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Abstract

Topological Data Analysis (TDA) studies the “shape”
of data. A common topological descriptor is the persis-
tence diagram, which encodes topological features in a
topological space at different scales. Turner, Mukher-
jee, and Boyer showed that one can reconstruct a sim-
plicial complex embedded in R3 using persistence dia-
grams generated from all possible height filtrations (an
uncountably infinite number of directions). In this pa-
per, we present an algorithm for reconstructing plane
graphs K = (V,E) in R2, i.e., a planar graph with ver-
tices in general position and a straight-line embedding,
from a quadratic number height filtrations and their re-
spective persistence diagrams.

1 Introduction

Topological data analysis (TDA) is a promising tool in
fields as varied as materials science, transcriptomics,
and neuroscience [8, 11, 14]. Although TDA has been
quite successful in the analysis of point cloud data [13],
its purview extends to any data that can be encoded as
a topological space. Topological spaces can be described
in terms of their homology, e.g., connected components
and “holes.” Simplicial complexes, in particular, are the
most common representation of topological spaces. In
this work, we focus our attention on a subset of simpli-
cial complexes, namely, plane graphs embedded in R2,
with applications to shape reconstruction.

In this paper, we explore the question, Can we re-
construct embedded simplicial complexes from a finite
number of directional persistence diagrams? Our work
is motivated by [15], which proves that one can recon-
struct simplicial complexes from an uncountably infinite
number of diagrams. Here, we make the first step to-
wards providing a polynomial-time reconstruction for
simplicial complexes. In particular, the main contribu-
tions of this paper are to set a bound on the number
of persistence diagrams required to reconstruct a plane
graph and to provide a polynomial-time algorithm for
reconstructing the graph.
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2 Related Work

The problem of manifold and stratified space learning is
an active research area in computational mathematics.
For example, Zheng et al. study the 3D reconstruction of
plant roots from multiple 2D images [16]. Their method
uses persistent homology to ensure the resulting 3D root
model is connected.

Map construction algorithms reconstruct street maps
as an embedded graph from a set of input trajectories.
Three common approaches are Point Clustering, Incre-
mental Track Insertion, and Intersection Linking [1].
Ge, Safa, Belkin, and Wang develop a point cluster-
ing algorithm using Reeb graphs to extract the skeleton
graph of a road from point-cloud data [6]. The original
embedding can be reconstructed using a principal curve
algorithm [10]. Karagiorgou and Pfoser give an incre-
mental track insertion algorithm to reconstruct a road
network from vehicle trajectory GPS data [9]. Ahmed
et al. provide an incremental track insertion algorithm
to reconstruct road networks from point could data [2].
The reconstruction is done incrementally, using a vari-
ant of the Fréchet distance to add curves to the cur-
rent basis. Ahmed, Karagiorgou, Pfoser, and Wenk de-
scribe all these methods in [1]. Finally, Dey, Wang, and
Wang use persistent homology to reconstruct embedded
graphs. This research has also been applied to input
trajectory data [4]. Dey et al. use persistence to guide
the Morse cancellation of critical simplices. In contrast,
the work presented here uses persistence to generate the
diagrams that encode the underlying graph.

Our work extends previous work on the persistent
homology transform (PHT) [15]. As detailed in Sec-
tion 3, persistent homology summarizes the homological
changes for a filtered topological space. When applied
to a simplicial complex embedded in Rd, we can com-
pute a different filtration for every direction in Sd−1;
this family of persistence diagrams is referred to as the
persistent homology transform (PHT). The map from
a simplicial complex to PHT is injective [15]. Hence,
knowing the PHT of a simplicial complex uniquely iden-
tifies that complex. The proof presented in [15] relies on
the continuity of persistence diagrams as the direction
of filtration varies continuously.

Our paper bounds the number of directions by pre-
senting an algorithm for reconstructing the simplicial
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complex, when we are able to obtain persistence dia-
grams for a given set of directions. Simultaneous to our
investigation, others have also observed that the num-
ber of directions can be bounded using the Radon trans-
form; see [3,7]. In the work presented in the current pa-
per, we seek to reconstruct graphs from their respective
persistence diagrams, using a geometric approach. We
bound the number of directional persistence diagrams
since computing the PHT, as presented in [15], requires
the computation of filtrations from an infinite number
of possible directions. Our work provides a theoretical
guarantee of correctness for a finite subset of directions
by providing the reconstruction algorithm.

