd,
X Z Z Apmgq (aze]z(lhv)’ bzeg(u,v)) . (43)
I (u?v))) el ’(dl’ az(y:v))

_n_
’ l)z(u,v)

u m
’ <”’“)) el | (dl ’ az(u,u)

s (u?v) [2) | (dz

a

n
’ bz(u,v)

ez x|

b

6 Formulas and estimates with Chebyshev coefficients

We begin with a combinatorial evaluation of ¢; ,. From (36), combined with the

formula Uj(cos ) = Sin(:{ﬂ#, we have
s
Cjn= %/ sin((j + 1)6)(2 cos(6))" 2 sin 6d. (44)
-

Writing everything in terms of /%, we get

1 1 T (2 /n 0 . y y o
Lo (n=2r)\(,i(j+2)0 _ ,ijo _ ,—ijo —i(j+2)0
Cjm=— (2i)2/ (Z (r)e )(e e e 7 e de.

T \r=0

At this point it is clear that ¢; , = 01if j # n (mod 2), so assume j = n (mod 2).
We also see that ¢; , = 01if j > n. For j = n, itis easy to check that ¢, , = 1, since
the only values of r for which the integral does not vanish are » = 0, and r = n. If
Jj < n — 2, then we deduce that
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Cjn = <,ﬁ,~> - <,1+j" 1>, (45)
= =t

which in fact agrees with ¢, , too, since (n_"H) = 0. One may find this sequence of
Chebyshev coefficients in the OEIS [38] which thereby leads to interesting connec-
tions. For instance, the list (where we omit terms with j % n (mod 2))

€0,0, C1,1, €0,2, €2,2, C1,3, €3,3, €04, C2.4, C4 4, ...=1,1,1,1,2,1,2,3,1,5,4,1,5...

is the same as Catalan’s triangle ordered along diagonals in reverse order.
From (45), we deduce ¢ , > 0 for all j, n, and we have

Z": [ (n'}2), n even, 46)
Cjn =
i—0 o ((n+nl)/2)’ n Odd’

since the sum telescopes. Let § € {0, 1}, 6 = n (mod 2). Note that Stirling’s formula
gives

n 2" 7
Ly N Ty
Lemma 2 Let c¢(d) be as defined in Sect. 3, and suppose y > 0. Then

Y add” < [T +p)"

d|¢ prle

Remark For y = 0, this bound is slightly worse than that implied by (46), in view of
(47).

Proof We have

Yocdd =] p¢jn (48)

d|t p"lle j=0
so it suffices to show for x > 0O that

n
chy,,xj <G+ (49)
j=0

From (45), we obviously have that

Cim < <,,'1j). (50)

2
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From this, we shall deduce (49), as we presently explain. On the one hand, we have
from (50) that

n
: n n
ch’nxj Sx"+<n_1)x”2+...+<”+8>x6, (51)

2

and on the other hand, we have

n n n
(xfl_'_x)n :xn+ " xn72_’_._.+ nis x8+ nts X872+--~+)C7n.
n—1 > 5 1

(52)
In words, the positive powers of x appearing in (52) precisely match the upper bound
on (51). O
For later use, we require an estimate for the following expression:
2
¢ 1
- /2
S(L.Y) =Y TG > cudyd : (53)
fL® d|e
<y
Lemma3 We have
S(L,Y) <e Yot (L). (54)

Proof Without the restriction £ < Y, the estimate in Lemma 2 would barely fail to
show the sum converges, since

p(p~1/2 4 pl/2)?
1+ p)? -

However, using Rankin’s trick and Lemma 2 we obtain

Y ’ — V¢ —ey—1 &
S(L, Y)Sg; (Z) =Y [[a-p " sCer),

pIL

where we have used the following:

[Ta=p " < [T2]||JTa-p"|=zc@CE@, 55

pIL pIL pIL
pi=2 pe<2
where C(¢) =[], e o(1 = p~*)~". o

We will additionally need the following bound.
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Lemma4 Let c¢(d) be as defined in Sect. 3. Then

2 ajece(d) < R osseo.

o (56)
Proof By Lemma 2, we have
2582 2 g @) <11 ( e )n (57)
v~ L le+n?
Let "
Js(x) = Pt

wherex >2and0 < § < 1.If§ = % is such that f5(x) is decreasing for x > 2,
and f5(2) < 1, then this will show that the product on the right hand side of (57) is
< 1, which suffices to prove the desired bound. It is easy to check with basic calculus
that the desired properties hold for fs(x). O

Remark The exponent occurring in (56) is mainly controlled by the powers of 2 divid-
ing €. If £ = 2", and n is even, then in fact )", c¢(d) = (n'}z) = 2"/n'/2, while

v(€) = 3", 50 if £ = 2" then (56) is sharp up to the factor n~!/2 = (log, £)~1/2. If ¢
has no small prime divisors then the exponent can be improved.

Corollary 2 Let yy = loe3/2) _ 1 — 0.0849625. .., and suppose € > 0 is small. Then

log2 2
2
eH—s
D vap | L e@] <y, (58)
/é|L°° d|e
>Y
Proof By Lemma 4, we have
2
£l+8 )
—_— d < pETN,
P Yoa@d| <

diL

Then, we have by Rankin’s trick and (55), that

Z ¢~ 2vo+e < y—2r+2e Z 0—¢ — y~2n+2e l_[(l _ p—s)—l e Y_2y0+28‘[(L).

£|L>® £|L>® pIL
>Y
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7 Approximate Petersson formulas

Our main Petersson formula, (13), has a technical problem arising from the fact that
the sum over £ | L® is not a finite sum. Iwaniec, Luo, and Sarnak encountered a
similar difficulty in [26]. The idea is to truncate the sum at some large parameter Y,
and estimate the tail trivially.

To this end, we begin with some simple bounds. Throughout this section we assume
the weight « is fixed, and do not display any x-dependence in the error terms. First,
we claim the crude bound

|AN(m, n)| < (m, N)Y2(n, N)223(m)t3(n), (59)

for fixed weight «.

Proof We use (27). Using (23) and the Deligne bound, we have

hp )| < Y uPrim/u) < (m, L) Pr30m) < (m. N)'*23(m).
ul(m,L)

Therefore, by the fact that A s, (1) = A ¢ (1) = 1, we have
|AN (m, )| < (m, N)'2(n, N)r3(m)ts(m) An (1, 1).

One can then apply the Kloosterman sum formula for Ay (1, 1) to show (e.g. see [26,
Corollary 2.3])

A, 1) =140 (jv(gz)) <1

Now we state an approximate version of Theorem 3.

Theorem 4 Let yy = % — % = 0.0849625 ..., and suppose ¢ > 0 is small. We

have

w v
Aym.my= Y ﬁf((f)) 3 > cetdnectd) Y o= Q

2
LM=N fL> v( ) dy,dat ul(m, L) “ P ((u 5)2)
<y vl(n,L) '

D R S T )

M\ =5 > 12,2

a?es(u,v) b%es5(u,v)
a‘(%’(uﬁ‘v))el}(dl’%) 1 ’
b|(%’ﬁ) ez’(dzﬁbzav))

+0((mnNY) NY ™). (60)
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Proof 1t suffices to bound the tail of the sum over £, namely the terms with £ > Y.
Using (59), we have that the difference between Aj;, (m, n) and the main term sum on
the right hand side of (60) is

<Y U(L) > v(z)z > culd)ee(dr) Z

v) uv
LM=N qL® dy.da | am) ”( 2)
=Y v|(n,L) ()

12 12
md ndy
x Z Z (M, ‘MW) (M, b%%(u,v)) 3(mdy) 3 (nds).
o (-t ) | (@1 2ti5)

b

(3.a5) el(@ 5e)

(61)

We use the weak bound (M, m’) < M (for any integer m’), and use t3(md;) < (mf)°?,
and similarly for t3(nd>), and trivially estimate the sums over u, v, a, b, e1, e3 to give
that (61) is

2
pl+e
N d
< (mn)* Z v(L) Z v(g)z Zce( )
LIN Z\L"O d|e
The desired bound then follows from Corollary 2. O

The same method of proof applies verbatim to A N,q(m, n):

Theorem 5 Suppose (mnN, q) = 1. We have

A M u,v
Anglm.m)y=3 f((i‘)) > Y e 3o = M

2
LM=N L= U(Z) dy.dy| ul(m, L) “0) ((uu:j)z)
e<y v|(n,L) ’

o S T R )
Mq 2.2 T h2,2
(7 ) b (»)
a|<%’ﬁ> €1|(d1’a2(mu,v)> st .
(3w5) el (25225

+0((mnNY)’NY~210). (62)

b

In our desired application, we shall take Y to be a very large power of the level,
in which case the error term is very small. For this reason, we made no attempt to
optimize the error term.
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8 Initial structural steps
8.1 Invariants of the twisted L-functions

We begin by calculating the root number and conductor of L(s, f ® x4), which is
apparently somewhat difficult to locate in the literature. Our proof of Theorem 1 does
not require any formula for the root number of the twisted L-function, but it is helpful
for interpreting Corollary 1.

More generally, suppose that g is a weight x newform of level N with trivial central
character. Also recall the definition of the Atkin—-Lehner operators (16). Then g is an
eigenform for the Wy, and we write its eigenvalue as g|w, = 14(g)g. Then the sign
of the functional equation for A(s, g) is given by i“nxy(g). Since the Atkin—Lehner
operators satisfy glwy lwa, = 8lwaa, for (dy,d>) = 1, it suffices to consider the
eigenvalues of Atkin—Lehner operartors 1 (g) where Q is a prime power dividing the
conductor of g.

Let x, be a primitive quadratic Dirichlet character of conductor ¢ = g,g. with g,
odd and ¢, a power of 2. Explicitly, x,(n) = (q"—{)) Xq. (n) where (;—0) is the Jacobi
symbol and yg, (n) is either 1, x4, or one of the two primitive quadratic characters of
conductor 8. Recall we set ¢ = rad(q) the largest square-free divisor of ¢. Let f be a
newform of square-free level rq’, where (r, ¢) = 1 and ¢’ | . We also take ¢ | g to
be such that ¢” | ¢’ and (¢/¢”, q") = 1. Letus write f @ x4 = (f ® x4") ® Xq/q"-
We have by [3, Theorem 4.1] and e.g. [25, Proposition 14.20] that f ® x4~ and f ® x4
are newforms of conductors r¢”’? and rg?, respectively.

We have by [15, (5.5.1)] that for each p | r that

np(f ® x¢7) = xg7(P)np(f)

where in Deligne’s notation a(V) = 1 by our square-free hypothesis on r and
dim(V) = 2. We found the exposition by Pacetti [39] particularly helpful for these
calculations. For each p | ¢” we write P for the power of p dividing ¢”. Now we have

np2(f ® xg7) = xp(—1),

by Atkin-Li Theorem 4.1 [3], and where we have written x,» =[], xp. Therefore

we have shown that

plg’

Mg (f @ Xq7) = nr () Xq (r) xq7 (—=1).

