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Abstract

Introduction

Adults can represent numerical information in non-symbolic and symbolic formats and
flexibly switch between the two. While some studies suggest a strong link between the two
number representation systems (e.g., Piazza, et al., 2007), other studies show evidence against
the strong-link hypothesis (e.g., Lyons, et al., 2012). This inconsistency could arise from the

relation between task demands and the closeness of the link between the two number systems.

Methods

We used a passive viewing task and event-related potentials (ERP) to examine the
temporal dynamics of the implicit integration between the non-symbolic and symbolic systems.
We focused on two ERP components over posterior scalp sites that were found to be sensitive to
numerical distances and ratio differences in both numerical formats: a negative component that
peaks around 170 ms post-stimulus (N1) and a positive component that peaks around 200 ms
post-stimulus (P2p). We examined adults’ (»=55) ERPs when they were passively viewing
simultaneously presented dot quantities and Arabic numerals (i.e., non-symbolic and symbolic
numerical information) in the double-digit range. For each stimulus, the non-symbolic and
symbolic content either matched or mismatched in number. We also asked each participant to
estimate dot quantities in a separate behavioral task and observed that they tended to
underestimate the actual dot quantities, suggesting a need to adjust the match between non-
symbolic and symbolic information to reflect the perceived quantity of the non-symbolic

information.

Results



Using this adjustment, participants showed greater N1 and P2p amplitudes when
perceived dot quantities matched Arabic numerals than when there was a mismatch. However,

no differences were found between the unadjusted match and mismatch conditions.

Conclusion

Our findings suggest that adults rapidly integrate non-symbolic and symbolic formats of
double-digit numbers, but evidence of such integration is best observed when the perceived

(rather than veridical) dot quantity is considered.

Keywords: non-symbolic numbers, symbolic numbers, integration, ERPs



Introduction

Even though we use mathematics frequently in our daily lives, it is unclear how the
knowledge that is required to perform math is represented in the brain. Previous research has
shown that people have access to two systems representing numerical information: one is an
approximate number system (ANS) that represents the numerical magnitudes from non-symbolic
numbers greater than 4 (e.g., a dot quantity containing 23 dots as “twenty-ish”); the other is a
symbolic number system (SNS) that allows for the representation of exact numerical information
provided by symbolic numbers (e.g., Arabic numerals or number words). While these two
systems differ fundamentally in their representational capacities, there is evidence to suggest that
they are also integrated. The present paper aims to investigate the context in which such

integration occurs at the neural level and its underlying temporal dynamics.

Features of the approximate and symbolic number systems

The acuity of the ANS is typically measured using a non-symbolic number comparison
task in which people are presented with two dot quantities in different colors and asked which
color has more dots (Dietrich, et al., 2015). The dots are presented too briefly for people to
count. Therefore, people have to estimate the dot quantities to make a judgment. The visual
perceptual cues such as surface area and dot size are commonly controlled so that the number of
dots is the only consistent cue across trials. By changing the ratio between the smaller and larger
dot quantities in the comparison task, it can be shown that response times and accuracies vary as
a function of ratio. For example, if the magnitude of the ratio is large, e.g., 4 dots versus 8 dots
(1:2 ratio), responses tend to be fast and precise, which indicates that a large ratio makes the
comparison easy. If the magnitude of the ratio is small, e.g., 15 dots versus 16 dots (15:16 ratio),

responses tend to be slower than in the easy ratio condition, and the accuracy is typically lower



(Barth, et al., 2003; Cordes, et al., 2001; Pica, et al., 2004), indicating harder comparison.
Converging evidence from developmental and comparative studies as well as studies with people
whose languages do not have number words show ratio-dependent performance on non-symbolic
number comparison tasks suggesting a key feature of the ANS: independence from language
(Cantlon, et al., 2006; Izard, et al., 2009; Libertus and Brannon, 2009; Lipton and Spelke, 2003;

Nieder, 2009; Pica, et al., 2004; Xu and Spelke, 2000).

Unlike the ANS, the development of the SNS has a later onset and continues to develop
into adulthood. The acquisition of symbolic numbers starts with learning to recite number words
around 2 years of age, with gradually increasing understanding of their meaning (Fuson, 2012;
Wynn, 1990). Building upon the basic symbolic knowledge, children learn conceptual and
procedural knowledge of basic arithmetic and other advanced math knowledge, such as algebra
and calculus through both informal and formal math instruction later in life. In stark contrast to

the ANS, the SNS thus requires language and an understanding of a formal symbol system.

The mapping between the approximate number system and the symbolic number system

Mixed and indirect evidence for a link between the ANS and the SNS comes from
number comparison tasks involving symbolic number stimuli. On the one hand, it has long been
established that when comparing two symbolic numbers, people’s responses are slower when the
numerical difference, also known as the numerical distance, between two numbers decreases
(Dehaene, et al., 1990; Moyer and Landauer, 1967). For instance, judging 5 is smaller than 9 is
easier than judging 5 is smaller than 6. This effect is known as the distance effect, and its
existence suggests that symbolic number comparisons activate corresponding non-symbolic
number representations because purely symbolic representations of 5 and 9 should be as

discriminable as 5 and 6. On the other hand, other variants of symbolic number comparison tasks



have dampened the idea of an integration between the ANS and the SNS. Lyons, Ansari, and
Beilock (2012) asked adults to perform numerical comparison tasks in which two numbers could
be both non-symbolic, both symbolic, or one non-symbolic and one symbolic. They found that
the performance in the mixed-formats condition was worse than the performance in the other two
single-format conditions no matter whether the two numbers were presented simultaneously or
sequentially. They attributed the decrement in performance in the mixed-formats condition to a
weaker integration between non-symbolic and symbolic numbers compared to the within-format

integration.