3 Preliminary

In this paper, we explore the question, Can we re-
construct embedded simplicial complexes from a finite
number of directional persistence diagrams? We be-
gin by summarizing the necessary background informa-
tion, but refer the reader to [5] for a more comprehen-
sive overview of computational topology.

Simplices and Simplicial Complexes Intuitively, a k-
simplex is a k-dimensional generalization of a triangle,
i.e., a zero-simplex is a vertex, a one-simplex is an edge
connecting two vertices, a two-simplex is a triangle, etc.
In this paper, we focus on a subset of simplicial com-
plexes embedded in R2 consisting of only vertices and
edges. Specifically, we study plane graphs with straight-
line embeddings (referred to simply as plane graphs
throughout this paper). Furthermore, we assume that
the embedded vertices are in general position, meaning
that no three vertices are collinear and no two vertices
share an x- or y-coordinate.

Height Filtration Let K be a plane graph and denote
S1 as the unit sphere in R2. Consider s ∈ S1; we define
the lower star filtration with respect to direction s in
two steps. First, we let hs : K → R be defined for a
simplex σ ⊆ K by hs(σ) = maxv∈σ v ·s, where x·y is the
inner (dot) product and measures height in the direc-
tion of y, if y is a unit vector. Intuitively, the height of σ
from s is the maximum height of all vertices in σ. Then,
for each t ∈ R, the subcomplex Kt := h−1

s ([−∞, t)) is
composed of all simplices that lie entirely below or at the
height t, with respect to the direction s. Notice Kr ⊆ Kt

for all r ≤ t and Kr = Kt if no vertex has height in the
interval [r, t]. The sequence of all such subcomplexes,
indexed by R, is the height filtration with respect to s,
notated as Fs(K). Often, we simplify notation and de-
fine Fs := Fs(K).

Persistence Diagrams The persistence diagram is a
summary of the homology groups H∗(Kt) as the height

parameter t ranges from −∞ to ∞; in particular, the
persistence diagram is a set of birth-death pairs (bi, di).
Each pair represents an interval [bi, di) corresponding
to a homology generator. For example, a birth event
may occur when the height filtration discovers a new
vertex, representing a new component, and the corre-
sponding death represents the vertex joining another
connected component. By definition [5], all points in
the diagonal y = x are also included with infinite mul-
tiplicity. However, in this paper, we consider only those
points on the diagonal that are explicitly computed in
the persistence algorithm found in [5], which correspond
to features with the same birth and death time. For
a direction s ∈ S1, let the directional persistence dia-
gram Di(Fs(K)) be the set of birth-death pairs for the
i-th homology group from the height filtration Fs(K).
As with the height filtration, we simplify notation and
define Di(s) := Di(Fs(K)) when the complex is clear
from context. We conclude this section with a remark
relating birth-death pairs in persistence diagrams to the
simplices in K; a full discussion of this remark is found
in [5, pp. 120–121 of §V.4].

Remark 1 (Adding a Simplex) Let K be a simpli-
cial complex and σ a k-simplex whose faces are all in K.
Let βi refer to the i-th Betti number, i.e., the rank of
the i-th homology group. Then, the addition of σ to K
will either increase βk by one or decrease βk−1 by one.

Thus, we can form a bijection between simplices of K
and birth-death events in a persistence diagram. This
observation is the crux of the proofs of Theorem 5 in
Section 4 and Lemma 7 in Section 5.

4 Vertex Reconstruction

In this section, we present an algorithm for recovering
the locations of vertices of a simplicial complex K using
three directional persistence diagrams. Intuitively, for
each direction, we identify the lines on which the vertices
of K must lie. We show that by choosing the three
directions such that they satisfy a simple property, we
can identify all vertex locations by searching for points
in the plane where three lines intersect. We call these
lines filtration lines:

Definition 2 (Filtration Lines) Given a direction
vector s ∈ S1, and a height h ∈ R the filtration line at
height h is the line, denoted ℓ(s, h), through point h ∗ s
and perpendicular to direction s, where ∗ denotes scalar
multiplication. Given a finite set of vertices V ⊂ R2,
the filtration lines of V are the set of lines

L(s, V ) = {ℓ(s, hs(v))}v∈V .