Now by Sect. 3 of Li [32] or Proposition 14.20 of [25] we have since x4~ is real that

g2 (f ® Xq) = Xa/q" (1@ ey (f ® Xxg7)
= Xa/q" (—1q") X" (1) xgr (=D ()
= xg (=P, ().
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Note 1, (f) is the eigenvalue of the Atkin—Lehner operator W, on f. In our case, f is
of trivial central character and square-free conductor r¢’. In this case one can compute
for each p | rq’ that

np(f) = —p" 21 (p), (63)

for which see the proof of Theorem 2.1 of [3].
In summary, if we let €, denote the root number of a newform g, this shows

€fox, = i* Xg(—r)n()r' P ap (r) .

= xg (=) @)q" P15 (@),

where recall A ¢ (n) is normalized to be bounded by the divisor function of n.

Now let |

Of 2= Ce = ~ ,
v@/aer@/aH s, frg

(65)
where p was defined in (29), and @ in particular satisfies
wf = (rq)~1+o),
since by [26, Lemma 2.5] [22,23] we have
(o Phrg = (rg) o0,

Note that with these weights we have

Z wrkp(m)kyp(n) = Zr,q(m, n,
feHi(rq")
q'lq

(66)

where recall Er,q (m, n) was defined in (41).

8.2 Approximate functional equation

Recall that our goal is the bound (1), which we write as

Me.q)= > orL(1/2 f®x)’ < (qr). (67)

feH(rq")
q'lq
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We have for Re(s) > 1 that L(s, f ® xq) = }_,>1 XgWAr@) o ng

ns

Ar Ar
L @ xp* = Y 3 ™ (fm(:))f"(mn) =22 % 2w ()

m>1n>1 m>1n>1 d|(m,n)
(d.qr)=1
Af(mn)xq(mn) T(n) xq(n)A g (n)
D 3L SIS A
(d,qr)=1 m>1n>1 (d,qr)=1n>1

Then we have by standard approximate functional equations that

A
L(1/2, f®@xg) = +e€ray) ) f(';)lzq(n) v <q$7> |

n>1

and

Lpsex=2 Y YOy, ()

d,gr)=1m=>1

where Vi and V; are certain bounded smooth functions of rapid decay (see (81), (82)
below for formulas). Therefore,

Ay (m)T(m)A f(n) xq(mn)
Mgy =2 Y of(l+emy,) Y.
feH!(R) d,m,n>1 dymn
r|R|rq (d.qr)=1
“(55) e () <68>
XVi| —= 20— ).
ar q*r
In (68), we may replace (1 + €rgy,) by 2, because if €rgy, = —1, then the other

factor L(1/2, f ® Xq)2 vanishes anyway. Using this and (66), we derive

d*m ~
Mo =4 3 GV (2w ()

(d,qr)=1 n>1 m>1
(69)

The contribution from m > r'*t¢¢2ted=2 or n >> r!/2+241+ is very small by trivial
bounds.

8.3 Exercises with arithmetical functions

Equation (69) gives

Moy =4 3 LB, (@ ) + 0t ™), (70)

(d.gr)= 1
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where _
Br,q(av B) = Z amﬂnAr,zi(m» n),
m,n>1
with 5
_1(m)xg(m) d“m _ Xq(n) n
o= SR (TE) m=En () o

Now we work in more generality than what is required.

Proposition 1 Ler o and B be two sequences of complex numbers of rapid decay, and
let Y be some large power of qr. Then

(L) uv M
Brg@py=Y ’j(L) Z u(@)z 3 Ce(dl)Ce(dz)Z (@)
LR=r dy.dr|t “ ((u U)z)
£<Y U\L ’
x Z > B+ 0(lawm® Ihl|Bunf I (rq) '), (72)
al (u ) erld;
bl ezlds
where
Z Zaau ‘1 m'Bbv 2 n
m>1n>1 ‘a(ti‘,v)) (‘2%)
d d
xApg (2 - m, 2 v n (73)
el (u,aei(u,v)) ez (v, bea(u, v))

Proof Using (62), and pulling the sums over m and # to the inside, we obtain

(L) )
BB =) = D X ar (e)z 3 Ce(dl)ce(dz)z v)%

LR=r oL® dy,d>)e 3
(<Y v\L .v)

md, ndy

X UmBnlARs
alz IZI 2 e q(a 22 (u,v)" b2e3(u, v)
bl(“ 2" erldy m=0(mod au ‘l

(u.v) (g]'a(:,v)>

e

1 )
(‘)z’b(u.v))

+0 [ D0 lamm®||Bant|(rg) Ty A0

m>1n>1

nsO(mod bv

@ Springer



A generalized cubic moment and the Petersson formula for newforms

where we have used the following elementary observations: we have

=0 (mod au)

alt;

and for any integers a, b, x we have ax = 0 (mod b) ifandonly if x = 0 (mod ﬁ)
so that ’

" 0 (mod ep)
—_— = mod e
a%(u, v) !
m u
— =0 (mod eg)
au a(u, v)
o2 =0 mod —Z
au (61, a(:,v))
€l

om= 0| moday——
u

(61 ’ a(u,v))

We now make the change of variables

el €2
m—au———m n+>bv———n,

(61, ﬁ) (62, m)

which gives the desired formula. O

Continuing with our more general set-up, let y1, 12, 81, 82 be positive integers that
divide L°°, and set

B sis = 2. CamBynArgSim, 8yn). (74)

m,n>1

In our application of interest, we have

e e
Y1 =au—lu, %) =bv—2U, (75)
(el, m) (6’2, m)
and 4 P
8 zié, 522_2;‘ (76)
e1 (u,aei(u,v)) er (v, bey(u, v))

We now use the o and S specific to our situation. In anticipation of some future
maneuvers, we use a Hecke relation on the divisor function implicit in ¢«, namely
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T(ym) = Zhl(y,m) t(y/h)t(m/h)u(h). This gives (for an arbitrary function f such
that the sums converge absolutely)

T(ym)xq(ym) (dzym>
m = V.
,1;21 oy f(m) m{:l Jym 2\ f(m)

X (V) T (5) () xq(h) — xq(m)T(m) (dzyhm>
= V h .
v a = e )

With this, and by inserting the definition of 8, we have

) gy 3 r(%)u(n)xq(ya)g, -
Y1,¥2,61,82 W ~ \/% »
where
Xg(mm)T(m) ( yan d*yrysm
B’ = a Vi Vs Agg(81y3m, don).  (78)
m%; Vmn qr q°r 1
Applying the Petersson formula (11), we obtain
B =D +27i7*S,
where 5
Xg(mn)T(m) ( van ) d=y1y3m
D' = Vi Wl—]). (79)
3|J/3mz=52n vmn T q*r
and
Xq(mn)T(m) ( yan ) (d2y1 y3m)
S = Vi Vo| ——
P v A e
S(Am, Bn; ¢) 4w/ ABmn
ST W (— , (80)
c=0@mod gR) ¢ ¢
with

A=461y3, B=2d.

According to this, we write B’ = D’ + B:S, and similarly, B = D + Bg. It may be
helpful to record that ¢ = 0 (mod gR), that (¢R, L) = 1, and that AB|L®°, so that
(AB,gqR) = 1.

The main technical result proved in the rest of the paper is the following

@ Springer



A generalized cubic moment and the Petersson formula for newforms

Proposition 2 With « and B as above, we have

JAB 34 .
S<<(f J_R>(q)

From Proposition 2, we deduce bounds on B¢, then Bs. We have

1 1 5182y5 /4 . 518, 3N (gr)f
5 () (T )

B« + + )
S Yiv2 v\ VR  q'?R VR q'*R) Jyiv2

vl

Therefore, we get the following bound on Bs:

Bs < (qr)° Z (L) > v( 7 > culden(dr)

£L>® dy,d2|¢
<Y
uy ‘“ ((u v)Z)‘ 818 r3/4 1
XZ(M v) wv Z Z 1/2R m
u|L 4 v ((u v)2> a|(u 5 €1|d1
v|L ’ bl -~ ex|ds
(u,v)
Note that
u
81 _ di u (61, a(u,u)) _ d;
v el (w,aei(u,v)) auer  e2a(u,v)’
and so by symmetry
&2 d

v esb (u,v)’

and thus
(6@)‘/2 _ (ddy)'

Yiy2  ejeab(u,v)’

We also use \/;7 < \lﬁ (M e With these observations, we have

Yiy2 —
Z Z 818 r3/4 1 < (qr)a (d]dz)l/z N r3/4
| elld q'?R) v (u,v) R1/2 q\2R )"
a 1ld
b‘(uvv) ex|ds

The inner sum over u and v gives a divisor bound, so now we get

. (dl d2)1/2 r3/4
Bs < (qr) Z (L)Zv( o > Ce(dl)Ce(d2)< e +q1/2R).

dy,dr |

Z<Y
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By Lemma 4, we bound the second part of this sum by

3 1 ¢
@) i > . > e > culdee(dy)

LR=r £|L>® dy,da |l
<Y
< (qr)é‘ r3/4 : 1 Z 672)/0 < q71/2+8r71/4+£
ql/z LR=r \)(L)R £|L>® '
<Y

Recalling the definition (53) and using Lemma 3 we have

S(L,Y _ _ _ _ _
Bs < (qr)s(z (L,Y) 414 1/2) <« (qr)a(r 12 4 =14 1/2).

1/2
LR=r U(L)R

Finally, we have from (70) that

M@, q) = Mo(r,q) + O ((qr)e(r_l/“q_l/z + r_1/2)> ’

where M (7, q) is the contribution to M(r, g) from the diagonal term D. It is easy

to see that Mo (r, ¢) < (rq)¢, following the proof of the bounds on Bg.
We summarize this discussion with

Corollary 3 Proposition 2 implies Theorem 1.

This is appealing because it lets us reduce the number of variables to consider from

this point onward.

8.4 Diagonal terms

In this section, we evaluate M (r, g) which along with Proposition 2 leads to (5).

The functions V| and V5, are given explicitly by
1 —Uuj
Vi) = 5= | Wilu)y ™ du;,
2mi )

where

Wi = oo U E D)y
I (5)u r(s)u

Then recalling (70), (72), (77), and (79) we have that

Mo(r,q) = /;1) /(1) Wy (ul)Wz(uz)(qzr)%lJ’”zC(l +2u2) ¢ (1 + u + uz)?

Adduduy

XFV ) AN
g,y (U, uz) ani)?

k]
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where
u(L)
Fray(uu) = 3 S0 > ( S > culdends)
LR=r LX<y dy,dy|¢
uv M ((u v)2) _ xgnya)

XZ (u U) Z Z ]/2+u2 l/2+u1

ulL V((u U)z) a‘(uv e1ldy

v|L ezldy

blamn

( )M(Va)xq(ys)

x Z )] 1/2+uz

73l

" [T (1= p172) Z Xq(mn)T(m)

L+ a1+ 02 /2 12
c(1+uy +uz) 51 yammsan

and where recall (75) and (76) for the definitions of yy, y», 1, 62, which depend on
a,b,u,v, ey, e, dy, d.

Our plan is to shift the contours past the poles. We claim F;  y(u1, u2) is holo-
morphic in the region Re(u;) = 0; > —1/2, fori = 1, 2, and satisfies the bound

|Fr g,y (ui, u2)| < (gr)°. (83)

Proof By a simple argument with Euler factors, it is not hard to see that we have the

bound
Z Xq(mn)T(m)
m1/2+u2n1/2+u1
S1y3m=&n

c(1+up +up)™ <L (gr), (84)
and that the left hand side of (84), and hence F, 4y, is holomorphic in the desired
region.