Another way of assessing the link between the ANS and the SNS is via non-symbolic
number estimation tasks. In a typical non-symbolic number estimation task, people are presented
with a bunch of dots and are asked to estimate how many dots there are. The dot quantities are
presented too briefly for them to count and people have to rely on their non-symbolic number
representations to make their judgments. Meanwhile, people also need to retrieve information
from their symbolic number knowledge in order to give their verbal estimation. Typically,
people have precise estimates for small numbers, such as 4 and 5. As the numbers get bigger,
there is increasingly more variation in people’s estimates (Dehaene, et al., 2008; Revkin, et al.,
2008). For example, when there are 6 dots in a display, people’s answers are more likely to be 5,
6, or 7 dots. It is less likely for them to say that there are 20 dots. However, when there are 60

dots in a display, people’s answers tend to vary even more, e.g., from 40 to 80.

More critically, previous research found that people tend to underestimate large quantities
in non-symbolic number estimation tasks (Crollen, et al., 2011; Izard and Dehaene, 2008;
Krueger, 1982; Odic, et al., 2015). For example, when presented with 60 dots, people more

commonly estimate fewer than 60 dots in contrast to estimating more than 60 dots. In one early



study, a large sample of adults was presented with only a single trial (i.e., one dot quantity)
ranging from 25 to 300 dots and was asked to estimate the number of dots (Krueger, 1982).
Underestimation bias was observed for all dot quantities greater than 30. This underestimation
bias has three important aspects. First, the degree of the underestimation increases as the quantity
increases (e.g., Poulton, 1968, 1975, 1979). In other words, the difference between a dot quantity
and its estimate is greater if the quantity is large compared to when it is small. Second, the
underestimation bias can be calibrated by being exposed to a reference quantity. In one study,
adult participants were shown a dot quantity labeled with “30” before a dot estimation task. The
reference dot quantity either contained 25, 30, or 39 dots, which correspondingly induced
overestimation, linear-like estimation, and underestimation in participants’ performance (Izard
and Dehaene, 2008). Third, there are individual differences in the underestimation bias in adults
(Izard and Dehaene, 2008; Odic, et al., 2015) and young children who have acquired symbolic
number knowledge (Libertus, et al., 2016). Altogether, these behavioral findings suggest that
people are able to map between the ANS and SNS, but that this mapping is not precise and is
subject to a systematic underestimation bias. Importantly, the behavioral evidence is unclear
whether this mapping is automatic or only exists when people are forced to provide an exact

label for a non-symbolic quantity.

In addition to these behavioral studies, brain imaging studies provide evidence of the
mapping between the ANS and the SNS, suggesting that the parietal lobe is important for both.
Using event-related potentials (ERPs), the P2p component, a positive component over posterior
parietal scalp sites which peaks around 200 ms after stimulus onset, was found to be sensitive to
the distance effect in both non-symbolic and symbolic number comparison tasks (Dehaene,

1996; Libertus, et al., 2007; Temple and Posner, 1998). Specifically, the amplitude of the P2p



was greater for small distances than large distances. Other studies using different paradigms
confirmed this finding (Hsu and Sziics, 2012; Hyde and Spelke, 2009; Rubinsten, et al., 2013). In
fMRI studies, the IPS was repeatedly found to be activated in non-symbolic and symbolic

number comparison tasks (Ansari, et al., 2005; Fias, et al., 2003).

However, one critical aspect of the behavioral, ERP and fMRI studies reviewed above is
that they all required participants to make explicit judgments about numbers and/or dot
quantities. To examine whether a link between the ANS and the SNS depends on explicit
numerical judgments, it is necessary to use non-numerical tasks or no task at all. A recent
behavioral study (Liu, et al., 2015) took a step in this direction by using a number decision task
that was similar to a lexical decision task for word-like stimuli. In this number decision task,
participants were briefly shown an image that contained either an Arabic numeral (two-digit
number) or a letter pair and they were instructed to judge whether they saw a valid numeral (i.e.,
two digits) or not. The numeral/letter pairs were superimposed on top of a dot quantity, which
the participants could ignore for the number decision task. The number of dots either matched or
mismatched with the Arabic numeral. Participants’ accuracy and response times were better for
the match trials than the mismatch trials in the Arabic numeral condition suggesting that even
without explicit judgments about numerical magnitudes, participants associated the non-

symbolic and symbolic numerical information.

In another study that did not require explicit numerical judgments, brain activation was
measured via fMRI as adults were adapted to numbers in either non-symbolic or symbolic format
and tested with same-format or cross-format novel numbers (Piazza, et al., 2007). It was found
that in the right IPS, the blood oxygen level dependent (BOLD) signal recovery after the

presentation of the novel numbers was dependent on numerical distance between the adapted



number and the novel number but invariant to number formats. The findings imply that the
human brain can automatically pick up numerical information in different formats and integrate
it. However, the BOLD signal recovery in the left IPS was dependent on both numerical distance
and number formats suggesting that the left hemisphere does not automatically integrate

information across the ANS and the SNS.

Studies that compared the more detailed brain activation patterns for non-symbolic
numbers and symbolic numbers found that there was not much overlap between the two formats.
For example, one fMRI study (Eger, et al., 2009) examined participants when they were
presented with either non-symbolic or symbolic numbers. A multi-voxel pattern analysis that
used classifiers to identify different activation patterns of different quantities within one format
in IPS revealed high classification accuracies (~77%) in the non-symbolic format compared to
the symbolic format (accuracies were ~57%). The classification generalization was poor from
one format to another. A classifier trained to differentiate quantities within one format (e.g.,
Arabic numeral) could not differentiate as well between quantities presented in another format
(e.g., non-symbolic numbers). Similar results of classification accuracies as well as
generalization were found in other fMRI studies (Bulthé, et al., 2014; Bulthé, et al., 2015; Lyons,
et al., 2015), suggesting that even though IPS is responsive to numerical information in general,

non-symbolic and symbolic numbers are not represented in the same way in IPS.