Notice that all lines in L(s, V ) are parallel. Intuitively,
if v is a vertex in a simplicial complex K, then the



CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Figure 1: A vertex set, V , of size 4 with filtration lines
that satisfy the Vertex Existence Lemma. Here, s1, s2 ∈
S1 are linearly independent and the filtration lines are
colored so that L(s1, V ) are the black horizontal lines,
L(s2, V ) are the blue vertical lines, and L(s3, V ) are the
magenta diagonal lines. An intersection of three colored
lines corresponds to the location of a vertex in V .

line ℓ(s, hs(v)) occurs at the height where the filtra-
tion Fs(K) includes v for the first time. If the height is
known but the complex is not, the line ℓ(s, hs(v)) defines
all potential locations for v. By Remark 1, the births
in the zero-dimensional persistence diagram are in one-
to-one correspondence with the vertices of the simplex
complex K. Thus, we can construct L(s, V ) from a sin-
gle directional diagram in O(n) time. Given filtration
lines for three carefully chosen directions, we next show
a correspondence between intersections of three filtra-
tion lines and vertices in K.

In what follows, given a direction si ∈ S1 and a point
p ∈ R2, define ℓi(p) := ℓ(si, hsi(p)) as a way to simplify
notation.

Lemma 3 (Vertex Existence Lemma) Let K be a
simplicial complex with vertex set V of size n. Let
s1, s2 ∈ S1 be linearly independent and further suppose
that L(s1, V ) and L(s2, V ) each contain n lines. Let A
be the collection of vertices at the intersections of lines
in L(s1, V ) ∪ L(s2, V ). Let s3 ∈ S1 such that for all
u, v ∈ A, ℓ3(u) = ℓ3(v) ⇐⇒ u = v. Then, the follow-
ing two statements hold true:

(1) v ∈ V ⇐⇒ ℓ3(v) ∈ L(s3, V ) and A∩ ℓ3(v) = {v}
(2) For all ℓ ∈ L(s3, V ), A ∩ ℓ ̸= ∅.

Proof. First, we prove Part (1).
(⇒) Let v ∈ V . Then, ℓi(v) ∈ L(si, V ) and v ∈ ℓi(v)

for i = {1, 2, 3}. Hence, ℓ1(v) ∩ ℓ2(v) ∩ ℓ3(v) = {v}, as
desired.

(⇐) Assume, for the sake of contradiction, that
ℓ3(v) ∈ L(s3, V ) and A ∩ ℓ3(v) = {v}, yet v ̸∈ V .
Since ℓ3(v) ∈ L(s3, V ) and v ̸∈ V , some other vertex

u ∈ V must have height hs3(v). Since u ∈ V , we know
ℓi(u) ∈ L(si, V ) for i ∈ {1, 2, 3}. And, by (⇒) applied
to u, we know u ∈ A. Since ℓ3(u) = ℓ3(v), both u and v
are in A and on the line ℓ3(v), but u ̸= v, which is
a contradiction.

Next, we prove Part (2) of the lemma. Assume, for
contradiction, that there exists ℓ ∈ L(s3, V ) such that
A ∩ ℓ = ∅. As ℓ ∈ L(s3, V ), a vertex v ∈ V exists
such that ℓ = ℓ3(v) and v lies on ℓ. However, v ∈
ℓ1(v) ∩ ℓ2(v) ⊂ A, which is a contradiction. □

In the previous lemma, we needed to find a third di-
rection with specific properties. If we use horizontal and
vertical lines for our first two directions, then we can
use the geometry of the boxes formed from these lines
to pick the third direction. More specifically, we look at
the box with the largest width and smallest height and
pick the third direction so that if one of the correspond-
ing lines intersects the bottom left corner of the box
then it will also intersect the box somewhere along the
right edge. In Figure 1, the third direction was com-
puted using this procedure with the second box from
the left in the top row. Next, we give a more precise
description of the vertex localization procedure.

Lemma 4 (Vertex Localization) Let LH and LV

be n horizontal and n vertical lines, respectively. Let w
(and h) be the largest (and smallest) distance between
two lines of LV (and LH , respectively). Let B be the
smallest axis-aligned bounding box containing the in-
tersections of lines in LH ∪ LV . For 0 < ε < h, let
s = (w, h − ε). Any line parallel to s can intersect at
most one line of LH in B.