Using divisor-type bounds on the inner sums, we have

|Froqy (i, uz)] < (qr)° Y
LR=r

U(L) Z 1)( )2 Z C[(d])C((dz)

dy.d>|t
e<y

By Lemma 4, we have

Z ()2 Z ce(di)ee(dr) < L,

2|L>® di,dy|¢
<Y

and hence (83) follows. O

The proof given above, combined with Corollary 2, shows that

Frqy = Jim Frgy+0((gr) Y=,
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so for the rest of the calculation of My(r, g) we take Y = oo, and define F, , =
limy 00 Fr,q,Y~

Rather than attempting to obtain the strongest error term, we take the easiest path
that gives some power saving. We begin by taking o1 = 1/2 + ¢, and o = 1/2. Next
we shift u5 to the line 0o = —1/2, crossing a double pole at u» = 0 only. On the new
line, we have

/ / | W1 (1) Wa (u2) (gr)" V2120 (14 uy + u2)*¢ (1 4 2uz)
(o1) J(02)

X Fy g (ut, up)l|durdus| < (rg®)~V4e,
Some thought shows that

Resu,—0 Wa (2)(¢*r) "2 (1 + uy + u2)*c (1 + 2u2) Fr 4 (1, u2)
= Fy 4 (u1,0)Py(log g*r) (1 + uy) + &' (1 4+ un)C (1 + up) Fy 4 (uy, 0)
+ U+ u) B w, 0), (85)

where ¢, ¢’ are constants and Pj is a degree 1 polynomial.

The residue is now a single integral over u, and we shift this contour to o1 =
—1/2 4 &. The new integral is bounded by (¢%r)~!/#*¢, again. The residue at u; = 0
takes the form

Reg:= Y Pijlogg’r)Fy "7 (0,0), (86)

0<i<2
0=<j=1

where P; ; is a polynomial of degree < i + j.
Gathering this discussion together, we have shown

Mo(r, q) = Re g + O(g°r) " 1/4F%).

It would be better to study the main terms in the style of [13] using shifts, which for
the sake of brevity we leave for another occasion.

8.5 Dyadic subdivisions
We return to estimating S defined by (80). Next, we open the divisor function t(m) =

an:m 1 and apply a dyadic partition of unity to the sums over ny, n2, n = n3, and
c. This gives

1 —
S= Y NNNgTIcSMNaNc+ O,
N1 N2 N3, C o LV
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where Ni, N>, N3, C run over dyadic numbers and where

Snivsc= Y. wele) Y xg(ninang)

c=0@mod GR) ni,ng,n3>1

4w /ABninyns

xS(Anina, Bn3z; ¢)Je—1 (
C

) WAy, N, N3 (1, 12, 113).
(87)

Here the weight functions wc (x) and w,, N, N5 (X1, X2, X3) satisfy

2.—J3

) —j 1:J2,J3) —Ji,— 3
we (0 K xT L wy N (e v, x3) K xg g P

and are supportedon x < C, x; < N;,i =1,2,3.
By the Weil bound, and using J,—(x) < x, the contribution to S from ¢ > C is

<ty VABN| N, N3 C3/2NNN _ «/ABN1N2N3( e
VNIN,N5C c grR clizgr 17

(N1 N2 N3)?
2R

This is satisfactory for Proposition 2 for C > . Thus we may restrict the

variables by

N:N->N 2 2’,. 1+e¢ r1/2 1+
gR < €« PNy D N W )
q°R d“yiy3 Z)
Let us also write (87) as
SNI.Ny.N3.C = Z we (S, Ny Ny (39)
c=0@mod gR)
8.6 Poisson summation
Let [c, g] = lcm(c, g). We have
ShiNavse = D Gaplmimymy;c)K(mi,mymsic),  (90)
mi,my,m3el
where
1
Ga,p(my,ma, m3;c) = 3 Z Xq (X1X2X3)

[c. q]

Xx1,x2,x3(mod [c,q])
xX1mq + xomy 4+ xzm
1m1 + xoma + x3 3)1 o)
[c. q]

X S(Ax1x2, Bx3;c)e <

@ Springer



I. Petrow, M. P. Young

and

K(my,my, m3;¢c) =

/ J 4w /ABti 13 —mit] — moty — mt3
_ e
R3 ol c [c, q]
XWN; Ny, N; (P15 1, 13)d dd 3. 92)

When A = B = 1 and q is odd and square-free, this is precisely as in [14] (though the
reader should be aware of our slightly different normalization of G by [c, q]’3), SO
this appears at first glance to be a fairly minor generalization of their work, however
the calculations become rather intricate.

9 Arithmetic part
Let (€1, €2, €3) € {:l:l}3, 6 =1,2,4, or 8, and write ¢, for the even part of g. Let

(€1,€2,€3)
ZsRq (51,582,853, 54)

(93)

Z Z cqG a,p(my, ma, m3; c)e e 413 /c2 (—mimam3)

S4
c=0@mod RG) [mq |31 |ma |52 |m3|%3 (R%)

mi>1
2,3 (c.qe)=4

1

One of the key ingredients of the Conrey-Iwaniec method (when A = B = 1 and
g is 0dd) is that the additive character e 4 g 413 /c2 (—m1mam3) nicely combines with
G(m1, ma, m3; c), allowing for an efficient decomposition into multiplicative charac-
ters.

To avoid over-burdening the already burdened notation we only give proofs in the
case (€1, €2, €3) = (1, 1, 1) and denote this case simply Zs g 4, the other cases being
treated similarly. Note that we have (AB) < (gr)" for some fixed but possibly large
L > 0 (see Proposition 1) so that (AB)® <« (qr)g/.

The main goal of this section is the following proposition.

Proposition 3 For each choice of (€1, €2, €3) and § there is a decomposition Zs g 4 =
Zéf}gf;’ﬂ)(sl, $2,53,84) = Zo + Z', where Zy and Z' have the following properties.
Here Zy is analytic in Re(s;) > 1+ o fori = 1,2,3,4, 0 > 0 and in this region it
satisfies the bound

(qr)°
Zo Log,e Z_B (94)

The function Z' is analytic for Re(s;) > % 4o fori =1,2,3,4, anyo > 0, and in
this region satisfies the bound

4
1Z'| Koo 2 (AB)2(gr)* [ 1+ 1s; /4. 95)
Jj=1
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Moreover, if s =1/2+e+i(yj+1t)for j =1,2,3,54 =1/2+¢e+i(ys — 1), and
v L (qr)t for j =1,2,3,4, then we have

/ |1Z'(1)2+e+i(y1 +1),1/2+e+i(2+1),1/2+e+i(y3+1),1/2+e+i(ys —1))|dt
[tI<T
L ¢HAB) T (qrT). (96)
We begin by reducing the evaluation of G 4 p into cases. First, write ¢ = c1c2 with
c2|(AB)*°, and (c1, AB) = 1. As r = RL is square-free and (r,g) = 1 we have
(gR, AB) = 1, hence (¢R, c;) = 1. By a calculation with the Chinese remainder
theorem, we have
Ga,B(m1, my, m3; cic2) = xq(AB)G1,1 (m1, my, ABcams; cy)
—3
x Gap (ml,mz, [c1. g1 cims; cz) .7
where in the definition of G 4 p(m1, m2, m3; ¢3) for ca | (AB)*° we implicitly take
q = 1. Write ¢ = g,q. where g, is odd and ¢, € {1, 4, 8}. We further decompose c;

by ¢1 = coc. Where ¢, is odd and ¢, is a power of 2. Another short calculation with
the Chinese remainder theorem shows

— 3 _
G1.1(L1, €2, €35 coce) = G1.1(L1, €2, [Cor Gel 2033 co)G11 (€1, €2, Tolss c). (98)

Next we evaluate the three types of G4 p sums in a form most relevant for our
further calculations. The case with modulus ¢, was derived by [14, §10]. Following
the notation found in [14], write

Co = {4oSo-

Lemma5 (Conrey and Iwaniec) We have for q,, s, € N with (q,,2) = 1 that

—ajaas 1
Coqoe (C—> Gy 1(a1, a2, a3;¢,) = Z

¢ DIDth:qo (p(DZ)

h=(q0.50)
k=(ajazas,qo)
(h.a1az)=1

X Z 8Dy, Dy, bk y ¥ (@10203) Y (50)
Y (mod D»)
Ry (a1) Rk (a2) Ri(a3), 99)

where Ri(n) = S(n, 0; k) is the Ramanujan sum, and g is some function satisfying

3/2
18D, Dy 1k | K Dz/ te (100)

and where in addition we must have (as, s,) = 1, otherwise G vanishes. In case V is
principal, then |gp,, p, h.k,y| < D5.
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Conrey and Iwaniec in fact give a more precise formula that we describe within the
proof.
Next we evaluate the case with modulus ¢ |(AB)®°.

Lemma 6 Suppose c|(AB)°. Suppose that ajazaz # 0 and write a; = u;v; where
(ui, AB) = 1 and v;|(AB)°. Then

—apazas
e\ ——— ) Ga,plal, az, az; c2)
C2AB

= 3((A, c2)[v1)((A, 2)[12)8((B, c2)[v3)

x > > ;) > ynGuuguz),  (101)

g182] =2~ D cAB (p(D n(mod D)
@) \ @A B

(v o
81 —( @2 (Aca)
) )
gz_((/*.tfz)’g[(&(‘z))
were Yy = Yu;.v.g1,22,¢2,A,B, D,y IS some function satisfying the bound
1/2
|Vv1,Uzygl,gz,CLA,B,D,nl < (A, 2)(B,2)D / : (102)
In case 0 is principal then with A = (A, ¢2)A’ and B = (B, ¢3) B, we have

VU203 I 4
((A,Cz)z(Bscz)’ A'B )
A'B’ '

% <« (@r) (A, e2)(B, c2)

(103)

Again the point is that we get a short linear combination of multiplicative functions.
Finally, we consider the case of c,. For this, we have

Lemma 7 Suppose c. is a power of 2. Suppose ajayaz # 0 and write each a; = e; f;
where e; is a power of 2, and f; is odd. Then

1

) > wx(fifafa)

—ayaxa3 .
geCee o a?/c2 Gy 1(ar, az,a3; ¢c.) =
x(mod A)

372
Cerqel’ /s Al6d
(104)

where gy = e er,e3,qe.c0.x,4 1S bounded by an absolute constant.

As in the previous two cases, we have a much more precise formula for G 1, which
we shall describe within the proof.