As reviewed above, previous findings provide mixed evidence regarding the integration
between the ANS and the SNS. In addition, all of these studies used fMRI, which limits the
conclusions that can be drawn from these results. First and foremost, fMRI does not provide a
good temporal resolution of the underlying brain activity. Thus, it is possible that more subtle,

short-lived neural signals of integration remain unnoticed. Second, the range of numerical stimuli
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was limited, which might have artificially created an illusion of integration. In the fMRI studies
that used classification methods to examine non-symbolic and symbolic number representations
in the IPS (Bulthé, et al., 2014; Bulthé, et al., 2015; Eger, et al., 2009; Lyons, et al., 2015), the
number ranges were small and mostly under 10. Piazza et al. (2007) used larger numbers, but the
number stimuli were rather categorical (small versus large) instead of continuous. Besides, the
participants in this study were familiarized with example dot quantities of each category and
were told the true approximate ranges before the scan sessions, potentially affecting numerical

integration

Here, we designed a passive viewing EEG task, in which the two formats of numbers (dot
quantities and Arabic numerals) were simultaneously presented to participants without an
explicit number-related task. In addition, we included a large, continuous range of numbers.
Similar to the stimuli used by Liu et al. (2015), the non-symbolic number either matched or
mismatched with the symbolic numbers. In line with previous studies, we examined two ERP
components over posterior scalp sites that are thought to reflect number processing: the N1, the
first negative component peaking around 150 ms post-stimulus, and the P2p, the second posterior
positivity peaking around 200 ms post-stimulus (Dehaene, 1996; Hyde and Spelke, 2009;
Libertus, et al., 2007; Rubinsten, et al., 2013; Temple and Posner, 1998). Furthermore, as the
mental representation of non-symbolic numbers is expected to be imprecise and subject to
systematic estimation biases, we administered a non-symbolic number estimation task. We
hypothesized that the N1 and P2p amplitudes would show stronger differences between
numerical matches and mismatches after adjusting for participants’ estimation bias than without

the adjustment, as previously found in a behavioral study (Liu, et al., 2015).
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Methods
Participants

Sixty-four participants (mean age = 19.3 = 1.5 years, 34 females, 61% White, 30% Asian,

3% African American, 6% Other) were recruited from the University of Pittsburgh subject pool
and received course credits for their participation. All participants provided written informed
consent before participating in accordance with the Declaration of Helsinki and a protocol
approved by the local Institutional Review Board. Data from nine participants were excluded
because of low quality of behavioral data (i.e., random responding in the behavioral task, n=3),
excessive EEG artifacts (i.e., more than 50% trials in the EEG task being rejected as artifacts,
n=5), or failing to complete the EEG (font change detection) task (n=1). After exclusions, 55

participants remained in the behavioral and ERP analysis.
Stimuli and Tasks

Behavioral non-symbolic number estimation task. The estimation task was identical to
the non-symbolic number estimation task used by Liu et al. (2015). Briefly, each stimulus
consisted of a 400-by-400 pixel image comprising a black dot quantity with a superimposed,
translucent blue, double-digit Arabic numeral or two random capital letters. The font of all
numerals and letters was set as Arial Black. The background color of the images was white and
the background color of the screen was black. We selected 12 Arabic numerals with a range from
11 to 63, 12 letter pairs, and 24 dot quantities. The dot quantities and their respective pairings
with Arabic numerals or letter pairs are listed in Table 1. A script created by Dehaene, Izard, and
Piazza (2005) generated the dot arrays, with half of the images equated on the individual dot size
and the other half of the images equated for the cumulative surface area of all dots to avoid

consistent correlations between perceptual features and dot quantities. We generated 6 variations
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of each quantity with respect to the layout and size (3 different sizes and 2 layouts). Dots were
randomly localized within the 400-by-400 pixel area to generate different layouts. However,
density was not controlled when generating different layouts. There were 144 dot arrays in total.
For each Arabic numeral and corresponding letter pair, three categories of images were created:
match with dot quantity, mismatch with dot quantity where dot quantity < Arabic number, and
mismatch with dot quantity where dot quantity > Arabic number. In the case of mismatches, the
ratio between the dot quantity and Arabic numeral was always 1.5 (i.e., 3:2 or 2:3). Considering
the 6 variations of each dot quantity, for each Arabic numeral or letter pair there were 18 images.
In total, 432 images were created, half of them as dots with Arabic numerals and the other half as

dots with letters.

Participants were instructed to estimate the quantity of dots shown in the image, ignoring
the numerals and letters, type in their answer, and hit the Enter key to move on to the next trial.
Each image was presented for 400 ms, followed by a blank response screen until the participants
responded. Although there was no time limit for participants to type in their answer, they were
encouraged to respond as quickly and accurately as possible. The entire task contained six blocks

with 72 trials, each separated by five short breaks. The entire task took about 40 min to complete.

Symbolic integration task with EEG acquisition. The stimuli were identical to those
used in the behavioral non-symbolic number estimation task, except that there were no letter
trials and we extended the Arabic numerals and corresponding dot quantities to cover single digit
numerals and more numerals in the 30-40 range. The latter change was designed to create a more
balanced “match” and “mismatch” set after accounting for a range of possible estimation biases.
A complete list of all Arabic numerals and the corresponding mismatch quantities can be found

in Table 1. As in the behavioral non-symbolic number estimation task, the dot quantity either



13

matched or mismatched the Arabic numeral. Also, in the mismatch condition, half of the images
were dot quantities less than the Arabic numerals and half of the images were dot quantities
greater than the Arabic numerals. Aside from these images, 27 images with the same Arabic
numerals but different font (Marker Felt) were created for an orthogonal font-change detection
task to encourage participants’ attentiveness to the stimuli, but avoid explicit number processing.
However, data from the trials with these images were not included in any analysis. The total set

of 315 images was repeated 4 times, and thus created a set of 1,260 trials for the entire task.