Proof. Note that, by definition, s is a vector in the di-
rection that is at a slightly smaller angle than the diago-
nal of the box of size w by h. Assume, by contradiction,
that a line parallel to s may intersect two lines of LH

within B. Specifically, let ℓ1, ℓ2 ∈ LH and let ℓs be a
line parallel to s such that the points ℓi∩ℓs = (xi, yi) for
i = {1, 2} are the two such intersection points within B.
Notice since the lines of LH are horizontal and by the
definition of h, we observe that |y1 − y2| ≥ h. Let
w′ = |x1 − x2|, and observe w′ ≤ w. Since the slope
of ℓs is (h − ε)/w, we have |y1 − y2| < h, which is a
contradiction. □

We conclude this section with an algorithm to deter-
mine the coordinates of the vertices of the original graph
in R2, using only three height filtrations.

Theorem 5 (Vertex Reconstruction) Let K be a
plane graph. We can can compute the coordinates of
all n vertices of K in O(n log n) time from three direc-
tional persistence diagrams.

Proof. Let s1 = (1, 0) and s2 = (0, 1), which
are linearly independent. We compute the filtration
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lines L(si, V ) for i = 1, 2 in O(n) time by Remark 1. By
our general position assumption, no two vertices of K
share an x- or y-coordinate. Thus, the sets L(s1, V )
and L(s2, V ) each contain n distinct lines. Let A be
the set of intersection points of the lines in L(s1, V )
and L(s2, V ). The next step is to identify a direction s3
such that each line in L(s3, V ) intersects with only one
point A, so that we can use Lemma 3.

Let w (and h) be the greatest (and least) distance
between two adjacent lines in L(s1, V ) (and L(s2, V ),
respectively). Let B be the smallest axis-aligned bound-
ing box containing A, and let s∗ = (w, h

2 ). By Lemma 4,
any line parallel to s∗ will intersect at most one line
of L(s2, V ) in B. Thus, we choose s3 ∈ S1 that is per-
pendicular to s∗. By the second part of Lemma 3, we
now have that each line in L(s3, V ) intersects A. Thus,
there are n intersections between L(s2, V ) and L(s3, V )
in B, each of which also intersects with L(s1, V ).

The previous paragraph leads us to a simple algo-
rithm for finding the third direction and identifying all
the triple intersections. In the analysis below, steps that
do not mention a number of diagrams use no diagrams.
First, we construct L(s1, V ) and L(s2, V ) in O(n) time
using two directional persistence diagrams. Second, we
sort the lines of L(s1, V ) and L(s2, V ) by their x- and
y-intercepts respectively in O(n log n) time. Third, we
find s3 by computing w and h from our sorted lines
in O(n) time. Fourth, we construct L(s3, V ) in O(n)
time using one directional persistence diagram. Fifth,
we sort the lines in L(s3, V ) by their intersection with
the leftmost line of L(s1, V ) in O(n log n) time. Finally,
we compute coordinates of the n vertices by intersect-
ing the i-th line of L(s2, V ) with the i-th line of L(s3, V )
in O(n) time. (Observe, this last step works since the
vertices correspond to the n intersections in B, as de-
scribed above).

Therefore, we use three directional diagrams (two in
the first step and one in the fourth step) and O(n log n)
time (sorting of lines in the second and fifth steps) to
reconstruct the vertices. □

5 Edge Reconstruction

Given the vertices constructed in Section 4, we describe
how to reconstruct the edges in a plane graph using
n(n− 1) persistence diagrams. The key to determining
whether an edge exists or not is counting the degree of
a vertex, for edges “below” the vertex with respect to a
given direction. We begin this section by defining neces-
sary terms, and then explicitly describing our algorithm
for constructing edges.

Definition 6 (Indegree of Vertex) Let K be a
plane graph with vertex set V . Then, for every vertex
v ∈ V and every direction s ∈ S1, we define:

Indeg(v, s) = |{(v, v′) ∈ E | s · v′ ≤ s · v}|.

In other words, the indegree of v is the number of edges
incident to v that lie below v, with respect to direction s;
see Figure 2.

Figure 2: A plane graph with a dashed line drawn in-
tersecting v in the direction perpendicular to s. Since
four edges incident to v lie below v, with respect to
direction s, Indeg(v, s) = 4.

Next, we prove that given a direction, we can deter-
mine the indegree of a vertex:

Lemma 7 (Indegree from Diagram) Let K be a
plane graph with vertex set V . Let s ∈ S1 be such that
no two vertices are at the same height with respect to s,
i.e., |L(s, V )| = n. Let D0(s) and D1(s) be the zero- and
one-dimensional persistence diagrams resulting from the
height filtration Fs on K. Then, for all v ∈ V ,

Indeg(v, s) =|{(x, y) ∈ D0(s) | y = v · s}|+
|{(x, y) ∈ D1(s) | x = v · s}|.