Proof (of Lemma 5) First we note that our G ; is scaled differently from G defined
by [14], precisely G 1 (a1, a2, az; c,) = c;3G(a1,a2, as; ¢,),asin [14, (8.2)]. In the
notation of [14], make the definitions ¢, = ¢o50, B = (g0, S0), kK = (a1a2a3, q,),
D = Z—Z The sum G, vanishes unless (%, ajaz) = 1 and (so, a3) = 1, in which case
by [14, Lemma 10.2], we have
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Gi.1(ar, az, as; ¢co)
. <alaza3> hip(—=1)
Co Coqo® (k)

Ri(a1) Re(a2) Ry (a3) H (sohkayazas; D). (105)

We do not need the exact formula for H, but rather the fact that it essentially depends
on the variables as a block, and the decomposition into character sums. Specifically,
Conrey and Iwaniec [14, (11.7), (11.9)] showed

Hw:D)= Y w(D)xp, (~)H*(Diw; Dy), (106)
D D,=D
and
H* (w; D) = —— Y T(@)E(ny Y)Y (w) (107)
’ ®(D2) Simod D o '
mod D»)

The crucial fact about g(xp,, V) is that

lg(xpy, ¥)I < Dy, (108)

which requires the Riemann Hypothesis for varieties, i.e., Deligne’s bound.

From here it is a matter of bookkeeping to derive (99).

In case ¥ = ) is the principal character, then |g(xp,, ¥o)| < d(D>) (the divisor
function) and 7 (¥o) = wn(D3). Indeed, one may show that if ¢ = ) is the principal
character modulo an odd prime p, then g(x,, ¥0) = 2if p =1 (mod 4), and = 0 if
p =3 (mod 4). Furthermore, g(x4, ¥o) is multiplicative in q.! O

Proof (of Lemma 6) We will evaluate G 4 p in precise terms. We will not use the
assumption ajazaz = 0 until indicated later in the proof. Since c¢;|(AB)*> and
(g, AB) = 1, the quadratic character is not present in the sum, and specifically we
have

G, glay, az, asz; c2)

1 * Axixou + Bxsu + x1a1 + x2a2 + x3a3
-5 X X . -
2u@mod c3) x1,x2,x3(mod c2)
Summing over x, we detect the congruence Ax,u = —a; (mod c¢;), while the sum

over x3 detects Bu = —az (mod ¢;). Therefore,

1 * Xoan
G ) B ) = .
A.B(ai, ay, az; c2) " Z Z e( )

C
2BuE—a3(m0d ¢2) Axpu=—aj(mod c¢3) 2

Note that Bu = —a3 (mod c¢3) and Ax,u = —a; (mod ¢;) are solvable if and only
if
(B,c2) = (a3, c2), and (A, c2)lar. (109)

! This corrects a claimed formula for g(xq» Vo) of [14, p.1212].
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By symmetry, we expect that in addition that we will require (A, ¢2)|az, and indeed
we will recover this condition later in the analysis. From now on, we assume the
conditions (109) hold, otherwise the sum is 0.

Next we make the definitions

A= (A,)A", B=(B,2)B', 2= (B,c2)ch, az= (a3, cr)az. (110)

Now the congruence Bu = —a3 (mod c¢») is equivalent to u = —Fc'ié (mod c’z).

Next write x; = —A’ (A“—‘Cz)u + (Af'—zcz)t with # running mod (A, c2). Inserting this into
the exponential sum, we obtain

1 ary(—A' 8 —u + 21)
Gaplatayazic)=— Y Yoo Ao)  (Ac)
c €2
u@od ) tmod (A,c3))
u=—B'a3(mod c})

The sum over ¢ vanishes unless (A, ¢3)|a>, in which case we obtain

2
2 @A)

A, c * —AI Ay
Ga,plar, az, a3; ¢2) = . ) Z e (M .

u&nod )
u=—B'az(mod c})

To proceed further, we make some additional definitions, namely

g] = ) b alzgl ,C2)ay, g2= ) b
(A,c2) (A, 2) (A, c2) gi1(A, c2)
2

ar = g2(A, €2)az, C/z/ = m

Thus (ay, m) = 1, and (A'a1a3, ¢j) = 1, and with this notation the formula
becomes

(A,C2) * _Ed\ié’l\éu
Ga,glar, az,a3; ) = Z el —— -

[
2 umod e)
u=—B'az(mod c})

The tricky part in the analysis is that there is no apparent divisibility relationship
/o &) /"o &) 1t 1

between ¢, = B and ¢j = Aoais and so it is necessary to proceed by cases.
Although it is not globally true that c}|c}, or vice versa, we may factor the moduli
corresponding to which prime power of ¢}, or ¢/ is larger, which motivates the forth-
coming factorization. For p a prime and n a nonzero integer, define v,(n) = d if

d
p®lIn. Then we set ¢c; = c¢;crcy where
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€z = 1_[ pﬁ’ cf = l_[ Pﬂ’ Cg = 1_[ Pﬂ-

PPlle2 pPllea PPlle2
15"']}(0/2)<Vp(c,2/) V])(C/Q,)Svp(c/z) Vp(clz):o
vp(c))=1

According to this factorization, we also write ¢, = c;c’fc;, and ¢ = cg’c}cg where

¢, = (cx,¢y) and ¢ = (cy, ¢y) with * = z, f, g. Note from the definitions that
¢z, g, cg are all pairwise relatively prime, and also that c’;|c’;, and ¢, = 1.
Using the Chinese remainder theorem, we factor G 4 g as

(A, ) * —A'G arue(creg)Crey
Ga.plar, az,a3; c2) = B Z e el
2 uemod c;) fvs
u,=—B'az(mod c,)
* — Al @ £ (c.cq)CrCq
X Z e
C”C”C”
uy(mod cy) A
ufsf?cig<mod c’,)
* —A'a1ayug(c;cr)c.cy
CY
cg’c}c;{

ug(mod cg)
ug=—B'a3 (mod c;,)

Let us examine each of these three sums in turn. We begin by writing the sum over u,
more suggestively as follows:

T~ ~ cfcC —_—
. —A’alazu(ﬁ)c]rcg
> i
C//
umod c;) Z
u=—B'az(mod c})

cl
u=—Bay+ c.t, where ¢ runs over all residue classes modulo ¢’ /c’. But then the
sum over ¢ vanishes, because the factor in the numerator is relatively prime to the
denominator. Thus we obtain that G vanishes unless ¢, = 1. We henceforth make this
assumption in the next computations of the ¢y and ¢, moduli sums.

For the sum over u ¢ (mod cy), since c’]’c |c’f, the congruence uniquely determines

For each prime p dividing c;, we have p|c/, and p|Z. Therefore, we may write

. 1 : IINA— — .
u ¢ modulo Cy, 80 We get, using (cg/cg)cg = cy:

% — A1 @ucycy A'B'a\aascy *
Y (AmEen) | (TRAARE) g
C.C C .
u(mod cy) e I u(mod cy)
us—ﬁﬁé(mod c}) u=—B'a3 (mcvd C/f
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We also have
Z* | = p(c f)
p(c’)’
u(mod cy)
u=—B'a3 (mod c})

as can be checked as follows. Firstly, we see that both sides of the purported identity
are multiplicative, so it suffices to check this on prime powers. If c’f = 1, then the

identity follows easily. If c’f = pf, and ¢ ¢ =pP,and B’ > 1, then the left hand side

is pP=F = (Z’((p )) as desired.
Finally, we examine the sum modulo c,. We have c; = 1 (directly from the def-

inition, as remarked earlier), so the congruence condition is vacuous. The sum then
simplifies as R, (¢ £y, using that ¢ + and everything else in the numerator in the expo-
%’
nential is relatively prime to c,.
Putting all these calculations together, we have shown thatif ¢ = crcg, (B, ¢2) =
(a3, ¢2), and (A, c2) | (a1, az), then

(A, c2) co \ w(cr) [A'Baarasc)
Gaplar, az, az; ¢2) = R[22 ) 5L =), am
c g go(cf) cr

and otherwise G 4 p vanishes. So far the assumption ajazaz # 0 was not used.

To estimate this expression for G, we have c’f = (¢h,cp) = (( By ‘2) and
cg | (B, ¢2), so in fact c’f = (B‘—ZLZ) = ¢}. Then
o(c ) (cr) (c2)
R, A L K4 <B.c).  (112)
(cf) o) ¢lc2/(c2, B))

Our goal now is to use Dirichlet characters to decompose

e, (—ayaxa3)Ga play, az, as; c2).

Switching to the new notation used in (111), we have

—aiaxas —a1aa3
el ——— ) =e| ——— ),
ABc> A/B/c;icg

and by reciprocity, we have

~ o~ o~
—ayazas ) (P(Cf) —a1a2a3cf
cre <m> Ga,plar, az,a3; ¢c2) = (A, c2)Re, (7) w(cf) ( TAB )

Let
= (a1a3. jA'B).
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Then we have

—ajaas
cre\ ———— | Ga,play, az, a3; c2)
ABcy

plcp) 1 BN
= (A, )R, ( )W L . tn(=@dasd;/g).

_— ,//A/B/
83 ) n(mod g )

83

Finally, we argue that this expression is of the desired form for Lemma 6. Recall
we write ¢; = u;v; where (u;, AB) = 1 and v;|(AB)®°. As originally written, the
gi depend on the qg;, but in fact they only depend on the v; since the g; are divi-
sors of ¢, and ¢2|(AB)*°. By writing the dependence of the g; on the v; explicitly
as summation conditions, we see the presence of the first sum in (101). A careful
scrutiny of the changes of variables throughout the proof shows that the variables
Cg, cg, cr,c f’ A’, B’, g3 are functions of ¢, the v; and g1, g2, and are independent of
the u;. We may also extract from aja>as the factor uquu3. We obtain the bound on
¥y by (112), and using the standard bound on the Gauss sum. We note that

C//A/B/ AB
§ lcyA’B’, and c’Z/A’B’|c2+,
g3 (A, 2)=(B, c2)

which gives the divisibility condition on D.
The only remaining statement to prove is (103). In this case, the Gauss sum is
bounded by 1, and by (112) we have

Ao R (V2L L (A ) B )
2| Ree | & o) o (F2T) 1 PEe ”A’B"
83

By tracing back the definitions, we see that

o= ( V1V203 o B) ( v1v22v3 A/B/>’
8182(A, ¢2)*(B, ¢2) (A, c2)%(B, )’

which implies the bound (103). O

Proof (of Lemma 7) Now we evaluate G (aj, a2, az; ¢.). To do so we break into
cases. First assume that ¢, { c¢.. Under the condition ¢, { c. there are only finitely
many possibilities for g,, ¢, a1, az, a3. A brute force computation with Sage [42] then
shows that if ¢, = 1, 2 then

1
Gy 1(a1, az,as; c.) = q_Zqu(_l)T(qu)qu (mazas), (113)
e
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and if g, = 8 and ¢, = 4 then

1
Gi1(ay, az,a3; ¢c.) = 3—2qu(—1)T(quX4)quX4(alaza3)- (114)

Now we assume that g, | c.. We write ¢, = g.s. where s, is a power of 2. Following
the same steps as [14, Section 10] we have that if ¢, | ¢, then

8((13,39):1)((13 (=D e

Gi,i(ar, az, az; ce) = 3
qL)SE

(‘““2“3)va<a1,az,a3,qe), (115)

Ce

where H; is defined in [14, (10.2)]. Assume now both ¢, | ¢, and g, | s, (so that in
fact %2 | c.). Following the proof of Lemma 10.1 of [14] we find in this case that

Hy, (a1, a2, a3, qe) = xq,(@102a3)*T(xg,)* (116)

Having dealt with this case, we may now assume that ¢, | ¢, and g, 1 s.. Now there
are only finitely many choices for ¢., ¢, a1, a>, a3 which permits us to conclude the
following lemma by another Sage computation.