Each trial started with a fixation cross centered on the screen for an average duration of
500 ms (range: 450-550 ms). Immediately after the fixation disappeared, a stimulus image was
presented for a fixed 500 ms duration, followed by a fixed 250 ms fixation. Participants were
instructed to look at the images and press a key on a keypad when they detected a font change in
the Arabic numeral (11% of all trials). The entire task contained six blocks with 210 trials each

separated by five short breaks. The entire task took about 30 minutes to complete.

EEG data were recorded throughout the Symbolic Integration task by using a 64-channel
Brain Vision actiChamp system (Brainproducts, Munich, Germany). The sampling rate was set
at 1,000 Hz during recording and was re-sampled at 500 Hz offline. The impedance of all
electrodes was kept under 5kQ. Electrodes were referenced to the right mastoid during recording
and later algebraically re-referenced to an average of the right and left mastoids during offline

analysis.

[insert Table 1]
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Procedure

After obtaining written consent, while the experimenters set up the EEG equipment and
adjusted the impedance of the electrodes, the participants were given the Behavioral Non-
symbolic Number Estimation task. After they finished the estimation task, they were given a
short break, followed by the Symbolic Integration Task with EEG acquisition. Finally, they were
given a short demographic questionnaire asking about age, gender, major, year in college, and

the number of math classes taken in high school and college.
Data analysis

Behavioral non-symbolic number estimation task. To determine whether participants
were using estimation instead of counting, we performed a repeated measures ANOVA and
correlation analyses to examine the relation between the dot quantities that the participants saw
and their responses. If participants were paying attention to the task and were responding
reasonably, their estimate would increase as the dot quantities increase. Moreover, as the dot
quantities increase, the variability of participants’ estimates should also increase (Odic, et al.,

2015).

Since the non-symbolic number estimation task included both number and letter trials, we
first compared participants’ estimates on these trials types. Each participant’s estimates from the
number and letter trials in the behavioral non-symbolic number estimation task were fitted using
separate power functions in PsiMLE 1.0 (Odic, et al., 2015). PsiMLE is an R-based package that
uses a maximum likelihood estimation approach to optimize the parameters of power functions
that capture participants’ behavioral responses in the non-symbolic number estimation task.
Specifically, PsiMLE estimates the scaling factor a, the exponent f3 of a power function y=q X,

and an extra parameter ¢ that describes the variability of the estimates of each dot quantity given
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the actual dot quantities x and each participant’s responses y with the likelihood function

n 2

x,y):H \/(mei,xﬁ* )_lexp (—%(y—ai,xﬁ) (a&xﬁ*a)_z)- Repeated measures

i=1

Lla,B,o

ANOVAs were used to examine whether the exponents and scaling factors from number trials
differed from the exponents and scaling factors from letter trials. There were no significant
differences between the exponents and scaling factors in the number and letter trials (exponent [3:
F(1,54) = 1.29, p=0.26; scaling factor a: F(1,54) = 2.44, p=0.12). To examine the reliability of
the behavioral estimation task, we also submitted the exponents and scaling factors to a
correlational analysis. There were very high positive correlations for both exponents and scaling
factors across the number and letter trials (exponent 3: 7(1,60)=0.88, p<0.001; scaling factor a:
r(1,60)=0.93, p<0.001). Hence, we collapsed across number and letter trials and fitted power
functions for all trials for each participant. These power functions were used to adjust for the

perceived dot quantities used in the symbolic integration EEG task (see below).

Symbolic integration EEG task. Raw EEG data were processed offline in EEGLab
(Delorme and Makeig, 2004) and ERPLab (Lopez-Calderon and Luck, 2014). The data were
filtered at 0.1-60 Hz. Four artifact rejection algorithms were used to reject trials with eye blinks,
horizontal eye movements, motion, electromyography (EMQ), and other noises: simple voltage
threshold detection, peak-to-peak threshold detection, blink detection, and step-like artifact
detection. The rejection threshold for each algorithm was manually set and adjusted slightly
based on each participant’s data because their overall signal strengths varied substantially. The
range of the thresholds was 80 to 120 nuV. For participants whose general signal voltage was low
(e.g., 90 uV), we used a threshold close to the lower boundary (close to 80 uV) and vice versa.

After artifact rejection, the EEG data were segmented into 700-ms segments consisting of a 200-
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ms baseline prior to stimulus onset and 500 ms after stimulus onset. Segmented EEG data were
selectively averaged with respect to each pair of dot quantity and Arabic numeral to create ERPs.
ERPs were first grouped into match and mismatch conditions according to actual dot quantities,
as described in Table 1. Note that the trials in the embedded font-change detection task were
excluded from EEG data analysis but were used to determine if participants were attending to the

stimuli during EEG recording.