Proof. Let v, v′ ∈ V such that s ·v′ < s ·v, i.e., the ver-
tex v′ is lower in direction s than v. Then, by Remark 1,
if (v, v′) ∈ E, it must be one of the following in the filter
of K defined by s: (1) an edge that joins two discon-
nected components; or (2) an edge that creates a one-
cycle. Since edges are added to a filtration at the height
of the higher vertex, we see (1) as a death in D0(s) and
(2) as a birth in D1(s), both at height s · v. In addition,
each finite death in D0(s) and every birth in D1(s) at
time s ·v must correspond to an edge, i.e., edges are the
only simplices that can cause these events. Then, the set
of edges of types (1) and (2) is {(x, y) ∈ D0(s) | y = v·s}
and {(x, y) ∈ D1(s) | x = v ·s}, respectively. The size of
the union of these two multi-sets is equal to the number
of edges starting at v′ lower than v in direction s and
ending at v, as required. □

In order to decide whether an edge (v, v′) exists be-
tween two vertices, we look at the degree of v as seen
by two close directions such that v′ is the only vertex in
what we call a bow tie at v:

Definition 8 (Bow Tie) Let v ∈ V , and choose
s1, s2 ∈ S1. Then, a bow tie at v is the symmetric dif-
ference between the half planes below v in directions s1
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and s2. The width of the bow tie is half of the angle
between s1 and s2.

Because no three vertices in our plane graph are
collinear, for each pair of vertices v, v′ ∈ V , we can
always find a bow tie centered at v that contains the
vertex v′ and no other vertex in V ; see Figure 3. We

Figure 3: A bow tie B at v, denoted by the gray shaded
area. B contains exactly one vertex, v′, so the only po-
tential edge in B is (v, v′).

use bow tie regions that only contain one vertex, v′ other
than the center, v to determine if there exists an edge
between v and v′; see Figure 4. We then use Lemma 9
to decide if the edge (v, v′) exists in our plane graph.

Figure 4: A bow tie at v that contains the vertex v′

and no other vertices. In order to determine if there ex-
ists an edge between v and v′, we compute Indeg(v, s1)
and Indeg(v, s2), i.e., the number of edges incident to v
in the purple and green arcs, respectively. An edge
exists between v and v′ if and only if |Indeg(v, s1) −
Indeg(v, s2)| = 1.

Lemma 9 (Edge Existence) Let K be a plane graph
with vertex set V and edge set E. Let v, v′ ∈ V . Let
s1, s2 ∈ S1 such that the bow tie B at v defined by s1
and s2 satisfies: B ∩ V = v′. Then,

|Indeg(v, s1) − Indeg(v, s2)| = 1 ⇐⇒ (v, v′) ∈ E.

Proof. Since edges in K are straight lines, any edge in-
cident to v will either fall in the bow tie region B or will
be on the same side (above or below) of both lines. Let
A be the set of edges incident on v and below both lines;
that is A = {(v, v∗) ∈ E | si · v∗ < si · v}. Furthermore,
suppose we split the bowtie into the two infinite cones.
Let B1 be the set of edges in one cone and B2 be the set
of edges in the other cone. We note that ||B1| − |B2|| is

equal to one if there is an edge (v, v′) ∈ E with v′ ∈ B1

or v′ ∈ B2 and zero otherwise. Then, by definition of
indegree,

|Indeg(v, s1)−Indeg(v, s2)|
= ||A| + |B1| − |A| − |B2||
= ||B1| − |B2||
= |V ∩B| ,

which holds if and only if (v, v′) ∈ E. Then
|Indeg(v, s1) − Indeg(v, s2)| = 1 ⇐⇒ (v, v′) ∈ E,
as required. □

Next, we prove that we can find the embedding of
the edges in the original graph using O(n2) directional
persistence diagrams.

Theorem 10 (Edge Reconstruction) Let K be a
plane graph, with vertex set V and edge set E. If V is
known, then we can compute E using O(n2) directional
persistence diagrams.

Proof. We prove this theorem constructively. Intu-
itively, we construct a bow tie for each potential edge
and use Lemma 9 to determine if the edge exists or not.
Our algorithm has three steps for each pair of vertices
in V : Step 1 is to determine a global bow tie width,
Step 2 is to construct suitable bow ties, and Step 3 is
to compute indegrees. See Appendix A for an example
of walking through the reconstruction.