Lemma 8 Suppose that q. | c. and let s, = co/qe. If se = 1 we have

IRy (a)Ry,(a)Ry (a3)  ifge =4

[ .
iRg. (@) Ry, (a2) Ry, (a3)  ifq. = 8 and 4|ay, az, a3,
HSg(alv az’ a37 Qe) = 47 y 4 ¢

16i x4 (444) ifge = 8 and 2||ay, az, a3,
0 otherwise.
(117)
If2 | s, then
2 2 ~
Xg.(@ra2a3)°t(xq,) ifge | Se
Hy(ay, az, a3, qe) = { —xq.(@1a2a3)*T(xg,)>  if25c = qe (118)
iT(Xg,)? xa(@1a2a3) if'se =2and g, = 8.

If g | c. thenthe additive character on the left hand side of Lemma 7 cancels identically
with the additive character appearing in (115). On the other hand, if ¢, { ¢, then
the additive character €lee.gelP/c2 (—aiaraz) = €g3/c2 (—arazaz) must be expressed in
terms of multiplicative characters. Recall, if ajaraz # 0 we factor a; = e; f; with ¢;
a power of 2 and f; odd. We have

1 — ajaxas
eg3 /2 (—ara2a3) = > ©(@)0 (—17> :

0(q3/ct(q?/c?. ar1a2a3)) . (¢2/c2, araraz)
9<m°d #)
3@ /G aria)

(119)

where by convention we take & (mod 1) to be identically 1.
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Having computed G (a1, a2, a3; c,) we now argue that the resulting expressions
are of the desired form for Lemma 7. In similar fashion to the proof of Lemma 6, note
that for each fixed q., ¢, we have that c.q.G'(ay, az, a3; c.) is of the form (104) by
inspecting (119), (113), (114), (117) and (118). Now allowing the function g to depend

3

. q‘
on ¢., ¢, and seeing that —5—3¢——
qe- Ce g c2(q3/c2.a1a2a3)

of Lemma 7. O

| 64 in all cases, we conclude the statement

Proof (of Proposition 3) Let

—mimoms )

Gy w(my,mr,mz;c) = Gapg(my,my,mz; cle | —————
a,g(mi,ma, m3; c) Ag(my, ma, m3 )<AB[c,q]3/62

Then by (97) and (98) we have

cqG'y p(my,ma, m3: c) = xq(AB)coqoGh | (m1, m, ABeslce, gl c2ms; cg)
xc2Gly g (ml, ma, §m363m3; C2>
xceqeG | (m1, ma, ABcycoms; c.) .

Now we factor m; = m;m], where (m}, AB) = 1 and m} | (AB)*, and then

further factor m; = m¢m¢ where m¢ is odd and m¢ is a power of 2. By Lemmas 5, 6,
and 7, we have

’
cqGy p(mi, may, m3; c)

1
=38((A,c2) | (m,m5)) 8 ((B.c2) | m¥) > >

: @(D»)
(%) Dy Dyhk=q,
gngJ/(A,cz) . hlz(qms”)
(] P =m°mSm<.q)
s1=\ ey e (hfnml(])’::lz‘z";lilll
mly C 9.Co/q0)=1
82=<‘<A,32)’g1T2,cz) 3o/ do)
1 1
> o(4) 2 2 (D) 2. G
Y(mod D) Al64 xmod A) p AB n(mod D)
(c2.4)2(c.B)
X xm) (m§m3mS55) R (m§) Ric (m3) Re (m3) (120)

where G is the product of the g, y, and g arising in Lemmas 5, 6, and 7 along with
various miscellaneous factors of unit size, such as x,(AB). The exact form of G is
not important. Rather, all that matters is a bound on its absolute value, and the fact
that it does not depend on m¢{, m$, m$, s,, qo, c,. Specifically, we have it is of size

G. < D'2(A, c2)(B, c2)DY*** (121)

and if ¥, x, and n are all the principal character then with A = (A, ¢;)A’ and
B =(B,c)B’
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mfmym} A'B'
(A,c2)%(B.c2)’

A'B’

(122)

G+
5 < (qr)(A, c2)(B, c2)

Now we are ready to sum G’A’ p over the m; and c. We must break into two cases
to handle the condition (c, g.) = 8.

First suppose that ¢ is odd i.e., g = 1. Then since (c, g.) = 1 we have that the sum
over c is empty unless § = 1, and if § = 1 the the condition (c, g.) = § is true for all
c. We factor R = R, R, where R, is odd and R, is a power of 2 and write ¢, = t,q R,
and ¢, = t,R,. Then for any function f for which the sums converge absolutely we

have
Yo f@=86=1 Y > Y fleamoqRoteRe).

¢=0(mod GR) [(AB)® 1,2 (1,,2AB)=1
(€,qe)=3 (te,AB)=1

Now we suppose that g = 4 or 8. Then R must be odd as (R,g) = 1. Recall
that (AB, gR) = 1 so that (¢, Rg) = 1, and also that g/g, = 2. Then we write
Co = tyqo R and c, = 2t,. Then we have

Yo f@©=8G1a) Y. Y. Y. fQetgoRt),

c=0(@mod GR) l(AB)®  £,2%°  (1,,2AB)=1
(¢,ge)=0 (te,AB)=1
5121,

(3%)=1

for any f for which the sums converge absolutely. We treat only this last case for
the remainder of the section, as the other cases are strictly simpler. Applying this
decomposition to G/A’ g we find if § | g, that

2 IS D VD »

al(AB)®  1[2%  m{,mm5|(ABY®  m{.m§.m§[2%

(te,éA‘th):l (m‘fm%mg,AB)=1
e

(%%)=1
/ .
X Z Z cq(?A,B(ml,mz,m3, c)]

51 852 53 sS4
m
(1024 =1 (mommTaapy=t ™1 M2 M3 (C2elo)

- = DD IS

cz,tg,m/l/,m/z’,mg’,m‘;,mg,mg 2192 (AC.EZ) Al64 x(@mod A)
(A.c2)|(m},m%), (B.c2)lmj, (...) ! o
81=\ Wy Ay

ITI// .
— 2 €2
82= ( (Acp) g1(Ac) )

1 1
X E E E — E G;Y}, (123)
Dy Dytg, ?(P2) » ¢(D)
1D2hk=qo ymod D2) <248 ntmod D)
(€2,4)%(c2.B)
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where G, satisfies (121) and (122), the conditions (.. .) in the first (large) summand
following the second equals sign are the same conditions as on the first line of (123),
and _
y — Z (Y xm) (m{mym3i,) R (m7) R (m3) Ry (m%)
()1 (m3)2 ()1’ '

(m{mSmSt,,2AB)=1
h=(qo,Rolo)
kz(’"?’"g’”g"ﬁ;)
(h,m{m9)=1
(mg»Rotn)Zl

Our next goal is to obtain meromorphic continuation of Y inside the critical strip,
and a bound on Y both slightly to the right of the critical lines, and slightly to the right
of the edge of absolute convergence. First we note the following formal combinatorial
identity:

Y. f(ai,na,n3)

(n1nan3,q0)=k

- Z Z Z Z fkiny, kana, k3nz).

filala=k ("1’%1))=l ("z’kllliz)zl ("3’ klz(z)’%):l

With this, we have (with some minor simplifications arising from (g,, AB) = 1 which
means for instance that (k, AB) = 1)

Y — Z (Y xm) (k1kaks) Z

51792753
kl k2 k3

k1kokz=k (ty,k3AB)=1
(tm%):h
(Y x ) (m§msmSt,)
x ) s Rkum) Ric (ko) Ri (kam3).

(m{)s1 (m3)%2 (m3)*1,*
(m.haBge)=1
1
(m.naB e )=1
(m§.Rot, AB92)=1

(124)

The condition (k1ky, h) = 1 is automatic, because k1k2k3 = k, (5o, o) = h, hk | qo,
and ¢, is square-free, so (h, k) = 1.

Now let a, b € N and suppose that a” | a’ | a, with a’ square-free, and x is a
Dirichlet character mod a. Then for Re(s) > 1 we have

Ra’ " ’ 17 1
S Rel@X® e @ LG, 1), (125)

(n,b)=1
where Ly(s, x) is the Dirichlet L-function with Euler factors at primes dividing b

omitted. To see this, observe that if a’ is square-free then i (a’) R,/ (n) is a multiplicative
function of n, and that the summand on the left side of (125) vanishes whenever
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(n,a"”) # 1 because a” | a. One can then factor out a Ramanujan sum from the left
hand side and use the fact that u(a’ )R, (n) = 1if (n,a’) = 1.

From this, we easily get the meromorphic continuation of Y to, say Re(s;) > 1/2,
i =1,2,3,4. Moreover, Y is analytic except for possible poles at s; = 1 in case nyr x
is the principal character (which then implies all of x, n, and ¥ are principal, since their
respective moduli are coprime). Assuming Re(s;) = o > 1/2 foralli = 1,2,3,4,
and o # 1, we have

Y| <o k' "Oh7(gr)*|L(s1, ¥ xm)L(s2, ¥ xn)L(s3, ¥ xn)L(sa, Y xm)|. (126)

Now let Zs g,y = Zo + Z' where Z corresponds to the terms with 1 v principal,
and Z’ corresponds to the terms with 5 ¥ nonprincipal.
Taking 0 = 1 4 ¢, we bound Z as follows:

1
&
LD D s 2
m' .mY.m%.ca|(AB)™® 1752773 Dy Dahk=q, g1g2|7(/:%2)
(Ase)lomfm3)
" = — 2
(B,c2)|m3 81=\ ey (sz))

m//
— 2 €2
g2—< @) 8 (A,c2>>

(A.c2)*(B,c2)’ l-01—0
X A, ) (B, ¢ k" %h°.
N Z (A, 2)(B, 2) YO
D|—27~
(€2.4)2%(c2.B)

Next we change variables m; = n; (A, c3) fori = 1,2 and m5 = (B, c2)n3. We have

Z (n, Q) _ 1—[ Z (p’, 0) < (ABOY. (127)

n J

n|(AB)> plAB j=0
Using this successively on ny, nz, n3, and trivially summing over g1, g2, D, we obtain
I (A,2)(B,c2) 1

1
1Z0l < (gr)* =
m%w g Dl[%:qo ¢(D2) (A, €)% (B, c2) A'B’

l—D’h—O’

We use the estimate (127) again on the sum over ¢; to get

r & B r &
AR <ol SR /R
Dy DthZQO

This proves the bound (94), as desired.