Because participants showed large underestimation biases on the behavioral non-
symbolic number estimation task, we also adjusted the match and mismatch conditions based on
each participant’s best fitting power function derived from the behavioral estimation task. For
instance, an image that contained 42 dots and the Arabic numeral “28” was originally considered
a “mismatch” while an image that contained 42 dots and the Arabic numeral “42” was
considered a “match” before the adjustment. For a participant whose power fitting function
revealed an estimate of 42 dots as 28 dots, the 42dots-28numeral image was labeled as “match”
whereas the 42dots-42numeral image was labeled as “mismatch” after the adjustment. In order to
control for perceptual features of the dot quantities, we only used adjusted mismatch trials that
contained the same dot quantities as the adjusted match trials in the adjusted ERP analysis. Based
on previous work (Hyde and Spelke, 2009; Libertus, et al., 2007), we selected two ERP
components of interest: N1 (130-200 ms), and P2p ERP-components (200-250 ms). As ERPs are
not highly informative of spatial information related to brain activation, we focused on the
overall brain response pattern over a relative large brain region that covers several electrodes.
Specifically, we selected four electrodes of interest over posterior parietal scalp sites from each
hemisphere to obtain enough coverage of the posterior regions that have been reported in

previous studies (Hyde and Spelke, 2009; Libertus, et al., 2007). Electrode P3, P5, PO3, and PO7



17

were selected from the left hemisphere and electrode P4, P6, PO4, and POS8 were selected from
the right. By averaging across each set of four electrodes, two regions of interest for each
hemisphere (ROI. and ROIR) were formed. The mean amplitude of each component at each of
the two ROIs were exported from ERPLab for both the no-adjustment analysis and the after-
adjustment analysis. A two-way (Trial Type, Hemisphere) repeated measures ANOVA was run
for overall main effects and interactions separately for the N1 and P2p components and

separately for unadjusted and adjusted data.
Results
Behavioral results

Non-symbolic number estimation task. We first examined participants’ performance in
the estimation task to obtain personalized quantity estimation parameters to use in the ERP
analysis. For each participant, we removed estimates that were more than 3 standard deviations
from their average estimate across all trials in order to remove extreme estimates (e.g., 500) from
the data that most likely resulted from typing errors. To show that the participants followed the
task instruction and estimated dot quantities instead of randomly inputting responses, we
conducted two correlation analyses on the quality of the estimates. We found a very high
correlation in all participants, mean correlation coefficient » = 0.97, standard deviation (SD) =
0.02, between the actual dot quantities that were presented and participants’ estimates. We also
found a positive correlation, mean correlation coefficient » = 0.68, SD = 0.20, between the actual
dot quantities and the variability in participants’ estimates, which is consistent with participants

relying on their approximate number system when making their estimates.

Next, we fitted each participant’s estimates with the best fitting power function and

obtained the corresponding exponents and scaling factors. We first removed outliers from the
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estimates of each dot quantity for each participant. For all the trials with the same dot quantity,
the estimates that were more than 3 standard deviations above or below the mean were removed.
The mean exponent was 0.70, SD=1.3. The mean scaling factor was 2.72, SD = 0.14. Each
participant’s estimates of the dot quantities as well as the mean power fitting curve are shown in
Figure 1. As can be seen in this figure, participants exhibited a strong underestimation bias,
especially for larger dot quantities. We used each participant’s best fitting power function to
calculate the person’s perceived dot quantity of each actual dot quantity. Then we used these
estimates to calculate the average perceived dot quantities across our entire sample that are listed

in Table 1 (right panel, columns 2, 4, and 6).

[insert Figure 1]

Symbolic integration EEG task. We analyzed participants’ performance in the font-
change detection task that was embedded in the symbolic integration EEG task. The mean
response time was 449 ms, SD = 16 ms. The mean accuracy was 95%, SD = 6%. Hence, the
participants responded to the stimuli with a different font quickly and accurately, which confirms

that they were engaged in this (non-numerical) task through the entire EEG recording.

ERP results

Our analyses focused on two ERP components that have been previously established in
the literature (Libertus, et al., 2007; Temple and Posner, 1998): N1 (130-200 ms) and P2p (200-
250 ms). In line with previous studies, we concentrated on two ROIs over bilateral occipito-
parietal scalp sites (Hyde and Spelke, 2009; Libertus, et al., 2007). Unadjusted and Adjusted
Match and Mismatch ERP waveforms for both ROIs can be found in Figure 2. For Unadjusted
and Adjusted data in the N1 and P2p time window, we conducted a repeated-measures ANOVA

with Trial Type (Match vs Mismatch) and Hemisphere (left vs right) as repeated factors (see
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Table 2 for the mean and standard deviation of the ERP amplitudes of each ROI of each Trial

Type before and after the adjustment).
[insert Table 2]
Without adjustment

N1 (130-200 ms). The repeated-measures ANOVA showed a significant main effect of
Hemisphere (F(1,54) = 32.25, p <0.001, 1°= 0.37). When averaging across the two trial types,
the ROI, had higher ERP amplitudes than the ROl (left: M = 0.28 uV, Standard Error of Mean
(SE) = 0.33; right: M =-1.03 uV, SE = 0.37). No other main effects or interactions were

significant (ps > 0.2).

P2p (200-250 ms). There were no significant main effects or interactions in the Trial

Type by Hemisphere repeated-measures ANOVA (all ps >0.26).
With adjustment

N1 (130 — 200 ms). There was a significant difference between the ERP amplitudes in the
ROI; and ROI F(1,54) =25.81, p <0.001, r’= 0.323. The ERP amplitudes in the ROI, was
higher than the ERP amplitudes in the ROl (left: M = 1.75 uV, SE = 0.28; right: M =1.29 uV,
SE =0.27). We also found a significant difference between adjusted Match and Mismatch trials
across the two ROIs, F(1,54) =4.93, p = 0.03, 1°= 0.084. The adjusted Match trials were higher
in amplitude than the adjusted Mismatch trials (match: M =-0.19 uV, SE = 0.37; mismatch: M =
-0.65 uV, SE = 0.33). No significant interactions were found between Trial Type and

Hemisphere, F(1,54) = 1.31, p =0.26, 1°=0.024.