Step 1: Determine bow tie width. For each ver-
tex v ∈ V , we consider the cyclic ordering of the points
in V \{v} around v. We define θ(v) to be the minimum
angle between all adjacent pairs of lines through v; see
Figure 5, where the angles between adjacent lines are
denoted θi. Finally, we choose θ less than minv∈V θ(v).
By Lemmas 1 and 2 of [12], we compute the cyclic order-
ings for all vertices in V in O(n2) time. Since computing
each θ(v) is O(n) time once we have the cyclic ordering,
the runtime for this step is O(n2).

Step 2: Constuct bow ties. For each pair of vertices
(v, v′) ∈ V × V such that v ̸= v′, let s be a unit vector
perpendicular to vector (v′ − v), and let s1, s2 be the
two unit vectors that form angles ±θ with s. Let B
be the bow tie between ℓ(s1, hs1(v)) and ℓ(s2, hs2(v)).
Note that by the construction, B contains exactly one
point from V , namely v′.

Step 3: Compute indegrees. Using B as the bow tie
in Lemma 7, compute Indeg(v, s1) and Indeg(v, s2).
Then, using Lemma 9, we determine whether (v, v′) ex-
ists by checking if |Indeg(v, s1) − Indeg(v, s2)| = 1. If
it does, the edge exists; if not, the edge does not.

Repeating for all vertex pairs requires O(n2) diagrams
and discovers the edges of K. □

The implications of Theorem 5 and Theorem 10 lead
to our primary result. We can find the embedding of the
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Figure 5: Using a vertex set of a plane graph to con-
struct a bow tie at vertex, v. Lines are drawn through
all vertices and then angles are computed between all
adjacent pairs of lines. The smallest angle is chosen
as θ(v). Here, θ(v) = θ2.

vertices V by Theorem 5 using three directional persis-
tence diagrams. Furthermore, we can discover edges E
with O(n2) directional persistence diagrams by Theo-
rem 10. Thus, we can reconstruct all edges and vertices
of a one-dimensional simplicial complex:

Theorem 11 (Plane Graph Reconstruction)
Let K be a plane graph with vertex set V and edge
set E. The vertices, edges, and exact embedding
of K can be determined using persistence diagrams
from O(n2) different directions.

6 Discussion

In this paper, we provide an algorithm to reconstruct
a plane graph with n vertices embedded in R2. Our
method uses O(n2) persistence diagrams by first deter-
mining vertex locations using only three directions, and,
second, determining edge existence based on height fil-
trations and vertex degrees. Moreover, if we have an or-
acle that can return a diagram given a direction in O(T )
time, then constructing the vertices takes O(T +n log n)
and reconstructing the edges takes takes O(Tn2) time.

This approach extends to several avenues for future
work. First, we plan to generalize these reconstruction
results to higher dimensional simplicial complexes. We
can show that the vertices of a simplicial complex K
in Rd can be reconstructed in O(dT + nd) time using
the complete arrangement of hyperplanes and (d + 1)
directional persistence diagrams. We conjecture that
this bound can be improved to O(dT + dn log n) using
the same observation that allows us to do the final step
of the vertex reconstruction in linear time. We have a
partial proof in this direction, and can likewise extend
the bow tie idea to higher dimensions, but the number
of directions grows quite quickly. Second, we conjecture
that we can reconstruct these plane graphs with a sub-
quadratic number of height filtrations by utilizing more
information from each height filtration. Third, we sus-
pect a similar approach can be used to infer other graph
metrics, such as classifying vertices into connected com-

ponents. Intuitively, determining such metrics should
require fewer persistence diagrams than required for a
complete reconstruction. Finally, we plan to provide an
implementation for reconstruction that integrates with
existing TDA software.
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Appendix

A Example of Reconstructing a Plane Graph

We give an example of reconstructing a plane graph.
Consider the complex given in Figure 6.