Next we turn to Z'. For this, we use the large sieve inequality to give a bound on
the 4th moment of Dirichlet L-functions. Following e.g. [40, Lemma 8] we find that
foro = 1/2 + ¢, we have
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1

S0 L ILeoorf <ottt (128)

x(mod Q)

Using Holder’s inequality, we have for o; = 1/2 + ¢ fori = 1, 2, 3, 4, that

1
’ €
|1Z'| < (gr) Z (m/llmlz/m%/CZ)l/ZJ,»g Z Z
/ 3 _ :
mi.m3.m3 2l (AB) DiDahk=q g 525
(A»CZ)‘(ml amz) mll/ o
(B,c2)|mf gIZ(W,m

m// .
— 2 ()
gz—((up ’ g1<A,c2>>

4
x> (A (B.e)DVAD K R [T+ 1V

Dl s =
(c2,A)%(c.B)

Using similar methods to estimate the sums over the mg/ and ¢ as in the bound on Z,
we obtain

4
1Z'] < (qr) g AR P TTa+1s; Ve
j=1
Finally, we show (96). The proof is essentially the same as before, except we use a
hybrid large sieve in place of (128), as in [20], namely

/ Yo L2+ 0l < (g
l1|<T

x(mod g)
O

We conclude this section by studying G 4 p(m1, m2, m3; ¢) when some m; = 0.
The formulas greatly simplify.

Lemma9 Suppose some aj = 0. If a; # 0 write a; = a]'a; where a]' | (2AB)*> and

(a;,2AB) = 1, and ifa; = O write a! = a; = 0. Then
cqp(@)Ga.plar, az,az; c) = g (af, a3, a5, A, B, ¢, q) Ry, (a)) Ry, (a5) Ry, (a5),
where g is a function satisfying the bound

|g (a/{, ay,ay, A, B,c, q)| < 64(A, c)(B,¢).

Proof We have according to (97) and (98) that

- 3
Ga,plar,az,a3;¢) = x4(AB)G 3 ((117612, ABcylce, gl c2as; Co)

xG1,1 (a1, a2, ABcacoas; ce) Gap (31»027 [c1, q] cras; Cz)-
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We treat each of these in turn. Let us begin with G 1 (a1, a2, ABca|c, qe]3cga3; Co).
The evaluation (105) of G 1,1 did not require ajazaz # 0. Inspecting (105), and noting
h =1, k = g, under the assumption ajaza3z = 0, we have

G <a1,az, ABcy[ce, ge) cpaz; Cu)

_{W o Ra @Ry, @) Ry, (@3) i (2,a3) = 1and (g, 2, a1a2) = 1

€0q09(qo)
0 else.

Next consider G 1 (a1, a2, ABcacoaz; ¢.). An inspection of the proof of Lemma 7
shows that when ajazaz = 0 that

)XqL(—1)Rqe(al)Rqe(GZ)ch(aii) if ge = ce

qece¢(qe
G, (“1#12, ABcocoas; CE) = m S(az,co)=1 ifge =1
0 else,

where note that in the case ¢, = ¢, = 8, ajaraz = 0, the third case in (117) may be
discarded, and in the second case of (117), the condition 4|ay, a;, az may be dropped
since the Ramanujan sum vanishes otherwise. This function only depends on ¢, ,c., and
the 2-part of a1, az, a3 and is bounded above by 64/g.c.¢(q.), since each Ramanujan
sum is bounded by 4 in absolute value.

Lastly, consider G4 g(ay, az, [cl,q]Sc%ag; c2). As mentioned in the proof of
Lemma 6, (111) is valid without the assumption that ajayaz # 0. We have that
Ga.glar, az, lc1, g1 q] c? 1as, c2) only depends on “1 , a2, a3, A, B, and c;. In particu-
lar, by (112) we have

(A, 2)(B, 2)

|G a,B(al, az, [c1, gl cias; c2)| < "
2

Therefore

Gaplai, az,a3;¢) = g(ay, a3, a5, A, B, c,q)——— Ry (a}) Ry (a3) Ry (a}),

1
cq¢(q)
and |g(af, ay,ay, A, B,c,q)| < (A, c2)(B, c2). O
10 Weight functions
10.1 Inert functions
We begin this section by quoting a definition of [28].

Let 7 be an index set and X = X7 : 7 — R be a functionof T € F.
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A generalized cubic moment and the Petersson formula for newforms

Definition 1 A family {wr}7 < of smooth functions supported on a product of dyadic

intervals in Rio is called X-inert if for each j = (ji1, ..., j4) € Z‘éo we have
C(j1, ..., jg):= sup sup X;jl_'"_jd x{‘ --~xé"w(Tj1"“’j")(x1, .o, Xq)| < oo.
TeF (X yeens x(,')E]R>0
(129)
We often abbreviate the sequence of constants C (i, . . . , jg) associated to a family

of inert functions by C . We will most often use the definition of X-inert with X =
X1 =1, although occasionally (e.g., in the proof of Lemma 12) X will be slightly
larger than 1, with X < (gr)°®.

The purpose of this definition is to encode natural conditions on a weight function
that lets us separate variables efficiently. For instance, if wr satisfies (129), then by
Mellin inversion,

1 — . .
wr (X1, ..., Xg) = W/Rd Wr(itt, .. itg)xy " ooxy Md L dtg,  (130)

where
— dxy dxg
Wr(sy, ..., sq) = [ wr (X1, .., xg)x) X — ==
(0,00)4 X1 Xd
Integrating by parts shows for any choices of ji,..., js =0, 1, ..., we have
d Jja=l o '
Wr(st, ..., 8q) = 1_[ l_[ / u)(T“’""Jd)(xl,...,)cd))cf'Jr]1
Sa + b (0,00 d
a=1 b=0 100)
xsdﬂd dxy dxg
o ...—xd.

Therefore, by (129), we have

o . Xr\"  (Xe\" .
|wr(m,...,ztd)|s<—T) (—T) Cr - Ja)(log2)”.

|71 |2
If |t;| = Xr, then we take j; as unspecified (arbitrarily large), while if |#;| < X7, we

choose j; = 0. In this way, we obtain

_ . ™ a7, .
|U)T(lt1,,ltd)|§ 1+_ 1+_ C(]lv»]d)v (131)
Xr X7

where C’ is some other sequence depending only on C. Our interpretation of this
estimate combined with (130) is that wr can have its variables separated “at cost” X ‘%,

meaning that each integral has essential length <« X 7.
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10.2 Integration by parts

Often an integral can be shown to be small by repeated integration by parts. For this,
we quote [10, Lemma 8.1] with some slight changes of notation and terminology.

Lemma 10 [10] Suppose thatw = w7 (¢) is afamily of X -inert functions, with compact

support on [Z,2Z7], so that w9 (1) « (Z/X)_j Also suppose that ¢ is smooth and
satisfies ¢ (1) L 75 for some Y /X% > R > 1 and all t in the support of w. Let

OO .
I = / w(t)e'?Ddr.
—00

If19' ()] > %for all t in the support of w, then I <4 ZR™4 for A arbitrarily large.

10.3 Stationary phase

Now we quote the main theorem from [28] which extends [10, Proposition 8.2].

Theorem 6 [28] Suppose wr is X-inertinty, ...tq, supportedont|, < Z and t; < X;
fori =2,...,d. Suppose that on the support of wr, ¢ = ¢ satisfies

gataxt--taq Y 1
—atf' o Pt 1, ... 1q) L ﬁ—xgz...xjd’ (132)
forallay, ..., aq € Zso. Suppose ¢" (11, 12, ..., tq) > % (here and below, ¢’ and
@¢" denote the derivative with respect to t1) for all ty, t, . . ., 1y in the support of wr,
and there exists ty € R such that ¢’ (1o, 12, . . ., t7) = 0 with some ty € R depending
onty, ..., 14 (note ty is necessarily unique). Suppose that Y /X*> > R > 1. Then
i (1) Z_ i (t0.12emnta)
I= | ¢ coldr(t, .., t)d = ——e Wt W (b, L, tg)
R VY
+04(ZR™H), (133)

for some X-inert family of functions Wr, and where A > 0 is arbitrarily large. The
implied constant in (133) depends only on A and C r.

10.4 The integral transform

Here we obtain useful expressions for K, which was defined in (92). The key is
not an exact formula for K, but rather a Mellin formula with the variables separated.
Throughout the remainder of this section, w7 will denote a member of a 1-inert family
of functions, which may change from line-to-line without explicit mention. We also

recall that [c, q] = c 2~ (L q 5 where ( takes the possible values 1, 2, 4.
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Lemma 11 (Oscillatory case) Suppose that |m;| < M; fori = 1,2,3, and ¢ < C,

with q|c. Suppose that
~ABN|N>N3 e
B E— > (gr)°. (134)

Then

_ 2
C3/2(Ny N, N3)2e (’X}s[—z?fs)

(M My M3)/2

K@mi,my, m3,c) = L(my, mp, m3,c)

3
+0 (@[T +1mih ™, (135)
i=1

where L has the following properties. Firstly, L vanishes (meaning K is very small)

unless
_ (ABN{N;N3)!/?

M;
N;

L i=1,2,3, (136)
and all the m; have the same sign. Moreover, we have with

_ MiM>M;3
- ABC

P (137)

that

1 lmymams|c? v
L(my,ma,m3,¢) = -5 Fuy) (———5—
P2 Jiui<gre Jiyi<gry [c, q]

M \"' [ My \" [ M3 \" /C\"™
(i) (o) () (2) w39
[m1] |ma| |m3] ¢

where F' = FA B.C,N\,N2,N3y,My, Mo, My IS entire in terms of w, and satisfies
F(u; y) Kgewy (1 + luh~—7 1 + |y|)’J, for J arbitrarily large. Here F addition-
ally depends on the choice of signs of the m;, and on the values q., (c, ge).

Lemma 12 (Non-oscillatory case) Suppose that |m;| < M; fori = 1,2,3, ¢ < C,

and
~ABN|{N>N:
NOPTUE &« (gr). (139)
C
Then

K(mi,my, m3, c)

\/ABN1N2N3>K1 (—m1m2m3c
—_— e

2
= N1N2N3 ( —>/ Fw
C AB[c, g1 lul<(gr)® ltl<(gr)s+P
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o () (2 () () ()
[c, q] [m1] |m2| |m3] c

3
+0(gn T Ja+1mi™, (140)

i=1

where P is given by (137), f(1) < (1 4 [t)™"2 and F(u) <jgew) [To—;(1 +
(gr)*
el

Y~’. Moreover, f vanishes (meaning, K is small) unless

M{N M»> N-
% < (gr)f, —=2

M3 N3

< (gr)°, L (gqr)°. (141)

If P > (qr)®, the function f may be chosen to have support on |t| < P.

Lemma 13 (Other cases) Suppose some m; = 0. If (134) holds, then K is small. If
(139) holds, then K is small unless |m ;| < N%(qr)*‘"forj = 1,2, 3, in which case

~ABN|N>N3

k—1
N{N>N3. 142
C ) 1N2N3 (142)

K(mi,may, m3; c) < (

If say m3 = 0 but mymy # 0, then with N = N1 N2 N3, we have a Mellin formula

Kk—1
~ABN C vy
K(my,my,0;c) = N/ / <7>
¢ o 1<(@r)® Jml<grye \ Nilmi]

c \” }
R(v1, v2, c)dvidva + O((gr)~ e T Ja N2,
x (Nzlmz\) (1, v2, O)dvidvy + O((gr) ™ [ + Imih ™)

i=1

(143)

where R(v1, va, ¢) is analytic in Re(v;) > 0 fori = 1, 2, and satisfies the bound

= (qr)®\ ™’
R(v1, v2, ¢) K J Re(v)),Re(v2) l_[ (1 + 0l ) .
j=1 /
Here R depends on the choices of sign of the m;, but we suppress it from the notation.
Similar formulas hold when my = 0 or mp = 0.
If two m; = O but the other m; is nonzero, then a formula similar to (143) holds,
but with one of the integrals omitted.