P2p (200 — 250 ms). We found a marginally significant difference between adjusted

Match and Mismatch trials across the two ROIs, F(1,54) = 3.03, p = 0.087, 7= 0.053. The
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adjusted Match trials had higher amplitude than the adjusted Mismatch trials (match: M =3.71
uV, SE = 0.30; mismatch: M =3.22 uV, SE = 0.33). No other effects were found significant, ps

>0.129.

[insert Figure 2]

Discussion

The present study examined the integration between the approximate number system
(ANS) and the symbolic number system (SNS). Specifically, the integration between non-
symbolic and symbolic formats of numbers in the human brain was examined by asking young
adults to passively look at matching or mismatching numerical information in both formats
simultaneously while recording their EEG. We hypothesized that ERP components that were
previously found to be sensitive to numerical information should differentiate between match
and mismatch trials. However, we also know from previous research that adults’ estimates of
non-symbolic numerical stimuli are biased (Izard and Dehaene, 2008; Krueger, 1982; Odic, et
al., 2015) and that therefore an actual match between a non-symbolic numerical stimulus and a
symbolic one may not be perceived as such. To take estimation biases into account, we collected
each participant’s estimates of non-symbolic stimuli similar to the ones used in the EEG task and
adjusted the match and mismatch trials in the EEG task according to their behavioral estimation

biases.

ERP symbolic integration effect

We found significant differences between match and mismatch trials over bilateral
parietal scalp sites starting as early as 130 ms post-stimulus when perceived rather than actual

non-symbolic quantities were taken into consideration. These findings argue for a rapid
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integration of numerical information across non-symbolic and symbolic stimuli in the adult
brain. The N1 and P2p ERP components have been associated with numerical processing in
previous studies and have been found to be sensitive to numerical distance in both non-symbolic
and symbolic stimuli (Dehaene, 1996; Libertus, et al., 2007; Temple and Posner, 1998). Our
findings suggest that sensitivity to numerical information extends beyond explicit numerical
processing since the participants in our study were passively viewing the numerical stimuli. Our
findings also suggest that sensitivity to numerical information spans across non-symbolic and
symbolic formats of numerical information. Interestingly, the integration of non-symbolic and
symbolic numerical formats did not result in a later onset of the ERP differences than previous
studies focusing on stimuli within a given format, suggesting that cross-format numerical
integration occurs as rapidly as within-format numerical comparison. This further implies that

the processing of symbolic and non-symbolic numerical information unfolds in parallel.

However, other research suggests that the P2p ERP component may reflect the evaluation
of perceptual visual features of non-symbolic numerical stimuli. For example, Gebuis and
Reynvoet (2013) showed that P2p amplitudes were modulated as a function of variation in
perceptual cues of dot quantities, such as different convex hulls and densities, but that the P2p
did not differentiate between different dot quantities. In the present study, we took two steps to
avoid systematic perceptual confounds between mismatch and match trials. First, our stimuli
were created such that each dot quantity was used both in mismatch and match trials. Second,
since our adjustment shifted the alignment between the dot quantities and Arabic numerals
resulting in a larger number of mismatch trials, we intentionally only used the mismatch trials
based on the dot quantities used in match trials for each participant in the adjusted ERP analysis.

For example, for a participant who estimated 42 dots to be 28 dots, the stimulus showing 42 dots
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paired with Arabic numeral 28 was considered a new, adjusted match trial. We then selected the
corresponding mismatch trials as 42 dots paired with a different Arabic numeral (e.g., 42).
Therefore, in both our unadjusted and adjusted match and mismatch trials, the dot quantities
were exactly identical and hence any ERP differences cannot result from perceptual differences

in the non-symbolic stimuli.

A related question is whether the ERP differences we observed may stem from the
perceptual differences in Arabic numerals. Indeed, in the present study the perceptual features of
the Arabic numerals were not controlled, neither before nor after adjustment. However, if any
perceptual difference of the Arabic numerals contributed to the P2p difference we observed after
the adjustment, we should observe P2p differences in the non-adjusted analysis as well, which
we did not. Therefore, it is unlikely that the integration between non-symbolic and symbolic
numerical information observed in our study results from systematic variation in perceptual
features in either stimulus format. Instead, we argue for a rapid brain response that is associated

with the numerical evaluation and integration of both non-symbolic and symbolic numbers.
N1 and P2p amplitude differences

In previous studies, small numerical changes in an adaptation task (Hyde and Spelke,
2009) or small numerical distances in a number comparison task (Dehaene, 1996; Libertus, et al.,
2007; Temple and Posner, 1998) elicited higher P2p amplitudes compared to large changes or
large distances respectively. In our study, the P2p amplitude tended to be higher for match trials
compared with mismatch trials. As the numerical distance between the non-symbolic and
symbolic numbers is smaller than the numerical distance in the mismatch trials, our P2p

amplitude finding was in line with previous findings.
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Unlike the P2p amplitude, the sensitivity to numerical information in the N1 has not been
consistent across studies. One study found that the N1 amplitude was higher if the numerical
distance was closer irrespective of number format (Temple and Posner, 1998), while another
study found that the N1 amplitude was higher if the numerical distance was far between newly
learned artificial symbols with numerical meanings (Merkley, et al., 2016). In addition, two other
studies found no N1 amplitude differences between close or far conditions with neither non-
symbolic nor symbolic numbers (Hyde and Spelke, 2009; Libertus, et al., 2007). Instead the N1
amplitude seemed to be only modulated by the size of small non-symbolic numbers (Hyde and
Spelke, 2009; Libertus, et al., 2007). When non-symbolic numbers were in the small number
range (< 5 dots), the N1 amplitude decreases as number increases. But the N1 amplitude was not
modulated by large non-symbolic quantities. As mentioned earlier, the dot quantities in our study
were exactly the same across match and mismatch trials. Thus, the N1 amplitude differences
cannot be attributed to any perceptual differences between the non-symbolic components of our
stimuli. However, we were unable to also control for the perceptual features of the Arabic
numerals in our stimuli. Yet, we did not see any differences between match and mismatch
conditions prior to adjusting for estimation biases, which suggests that the N1 amplitude
differences observed after the adjustment cannot be attributed to the perceptual differences in

Arabic numerals either.