Vertex Reconstruction First, we find vertex locations
using the algorithm described in Section 4. We need
to choose pairwise linearly independent vectors s1, s2
and s3 such that only n three-way intersections in
A = L(s1, V ) ∪ L(s2, V ) ∪ L(s3, V ) exist; note that in

this example, n = 4. Using the persistence diagrams
from height filtrations in directions s1 = (0, 1) and s2 =
(1, 0), we construct the set of lines L(s1, V ) ∪ L(s2, V ).
This results in n2 = 16 possible locations for the ver-
tices at the intersections in A. We show these filtration
lines and intersections in Figure 6b. Next, we compute
the third direction s3 using the algorithm outlined in
Theorem 5. To do this, we need to find the greatest
horizontal distance between two vertical lines, d1 = 2
and the least vertical distance between two horizon-
tal lines, d2 = 1. Then, we use these to choose a
direction s3 perpendicular to s∗ = (d1,

d2

2 ) = (2, 1
2 )

(e.g., s3 = ( −1√
17
, 4√

17
) ∈ S1). Then, the four three-way

intersections in L(s1, V )∪L(s2, V )∪L(s3, V ) identify all
Cartesian coordinates of the original complex. We show
filtration lines from all three directions in Figure 6c.

Edge Reconstruction Next, we reconstruct all edges
as described in Section 5. In order to do so, we
first find the θ we will use to construct bow ties.
To do this, we examine each vertex v in turn, find-
ing θ(v), the minimum angle between adjacent pairs
of lines through v and v′ ∈ V − {v}. Ordering v by
increasing x-coordinate, we find θ(v) to be approxi-
mately 0.237, 0.219, 0.399, and 0.180 radians, respec-
tively. Then, we take θ to be less than the minimum of
these, i.e. < 0.180radians.

Now, for each of the n(n−1)
2 pairs of vertices (v, v′) ∈

V 2, we construct a bow tie B and then use this bow
tie to determine whether an edge exists between the
two vertices. We go through two examples: one for
a pair of vertices that does have an edge between,
and one for a pair that does not. First, consider
the pair v = (0.25, 0) and v′ = (1, 1). To construct
their bow tie, we first find the unit vector perpen-
dicular to the vector that points from v to v′, which
is s = (−0.8, 0.6). Now, we find s1, s2 such that they
make angles θ with s. We choose s1 = (−0.956, 0.293)
and s2 = (−0.433, 0.902). Now, by Lemma 7, we can
use the persistence diagrams from these two directions
to compute Indeg(v, s1) and Indeg(v, s2). We observe
that D0(s1) contains exactly one birth-death pair (x, y)
such that y = v · s1 and D1(s1) has one birth-death
pair such that x = v · s1. Thus, Indeg(v, s1) = 2. On
the other hand, D0(s2) contains exactly one birth-death
pair (x, y) such that y = v · s2, but D1(s2) contains no
birth-death pair such that x = v ·s2. So Indeg(v, s2) =
1. Now, since |Indeg(v, s1) − Indeg(v, s2)| = 1, we
know that (v, v′) ∈ E, by Lemma 9.

For the second example, consider the pair of ver-
tices v = (0.25, 0) and v′ = (−1, 2). Again, we
construct their bow tie by finding a unit vector per-
pendicular to the vector pointing from v to v′. We
choose this s = (0.848, 0.530). Then, the s1 and s2
which form angle θ < 0.180 radians (e.g θ = .170)
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with s are s1 = (0.968, 0.248) and s2 = (0.472, 0.882).
Again by Lemma 7, we examine the zero- and one-
dimensional persistence diagrams from these two direc-
tions to compute the indegree from each direction for
vertex v. In D0(s1), we have one pair (x, y) which dies
at y = v · s1, but in D1(s1), no pair is born at x = v · s1.
So Indeg(v, s1) = 1. We see the exact same for s2,
which means that |Indeg(v, s1) − Indeg(v, s2)| = 0.
Since Lemma 9 tells us that we have an edge between v
and v′ only if the absolute value of the difference of in-
degrees is one, we know that there is no edge between
vertices (0.25, 0) and (−1, 2).

In order to reconstruct all edges, we perform the same
computations for all pairs of vertices.
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Figure 6: Example of vertex reconstruction from three directions, s1, s2 and s3 with corresponding persistence
diagrams built for height filtrations from these directions. The filtration lines are the dotted lines superimposed over
the complex.
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Figure 7: Example of edge reconstruction for two edges. The first edge (top row) exists while the second edge
(bottom row) does not. The bow tie is given on the left while the persistence diagrams D0(s1) and D1(s1) are given
in the middle and the persistence diagrams D0(s2) and D1(s2) are given on the right. The dotted lines indicate v · s1
and v · s2 in diagrams for s1 and s2 respectively.
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