Proof We prove all three lemmas.
Truncations As our first step, we integrate by parts three times in each of the #; for
which m; # 0, allowing us to obtain a crude bound of the form

3
K (mi,my, m3,¢) < P(q,r, Ni, Na, N3, o) [ (1 + Imi) >,

i=1
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where P is some fixed polyomial (which may as well be taken to be some polynomial
in gr by (88)). This bound is sufficient for the lemmas when some |m;| is > (qr)A/
for some large A’ depending polynomially on 1/¢. For the rest of the proof, suppose
that |m;| < (qr)A/ for some A’, and each i.

In the oscillatory case (i.e., if (134) holds), then using the fact that J,_i(x) =
e Wi (x) + e *W_(x) where W (x) have controlled derivatives (cf. Watson [44,
Page 205]), we see that repeated integration by parts (Lemma 10) shows that K is very
small unless (136) holds, and moreover, all the m; must have the same sign. Similarly,
in the non-oscillatory case where (139) holds, then repeated integration by parts shows
that K is small unless (141) holds. O

Proof of Lemma 11 Now we show the expression (135), with L given by (138). Using
the Fourier integral (valid for n an odd integer)

+1 [7/2 -
Jo(x) = Z —/ sin(nv)e™ ¥ SNy,
T T Jo

we have
K = K(my, my, m3; c)

+1 (72 +2./ABtitrt5 .
= Z —/ sin((k — l)v)/ e (— SIH(U))
T Tl 0 R3 C

(-mlll — maty — m3f3
xXe
[c. q]

) wr (1, 1, 13)dt1drdtzdv.

. _ NiNy ..
Next we change variables t3 = u o iving

/2 00 AR N N~
K = E E/ sin((k — 1)v)/ e <w sin(v)) I(u)dudv,
T Tt Jo 0 c

where

NN

—mit; —mpty) — m3—u tlltz 2
I(u) = e wr (t1, 1y, u)dtidty.
R2

[c, q]
The conditions (134) and (136) imply that

M;N; ~VABN|{N>N3 R
c = C > (gr)°.

Recall that we already showed, in the paragraphs following the statement of Lemma
13, that under the assumption of (134), K is small unless (136) holds. The conditions
are now in place to analyze the inner 71, #, integrals using stationary phase. Evaluating
the #1-integral first, we find a stationary point at t? = (%1\;121\/2) 172 Following this, the
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stationary point in terms of #, occurs at tg = mz_ 2/3 (mim3uN, Nz)l/ 3. We therefore
deduce

1(u) ¢ —3(mymam3uN; Ny)'/3 ( :
w= € wr(u, my, my, ms, ¢
(N1N2M1M2)1/2 [c, q] r\u,mp,mp, ms,
3
+0(@n T+ 1mip ™, (144)

i=1
where wr is 1-inert in all variables and 7T stands for the tuple
(M1, Mz, M3, N1, N2, N3, C, g, (¢, ge))

and supported on u < N3. The condition that m, m,, m3 must all have the same sign
may be encoded in the support of the inert function. If all three terms are negative, we
naturally interpret the expression (mimam3)'/3 as —(mymams3|)'/3. Therefore

+1 o) /2
K = —,71/2/ sin((k — 1)v)
— i (NIN2MM>) 0

© +2/ABuN|N; . —3(um1m2m3N1N2)1/3
X e| ——— = ssin(v) | e [c.q] wr (u, )dudv
0 c s

3
+0 ((qr)‘/f [Ja+ |ml~|>2> : (145)

i=1

Here we use the notation w7 (u, -) to denote a function where we are currently focusing
on the variable u only, and so do not display the other variables.
Finally, we study

C © (+2/ABuN|N; .
Ko(v) == / e (— sm(v))
0 C

(N1 N2 M M)1/?
<—3(ummzm3N1N2)
xXe
[c. q]

1/3
> wr(u, )du.

We will presently show that

Koty = CPWNININDY2 | —mimomsc? .
oW == anmn 2\ ABle.gpsinty ) VT
3
+0 (@) V[ A+ 1mih ™). (146)

i=1

where wr (sin v, -) is part of a 1-inert family of functions of sin v, m1, my, ms, ¢, with
T as before but in addition depending on the choice of =+ sign.
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This integral defining Ko(v) is small unless there is a stationary point (by Lemma
10 again), which occurs at

(mymam3)c8
ug = ,
O NiN2(AB)3 sin® v[c, ¢1

under the additional assumption that the choice of = sign matches the sign of mmoms3
(which in turn has the same sign as each individual m;). Note that for this stationary
point to lie inside the support of the inert function, we need

(M My M3)'/3

i = =V
MY AB) (NI NaN3) /6

(147)

Thus we obtain, in both cases of + sign, that

—m1m2m3c2

Ko(v) = (scaling factor)e | ——————
o) = ( g ) (ABsinzv[c,q]3

> wr(sinv, )

3
+0 (g™ [ T +1mih ™.
i=1

C32(N Ny N3 /2

A short calculation shows the scaling factor is < L MM

proving the claimed

expression for Ko (v).
Thus we obtain

C3/2 NiN-N 1/2 /2 _ 2
K = (N2 3132 / sin((k — 1)v)e (%) wr(sinv, -)dv,
(MM, M3) 0 AB sin” v[c, q]

plus an error of size O((gr)~V/e [La+ Im;|)~2), where the support of the inert
function is given by (147).
Next we factor out the desired exponential, giving now

K —mimam3c?\ C32(NiNyN3)!/?
B ABlc, g (M My M3)1/2

fn/z in((c — Dv) (’"1’”2’"362 (1 ! )) (sinv, )d
x sin((k — Dv)e [ ———— (1 — —— ) J wy(sin v, -)dv,
0 ABIc, T sin? v T

plus a small error term. Define

/2
Koo(x) := / sin((k — 1)v)e <x <—1 +
0

Note that for our particular values of the parameters, we have

12 >> wr(sinv, -)dv. (148)

sin“ v

X

2 > @n”.
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Now we asymptotically evaluate Ko(x). First we dispense with the case where the
support of the inert function is so that the integrand vanishes unless v < 5 — I’Tm, say.
Thus cos(v) < 1 and sin(v) =< v < V in the support of the integrand. We claim that

Koo (x) < (Clr)_A in this case. To see this, we first note that it suffices to bound

o . Kk—1 cos? v
wr(sinv, -)e(¢p(v))dv, where ¢(v) = =% v+ X———.
S 2 sin“ v

We have
K —
2

for certain constants ¢;. Then we have

pv) ==+

1
v+%(1+czv2+04v4+~~>,
v

2
¢'(v) =< Il oV (v) «

x/v?
v vl

Jj=2,3,...,

using 5—3 > % > (gr)® > k—1,since is fixed. By Lemma 10 yet again, the integral
is very small. If the inert function has support on an interval containing /2, then the
above argument breaks down. So now suppose that the inert function has support on

v > /4, so in particular V < 1 and x > (gr)®. Change variables v = 7 /2 — u,
giving

s02

o /4
Koo(x) = (—)'T / cos((k — Du)e (x sm;’) wr(cosu, Ydu.  (149)
0 cos? u

Next we argue that the main part of this integral comes from u < x~'/2(qr)?,
provided we use a smooth truncation. Let us apply a partition of unity, and consider
the portion of the integral with u < U (with U < 1), which we denote K(% (x). By
Lemma 10 yet again, if xU? > (gr)¢, then K(% (x) is small. We may also use that the
integrand is even to extend to —m /4 to 7 /4, giving

/4
Koo(x) = W (u)e(x tan” u)du,
—m/4

plus a small error term, where W has support on |u| <« U with U = x~1/2+¢,

We may now derive an asymptotic expansion of Kyg, with leading term
coW (0)x~'/2, where cy is some absolute constant. By developing this expansion care-
fully, we have that for x > (gr)?, K(g(j)) (x) € x~Y27J and so by Mellin inversion,
we have that

Koo (x) =x_1/2/ f(nx'dt,

plus a small error term, where | f ()] <4 (1 + |¢t[)~4, with A > 0 arbitrarily large.
In our application, we may thus truncate at |t| < (gr)°.
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The previous discussion gives a formula for K of the form (135), where L takes
the form

it
lmymams|c®\'
_ dt,

wr (¢, my, ma, m3, c) ( lc.ql

1
LGmy,ma.m3. €) = v /|r<<(qr>f

where wr is 1-inert in the variables m 1, my, m3, c and has rapid decay in ¢, uniformly
in all other parameters. We may then write

Ml ui M2 un M3 u3 C ug
wr (t, my, my, m3, c) = / F(u; t)( ) ( ) < > <—> du,
[my] |m;] |m3| c

where the integral is over four vertical lines in the complex plane, one for each of the
ui, i = 1,2,3,4. By the rapid decay of F beyond (¢r)¢, due to the fact that wy is
inert, we may truncate the integrals at |u| << (¢r)®. This expression gives (138), and
so completes the proof of Lemma 11. O

Proof of Lemma 12 Now suppose (139) holds. As previously mentioned in the para-
graphs following Lemma 13, K is small unless (141) holds, a condition that we assume
henceforth. Assuming x < X = 1+ —VABAé‘NZM, we have that J,_; (x) = x*~! W (x)
where W is a smooth function satisfying x/ W) (x) « X/. That is, W satisfies the
same derivative bounds as an X-inert function, and so it may be absorbed into the
definition of the inert function. Therefore, by the separation of variables discussion
from Sect. 10.1, we have

K = NiNoNs (—VABMNZMYIf F(u) (ﬂ)ul (ﬂ)”z
¢ luj<(gr)* lm| lma|
M3 \" [ C\™ ]
x <ﬁ> <?) du+ 0((gr) AT +Imih™>), (150)
3 .
i=1

4 _
where F(u) < reqw [Tr=i(1+ mop) ™7
We also want to factor out the exponential term e 4 gy, 132 (—mimoms3). It is not

clear whether
_ M MyM;

ABC

is > 1 or < 1, so we treat both cases separately.
If P < (gr)®, then essentially the exponential term e gy, 413,02 (m1mam3) is not
oscillatory, so by Mellin inversion there exists a simple formula of the form

P

<m1m2m362> ( m1m2m3c2/(AB[c,q]3)>
e| ————— Jw| £
ABlc, q]? P

2N it
- /| @r) (%) fdt + 0((gr)~V®), (151)
1< (gr)® s
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where fa.B,c.my My, My, +(t) = f(t) < 1 and w(¢) is a smooth function of compact
support on (0, 00), that is identically 1 on the support of the inert function wr in the
definition of K.

If P > (gr)?, then we claim that a formula like (151) holds, but with |¢| < P
and f(r) < |t|~/2. For this, we argue as follows. By Mellin inversion, we have
e“w(x/P) = [0 f(O)x""dt, where f(1) = % Jo7 e w(x/P)x"~'dx. Since the
support on w causes x < P, repeated integration by parts shows f(¢) is very small
except when |¢| =< P. A standard stationary phase bound gives f(¢) < |t|~'/2.