In general, the N1 component is well known for its role in visual attention (Hillyard and
Anllo-Vento, 1998; Mangun, 1995) and discrimination processes (Vogel and Luck, 2000). It is
possible that the adjusted mismatch trials attracted more attention compared to adjusted match

trials. Of note, the N1 amplitude did not show any differences between unadjusted match and
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mismatch trials, suggesting that, if any attention was involved, it was related to the perceived

mismatch. This possibility needs further examination.

So far, we have shown that the N1 and P2p amplitude differences observed in our study
are not likely due to perceptual features of the dot quantities or Arabic digits. However, the
number of match and mismatch trials in our task were not balanced, especially after adjustment.
Hence, we cannot rule out the possibility that our ERP differences may be due to the imbalance
between match and mismatch trials. In fact, research that investigates general visual mismatch
effects in non-numerical visual domains revealed ERP differences in similar ERP components as
the N1 and P2p in our study (Stefanics and Czigler, 2015). These ERP differences are typically
evoked by a visual mismatch paradigm that consists of a stream of stimuli with different
proportions of standard and deviant (oddball) stimuli. The stimuli vary from basic visual stimuli,
such as shapes and gratings, to complex visual stimuli, such as faces. The general finding is that
less frequent deviant stimuli are typically associated with a lower ERP amplitude than more
frequent standard stimuli over bilateral occipital and occipito-parietal sites in two components
similar to the N1 and P2p around 150-250 ms post-stimulus (Heslenfeld, 2003). Researchers

argue that this visual mismatch effect reflects prediction errors because the deviant stimuli are
presented less frequently than standard stimuli(Stefanics and Czigler, 2015). In the visual
mismatch paradigm, participants adapt to the more frequent standard stimuli and generate a

prediction favoring the standard stimuli. If this prediction is violated, brain activity changes

resulting in the observed ERP differences.

One study (Hsu and Sziics, 2011) examined such mismatch effect in the numerical
processing domain. In this study, the authors presented two Arabic numerals simultaneously to

adult participants and asked participants to judge whether the two numerals in a trial were the
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same or not. Two thirds of their total trials were mismatch trials and one third were match trials.
Thus, the match trials were the less frequent/deviant condition and the mismatch trials were the
more frequent/standard condition. Similar to the visual mismatch effect, Hsu and Sziics found
that the match (deviant) trials elicited lower ERP amplitude within the 236 — 328 ms time
window over bilateral occipito-parietal sites, suggesting that a general mismatch detection

mechanism might have been activated rather than a number-specific one.

In our study, we presented one-third match trials and two-thirds mismatch trials. The
adjustment changed the number of match and mismatch trials but did not reverse the proportion
of the two types of trials. Therefore, similar to Hsu and Sziics’ (2011) study, after the adjustment
the mismatch trials were the standard condition and the match trials were the deviant condition in
our study. Thus, it is possible that participants predicted that a numerical mismatch was more
likely to occur. However, unlike in visual mismatch paradigms in general and Hsu and Sziics’
(2011) study in particular where the less frequent stimulus elicits the more negative ERP
amplitude, we observed more positive amplitudes for adjusted match (less frequent) than
adjusted mismatch (more frequent) trials during the N1 and P2p time windows. This direction of
the mismatch effect suggests that our finding may not reflect a general mismatch detection
process. Instead, we hypothesize that it reflects the detection of numerically mismatching

information across two different number formats.
The role of the non-symbolic underestimation bias for symbolic integration

Previous studies found that large quantities are likely to be underestimated (Krueger,
1982, 1984; Izard and Dehaene, 2008; Libertus, et al., 2016; Odic, et al., 2015). We replicate this
underestimation bias in the behavioral non-symbolic number estimation task. Importantly, we

found that it was critical to take estimation biases into account to observe an integration effect in
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our ERP task. Before adjusting for each participant’s estimation biases, we did not observe any
differences between match and mismatch trials in the N1 or P2p components. However, after
adjusting for individual differences in participants’ estimates of non-symbolic dot quantities,

significant ERP differences emerged.

It is critical for future studies on symbolic integration to consider these underestimation
biases in conjunction with other paradigms such as explicit number comparisons using different
numerical formats or fMRI adaptation paradigms. In addition, it is important to further examine
the origins and development of the underestimation bias for a more thorough understanding of its

potential influence on the integration between the ANS and SNS across the lifespan.

Limitations and future directions

One limitation of the current study relates to the order in which the participants
completed our tasks. The behavioral estimation task was always administered before the EEG
passive viewing task. This order could prime the participants to integrate non-symbolic and
symbolic stimuli in the following passive viewing task. Thus, it is possible that the ERP
integration effect between non-symbolic and symbolic numbers may not have been entirely
spontaneous. However, we did not provide any feedback in the estimation task and hence there
was no explicit way for the participants to calibrate their estimation performance. Further studies
should reverse the task order to examine whether it had an impact on participants’ integration

effects.