In either case, we obtain (140).

Proof of Lemma 13 The claims that if (134) holds, then K is small, and that if (139)
holds, K is small unless |m;| < %(qr)g fori = 1,2, 3 have already been shown in
the previous analysis. It remains to show the integral formula.

Suppose that m3 = 0, m1, ma # 0, and (139) holds. The idea is to apply an analog
of (150), but only in the m 1, m, variables. This case is easier because the exponential
factor simplifies as 1, so there is no need to separate out €ABlc.q (mimamsc?). By
taking a Mellin transform in the m 1, m, variables, we get

K(@my,ma,0;c)

VABN|N;N3 ol C Vi C v2
=— N1Ny N3
¢ <@y Joal<gre \Nilmi] Na|m;|

3
X R(v1, vz, ©)dvidvy + O (q—A [Ja+ |m,-|>—2> :

i=1

where R(v1, v2, ¢) is analytic in Re(v;) > 0 fori = 1, 2, and satisfies the bound

(qr)g)” _

2
R(v1, 12, €) KJ,e.Re(vy).Re(v2) 1—[ (1 + ol
J

j=I1

This bound on R is precisely analogous to the bound on F (u) in the proof of Lemma
12. This completes the proof. O

11 Recombination
Now we prove Proposition 2. Recall formulas (87), (89), and (90). Let us write S =

So + 81 where Sy corresponds to the terms with some m; = 0, while S corresponds
to the terms with all m; # 0.

11.1 Bounding Sy

Lemma 14 We have Sy < R™!(qr)®.
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Proof From Lemma 13, we see that K, and hence Sy, is small unless (139) holds. By
(139) and (88) we have that A, B, and C are each bounded by (¢r)'?, say. This allows
us to replace several factors of (AB)® and C? by (¢gr)® in the following.

Let us further decompose So = Spo + So1 + So2 where Spp corresponds to the
terms with exactly two of the m; # 0, Sp1 corresponds to the terms with precisely one
of the m; # 0, and Sy corresponds to the terms with m| = my = m3 = 0.

We first bound Sp;. Suppose for the sake of argument that ms = 0, and m, my > 1,
the other cases being similar, and let 50+2 denote these terms. Fori = 1,2, let m; =
m.m/ where (m;,2AB) = 1 and m} | (2AB)*. Then by Lemmas 9 and 13 we have

xk—1
L VN (VABN
Sl < Y el v
Ni,N2,N3,C

1
x Y —| Y. g(m[.m5,0,A, B, c, q)Ry,(m))Ry, (mh)

¢=0(mod GR) my,mpy>1
c=C
C vl C v2
X/ f ( ) < ) R(vi, v2, c)dvi dvy|,
i< (gr)® J vl <(gr)e \N1m1 Nomy

(152)
plus a small error term.

The goal is to form Dirichlet series over m', m}. Since g, is square-free and coprime
to 2A B, we have that

B =
(m,2AB)=1 Plgo

R
ORI % (g0 M) [T = p'™).

Then factoring m; = m'm’, and using the bound on g from Lemma 9 we have

1S5 <

N (VABN )" (A, 0)(B. )
> F() oy >

Cc C qc

N1,N2,N3,C c=0(@mod GR)

m' ,m}|(2AB)>®
c=C

C V] C v2
X //U”«(q,)g (W) <W> Q4,(01) Qq,(V2)R(v1, v2, ¢) dvy dvy |,
lal<(gry N 22

(153)

plus a small error term.

We may assume without loss of generality that g > 8, so that g, > 1. Note that
under the assumption that g, > 1, the function Q, (s) is holomorphic in Re(s) > 0.
On the Re(s) = ¢ line, it satisfies Q,, (s) < (1 + IsD'2¢(g,)(gr)¢. So we can move
the vertical contour integrals to the lines Re(v;) = Re(vy) = €. The short horizontal
segments created in doing so are extremely small by the bounds on R (v, vz, ¢) from
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Lemma 13. From the vertical lines of integration we obtain So2 (N1, N2, N3, ¢) <K
(gr)ee(q)*(A, ¢)(B, c). Therefore we have

-1
VN (VABN\" ?(q)?
+ e
Spl <@ Y | D Ao,
Ni,N2,N3,C c=0mod GR)
c<C
(154)
plus a small error term.
Using (¢ R, AB) = 1, Cauchy’s inequality, and
Y . n)? < x1(d)d. (155)
n=<x
we derive c
Y 4B < (4B Py
c=0(mod gR) q
c=C
Therefore by (88) and (139)
NAB (gr)
+
IShl < Y @ e €< (156)

Ni,N2,N3,C

which is sufficient for the bound in the statement of the lemma. By a symmetry
argument, this shows the desired bound on Sp,.

Similarly to the method used to bound Sp2, we have in analogy with (153), the
bound

Kk—1
|S+| < Z (C]"')E \/m N Z M
i JNC c ~ -
e c=0@mod GR)
c=<C
C v
’ /|<<( ) (W) 04, VR, c)dv|,
v| <L (qr)¢

m'/|(2AB)*>
where O, (v)R(v, ¢) is analytic in Re(v) > 0, and satisfies the bound

04y (MR, ©) Krewy (1 + VD2 (gr)¢¢(q0).

We move the contour to the line Re(v) = e. The short horizontal segment created
in doing so is extremely small by the bounds on R(v, ¢) from Lemma 13. From the
vertical segment we get
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k—1
(qr)¢ (VABN (A, ¢)(B, )
Shl< Y j_c< - Ny )
MNpvs.c VNV c=0(mod GR) q
c=<C

(157)
plus a small error term. This is precisely the same bound as (154), and so our final
bound on Sy is identical to the bound on Sp;.

Finally, we bound Sy, which is the easiest case. Using only the upper bound (142)
and the upper bound from Lemma 9, we obtain a bound on Spg of the exact same
shape as (154), so the proof is complete. O

11.2 Bounding S

Here we show the desired bound

(158)

(AB)I/Z }"3/4
S ¢ .
1< (gn) ( RI/2 4R

Let us write St = )¢ o, cxeqa) S1 7 where this sum is restricted to €;m; > 0 for
i = 1,2, 3. The same method will apply to each of these terms, so for simplicity we
estimate S;” ", which we denote with shorthand by S;'.

We have

1
Si= 2 §ime X 2. we©

My, My, M3 m;=<M; c=0(mod gR)
Ni,N2,N3,C

—mimam3 ) mimams _\ )
(e(AB[c,qP/@) A’B(m"’"z”"3’c)) (6<A8[c,q13/c2> (m"’”z"“’c))'

There are two main cases to consider, depending on if (134) holds, or if (139) holds,
and we correspondingly write S;" = 7 + U.

Case 7.By Lemma 11, we have (with shorthand M = M| M, M3, and M; satisfying
(136))

C32N1/2
< Z C2g/MN Z

Ni,N2,N3,C c=0@mod GR)
My, My, M3 c=xC

< 5 (e Yeg6nn |
e cqGa,p(my, my, m3; ¢
ABlc, PP /c? P2 Jlujcigry Jiyi<ary

mip,ma,m3

x F(u;y) 7m1m2m362 ! My " M " M3 " g Mdud
-y [c,q]3 mi my ms3 c I
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plus a small error term. Assume that Re(u;) = 1 + ¢ forall i = 1,2, 3, 4. Then by
(93), we have

—1/2 83 iy
T L / / F(u; y) <~—>
2 (PM)/ i< (@) JIyl<gry 2 qRq}

N1.N2,N3,.C (e1,€2,63)€{£1}3
5€{1,2,4,8)

c\"“
zgf};; Duy — iy, us — iy, uz — iy, ug + iy) M\ M2 ML (ch?) dudy|,

plus a small error term. Now we decompose further by Z = Zo+ Z’, as in Proposition
3, and write 7 = 7y + 7. For 7 we have

cl/2 M

- &
<@ 2 graBY"

Recall P = M-, M = (AB)*?N'/2, C « VNAB(qr)®, and N < (q*r)*/***
giving

1/2 1 34

75 r)° < —=— R SR < ——(qr)g (159

To < <
O J2R(AB) J7 R

For 7', we move the contours to Re(u;) = 1/2 4+ ¢ fori = 1, 2, 3, 4. The short

horizontal segments created in doing so are extremely small by the bounds on F'(u; y)
from Lemma 11. Then we obtain

_ 1/2
Tear Y S0 pryapwe(L)
R

q
N1,N2,N3,Cq(PM)l/2 q

VAB
2.

pPl/2R1/2"
N1,N2,N3,C

L (gqr)°

Since P > 1, we have

(AB)I/Z

/ €
T K (gr) W,

as desired.
Case U. Here we obtain from Lemma 12 the bound

@ Springer



A generalized cubic moment and the Petersson formula for newforms

N (YABN K-l
3 < / / Fu fp()
U< — 7 u) fp
vdoscl  CavN - Juicans Jiyi<aner
My, M, M3

5 \" . . . .
x > (c}Rq3> Zéf}e’f;’“)(ul —iy,up —iy,u3 —iy,us +1iy)
(e1,62,63){£1)? ¢
5€(1.2,4.8)

C\"“
M M5* M5? (—R> dudy/|, (160)
q

plus a small error term. As in the case of 7, write U = Uy +U’. Consider first the case
U'. As in case 7, we move the contours to Re(u;) = 1/2 + ¢. The short horizontal
segments created in doing so are extremely small by the bounds on F(u; y) from
Lemma 12. Using (96), we get

NVAB c\'?
U < (qr)* —5—~ABg**M'/? (-) (1+ P2
C->q qR
NABM!'/? M \'?
Now M K %(qr)g, and (139) holds, so after simplification this leads to

u/ << (AB)l/zR—l/Z(qr)E’

as desired.

Finally, we turn to the case of {f. To start, we suppose that Re(u;) = 1 + ¢ for
i=1,2,3,4.

Consider the case where P > (gr)¢ with sufficiently large implied constant. Then
we shift contours to Re(u;) = 1/2+ ¢, for all i. No poles are encountered in doing so,
since |u;| < |y| throughout the integral (160) if fp(y) has support |y| < P. The short
horizontal segments created in preforming this contour shift are extremely small by
the bounds on F'(u) from Lemma 12. The contribution to U of the integral along the
vertical segments is certainly bounded by the same bound we obtained on U, since
the bound on Zj appearing in Proposition 3 is much stronger than the bound on Z’.
Therefore, U is bounded in a satisfactory way for P > (gr)°®.

Now suppose P < (gr)¢. Then by (94), we have

N (@)H MC

C2qv/N qRAB

U < (gr)° Y

Ni,N2,N3,C
My, M2, M3
~ABN M
<@t Y N1/2< . (161)
Ny Na.N5.C C ABCg*R
My, M, M3
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Since P = % < (gr)¢ now, and —VACBN & (gr)? too, we obtain

3/4

-
Uy < (qr)PNV2g 2R < (gr)f(@®r¥)2g 2R « (qr)gq’l/zT

This is the same bound as (159), which completes the proof of (158).
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