In previous studies using EEG/ERP to study numerical cognition, posterior electrodes
have been found to be related to numerical processing. In our study, we selected our ROIs based
on these studies (Hyde and Spelke, 2009; Libertus, et al., 2007) and found the symbolic

integration effect in these ROIs. Given that these posterior sites are spatially close to parietal
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cortex and the fact that parietal cortex, especially the IPS, has been implicated in numerical
processing in other studies (Ansari, et al., 2005; Fias, et al., 2003; Piazza, et al., 2007), it is
tempting to link our findings to the function of parietal cortex. Yet, the spatial resolution of the
EEG/ERP method constrains the power to make such inferences. Future studies should consider
adopting methods that have both high spatial and temporal resolution. As numerical processing
in the parietal cortex does not involve many subcortical structures, magnetoencephalography
(MEG) could be beneficial to study the symbolic integration at the cortical level. Another
potential possibility is to use an intracranial EEG method. Finally, a third way to test the
involvement of parietal cortex is to incorporate lesion studies. If bilateral parietal cortices are
involved in parallel but functionally different numerical processing, then patients with brain
damage in unilateral parietal cortex might exhibit different patterns in their ERP waveforms in
passive viewing tasks such as that used in our study. For example, patients with left hemisphere

lesion might lack the symbolic integration effect in the N1 time window over left posterior sites.

Another limitation of the present study is that we concentrated our ERP analysis on the
N1 and P2p time windows and our posterior ROIs. There were other time windows and
electrodes where the graphed data present some evidence of the symbolic integration effect. For
example, in Fig. 2C and D, the waveforms for match and mismatch condition separate in the
300-400ms time window. In Fig. 2E and F, there are electrodes located in the central regions that
show the symbolic integration effect. Future analyses are needed to address the possibility of

integration effects in other time windows and at other locations.

Conclusion

The present study tested the integration between non-symbolic and symbolic numerical

formats in the adult brain. After adjusting for participants’ estimation biases inherent to the non-
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symbolic format, we found greater ERP amplitudes for trials in which the symbolic and
perceived non-symbolic numerical information matched than in trials where this information did
not match. This neural symbolic integration effect emerged around 130 ms post-stimulus (N1
ERP component) over bilateral posterior scalp sites. Our findings suggested that the integration
between the non-symbolic and symbolic numerical information occurs rapidly but is best

observed when perceived rather than veridical quantities are taken into account.
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Arabic numerals, letters, and dot quantities used in each match and mismatch condition in the

behavioral non-symbolic estimation task and the symbolic integration EEG task

Behavioral non-symbolic estimation

Symbolic integration EEG task

task
Arabic Arabic  Perceive Perceive Perceive
numera Mismatc Mismatc | Numera d Mismatc d Mismatc d
1 Lette h h 1 dot h dot h dot
(Match r Dot<Nu Dot>Nu | (Match) gquantity Dot<Nu gquantity Dot>Nu quantity
) m m m m
11 RC 7 17 6 8.61 4 6.52 9 11.43
13 PH 9 20 7 9.59 5 7.60 10 12.31
17 CF 11 26 8 10.52 5 7.60 12 13.99
21 LR 14 32 9 11.43 6 8.61 14 15.61
25 QX 17 38 28 25.65 18 18.67 42 34.45
28 GM 19 42 29 26.31 19 19.41 44 35.64
32 KJ 21 48 31 27.61 20 20.13 47 37.41
38 XR 25 57 32 28.26 21 20.85 48 37.99
42 YG 28 63 34 29.53 23 22.26 50 39.14
48 JD 32 72 36 30.78 24 22.95 53 40.86
59 PN 39 89 38 32.02 24 22.95 60 44.77
63 FW 42 95 39 32.63 25 23.64 61 45.31
41 33.85 27 24.99 62 45.86
42 34.45 28 25.65 63 46.41
44 35.64 30 26.97 64 46.95
46 36.82 31 27.61 69 49.64

Note. Right panel: the first column represents the Arabic numeral as well as the dot quantities

used to create the Match trials. The 3™ and 5™ column represent the dot quantities used to create

the Mismatch trials. The perceived dot quantity of each actual dot quantity used in the symbolic

integration EEG task was calculated by 1) using each participant’s best fitting power function to

calculate the perceived dot quantity; 2) average the perceived dot quantity for each actual dot

quantity across all participants.
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Table 2

The Trial Type effect on the NI and P2p component in the adjusted and unadjusted analyses.

ERP Adjustment Condition  Mean S.E. F n p i
component
N1 Unadjusted Match 3.71 0.30 1.67 55 .20 .03
(130-200ms) Mismatch 3.22 0.33
Adjusted Match -0.19 0.37 4.93 55 03" .084
Mismatch -0.647 0.33
P2p Unadjusted Match 341 0.27 1.275 55 26 .023
(200-250ms) Mismatch 3.52 0.28
Adjusted Match 3.71 0.30 3.03 55 087" .053
Mismatch 3.22 0.33

Note. * p <0.05. ¥ p <0.1.
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Figure legends

Figure 1. The relation between non-symbolic numerosities presented in the behavioral estimation
task and participants’ mean estimates. The blue line represents the mean power fitting function,
Y=2.72%X"7", where Y is the predicted perceived dot quantity and X is the actual presented dot

quantity. The dashed lines represent upper and lower boundary of outlier removal.

Figure 2. The ERP waveforms of match (black lines) and mismatch condition (red lines). A. The
waveforms of the left ROI in the no-adjustment analysis. B. The waveforms of the right ROI in
the no-adjustment analysis. C. The waveforms of the left ROI in the adjustment analysis. D. The
waveforms of the right ROI in the adjustment analysis. Gray bars: P1 (70 — 130 ms). Light green
bars: N1 (130 — 200 ms). Light blue bars: P2p (200 — 250 ms). E & F. Topographic map of the
mismatch effect for N1 component (E) and P2p component (F). Left: unadjusted data. Right:

adjusted data. * p<0.05. T p<0.1.
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